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Abstract—In previous work we have described the construction
of an abstract lattice from a given Büchi automaton. The abstract
lattice is finite and has the following key properties. (i) There is
a Galois insertion between it and the lattice of languages of finite
and infinite words over a given alphabet. (ii) The abstraction is
faithful with respect to acceptance by the automaton. (iii) Least
fixpoints and ω-iterations (but not in general greatest fixpoints)
can be computed on the level of the abstract lattice.

This allows one to decide whether finite and infinite traces
of first-order recursive boolean programs are accepted by the
automaton and can further be used to derive a type-and-effect
system for infinitary properties.

In this paper, we show how to derive from the abstract lattice
a cartesian-closed category with fixpoint operator in such a way
that the interpretation of a higher-order recursive program yields
precisely the abstraction of its set of finite and infinite traces
and thus provides a new algorithm for the higher-order model
checking problem for trace properties.

All previous algorithms for higher-order model checking
[2], [16] work inherently on arbitrary tree properties and no
apparent simplification appears when instantiating them with
trace properties. The algorithm presented here, while necessarily
having the same asymptotic complexity, is considerably simpler
since it merely involves the interpretation of the program in a
cartesian-closed category.

The construction of the cartesian closed category from a lattice
is new as well and may be of independent interest.

I. INTRODUCTION

We consider here the following scenario. We are given a
program e whose evaluation emits a finite or infinite trace of
events from a fixed alphabet Σ. The program e may involve
higher-order functions and general recursive definitions even
of higher-order functions.

Assuming that conditionals are abstracted as nondetermin-
istic choice, decide whether every trace emitted belongs to an
ω-regular language specified by a Büchi automaton, a temporal
logic formula or similar.

Notice that if an abstracted program passes this test then
so does the original one with “real” conditionals and full data
dependency. The converse does of course not hold for bad
behaviours in the abstracted program might not correspond to
actual ones.

It is possible to treat these problems using higher-order
model checking [2], [16], [20]. In this case, one first translates
the program to a term in λY, i.e., simply-typed lambda
calculus with fixpoint combinator. One then introduces unary

function symbols for the events and a binary function symbol
for the conditional. The desired policy must then be translated
into a path property of Böhm trees using µ-calculus. Indeed,
higher-order model checking is capable of deciding whether
the Böhm tree of a given term satisfies a prescribed µ-
calculus formula. In the course of the verification there also
arise genuine tree properties that must hold on (higher-order)
subterms of the toplevel program even though at the end of
the day we are interested in a path property only.

Since many properties relevant in practice are in fact path
properties there arises the question whether there might not
be a direct procedure that only operates on path properties.
While for first-order programs such procedures are available
[4], [27], [14], no such route was available for genuinely
higher-order programs and indeed it was held as a belief in
the community1 that the detour via genuine tree properties is
unavoidable for higher-order model checking just as complex
numbers (or trigonometric functions) are needed to solve third
order equations even if one only cares about real solutions. In a
similar vein Walukiewicz and Salvati write about [14] in [24]
that “their construction is restricted only to first-order λY-
terms. They use in an elegant way Wilke algebras that are an
algebraic notion of recognizer for languages of infinite words.
One of the problems we are facing here is that there does
not exist equally satisfying notion of an algebraic recognizer
for infinite trees. Even if we wanted to stay with properties of
paths, it is not clear how to extend Wilke algebras to higher or-
ders, the problem being to find an admissible class of fixpoint
operations.” Indeed, the contribution of this paper can be seen
as an answer to this question. Starting from an ω-semigroup V
which is a known and mild generalization of a Wilke-algebra,
we construct a cartesian-closed category AFFV with fixpoints
such that the interpretation of a λY term of ground type in this
category allows one to check whether its traces are recognized
by the underlying ω-semigroup and hence, if the ω-semigroup
is constructed from a policy automaton, whether its traces are
accepted by it.

Unlike in the model constructions by Salvati and
Walukiewicz [24], [25] and the related works by Grellois and
Melliès [13], [12], [11] no detour via parity tree automata and
the resulting complexity is needed.

Our starting point is the abstract lattice construction from
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[14] which from a given pair L+, Lω of regular and ω-regular
languages constructs a finite ω-semigroup M = (M+,Mω)
(in [14] it was only used as a Wilke algebra) which additionally
carries a complete lattice structure (written “squarely” v).
In addition there is a Galois insertion α, γ between the ω-
semigroup (L+,Lω) of (ω-)languages over Σ and M, the
finite one. We remark that the abstraction is based on Büchi’s
original approach to complementation of Büchi automata [5]
using equivalence relations which also forms the bases of
the modern Ramseyian approach to the study of ω-regular
language and automata [9], [1].

The abstraction is faithful in that L ⊆ L+/ω iff α(L) v
U+/ω in the abstract lattice for some fixed elements U+ ∈M+

and Uω ∈Mω independent from L.
Thus, in order to know whether the traces of a first-order

program e fall into L+/ω it suffices to interpret it (in the
sense of abstract interpretation) in the abstract lattice using
least fixpoints and ω-iterations to interpret recursion. This was
essentially the contribution of [14]. In addition, it was shown
there how the elements of the abstract lattice can be regarded
as effects in a generic type-and-effect system like [26], [3], [10]
and thus yield a type-based analysis capable of dealing with
objects and higher-order functions, however with recursion
restricted to first-order and with objects being abstracted to
regions thus losing some precision, see [14] for details.

In order to generalize this to higher-order functions we make
the following crucial observation. Suppose we have an ω-
semigroup V = (V+,Vω) and a function F : V+×Vω → Vω

which arises as the denotation of a second-order λY term.
While the dependency of F (X+, Xω) on the finitary argument
X+ may be rather arbitrary, the dependency on the infinitary
argument Xω is very restricted: there must exist monotone
functions fγ : V+ → Vω (“constant”) and fπ : V+ → V∗
(“prefix”) such that

F (X+, Xω) = fγ(X+) t fπ(X+)Xω

Intuitively, once a λY term calls an infinitary argument, it can
never interrupt it to do some other computation afterwards.

Recall at this point that an ω semigroup V = (V+,Vω)
supports concatenation operations V+ × V+ → V+ and
V+ ×Vω → Vω written multiplicatively as well as infinitary
concatenation π : VN

+ → Vω . In addition, in our lattice-
theoretic framework, both V+,Vω are complete lattices and
all operations are monotone. The lattice V∗ appearing above
is the extension of V+ with a neutral element. The proto-
typical example is L = (L+,Lω) with L+ = P(Σ+) and
Lω = P(Σω). Finite ω-semigroups arise via abstraction as
described above.

