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Abstract. In this paper we study the solvability of the equality negation
task in a simple wait-free model where processes communicate by reading
and writing shared variables or exchanging messages. In this task, two
processes start with a private input value in the set {0, 1, 2}, and after
communicating, each one must decide a binary output value, so that the
outputs of the processes are the same if and only if the input values of the
processes are different. This task is already known to be unsolvable; our
goal here is to prove this result using the dynamic epistemic logic (DEL)
approach introduced by Goubault, Ledent and Rajsbaum in GandALF
2018. We show that in fact, there is no epistemic logic formula that
explains why the task is unsolvable. We fix this issue by extending the
language of our DEL framework, which allows us to construct such a
formula, and discuss its utility.

Keywords: Dynamic Epistemic Logic · Distributed computing · Equal-
ity negation.

1 Introduction

Background. Computable functions are the basic objects of study in com-
putability theory. A function is computable if there exists a Turing machine
which, given an input of the function domain, returns the corresponding output.
If instead of one Turing machine, we have many, and each one gets only one
part of the input, and should compute one part of the output, we are in the set-
ting of distributed computability, e.g. [1, 20]. The sequential machines are called
processes, and are allowed to be infinite state machines, to concentrate on the in-
teraction aspects of computability, disregarding sequential computability issues.
The notion corresponding to a function is a task, roughly, the domain is a set of
input vectors, the range is a set of output vectors, and the task specification ∆
is an input/output relation between them. An input vector I specifies in its i-th
entry the (private) input to the i-th process, and an output vector O ∈ ∆(I)
states that it is valid for each process i to produce as output the i-th entry of O,
whenever the input vector is I. An important example of a task is consensus,
where each process is given an input from a set of possible input values, and the
participating processes have to agree on one of their inputs.
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A distributed computing model has to specify various details related to how
the processes communicate with each other and what type of failures may occur.
It turns out that different models may have different power, i.e., solve different
sets of tasks. In this paper we consider the layered message-passing model [12],
both because of its relevance to real systems, and because it is the basis to study
task computability. This simple, wait-free round-based model where messages
can be lost, is described in Section 2.

The theory of distributed computability has been well-developed since the
early 1990’s [15], with origins even before [4, 7], and overviewed in a book [12]. It
was discovered that the reason for why a task may or may not be computable is
of a topological nature. The input and output sets of vectors are best described
as simplicial complexes, and a task can be specified by a relation ∆ from the
input complex I to the output complex O. The main result is that a task is
solvable in the layered message-passing model if and only if there is a certain
subdivision of the input complex I and a certain simplicial map δ to the output
complex O, that respects the specification ∆. This is why the layered message-
passing model is fundamental; models that can solve more tasks than the layered
message-passing model preserve the topology of the input complex less precisely
(they introduce “holes”).

Motivation. We are interested in understanding distributed computability from
the epistemic point of view. What is the knowledge that the processes should
gain, to be able to solve a task? This question began to be addressed in [11], using
dynamic epistemic logic (DEL). Here is a brief overview of the approach taken
in [11]. A new simplicial complex model for a multi-agent system was introduced,
instead of the usual Kripke epistemic S5 model based on graphs. Then, the initial
knowledge of the processes is represented by a simplicial model, denoted as I,
based on the input complex of the task to be solved. The distributed comput-
ing model is represented by an action model A, and the knowledge at the end
of the executions of a protocol is represented by the product update I[A], an-
other simplicial model. Remarkably, the task specification is also represented
by an action model T , and the product update gives a simplicial complex
model I[T ] representing the knowledge that should be acquired, by a protocol
solving the task. The task T is solvable in A whenever there exists a morphism
δ : I[A]→ I[T ] such that the diagram of simplicial complexes below commutes.

I[A]

I[T ]I

π δ

π

Thus, to prove that a task is unsolvable, one needs to show
that no such δ exists. But one would want to produce a spe-
cific formula, that concretely represents knowledge that exists
in I[T ], but has not been acquired after running the proto-
col, namely in I[A]. Indeed, it was shown in [11] that two of
the main impossibilities in distributed computability, consen-
sus [7, 19] and approximate agreement [12], can be expressed
by such a formula. However, for other unsolvable tasks (e.g. set agreement), no
such formula has been found, despite the fact that no morphism δ exists.
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Contributions. In this paper we show that actually, there are unsolvable tasks,
for which no such formula exists, namely, the equality negation task, defined by
Lo and Hadzilacos [18]. This task was introduced as the central idea to prove
that the consensus hierarchy [13, 16] is not robust.

3
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Consensus Equality Negation

Consider two processes P0 and P1, each of which has a private input value, drawn
from the set of possible input values I = {0, 1, 2}. After communicating, each
process must irrevocably decide a binary output value, either 0 or 1, so that
the outputs of the processes are the same if and only if the input values of the
processes are different.