Coming back to the above formula, we see that an argument
Xω ∈ Vω can, depending on X+ either be ignored (by setting
fπ(X+) = 0, the least element in the lattice) or be prefixed
with some element A ∈ V+ (by setting fπ(X+) = A) or
just pushed through by setting fπ(X+) = ε. In addition, there
may be a constant summand fγ(X+). We have thus seen that
functions with Vω in their domain that arise as denotations can
be simplified to functions that only depend on V+. While there

may be (in)equality tests on some elements of V+ no such
tests are available for Vω . Once you start running an infinite
computation you are stuck with it and there is no turning back.

Slightly more generally, consider that we have a function
F : P ×VQ

ω → Vω where P,Q are arbitrary posets, typically
V+ or powers, products, coproducts thereof. Here VQ

ω is the
monotone function space. Again, if such a function is definable
in λY, i.e., arises as the denotation of such a λY-term in an
appropriate sense, then there must exist monotone functions
fγ : P → Vω and fπ : P ×Qop → V∗ such that

F (p,X) = fγ(p) t
⊔
q∈Q

fπ(p, q)X(q)

Here P op is the poset P with the order reversed. In order
to show that indeed the denotations of all λY-terms fall
into this rather rigid format we show how the functions
that do so can be organised into a cartesian-closed category,
the aforementioned category AFFV. It merely confirms the
intuition that there is no way to further process or undo an
infinitely running computation.

Having done that it remains to show how general fixpoints
can be resolved. The gist of the construction can be seen as
follows. Suppose that P = Q in previous example so that
F : P × VP

ω → Vω and F is induced by fγ and fπ where
additionally fπ(p, p′) ∈ V+ rather than V∗. We can then
define a fixpoint U : P → Vω by

U(p) =
⊔

p0,...,pn∈P
fπ(p, p0)fπ(p0, p1) . . . fπ(pn−1, pn)fγ(pn)

t
⊔

p0,...∈P
π(fπ(p, p0), fπ(p0, p1), fπ(p1, p2) . . .)

The first summand models computations that eventually use
the constant branch fγ whereas the second one models those
that keep adding prefixes.

We remark that this construction of fixpoints of affine maps
as a finite/infinite product already appears in [8] albeit not in
a higher-order setting. The fixpoint construction in [12] is also
related but more distantly so since it takes parity conditions
into account.

Surprisingly, it turns out that due to the way function
spaces are constructed in AFFV this pattern already covers
fixpoints at all higher types. The only complication, namely
the necessity to pass from ω-iteration (Wilke algebras) to
infinitary products (ω-semigroups) already arises at second
order. Thereafter, nothing new happens, provided of course,
one confines attention as we do to path properties.

The rest of this paper is organised as follows. The pre-
liminary section II defines our language and its operational
semantics. In section III, we show how it is related to λY.
We then define in section IV a first cartesian-closed category
GFP in which we can interpret our language, and we relate
it to the operational semantics. However this category uses
general greatest fixpoints to interpret recursion, which are not
necessarily preserved by the abstraction function α. The idea
is then to refine this interpretation in order to make precise the
fact that all the greatest fixpoints that we actually need can be



expressed as infinite products. In section V we define Büchi
algebras, and in section VI we recall the construction from
[14] of a finite Büchi algebra M from a Büchi automaton.
Finally in section VII, we define the cartesian-closed category
AFFV, which is parameterized by a Büchi algebra V. We can
then interpret our language in both AFFL and AFFM, and
relate these with the interpretation in GFP. The main result
of the paper is stated in Corollary 2.
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II. PRELIMINARIES

Let Σ be a finite alphabet containing a special symbol X.
We write Σ+ for the set of finite nonempty words over Σ

and Σω for the set of infinite words. Henceforth, we call the
elements of Σ+ just finite words without the qualification of
nonemptiness. Finite words can be concatenated with finite
or infinite words as usual and we note concatenation by
juxtaposition or “·”. We write L+ := P(Σ+) for the set of
languages of finite words and Lω := P(Σω) for the set of
languages of infinite words.

If (Li)i∈N is an N-indexed family of languages of finite
words then we can form their ω-product

∏∞
i=0 Li ∈ Lω which

consists of all the infinite words of the form w0w1w2 . . . with
wi ∈ Li. Notice that this is well-defined since the empty words
does not belong to any of the Li. This operation endows the
pair L+,Lω with the structure of an ω-semigroup in the sense
of [6]. Of course, Σ+,Σω also forms an ω-semigroup.

We consider a simply-typed lambda calculus over one base
type comm representing commands. The syntax of terms is
given by

e ::= x | a | e1; e2 | e1 + e2 | fix | λx. e | e1 e2

Herein, x ranges over variables (to be bound by λ), a ranges
over letters from Σ \ {X}, and e1; e2 represents sequential
composition, and e1 + e2 stands for nondeterministic choice
which is generally used as an abstraction of a conditional “if
b then e1 else e2”. The types are

τ ::= comm | τ1→τ2
A context Γ is a finite function from variables to types. The
typing judgement Γ ` e : τ is defined in the usual way by the
following, entirely standard, typing rules.

Γ ` x : Γ(x)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e : τ → τ

Γ ` fix e : τ Γ ` a : comm

Γ ` e1 : comm Γ ` e2 : comm

Γ ` e1 + e2 : comm

Γ ` e1 : comm Γ ` e2 : comm

Γ ` e1; e2 : comm

Let e be a closed term of type comm and e′ also be
such a term or the special symbol skip. Let a ∈ Σ, we
write e

a−→ e′ to mean that e evaluates in one step to e′

issuing event a. The definition of this reduction relation is
again completely standard and is based on “call-by-name”; the
only peculiarity is that unfolding a fixpoint leads to a X-event
being issued. This is done so that nonterminating programs
always leave an infinite trace which simplifies the subsequent
technical development. See [14] for a way to get rid of the
X-events. The inductive definition of the one-step reduction is
then as follows:

a
a−→ skip

e[e
′
/x] ~e

a−→ e
′′

(λx. e) e
′
~e

a−→ e
′′

fix e ~e
X−→ e (fix e) ~e

e1
a−→ e

′
1 6= skip

e1; e2
a−→ e

′
1; e2

e1
a−→ skip

e1; e2
a−→ e2

e1
a−→ e

′
1

e1 + e2
a−→ e

′
1

e2
a−→ e

′
2

e1 + e2
a−→ e

′
2

We henceforth call program a closed term of type comm.

Remark. A program is necessarily of one of the following
forms: a, e1 + e2, e1; e2, fix e ~e, or (λx. e) e′ ~e, where ~e is a
possibly empty chain of applications.