It is interesting to study the solvability of the equality negation task from the
epistemic point of view. It is well known that there is no wait-free consensus algo-
rithm in our model [5, 19]. The same is true for equality negation, as shown in [18,
10]. This is intriguing because there is a formula that shows the impossibility of
consensus (essentially reaching common knowledge on input values) [11], while,
as we show here, there is no such formula for equality negation. In more detail, it
is well known that consensus is intimately related to connectivity, and hence to
common knowledge, while its specification requires deciding unto disconnected
components of the output complex. The equality negation task is unsolvable
for a different reason, since its output complex is connected. Moreover, equality
negation is strictly weaker than consensus: consensus can implement equality
negation, but not viceversa (the latter is actually a difficult proof in [18]). So
it is interesting to understand the difference between the knowledge required to
solve each of these tasks.

Our second contribution is to propose an extended version of our DEL frame-
work, for which there is such a formula. Intuitively, the reason why we cannot
find a formula witnessing the unsolvability of the task is because our logical lan-
guage is too weak to express the knowledge required to solve the task. So, our
solution is to enrich the language by adding new atomic propositions, allowing
us to express the required formula.

Organization. Section 2 recalls the DEL framework introduced in [11], and de-
fines the layered message-passing model in this context. In Section 3 we study the
equality negation task using DEL. First we explain why the impossibility proof
does not work in the standard setting, then we propose an extension allowing
us to make the proof go through. The long version of this paper [9] includes all
proofs, as well as a detailed treatment of the equality negation task following
the combinatorial topology approach, for completeness, but also for comparison
with the DEL approach.
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2 Preliminaries

2.1 Topological models for Dynamic Epistemic Logic (DEL)

We recap here the new kind of model for epistemic logic based on chromatic
simplicial complexes, introduced in [11]. The geometric nature of simplicial com-
plexes allows us to consider higher-dimensional topological properties of our
models, and investigate their meaning in terms of knowledge. The idea of us-
ing simplicial complexes comes from distributed computability [12, 17]. After
describing simplicial models, we explain how to use them in DEL.

Syntax. Let At be a countable set of atomic propositions and Ag a finite set of
agents. The language LK is generated by the following BNF grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ p ∈ At, a ∈ Ag

In the following, we work with n+ 1 agents, and write Ag = {a0, . . . , an}.

Semantics. The usual semantics for multi-agent epistemic logic is based on
Kripke frames. The notion of model that we use here, which is based on sim-
plicial complexes, is merely a reformulation of the usual Kripke models using a
different formalism. The benefits of this reformulation is that it makes explicit
the topological information of Kripke frames. The precise relationship between
the usual Kripke models and our simplicial models is studied thoroughly in [11].

Definition 1 (Simplicial complex [17]). A simplicial complex 〈V,M〉 is given
by a set V of vertices and a family M of non-empty finite subsets of V called
simplices, such that for all X ∈M , Y ⊆ X implies Y ∈M . We say that Y is a
face of X.

Usually, the set of vertices is implicit and we simply refer to a simplicial
complex as M . We write V(M) for the set of vertices of M . A vertex v ∈ V(M)
is identified with the singleton {v} ∈M . Elements of M are called simplices, and
those which are maximal w.r.t. inclusion are facets (or worlds), the set of which
is denoted by F(M). The dimension of a simplex X ∈M is |X|−1. A simplicial
complex M is pure if all its facets are of the same dimension n. In this case, we
say M is of dimension n. Given a finite set Ag of agents (that we will represent
as colors), a chromatic simplicial complex 〈M,χ〉 consists of a simplicial complex
M and a coloring map χ : V(M)→ Ag, such that for all X ∈M , all the vertices
of X have distinct colors.

Definition 2 (Simplicial map). Let C and D be two simplicial complexes. A
simplicial map f : C → D maps the vertices of C to vertices of D, such that if X
is a simplex of C, f(X) is a simplex of D. A chromatic simplicial map between
two chromatic simplicial complexes is a simplicial map that preserves colors.
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For technical reasons, we restrict to models where all the atomic propositions
are saying something about some local value held by one particular agent. All
the examples that we are interested in will fit in that framework. Let Val be
some countable set of values, and At = {pa,x | a ∈ Ag, x ∈ Val} be the set
of atomic propositions. Intuitively, pa,x is true if agent a holds the value x. We
write Ata for the atomic propositions concerning agent a.

A simplicial model M = 〈C,χ, `〉 consists of a pure chromatic simplicial
complex 〈C,χ〉 of dimension n, and a labeling ` : V(C)→P(At) that associates
with each vertex v ∈ V(C) a set of atomic propositions concerning agent χ(v),
i.e., such that `(v) ⊆ Atχ(v). Given a facet X = {v0, . . . , vn} ∈ C, we write
`(X) =

⋃n
i=0 `(vi). A morphism of simplicial models f :M→M′ is a chromatic

simplicial map that preserves the labeling: `′(f(v)) = `(v) (and χ).

Definition 3. We define the truth of a formula ϕ in some epistemic state
(M, X) with M = 〈C,χ, `〉 a simplicial model, X ∈ F(C) a facet of C and
ϕ ∈ LK(Ag,At). The satisfaction relation, determining when a formula is true
in an epistemic state, is defined as:
M, X |= p if p ∈ `(X)
M, X |= ¬ϕ if M, X 6|= ϕ
M, X |= ϕ ∧ ψ if M, X |= ϕ and M, X |= ψ
M, X |= Kaϕ if for all Y ∈ F(C), a ∈ χ(X ∩ Y ) implies M, Y |= ϕ

It is not hard to see that this definition of truth agrees with the usual one
on Kripke models (see [11]).

DEL and its topological semantics. DEL is the study of modal logics of
model change [3, 6]. A modal logic studied in DEL is obtained by using action
models [2], which are relational structures that can be used to describe a variety
of communication actions.

Syntax. We extend the syntax of epistemic logic with one more construction:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [α]ϕ p ∈ At, a ∈ Ag

Intuitively, [α]ϕ means that ϕ is true after some action α has occurred. An action
can be thought of as an announcement made by the environment, which is not
necessarily public, in the sense that not all agents receive these announcements.
The semantics of this new operator should be understood as follows:

M, X |= [α]ϕ if M[α], X[α] |= ϕ

i.e., the formula [α]ϕ is true in some world X of M whenever ϕ is true in
some new model M[α], where the knowledge of each agent has been modified
according to the action α. To define formally what an action is, we first need to
introduce the notion of action model. An action model describes all the possible
actions that might happen, as well as how they affect the different agents.
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A simplicial complex version of DEL. An action model is a structure A =
〈T,∼, pre〉, where T is a domain of actions, such that for each a ∈ Ag, ∼a is
an equivalence relation on T , and pre : T → LK is a function that assigns a
precondition formula pre(t) to each t ∈ T . An action model is proper if for any
two different actions t, t′ ∈ T , there is an agent a ∈ Ag who can distinguish
between them, i.e., t 6∼a t′.

Given a simplicial modelM = 〈C,χ, `〉 and an action model A = 〈T,∼, pre〉,
we define the product update simplicial model M[A] = 〈C[A], χ[A], `[A]〉 as
follows. Intuitively, the facets of C[A] should correspond to pairs (X, t) where
X ∈ C is a world of M and t ∈ T is an action of A, such that M, X |= pre(t).
Moreover, two such facets (X, t) and (Y, t′) should be glued along their a-colored
vertex whenever a ∈ χ(X ∩ Y ) and t ∼a t′. Formally, the vertices of C[A] are
pairs (v,E) where v ∈ V(C) is a vertex of C; E is an equivalence class of
∼χ(v); and v belongs to some facet X ∈ C such that there exists t ∈ E such that
M, X |= pre(t). Such a vertex keeps the color and labeling of its first component:
χ[A](v,E) = χ(v) and `[A](v,E) = `(v).

Given a product update simplicial modelM[A] = 〈C[A], χ[A], `[A]〉 as above,
one can naturally enrich it by extending the set of atomic propositions in order
to capture the equivalence class of ∼χ(v) on each vertex v. The extended set of

atomic propositions would then be Ât = At ∪ {pE | E ∈ T/∼a, a ∈ Ag}, where
T/∼a denotes the set of all equivalence classes of ∼a. In that case, the extended

product update model is M̂[A] = 〈C[A], χ[A], ̂̀[A]〉, that differs from M only

in labeling. Namely, the enriched labeling ̂̀[A] maps each vertex (v,E) ∈ C[A]

into the set of atomic propositions ̂̀[A]((v,E)) = `(v)∪ {pE}. On this extended

model M̂[A], we can interpret formulas saying something not only about the
atomic propositions of M, but also about the actions that may have occurred.

In the next section, we describe a particular action model of interest, the one
corresponding to the layered message-passing model described in Section 2.2.

2.2 The layered message-passing action model

This section starts with an overview of the layered message-passing model for
two agents, or processes as they are called in distributed computing. More details
about this model can be found in [12]. This model is known to be equivalent to
the well-studied read/write wait-free model, in the sense that it solves the same
set of tasks. When there are only two processes involved in the computation,
which is what we want to study in this article, the layered message-passing
model is easier to understand. Here, we formalize this model as an action model;
a more usual presentation can be found in the long version of the paper [9], along
with a proof of equivalence between the two.

The layered message-passing model. Let the processes be B,W , to draw
them in the pictures with colors black and white. In the layered message-passing
model, computation is synchronous: B and W take steps at the same time. We
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will call each such step a layer. In each layer, B and W both send a message to
each other, where at most one message may fail to arrive, implying that either
one or two messages will be received. This is a full information model, in the
sense that each time a process sends a message, the message consists of its local
state (i.e., all the information currently known to the process), and each time it
receives a message, it appends it to its own local state (remembers everything).
A protocol is defined by the number N of layers the processes execute. Then,
each process should produce an output value based on its state at the end of the
last layer. A decision function δ specifies the output value of each process at the
end of the last layer.