Let e be a program. We define L+(e) as the set of those
words a1 . . . an ∈ Σ+ such that

e
a1−→ e1

a2−→ e2 . . . en−1
an−→ skip

Notice that L+(e) ⊆ Σ+ for each program e.
We define Lω(e) as the set of those infinite words w ∈ Σω

such that there exist programs e1, e2 . . . with e1 = e and
ei

ai−→ ei+1 for i = 1, 2, . . . and w = a1, a2, . . . .
Thus, L+(e) records the traces of terminating executions

of e whereas Lω(e) records the traces of nonterminating
executions. We thus have that at most one of L+(e) and Lω(e)
is the empty set.

Examples. Let e1 := fix(λx. a;x). We have L+(e1) = ∅ and
Lω(e1) = (X a)ω .

Let e2 := fix(λx. (a;x) + b). We have Lω(e2) = Lω(e1),
but L+(e2) = (X a)∗X b.

Let e3 := fix(λx. (a;x; b) + c). We have Lω(e3) = Lω(e1),
but L+(e3) = {(X a)nX c bn | n ≥ 0}.

Let e4 := fix(λf.λx. (a; f(b;x; c))+x). We have
L+(e4 d) = {(X a)nX bn d cn | n ≥ 0} and Lω(e4 d) =
(X a)ω .

Let e5 := fix(λx. (e4 d);x). We have L+(e5) = ∅ and
Lω(e5) = (XL+(e4 d))ω ∪ (XL+(e4 d))∗(X a)ω .

Let e6 := (λx. a;x) b. We have L+(e6) = {ab}.

It is well known that if within e recursion (fix) is used
at type comm only, then L+(e) is context-free and so is
Lω(e) in a suitably extended sense, whereas in the presence of
higher-type recursion (cf. Examples e4 and e5) non context-
free languages may appear. Example e6 illustrates that our
semantics is call-by-name, i.e., arguments are not completely
evaluated before plugging them in for formal parameters.



III. RELATIONSHIP WITH λY

In [24] the calculus λY is studied which has none of
a, skip, ; ,+ but instead is parametrized over a set of first-
order constants, i.e., unary, binary, ternary, etc.

We can encode our calculus into λY (with base type written
o) by introducing a unary constant a : o → o for each
a ∈ Σ and accordingly defining comm := o→ o. We further
define sequential composition e1; e2 := λx. e1(e2 x). For
nondeterministic choice we introduce a single binary constant
+. Our traces then correspond to the branches (finite and
infinite) of the Böhm-tree associated with the encoding of a
term.

We can also achieve a converse translation by map-
ping a first-order λY-constant c of arity n ≥ 1 to
λx1 . . . λxn.c̄; (x1 + · · · + xn) where c̄ is an event corre-
sponding to the constant c. Since we are in this paper only
interested in branches, i.e., trace properties and not global tree
properties, we prefer our formulation over λY since it is closer
to programming practice. Since, however, both calculi are so
close, we use the name λY for ours in the rest of this paper
as well.

IV. DENOTATIONAL SEMANTICS

We also have a denotational characterisation of L+ and Lω
as follows

Proposition 1. L+ and Lω are the least, resp. greatest
solutions of the following equations:

L+(a) = {a}
Lω(a) = ∅

L+(e1; e2) = L+(e1)L+(e2)

Lω(e1; e2) = Lω(e1) ∪ L+(e1)Lω(e2)

L+/ω(e1 + e2) = L+/ω(e1) ∪ L+/ω(e2)

L+/ω(fix e ~e) = XL+/ω(e (fix e) ~e)

L+/ω((λx. e) e′ ~e) = L+/ω(e[e′/x] ~e)

Proof. This is standard. Denote L′+ and L′ω the least, resp.
greatest solution of the above system which exist by Knaster-
Tarski.

It is not hard to see that L+ and Lω are solutions which
implies L′+ ⊆ L+ and Lω ⊆ L′ω (pointwise). To show that
L+ ⊆ L′+ we show that w ∈ L+(e) ⇒ w ∈ L′+(e) by
induction on the sum of the sizes of the derivations that appear
in the hypothesis w ∈ L+(e), and case analysis on e. Thus,
L+ = L′+. Finally, if w ∈ L′ω(e) then we can produce a
sequence of triples (ei, ui, wi) where ei is a program, ui ∈ Σ+

and wi ∈ L′ω(ei), with e
ui−→∗ ei and w = uiwi, which

establishes that w ∈ Lω(e). For example, if e = fix e′ ~e then w
must be of the form Xw1 and we can put e1 = e′ (fix e) ~e and
u1 = X. This case covers everything for if L′ω(e) 6= ∅, there
exists u ∈ Σ+ such that e u−→∗ fix e′ ~e for some e′, ~e.

This characterisation suffers from the defect that lambda-
abstraction is modelled by mimicking beta-reduction on the
semantic level rather than using mathematical functions. In

order to achieve the latter we can organise L+ and Lω into a
cartesian-closed category, i.e., a denotational model structure
for the simply-typed lambda calculus.

For partially ordered sets (posets) A,B we denote by A×B
their cartesian product with the componentwise ordering and
we denote A+B their disjoint union with canonical injections
inl and inr. We denote BA or A⇒ B the poset of monotone
functions from A to B ordered pointwise. Either notation
may be used depending on readability. If A,B are complete
lattices so is A × B. If B is a complete lattice then BA is
a complete lattice even if A is not. The category of posets
with monotone maps is a bicartesian closed category with
products, coproducts and exponentials given by the above.
We also use the notation P op for the opposite of P , i.e.,
the poset P with the ordering reversed. We tend to treat the
standard isomorphisms A × (B × C) ' (A × B) × C and
CA×B ' (CB)A (currying) and CA+B ' CA × CB as
identities to simplify notation.

We use the symbols v,u,t to refer to the generic structure
of partial orders and complete lattices.

Definition. The category GFP has for objects pairs A =
(A+, Aω) of complete lattices. A morphism from A to B is a
pair of monotone functions f = (f+, fω) where f+ : A+ →
B+ and fω : A+ ×Aω → Bω .

Composition of f and g is given by h = gf
where h+(a+) = g+(f+(a+)) and hω(a+, aω) =
gω(f+(a+), fω(a+, aω)). Notice that a+, aω are just decorated
variables here.

Cartesian products and function spaces are given by (A ×
B)+/ω = A+/ω × B+/ω and (A⇒ B)+ = B

A+

+ and
(A⇒ B)ω = B

A+×Aω
ω .

The following is a direct consequence of the folklore fact
that the category of complete lattices and monotone functions
is cartesian-closed which in itself follows by straightforward
calculation.

Lemma 1. The category GFP is indeed a cartesian-closed
category.