Given an initial state, an execution can be specified by a sequence of N
symbols over the alphabet {⊥, B,W}, meaning that, if the i-th symbol in the
sequence is ⊥ then in the i-th layer both messages arrived, and if the i-th symbol
is B (resp. W ) then only B’s message failed to arrive (resp. W ) in the i-th layer.
As an example, ⊥BW corresponds to an execution in which both processes have
received each others message at layer one, then B received the message from W
but W did not receive the message from B at layer two, and finally at layer three,
W received the message from B but B did not receive the message from W .

For example, there are three 1-layer executions, namely ⊥, B and W , but
from the point of view of process B, there are two distinguished cases: (i) either
it did not receive a message, in which case it knows for sure that the execution
that occurred was W , or (ii) it did receive a message from W , in which case the
execution could have been either B or ⊥. Thus, for the black process executions
B and ⊥ are indistinguishable.

The layered message-passing model as an action model. Consider the
situation where the agents Ag = {B,W} each start in an initial global state,
defined by input values given to each agent. The values are local, in the sense
that each agent knows its own initial value, but not necessarily the values given
to other agents. The agents communicate to each other via the layered message-
passing model described above. The layered message-passing action model de-
scribed next is equivalent to the immediate snapshot action model of [11] in the
case of two processes.

Let V in be an arbitrary domain of input values, and take the following set
of atomic propositions At = {inputxa | a ∈ Ag, x ∈ V in}. Consider a simplicial
model I = 〈I, χ, `〉 called the input simplicial model. Moreover, we assume that
for each vertex v ∈ V(I), corresponding to some agent a = χ(v), the labeling
`(v) ⊆ Ata is a singleton, assigning to the agent a its private input value. A facet
X ∈ F(I) represents a possible initial configuration, where each agent has been
given an input value.

The action model MPN = 〈T,∼, pre〉 corresponding to N layers is defined
as follows. Let LN be the set of all sequences of N symbols over the alphabet
{⊥, B,W}. Then, we take T = LN ×F(I). An action (α,X), where α ∈ LN and
X ∈ F(I) represents a possible execution starting in the initial configuration X.
We write Xa for the input value assigned to agent a in the input simplex X.
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Then, pre : T → LK assigns to each (α,X) ∈ T a precondition formula pre(α,X)
which holds exactly in X (formally, we take pre(α,X) =

∧
a∈Ag input

Xa
a ). To

define the indistinguishability relation ∼a, we proceed by induction on N . For
N = 0, we define (∅, X) ∼a (∅, Y ) when Xa = Ya, since process a only sees
its own local state. Now assume that the indistinguishability relation of MPN
has been defined, we define ∼a on MPN+1 as follows. Let α, β ∈ LN and
p, q ∈ {⊥, B,W}. We define (α · p,X) ∼B (β · q, Y ) if either:

(i) p = q = W and (α,X) ∼B (β, Y ), or
(ii) p, q ∈ {⊥, B} and X = Y and α = β,

and similarly for ∼W , with the role of B and W reversed. Intuitively, either (i)
no message was received, and the uncertainty from the previous layers remain;
or (ii) a message was received, and the process B can see the whole history,
except that it does not know whether the last layer was B or ⊥.

To see what the effect of this action model is, let us start with an input
model I with only one input configuration X (input values have been omitted).

After one layer of the message passing model, we get the following model I[MP1]:

W ⊥ B

After a second layer, we get I[MP2]:

WW W⊥ WB ⊥B ⊥⊥ ⊥W BW B⊥ BB

The remarkable property of this action model, is that it preserves the topol-
ogy of the input model. This is a well-known fact in distributed computing [12],
reformulated here in terms of DEL.

Theorem 1. Let I = 〈I, χ, `〉 be an input model, and MPN = 〈T,∼, pre〉 be
the N -layer action model. Then, the product update simplicial model I[MPN ]
is a subdivision of I, where each edge is subdivided into 3N edges.

2.3 Outline of impossibility proofs

We now describe how the set up of [11] is used to prove impossibility results in
distributed computing. It is closely related to the usual topological approach to
distributed computability [12], except that the input complex, output complex
and protocol complex are now viewed as simplicial models for epistemic logic. By
interpreting epistemic logic formulas on those structures, we can understand the
epistemic content of the abstract topological arguments for unsolvability. For
example, when the usual topological proof would claim that consensus is not
solvable because the protocol complex is connected, our DEL framework allows
us to say that the reason for impossibility is that the processes did not reach
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common knowledge of the set of input values. This particular example, among
others, is treated in depth in [11].

As in the previous section, we fix an input simplicial model I = 〈I, χ, `〉. A
task for I is an action model T = 〈T,∼, pre〉 for agents Ag, where each action
t ∈ T consists of a function t : Ag→ V out, where V out is an arbitrary domain of
output values. Such an action is interpreted as an assignment of an output value
for each agent. Each such t has a precondition that is true in one or more facets
of I, interpreted as “if the input configuration is a facet in which pre(t) holds,
and every agent a ∈ Ag decides the value t(a), then this is a valid execution”.
The indistinguishability relation is defined as t ∼a t′ when t(a) = t′(a).

Definition 4. The task T is solvable in the N -layer message-passing model if
there exists a morphism δ : I[MPN ] → I[T ] such that π ◦ δ = π, i.e., the
diagram of simplicial complexes below commutes.

I[MPN ]

I[T ]I

π δ

π

In the above definition, the two maps denoted as π :
I[MPN ] → I and π : I[T ] → I are simply projections on
the first component. The intuition behind this definition is
the following. A facet X in I[MPN ] corresponds to a pair
(i, act), where i ∈ F(I) represents input value assignments to
all agents, and act ∈MPN represents an action, codifying the
communication exchanges that took place. The morphism δ
takes X to a facet δ(X) = (i, t) of I[T ], where t ∈ T is as-
signment of decision values that the agents will choose in the situation X.

Moreover, pre(t) holds in i, meaning that t corresponds to valid decision
values for input i. The commutativity of the diagram expresses the fact that
both X and δ(X) correspond to the same input assignment i. Now, consider
a single vertex v ∈ X with χ(v) = a ∈ Ag. Then, agent a decides its value
solely according to its knowledge in I[MPN ]: if another facet X ′ contains v,
then δ(v) ∈ δ(X) ∩ δ(X ′), meaning that a has to decide the same value in both
situations.

To prove impossibility results, our goal is thus to show that no such map δ
can exist. To do so, we rely on the following lemma, which is a reformulation in
the simplicial setting of a classic result of modal logics.

Lemma 1 ([11]). Consider simplicial modelsM = 〈C,χ, `〉 andM′ = 〈C ′, χ′, `′〉,
and a morphism f :M→M′. Let X ∈ F(C) be a facet of M, a an agent, and
ϕ a formula which does not contain negations except, possibly, in front of atomic
propositions. Then, M′, f(X) |= ϕ implies M, X |= ϕ.

To prove that a task T is not solvable inMPN , our usual proof method goes
like this. Assume δ : I[MPN ]→ I[T ] exists, then:

1. Pick a well-chosen positive epistemic logic formula ϕ,
2. Show that ϕ is true in every world of I[T ],
3. Show that there exists a world X of I[MPN ] where ϕ is false,
4. By Lemma 1, since ϕ is true in δ(X) then it must also be true in X, which

is a contradiction with the previous point.
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This kind of proof is interesting because it explains the reason why the task is
not solvable. The formula ϕ represents some amount of knowledge which the
processes must acquire in order to solve the task. If ϕ is given, the difficult part
of the proof is usually the third point: finding a world X in the protocol complex
where the processes did not manage to obtain the required amount of knowl-
edge. The existence of this world can be proved using theorems of combinatorial
topology, such as Sperner’s Lemma; see [11] for such examples.

3 Equality negation task for two processes

The equality negation task has been introduced in [18], and further studied
in [10]. In this section, we will be interested only in the case of two processes.
Each process starts with an input value in the set {0, 1, 2}, and has to irrevocably
decide on a value 0 or 1, such that the decisions of the two processes are the same
if and only if their input values are different. In [18], it has been proved that the
equality negation task is unsolvable for two processes in a wait-free model using
only registers. We reproduce this proof in the long version [9], as well as a more
topological proof. In this section we analyze this task using our DEL framework
and use it to prove the unsolvability of the equality negation task.

3.1 DEL analysis of the task

Let Ag = {B,W} be the two agents (or processes). In the pictures, process
B will be associated to black vertices, and process W with white vertices. The
atomic propositions are of the form inputip, for p ∈ Ag and i ∈ {0, 1, 2}, meaning
that process p has input value i. The input model is I = 〈I, χ, `〉 where:

– I is the simplicial complex whose set of vertices is V(I) = Ag×{0, 1, 2}, and
whose facets are of the form {(B, i), (W, j)} for all i, j.

– The coloring χ : V(I)→ Ag is the first projection χ(p, i) = p.
– `(p, i) = {inputip}.

The input model I is represented below. In the picture, a vertex (p, i) ∈ V(I)
is represented as a vertex of color p with value i.

0

1

2

0

1

2

We now define the action model T = 〈T,∼, pre〉 that specifies the task.
Since the only possible outputs are 0 and 1, there are four possible actions:
T = {0, 1}2, where by convention the first component is the decision ofB, and the
second component is the decision of W . Thus, two actions (dB , dW ) ∼B (d′B , d

′
W )

in T are indistinguishable by B when dB = d′B , and similarly for W . Finally,
the precondition pre(dB , dW ) specifies the task as expected: if dB = dW then
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pre(dB , dW ) is true exactly in the simplices of I which have different input values,
and otherwise in all the simplices which have identical inputs.

The output model is obtained as the product update model O = I[T ] =
〈O,χO, `O〉. By definition, the vertices of O are of the form (p, i, E), where
(p, i) ∈ V(I) is a vertex of I, and E is an equivalence class of ∼p. But note
that ∼p has only two equivalence classes, depending on the decision value (0
or 1) of process p. So a vertex of O can be written as (p, i, d), meaning intuitively
that process p started with input i and decided value d. The facets of O are of
the form {(B, i, dB), (W, j, dW )} where either i = j and dB 6= dW , or i 6= j and
dB = dW . The coloring χO and labeling `O behave the same as in I.