Definition. For every object A in GFP we define the fixpoint
combinator as the following morphism:

fixA : (A⇒ A)→ A

where (fixA)+(f+) = lfp(f+) and (fixA)ω(f+, fω) =
gfp(λaω. fω(lfp(f+), aω)). Herein lfp and gfp denote the
least, resp. greatest fixpoint of a monotone map.

It is easy to see that the fixpoint combinator indeed yields
fixpoints in the sense that f(fixA(f)) = fixA(f) holds in the
internal language of GFP. Formally:

app ◦ 〈idA⇒A,fixA〉 = fixA : (A⇒A)→ A

where app : (A ⇒ A) × A → A is the application map. We
also recall that the least / greatest fixpoints of a monotone map
f : A → A between complete lattices are given by lfp(f) =⊔
x:f(x)@x x and gfp(f) =

d
x:xvf(x) x, respectively.



If the lattice A is finite we can compute fixpoints more
efficiently by iteration: lfp(f) = fk(⊥) where k is the least
number so that fk(⊥) = fk+1(⊥). Likewise, gfp(f) = fk(>)
where k is the least number so that fk(>) = fk+1(>). Here
> and ⊥ refer to the least and greatest elements.

We interpret the base type as the object JcommKGFP =
(L+,Lω) and a base term a ∈ Σ as the morphism JaKGFP :
1 → JcommKGFP given by ({a},∅). As usual, 1 stands for
the terminal object here. Nondeterministic choice and sequen-
tial composition are interpreted as union and concatenation:

J+KGFP
+ (X+, Y+) = X+ ∪ Y+

J+KGFP
ω (X+, Y+, Xω, Yω) = Xω ∪ Yω

J ; KGFP
+ (X+, Y+) = X+Y+

J ; KGFP
ω (X+, Y+, Xω, Yω) = Xω ∪X+Yω

Notice that J+KGFP, J ; KGFP : JcommKGFP × JcommKGFP →
JcommKGFP.

Using the cartesian-closed structure for abstraction and
application and the fixpoint operator for recursion this then
extends to an interpretation of all types JτKGFP, contexts
JΓKGFP =

∏
x∈dom(Γ)JΓ(x)KGFP and finally terms Γ ` t : τ as

morphisms JtKGFP : JΓKGFP → JτKGFP.
We give the semantic clause for fixpoints explicitly, since

it requires the somewhat artificial insertion of a X-symbol:
For each type τ we define a morphism Xτ : JτKGFP →

JτKGFP by

Xcomm,+(X+) = XX+

Xcomm,ω(X+, Xω) = XXω

Xτ→τ ′ = JτKGFP ⇒ Xτ ′

The right hand side of the last clause refers to postcomposition
with Xτ ′ .

Now, the semantic clause for recursion becomes

Jfixτ KGFP = fixJτKGFP ◦Xτ→τ

We can show that the interpretation in GFP coincides with
the operational semantics at ground types.

Theorem 1. Let e be a program and JeKGFP = (L+, Lω) be
its interpretation in GFP where L+ ∈ L+ and Lω ∈ Lω . We
have L+ = L+(e) and Lω = Lω(e).

Proof. The proof follows the pattern set out by Plotkin [23]:
one direction uses the fact that all the steps of the opera-
tional semantics are identities at the level of the denotational
semantics. The other direction uses a logical relation and
approximations to the fixpoints.

The directions L+(e) ⊆ L+ and Lω(e) ⊇ Lω follow from
the fact that the sets JeKGFP

+/ω for e closed and of ground
type satisfy the system of equations that L+/ω(e) is the
least/greatest fixpoint of. For example, we have

Jfix e ~eKGFP
ω = XJe (fix e) ~eKGFP

ω

For the converse we use a logical relation as announced. Let
Tm(τ) stand for the set of closed terms of type τ and let Gl(τ)

stand for the set of global elements of JτKGFP, i.e., for pairs
of elements x+ ∈ X+, xω ∈ Xω when JτKGFP = (X+, Xω).
Note that, formally, a global element is a morphism from the
terminal object to JτKGFP.

For each type τ we define a relation ∼τ⊆ Tm(τ)× Gl(τ)
by
• e ∼comm (v+, vω) if L+(e) ⊇ v+ and Lω(e) ⊆ vω .
• e ∼τ→τ ′ (f+, fω) if whenever e′ ∼τ (v+, vω) then
e e′ ∼τ ′ (f+(v+), fω(v+, vω))

The following is shown by induction on types:

Lemma 2. If e ∼τ (v+, vω) and v′+ v v+ and v′ω w vω then
e ∼τ (v′+, v

′
ω), too.

If (v+,i)i≥0 and (vω,i)i≥0 form an ascending, resp. descend-
ing chain in JτKGFP

+/ω and e ∼τ (v+,i, vω,i) holds for all i then
e ∼τ (

⊔
i v+,i,

d
i vω,i), too.

For any closed term e ∈ Tm(τ) we have e ∼τ (⊥,>).

Now, suppose that Γ ` e : τ and that η(x) ∈ Tm(Γ(x))
and ρ(x) ∈ Gl(Γ(x)) and η(x) ∼Γ(x) ρ(x) for each x ∈
dom(Γ). We show by induction on typing derivations that
e[η] ∼τ JeKGFP ◦ ρ. The Theorem is a special case of this.

The cases of basic terms including + and ; are direct from
the semantic definitions which mimic the syntactic evaluation
rules. The cases of abstraction and application follow from
the definition of ∼ as a logical relation. The only interesting
case is thus recursion: here we have to show fixτ ∼(τ→τ)→τ
Jfixτ KGFP holds for all τ .

Thus, assume that ` e : τ → τ and v+/ω ∈ Jτ→τKGFP
+/ω

and e ∼τ (v+, vω). We define an ascending chain (v+,i)i in
JτKGFP

+ and a descending chain (vω,i)i in JτKGFP
ω inductively

as follows.
• v+,0 = ⊥ and vω,0 = >
• vi+1,+ = Xv+(vi,+) and v∞,+ =

⊔
i vi,+ =

JfixKGFP
+ (v+).

• vi+1,ω = Xvω(v∞,+, vi,ω) and v∞,ω =
d
i vi,ω =

JfixKGFP
ω (v+, vω)

Induction on i using the Lemma now shows that for all
i it holds that fix e ∼τ (vi,+, vi,ω) and thus fix e ∼τ
(v∞,+, v∞,ω).

But Jfixτ KGFP(v+, vω) = (v∞,+, v∞,ω), so we are done.

V. BÜCHI ALGEBRAS

In this section we introduce an ordered version of ω-
semigroups which encompasses both the standard language-
theoretic model, i.e., L+,Lω , and finite abstractions thereof
based on Büchi automata as described in [14]. Since, in
contrast to loc.cit., we work with nonempty finite words and
properly infinite words here, we can use the framework of ω-
semigroups introduced by Perrin and Pin [22], [21] out of the
box.

Definition (ω-semigroup). An ω-semigroup is a two-sorted al-
gebra V = (V+,Vω) equipped with the following operations:
• a binary operation on V+ written multiplicatively



• a mapping V+ × Vω → Vω called mixed product and
also written multiplicatively

• a mapping π : VN
+ → Vω called infinite product

such that

• V+ with the binary operation is a semigroup, i.e., the
binary operation is associative

• for each s, t ∈ V+ and u ∈ Vω , s(tu) = (st)u,
• for every increasing sequence (kn)n ∈ NN and (sn)n ∈

VN
+ one has π((sn)n) = π((tn)n) where t0 =

s0s1 . . . sk0 and tn+1 = skn+1 . . . skn+1
,

• s · π(s0, s1, s2, . . .) = π(s, s0, s1, s2, . . .)

Given ω-semigroups V = (V+,Vω) and V′ = (V′+,V
′
ω)

a morphism f from V to V′ consists of two functions
f+ : V+ → V′+ and fω : Vω → V′ω which are compatible
with the algebraic structure, i.e., f+(st) = f+(s)f+(t) and
f+(s)fω(u) = fω(su) and fω(π((sn)n)) = π((f+(sn))n)
hold for appropriately sorted arguments.

A Wilke algebra has instead of the infinitary product op-
eration merely a power operation (−)ω : M+ → Mω where
aω = π(a a a . . .).

Notice that L = (L+,Lω) forms an ω-semigroup with
binary and infinitary concatenation of languages for opera-
tions, i.e., in particular, π((Xn)n) =

∏∞
n=0Xn. Similarly,

(Σ+,Σω) forms an ω-semigroup with (infinitary) concatena-
tion of words.

Definition (Büchi algebra). A Büchi algebra is an ω-
semigroup V = (V+,Vω) such that both V+,Vω are com-
plete lattices and the ω-semigroup operations are monotone.
Moreover, we require that 0.s = 0 holds for all s ∈ V+ ∪Vω

with 0 denoting the least element of V+ or Vω .
A similar structure also appears in Ésik and Kuich’s work

[8] under the name bi-inductive semiring-semimodule pairs.

Recall that a Galois insertion between complete lattices
A,C consists of monotone maps α : C → A and γ : A→ C
such that α(γ(a)) = a and γ(α(c)) w c. The lattice C typi-
cally represents concrete values whereas A represents abstract
values. The function α furnishes for each concrete value its
abstraction, whereas γ(a) is the denotation (concretisation)
of an arbitrary abstract value. The abstraction function α
applied to c thus furnishes the smallest abstract value whose
concretisation lies above c [7].

It is well-known and easy to see that α(
⊔
i∈I ci) =⊔

i∈I α(ci). Furthermore, if f : C → C and g : A → A are
monotone maps satisfying αf = gα then α(lfp(f)) = lfp(g).

A Galois insertion between Büchi algebras (V+,Vω) and
(V′+,V

′
ω) consists of a pair of Galois insertions α+, γ+ and

αω, γω between the underlying complete lattices such that
α+, αω form a morphism between ω-semigroups.

Notice that γ+, γω are not required to be morphisms.

Definition (Büchi abstraction). A Büchi abstraction is a finite
Büchi algebra (both lattices finite) related to the Büchi algebra
(L+,Lω) via a Galois insertion.

In other words, a Büchi abstraction is a finite ω-semigroup
carrying a lattice structure and related to the ω-semigroup
(L+,Lω) via a structure-preserving Galois insertion.

For technical reasons we need to extend the semigroup
component of a Büchi algebra to a monoid.

Definition (monoid completion). Let V = (V+,Vω) be a
Büchi algebra. We define the complete lattice V∗ = V+ × 2
where 2 = {0, 1} is the Sierpinski lattice, i.e., such that 0 < 1.
The intuition is that (x, 0) represents x ∈ V+ ⊆ V∗, whereas
(x, 1) represents x augmented with the empty word.

Motivated by this intuition, we extend the multiplication
operations as follows:

(x, 0)(y, 0) = (xy, 0)
(x, 0)(y, 1) = (xy t x, 0)
(x, 1)(y, 0) = (xy t y, 0)
(x, 1)(y, 1) = (xy t x t y, 1)
(x, 0)w = xw
(x, 1)w = xw t w

We consider V+ a subset of V∗ via the embedding x 7→ (x, 0).

Notice that if we write ε := (0, 1) then εx = x = xε
and εw = w. Moreover, (x, 1) = xt ε. Also, V∗ is a monoid
extending the semigroup V+. The infinitary product, however,
remains reserved for sequences in V+ although it could be
formally extended to sequences in V∗ with infinitely many
elements from V+.

For example, L∗ is (isomorphic to) the set of languages
of possibly empty finite words. The element ε = (∅, 1)
corresponds to the language containing only the empty word.

Notation. If φ is a predicate, we write [φ] for 0 if φ is false
and ε if φ is true.

VI. FINITE ABSTRACTIONS FROM BÜCHI AUTOMATA

The following subsection essentially recapitulates results
from [14] albeit with different notation and also with the
distinction that we now work with finite, nonempty words and
properly infinite words as opposed to finite words and at most
infinite words. We thus mostly state results or give intuitions.
For more detailed proofs the reader may consult loc.cit. We
also remark that the parts concerning combinatorics of finite
and infinite words and semigroups are already contained in
Büchi’s work and in [6]. What was new in [14] was the link
to Galois insertions and hence abstract interpretation.

Let A = (Σ, Q, δ, qI , F ) be a nondeterministic Büchi
automaton (NBA) over our alphabet Σ.

The data of an NBA are the same as for finite automata, i.e.,
Q is a finite set of states, qI ∈ Q is the initial state, F ⊆ Q
is the set of final states and δ ⊆ Q× Σ×Q is the transition
relation.

For a non-empty finite word u ∈ Σ+ and states q, q′ of A
write u : q → q′ to mean that q′ can be reached from q while
consuming u and write u : q →ω q′ to mean that q′ can be
reached from q while consuming u and in such a way that a
final state is visited on the way.



We define L+(A) = {u ∈ Σ+ | ∃q ∈ F. u : qI → q}
thus running A like an NFA. One then defines, following
Büchi, Lω(A) as the set of all words w ∈ Lω that admit
a decomposition w = uv1v2v3 . . . such that u : qI → q1

and vi : qi →ω qi+1 holds for some sequence (qi)i of states.
Notice that w.l.o.g. this sequence may be assumed constant.