The output model for the equality negation task is depicted below. Decision
values do not appear explicitly on the picture, but notice how the vertices are
arranged as a rectangular cuboid: the vertices on the front face have decision
value 0, and those on the rear face decide 1.

0
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2

2

1

0

0

1

2

0

1

2

We want to prove that this task is not solvable when the processes commu-
nicate through N layers of our message passing model, no matter how large N
is selected. Thus, we need to show that there is no morphism δ : I[MPN ]→ O
that makes the diagram of Definition 4 commute. In Section 3.2, we will show
that the general proof method described in Section 2.3 actually fails. In Sec-
tion 3.3, we extend the expressivity of our logic in order to obtain an epistemic
proof that δ does not exist.

3.2 Bisimulation and limits of the DEL framework

We would like to use the proof method described in Section 2.3 to find a logical
obstruction showing that the morphism δ cannot exist, through a formula ϕ. To
show that, in fact, there is no such suitable formula ϕ, we first need to define
bisimulations for simplicial models.

Definition 5 (Bisimulation). Let M = 〈M,χ, `〉 and M′ = 〈M ′, χ′, `′〉 be
two simplicial models. A relation R ⊆ F(M)×F(M ′) is a bisimulation between
M and M′ if the following conditions hold:

(i) If X R X ′ then `(X) = `′(X ′).
(ii) For all a ∈ Ag, if X R X ′ and a ∈ χ(X ∩ Y ), then there exists Y ′ ∈ F(M ′)

such that Y R Y ′ and a ∈ χ′(X ′ ∩ Y ′).
(iii) For all a ∈ Ag, if X R X ′ and a ∈ χ′(X ′ ∩ Y ′), then there exists Y ∈ F(M)

such that Y R Y ′ and a ∈ χ(X ∩ Y ).
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When R is a bisimulation and X R X ′, we say that X and X ′ are bisimilar.

The next lemma states that two bisimilar worlds satisfy exactly the same
formulae. This is a well-known fact in the context of Kripke models. The same
results holds for bisimulations between simplicial models.

Lemma 2. Let R be a bisimulation between M and M′. Then for all facets
X,X ′ such that X R X ′, and for every epistemic logic formula ϕ,

M, X |= ϕ iff M′, X ′ |= ϕ

We now come back to the equality negation task for two processes. As it
turns out, there is a bisimulation between the input and output models.

Lemma 3. Let I and O be the input and output models of the equality negation
task, respectively, and let π be the projection map π : O → I. The relation
R = {(π(X), X) | X ∈ F(O)} ⊆ I ×O is a bisimulation between I and O.

Proof. The first condition of Definition 5 is trivially fulfilled.
Let us check that condition (ii) is verified. Let X and X ′ be facets of I

and O respectively, such that X R X ′. Thus, we have X = {(B, i), (W, j)} and
X ′ = {(B, i, dB), (W, j, dW )}, for some i, j, dB , dW . Now let a ∈ Ag (w.l.o.g., let
us pick a = B), and assume that there is some Y ∈ F(I) such that B ∈ χ(X∩Y ).
So, Y can be written as Y = {(B, i), (W, j′)} for some j′. We now need to find
a facet Y ′ of O that shares a B-colored vertex with X ′, and whose projection
π(Y ′) is Y . Thus, Y ′ should be of the form Y ′ = {(B, i, dB), (W, j′, d′W )}, for
some d′W , such that i = j′ ⇐⇒ dB 6= d′W . But whatever the values of i, j′, dB
are, we can always choose a suitable d′W . This concludes the proof.

The third condition (iii) is checked similarly. ut

We can finally use Lemma 2 to show that no formula ϕ will allow us to prove
the unsolvability of the equality negation task.

Lemma 4. For the equality negation task, let X be a facet of I[MPN ] and let Y
be a facet of O such that π(X) = π(Y ). Then for every positive formula ϕ we
have the following: if O, Y |= ϕ then I[MPN ], X |= ϕ.

Proof. Let ϕ be a positive formula and assume O, Y |= ϕ. Since we have shown
in Lemma 3 that π(Y ) and Y are bisimilar, by Lemma 2, we have I, π(Y ) |= ϕ.
Since π(Y ) = π(X), by Lemma 1 we obtain I[MPN ], X |= ϕ. ut

In the above lemma, the world Y should be thought of as a candidate
for δ(X). The condition π(X) = π(Y ) comes from the commutative diagram
of Definition 4. Thus, Lemma 4 says that we will never find a formula ϕ which
is true in δ(X) but false in X.