Define V+(u) = {(q, q′) | u : q → q′} and Vω(u) =
{(q, q′) | u : q →ω q′}. Notice that V+(uv) = V+(u)V+(v)
and Vω(uv) = V+(u)Vω(v) ∪ Vω(u)V+(v) where juxtaposi-
tion is relational composition.

Now define u ∼ v if V+(u) = V+(v) and Vω(u) = Vω(v).
Clearly, ∼ is an equivalence relation on Σ+, which is moreover
of finite index.

If [u], [u′] are ∼-classes represented by u, u′ we put [u] ·
[u′] = [uu′] which is well-defined.

We now construct a Büchi abstraction (M+,Mω) (and
α, γ), depending of course on the NBA A, as follows. Its
finitary part M+ contains sets of ∼-classes and we put

γ+(X) =
⋃
U∈X U α+(L) = {U | U ∩ L 6= ∅}

Also, X · Y = {U · V | U ∈ X,V ∈ Y }. It is easy to see that
α+, γ+ form a structure-preserving Galois insertion between
the semigroups M+ and L+.

A patch is a pair (U, V ) where U and V are classes. A patch
(U, V ) represents the set γω(U, V ) = UV ω ∈ Lω . We extend
γω to sets of patches by γω(Y ) =

⋃
(U,V )∈Y γω(U, V ). Such

a set of patches Y is closed if whenever γω(U, V )∩γω(Y ) 6=
∅ then (U, V ) ∈ Y . We write Y † for the least closed set
containing Y and define the infinitary part Mω of the Büchi
abstraction as the closed sets of patches ordered by inclusion.
Concatenation is defined on patches by U ·(U ′, V ) = (UU ′, V )
and then extended to Mω elementwise followed by taking a
closure. If L ⊆ Σω we define αω(L) = {(U, V ) | UV ω ∩L 6=
∅}†. If Xi ∈M+ we define

π((Xi)i) = αω(

∞∏
i=0

γ+(Xi))

Proposition 2. Let Li ⊆ Σ+ be a family of languages. We
have

αω(

∞∏
i=0

Li) = π((α+(Li))i)

Proof. We have to show

αω(

∞∏
i=0

Li) = αω(

∞∏
i=0

γ+(α+(Li)))

The direction ⊆ follows from monotonicity of αω and of
the infinite product, and the fact that Li ⊆ γ+(α+(Li)).
For the other direction pick a patch (U, V ) in the RHS.
Performing induction on the closure process, we can assume
w.l.o.g. that UV ω ∩

∏∞
i=0 γ+(α+(Li)) 6= ∅, so we can find

w = v0v1v2 . . . such that [vi] ∩ Li 6= ∅ for each i and w ∈
UV ω . For i < j define c(i, j) = [vi . . . vj−1]∼. By Ramsey’s
theorem there exists an infinite sequence i0 < i1 < i2 < . . .
and a ∼-class V ′ such that c(ij , ik) = V ′ for all j < k.

Putting U ′ = [v0 . . . vi0−1]∼ we then have w ∈ U ′V ′ω . Now,
pick v′i ∈ Li ∩ [vi], hence v′i ∼ vi and v′i ∈ Li. Thus,
w′ = v′0v

′
1 · · · ∈

∏∞
i=0 Li. But now v′ij . . . v

′
ij+1−1 ∈ V ′

and v′0 . . . v
′
i0−1 ∈ U ′ so that U ′V ′ω ∩

∏∞
i=0 Li 6= ∅. Thus,

(U ′, V ′) ∈ αω(
∏∞
i=0 Li) and, since w ∈ UV ω ∩ U ′V ′ω we

also have (U, V ) ∈ αω(
∏∞
i=0 Li) by closure, as required.

We notice that, in particular, we have an operation (−)ω :
M+ → Mω such that α(Lω) = α(L)ω and we used this
operation in [14] in order to compute α(L+(e)) and α(Lω(e))
for a first-order term e.

We have that γ+/ω(α+/ω(L+/ω(A))) = L+/ω(A) and
also γ+/ω(α+/ω(L+/ω(A))) = L+/ω(A). As a result for all
L+/ω ⊆ Σ+/ω we have L+/ω ⊆ L+/ω(A) iff α(L+/ω) ⊆
α(L+/ω(A)), and likewise for L+/ω(A). So, the abstraction
loses no precision if we are interested in adherence to policies
specified by A or its complement.

We remark that the Büchi algebra (M+,Mω) is not the
same as the ω-semigroup constructed from an NBA in [21],
even if we disregard the lattice structure. Indeed, in our
notation the ω-semigroup defined there is (P+,Pω) with
P+ = Σ+/∼ and Pω = P(Q), i.e., sets of states of A.
One then puts [u]∼[v]∼ = [uv]∼ and [u]∼H = {q | ∃q′.u :
q → q′ ∧ q′ ∈ H} and [v0]∼[v1]∼[v2]∼ . . . as the set of states
q such that there exists a successful run of A on v0v1 . . .
starting from q rather than from qI .

We have a surjective morphism f : (Σ+,Σω)→ P given by
f+(u) = [u]∼ and fω(a0a1 . . . ) = [a0]∼[a1]∼ . . . . It is clear
that there are subsets U+/ω ⊆ P+/ω such that w ∈ L+/ω(A)
iff f+/ω(w) ∈ U+/ω thus P “recognizes” L+/ω(A) in the
sense of [21]. Our Büchi algebra M is a kind of power
structure of Perrin and Pin’s P in the sense that it “recognizes”
languages rather than words: we have elements U+/ω ∈M+/ω

such that L ⊆ L+/ω(A) iff α+/ω(L) ⊆ U+/ω , namely
U+/ω = α(L+/ω(A)).

VII. AFFINE DENOTATIONAL SEMANTICS

The crucial idea in [14] was that the particular greatest
fixpoints needed in the definition Lω(e) can—in the case of
a first-order term e always be expressed in terms of concate-
nation, union, and ω-powers and can thus be abstracted. We
notice that in general α does not preserve greatest fixpoints
(as is well-known it does preserve least fixpoints). See loc.cit.
for a concrete counterexample.

The rest of this paper is devoted to showing that the greatest
fixpoints needed in the definition of Lω(e) for e of arbitrary
order can be expressed as infinite products and are thus also
amenable to abstraction by the above proposition.

Our plan is to extend a given Büchi abstraction to all
types including higher-order functions. The higher-order func-
tions per se are unproblematic; given two interpretations
JτKGFP

1 and JτKGFP
2 , e.g., one built on (L+,Lω) (the GFP-

semantics) and another built in an analogous fashion upon
(M+,Mω) then we can lift α, γ to all types by putting
α+(f+)(x+) = α+(f+(γ+(x+))) and αω(fω)(x+, xω) =
αω(fω(γ+(x+), γω(xω)))) and similarly for γ+, γω .



As in the first-order case the difficulty lies in the use of
greatest fixpoints in the semantics of recursion. We thus have
to characterise the actually occurring greatest fixpoints in
terms of constructions that may be abstracted, in particular
infinite products. This is what we shall do in this section.

Given a Büchi algebra V = (V+,Vω) we construct
a cartesian-closed category AFFV which admits a fixpoint
combinator defined in terms of least fixpoints and infinite
products rather than general greatest fixpoints.

The crucial idea behind this construction is the fact that the
functions denoted by λY-terms are affine, in the sense that
once an infinitary computation is called, it cannot be stopped.
Some intuitive explanations behind this idea are given in the
introduction; the reader might want to keep them in mind while
reading the rest of this section.

We will then establish logical relations between GFP and
AFFL on the one hand and between AFFL and AFFM with
M the finite Büchi algebra induced by our policy automaton
A. As a result, we will be able to determine whether or not
L+/ω(e) ⊆ L+/ω(A) or L+/ω(e) ∩ L+/ω(A) = ∅ solely on
the basis of the interpretation of e in the category AFFM which
only involves finite lattices and thus can be done effectively
by tabulation and finite fixpoint iteration.

A note about our terminology. Traditionally, an “affine
function” is a function f of the form f(x) = a + bx. What
we call an affine map below is actually the data (a, b) of
its coefficients, which we call “constant” and “prefix” since
our product is concatenation. We then define the extension
ext(a, b) of an affine map, which is the actual function
represented by these coefficients.

Definition (Affine polynomial). Let V = (V+,Vω) be a
Büchi algebra and P be a poset. An affine polynomial over
V and indexed by P is a pair (U,C) where U ∈ Vω and
C : P op → V∗ is a monotone function. It induces a monotone
function ext(U,C) : VP

ω → Vω by

ext(U,C)(X) = U t
⊔
p∈P

C(p)X(p)

The affine polynomials over V and indexed by P form a
complete lattice with the component- and pointwise ordering
which we call AfPV(P ).

Affine polynomials thus represent certain monotone func-
tions on VP

ω and have been introduced for that purpose. Under
additional assumptions on absence of redundancies one can en-
sure that each monotone function is represented by at most one
affine polynomial. Since these assumptions would, however,
further complicate notations and definitions we accept the fact
that affine polynomials carry some intensional information.

The use of the opposite poset restricts the number of
possible affine polynomials without sacrificing any generality.
Suppose that C : |P | → V∗ is an arbitrary function (and

U ∈ Vω). We then have, by monotonicity of X ,

ext(U,C)(X) = U t
⊔
p∈P

C(p)X(p)

= U t
⊔
p∈P

⊔
p′:p′wp

C(p′)X(p)

= ext(U,C ′)(X)

where C ′(p) =
⊔
p′wp C(p′) and C ′ : P op → V∗.

Definition (Affine Map). Let V = (V+,Vω) be a Büchi
algebra and P1, P2 be posets. An affine map from VP1

ω to VP2
ω

(over V) is a monotone function f : P2 → AfPV(P1). We
write f ∈ AfM(VP1

ω ,VP2
ω ) in this case. We are aware of the

fact that the notation and nomenclature are slightly inaccurate
because P1 might not be uniquely determined from VP1

ω .

For f ∈ AfM(VP1
ω ,VP2

ω ), we define ext(f) : VP1
ω → VP2

ω

by ext(f)(X) = λp2.ext(f(p2))(X).

Given f ∈ AfM(VP1
ω ,VP2

ω ) and g ∈ AfM(VP2
ω ,VP3

ω ), we
define their composition h = g ◦ f ∈ AfM(VP1

ω ,VP3
ω ) as

follows. The idea is to mimic composition on the extensional
level, that is, we want the following relation to be satisfied:

ext(g ◦ f) = ext(g) ◦ ext(f)

Write f(p2) = (Up2 , Cp2) and g(p3) = (Vp3 , Dp3). Then put
h(p3) = (Wp3 , Ep3) with

Wp3 := Vp3 t
⊔

p2∈P2

Dp3(p2) · Up2

Ep3(p1) :=
⊔

p2∈P2

Dp3(p2) · Cp2(p1)

It is clear that composition of affine maps is associative.
Moreover, we have the identity affine map given by

idP = λp. (0, λp′. [p′ v p])

where [·] is the notation for predicates introduced previously.
The above condition should be understood as meaning [p′ =
p], but since it needs to be monotonous, we put a (harmless)
inequality. This trick will be used several times later.

Notice that the affine maps over V form a category AfMV

(with posets as objects), and that the assignment P 7→ VP
ω and

f 7→ ext(f) is a functor from that category to the category of
complete lattices and monotone functions.

This category has cartesian products given by the disjoint
union: VP1

ω × VP2
ω = VP1+P2

ω , with first projection pr1 =
λp1. (0, λp

′. [p′ v inl p1]) and similarly for pr2. Notice that
ext(pri) : VP1

ω × VP2
ω → VPi

ω is the usual projection and,
more generally, the functor ext preserves products.

Notation. Given f ∈ AfM(VP
ω ,V

Q
ω ), by definition we have

f : Q→ Vω×VP op

∗ . We sometimes split f in two components
fγ : Q→ Vω (“constant”) and fπ : Q×P op → V∗ (“prefix”).
Formally, fγ(q) = f(q).1 and fπ(q, p) = f(q).2(p). Thus, in
this notation, ext(f)(X, q) = fγ(q) t

⊔
p∈P fπ(q, p) ·X(p).



Here and in the sequel, we use .1 and .2 to refer to
components of a set-theoretic pair. If z = (x, y) then x = z.1
and y = z.2.

Definition (Fixpoint in AfMV). Let f ∈ AfM(V
(Q+P )
ω ,VP

ω )
(equivalently, f : Q × P → P in AfMV). Moreover, assume
that for all p, p′, fπ(p, inr(p′)) ∈ V+ (as opposed to V∗).

In the following, we drop the injections inl and inr
for convenience: fπ(p, p′) and fπ(p, q) denote respectively
fπ(p, inr(p′)) and fπ(p, inl(q)).

For p, p′ ∈ P and a nonempty sequence ~p = (p0, . . . , pn) ∈
P+ write ~p : p p′ to mean that p0 = p and pn = p′. Further-
more, write fπ(~p) for fπ(p0, p1)fπ(p1, p2) . . . fπ(pn−1, pn)
and fπ((p)) = ε (case n = 0).