Remark. As previously discussed, Lemma 4 does not apply to consensus, since
we know that there exists a formula proving its unsolvability. The reason is that
the projection mapping π : O → I in consensus does not induce a bisimulation.
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Here we show that condition (ii) of Definition 5 does not hold. Namely, if X =
{(B, 0), (W, 1)} and X ′ = {(B, 0, 1), (W, 1, 1)} and Y = {(B, 0), (W, 0)}, then
by definition of consensus there cannot exist a facet Y ′ with Y R Y ′ and B ∈
χ′(X ′ ∩ Y ′). Such a facet would have the form Y ′ = {(B, 0, 1), (W, 0, d)}, for a
d ∈ {0, 1}, which is not a valid world in the output model of consensus for any
decision d.

3.3 Extended DEL

In Section 3.2, we have shown that no epistemic logic formula is able to express
the reason why the equality negation task is not solvable. This seems to indicate
that our logic is too weak: indeed, because of the product update model con-
struction that we use, we are only allowed to write formulas about the inputs
and what the processes know about each other’s inputs. But the specification of
the task is very much about the outputs too! If we allow ourselves to use atomic
propositions of the form decidedp, with the intended meaning that process p de-
cides value d, a good candidate for the formula ϕ seems to be:

ϕ =
∧
p,i,d

inputip ∧ decidedp =⇒
(

(inputip̄ ∧ decided̄p̄) ∨ (inputīp̄ ∧ decidedp̄)
)

where p̄, ī, d̄ denote values different from p, i, d, respectively. Note that p̄ and d̄
are uniquely defined (since there are only two processes and two decision values),

but for ī, there are two possible inputs different from i. So, for example, input0̄p
is actually a shortcut for input1p ∨ input2p.

This formula simply expresses the specification of the task: if process p has
input i and decides d, then the other process should either have the same input
and decide differently, or have a different input and decide the same. Then
hopefully ϕ would be true in every world of the output complex, but would
fail somewhere in the protocol complex I[MPN ], meaning that the N -layer
message-passing model is not powerful enough to obtain this knowledge.

To be able to express such a formula, we first need to enrich our models
by saying in which worlds the atomic propositions decidedp are true or false. Let

Ât = At ∪ {decidedp | p ∈ Ag, d ∈ {0, 1}} be the new set of atomic propositions.

The definition of the extended product update model Î[T ] = Ô is straightforward:

– Its vertices are of the form (p, i, d) with p ∈ Ag, i ∈ {0, 1, 2} and d ∈ {0, 1}.
The facets are {(B, i, dB), (W, j, dW )} where i = j ⇐⇒ dB 6= dW .

– The coloring map is χÔ(p, i, d) = p.

– The atomic propositions labeling is `Ô(p, i, d) = {inputip, decide
d
p}.

Thus, this is almost the same model as the one of Section 3.1, but we have
added some annotations to say where the decidedp atomic propositions are true.

It is easily checked that the formula ϕ is true in every world of Ô.

Now, we would also like the formula ϕ to make sense in the protocol complex
I[MPN ], but it does not seem to have any information about decision values.
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It only describes the input values, and which execution has occurred. But it is
precisely the role of the simplicial map δ : I[MPN ] → O to assign decision
values to each world of I[MPN ]. Thus, given such a map δ, we can lift it to a

map δ̂ : ̂I[MPN ]→ Ô as the following lemma states.

Lemma 5. Let M = 〈M,χ, `〉 be a simplicial model over the set of agents Ag
and atomic propositions At, and let δ : M → O be a morphism of simplicial
models. Then there is a unique model M̂ = 〈M,χ, ̂̀〉 over Ât, where ̂̀ agrees

with ` on At, such that δ̂ : M̂ → Ô is still a morphism of simplicial models.

Proof. All we have to do is label the worlds of M with the decidedp atomic
propositions, such that δ is a morphism of simplicial models. Thus, we definề : M → P(Ât) as ̂̀(m) = `(m) ∪ {decidedp}, where δ(m) = (p, i, d) ∈ O.
Then δ is still a chromatic simplicial map (since we did not change the underlying

complexes nor their colors), and moreover we have ̂̀(m) = `Ô(δ(m)) for all m.

The model M̂ is unique since any other choice of ̂̀(m) would have broken this
last condition, so δ would not be a morphism of simplicial models. ut

We can finally prove that the equality negation task is not solvable:

Theorem 2. The equality negation task for two processes is not solvable in the
N -layer message-passing model.

Proof. Let us assume by contradiction that the task is solvable, i.e., by Defini-
tion 4, there exists a morphism of simplicial models δ : I[MPN ]→ O that makes

I[MPN ]

O

̂I[MPN ]

ÔI

π δ δ̂

π

the diagram commute. By Lemma 5, we can lift δ

to a morphism δ̂ : ̂I[MPN ] → Ô between the
extended models. As we remarked earlier, the for-
mula ϕ is true in every world of Ô. Therefore, it

also has to be true in every world of ̂I[MPN ].

Indeed, for any world w, since Ô, δ(w) |= ϕ,
and δ is a morphism, by Lemma 1, we must have
̂I[MPN ], w |= ϕ. We will now derive a contradic-

tion from this fact.
Recall that the protocol complex I[MPN ] is just a subdivision of the input

complex I, as depicted below. (For simplicity, some input values have been omit-
ted in the vertices on a subdivided edge; it is the same input as the extremity of
the edge which has the same color. Also, the picture shows only one subdivision,
but our reasoning is unrestricted and it applies to any number of layers N .)
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0

1

2

w1 w2

w′

w′′
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Let us start in some world w1 on the (W, 0) − (B, 1) edge. In the world w1,

the two processes have different inputs. Since in ̂I[MPN ], the formula ϕ is true
in w1, the decision values have to be the same. Without loss of generality, let us
assume that in w1, both processes decide 0.

We then look at the next world w2, which shares a black vertex with w1.
Since the inputs are still 0 and 1, and ϕ is true, and we assumed that process B
decides 0, then the white vertex of w2 also has to decide 0.

We iterate this reasoning along the (W, 0) − (B, 1) edge, then along the
(B, 1) − (W, 2) edge, and along the (W, 0) − (B, 2) edge: all the vertices on
these edges must have the same decision value 0. Thus, on the picture, the top
right (B, 2) corner has to decide 0, as well as the bottom right (W, 2) corner.

Now in the world w′, the two input values are equal, so the processes should
decide differently. Since the black vertex decides 0, the white vertex must have
decision value 1. If we keep going along the rightmost edge, the decision values
must alternate: all the black vertices must decide 0, and the white ones decide 1.
Finally, we reach the world w′′, where both decision values are 0, whereas the
inputs are both 2. So the formula ϕ is false in w′′, which is a contradiction. ut

It is interesting to compare the epistemic formula ϕ that we used in this
paper to prove the unsolvability of equality negation, with the one (let us call
it ψ) that was used in [11] to prove the impossibility of solving consensus. In
the case of consensus, we did not need the “Extended DEL” framework. The
formula ψ was simply saying that the processes have common knowledge of the
input values. This formula is quite informative: it tells us that the main goal
of the consensus task is to achieve common knowledge. On the other hand, the
formula ϕ is less informative: it is simply stating the specification of the equality
negation task. It does not even seem to be talking about knowledge, since there
are no K or C operators in the formula. In fact, the epistemic content of ϕ is

hidden in the decidedp atomic propositions. Indeed, their semantics in ̂I[MPN ] is
referring to the decision map δ, which assigns a decision value d to each vertex of
I[MPN ]. The fact that we assign decisions to vertices means that each process
must decide its output solely according to its knowledge.

Despite the fact that it produces less informative formulas, the “Extended
DEL” proof method has two major benefits. First, it seems to be able to prove
any impossibility result. Indeed, let T = 〈T,∼, pre〉 be a task action model, on
the input model I, and let P be a protocol action model. Remember that the
elements of T are functions t : Ag → V out assigning a decision value to each
agent. Let ϕ denote the following formula:

ϕ =
∧

X∈F(I)

 ∧
p∈Ag

inputX(p)
p =⇒

∨
t∈T

I,X|= pre(t)

∧
p∈Ag

decidet(p)p

 (1)

where X(p) denotes the input value of process p in the input simplex X. Then
we get the following Theorem (whose proof is in the long version [9]).
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Theorem 3. The task T is solvable in the protocol P if and only if there exists

an extension Î[P] of I[P] (assigning a single decision value to each vertex of

I[P]) such that ϕ from (1) is true in every world of Î[P].

This theorem implies that the situation of Section 3.2 cannot happen with
the “Extended DEL” approach: if the task is not solvable, there necessarily exists

a world X of Î[P] where the formula fails. Of course, finding such a world is
usually the hard part of an impossibility proof, but at least we know it exists.
In fact, in the particular case of read/write protocols (or, equivalently, layered
message-passing), the solvability of tasks is known to be undecidable when there
are more than three processes [8, 14]. Thus, according to our Theorem, given a
formula ϕ, the problem of deciding whether there exists a number of layers N
and an extension of I[MPN ] which validates the formula, is also undecidable.

The second benefit of the “Extended DEL” framework is that it gives us a
way of using epistemic logic as a specification language for tasks. Notice that
in Theorem 3, we characterized the solvability of a task without referring to T
itself: the formula ϕ contains all the information of T . Thus, instead of relying
on the commutative diagram of Definition 4, we can specify a task directly as a
logical formula. One could decide to pick a more informative formula, with an
interesting epistemic content, and study the solvability of this “task”.

4 Conclusion

The equality negation task is known to be unsolvable in the wait-free read/write
model. In this paper, we gave a new proof of this result, using the simplicial
complex semantics of DEL that we proposed in [11]. There are two purposes
of doing this. First, the logical formula witnessing the unsolvability of a task
usually helps us understand the epistemic content of this task. Unfortunately, as
it turns out, the logical formula that we obtained in the end is less informative
than we hoped. Secondly, this is a nice case study to test the limits of our DEL
framework. Indeed, we proved in Section 3.2 that the basic language of DEL,
where formulas are only allowed to talk about input values, is too weak to express
the reason why the task is not solvable. To fix this issue, we introduced a way
to extend our logical language in order to have more expressive formulas.
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