For an infinite sequence ~p = (p0, p1, . . . ) ∈ Pω

write ~p : p  to mean p0 = p and write fπ(~p) =
π((fπ(pn, pn+1))n≥0). Notice that this is well-defined since
fπ(p′, p′′) ∈ V+. Armed with this notation we define fix(f) ∈
AfM(VQ

ω ,V
P
ω ) as follows:

fix(f)γ(p) =
⊔

p′∈P,~p∈P+

~p:p p′

fπ(~p) · fγ(p′) t
⊔
~p∈Pω

~p:p 

fπ(~p)

and
fix(f)π(p, q) =

⊔
p′∈P,~p∈P
~p:p p′

fπ(~p) · fπ(p′, q)

Proposition 3. The affine map fix(f) satisfies the following
fixpoint equation:

fix(f) = f ◦ 〈idQ,fix(f)〉

Proof. This follows by straightforward calculation.
The function h = f ◦ 〈idQ,fix(f)〉 is given by

hγ(p) = fγ(p) t
�����������⊔
q∈Q

fπ(p, inl q) · idQγ(q)

t
⊔
p∈P

fπ(p, inr p′) · fix(f)γ(p′)

where the second term cancels as indicated since idQγ(q) = 0,
and

hπ(p, q) =
⊔
q′∈Q

fπ(p, inl q′) · idQπ(q′, q)

t
⊔
p∈P

fπ(p, inr p′) · fix(f)π(p′, q)

where the first term is fπ(p, inl q) since idQπ(q′, q) = [q′ v q]
(and by monotonicity of fπ).

Proposition 4. ext(fix(f)) is the greatest fixpoint of ext(f).

Proof. Given the definition of ext(f) the fixpoint equation
F (Y ) = ext(f)(Y, F (Y )) (in the unknown F : VQ

ω → VP
ω )

becomes

F (Y )(p) = fγ(p) t
⊔
q∈Q

fπ(p, inl q) · Y (q)

t
⊔
p′∈P

fπ(p, inr p′) · F (Y )(p′)

The greatest solution of this equation is

F (Y )(p) =
⊔

p′∈P,~p∈P+

~p:p p′

fπ(~p)(fγ(p′) t
⊔
q∈Q

fπ(p′, q)Y (q))

t
⊔
~p∈Pω

~p:p 

fπ(~p)

Intuitively, we can think of it as executing computationally
the fixpoint equation and looping with a new argument p′

whenever we reach F (Y )(p′). The first line corresponds to
the finite computation paths, either ending with a call to fγ
or to Y . In order to get the greatest fixpoint, we also include
the infinite paths which correspond to the second line.

But now, this explicit solution is precisely ext(fix(f)).

We now amalgamate the category of affine maps with the
category of complete lattices just as in the construction of
GFP:

Definition (Category AFFV). Let V = (V+,Vω) be a
Büchi algebra. The category AFFV has for objects pairs
X = (X+, Xarg) where X+ is a complete lattice and Xarg is
a poset.

A morphism from X = (X+, Xarg) to Y = (Y+, Yarg)
consists of a pair of monotone functions f+ : X+ → Y+ and

farg : X+ → AfM(VXarg
ω ,VYarg

ω )

The composition h = g◦f of maps f : X → Y and g : Y → Z
is given by h+ = g+ ◦ f+ and

harg(x+) = garg(f+(x+)) ◦ farg(x+)

It is easy to see that this forms indeed a category.

Definition (Functor Ext : AFFV → GFP). We ex-
tend ext to a functor Ext : AFFV → GFP. On ob-
jects, Ext(X+, Xarg) = (X+,V

Xarg
ω ) and on morphisms,

Ext(f+, farg) = (f+, ext(farg)), where ext(farg) : X+ ×
V
Xarg
ω → V

Yarg
ω is defined as ext(farg)(x+, xω) =

ext(farg(x+))(xω).
Thus, the functor Ext takes AFFV to a subcategory of

GFP such that the infinitary lattice Xω is actually of the
form V

Xarg
ω , and the morphisms are affine with respect to

their infinitary component.

Notation. If X is an object of AFFV we use the notation X+

and Xarg to refer to its two components. We use (possibly
decorated versions) of x resp. y to range over elements of X+

resp. Y+ and (possibly decorated versions) of ξ and η to range
over Xarg and Yarg. Similar conventions apply to other letters.

If f : X → Y and x ∈ X+ we write f(x) for f+(x). If
x ∈ X+ and η ∈ Yarg we write f(x, η) for farg(x, η). We
also write fγ(x, η) (“constant”) for farg(x, η).1 ∈ Vω and
fπ(x, η, ξ) (“prefix”) for farg(x, η).2(ξ) ∈ V∗.

Theorem 2 (AFFV cartesian-closed). The category AFFV for
V a Büchi algebra is cartesian closed. The product X×Y of



X and Y is given by (X×Y )+ = X+×Y+ and (X×Y )arg =
Xarg + Yarg. The function space X ⇒ Y is given by

(X ⇒ Y )+ = X+ ⇒ (Y+ ×V
Yarg×Xop

arg
∗ )

(X ⇒ Y )arg = X+ × Yarg

Notice that the × symbols above refer to cartesian products
of posets (not coproducts).

The canonical isomorphism

AFFV(Z ×X,Y ) ' AFFV(Z,X ⇒ Y )

sends f : Z ×X → Y to λ(f) : Z → X⇒Y where

λ(f)+(z) = λx.(f(z, x), λ(η, ξ).fπ((z, x), η, inr ξ))
λ(f)γ(z, (x, η)) = fγ((z, x), η)
λ(f)π(z, (x, η), ζ) = fπ((z, x), η, inl ζ)

The application morphism

app : (X ⇒ Y )×X → Y

is defined as

app+(f, x) = f(x).1
appγ(f, x, η) = 0
appπ(f, x, η, inl (x′, η′)) = [(x′, η′) v (x, η)]
appπ(f, x, η, inr ξ) = f(x).2(ξ, η)

Proof. Once the definitions are in place as they are the veri-
fications amount to mechanical type checking and equational
reasoning.

The definition of the function space while amenable to
straightforward verification may seem mysterious at first. To
understand it, consider that a morphism from Z × X to Y
comprises f+ : Z+ ×X+ → Y+ and

farg : (Z+ ×X+)× Yarg → Vω ×V
(Zarg+Xarg)op

∗

Now notice that

(Z+ ×X+ → Y+) ' (Z+ → Y
X+

+ ) (1)

and
(Z+ ×X+ × Yarg → Vω ×V

(Zarg+Xarg)op

∗ )

' (Z+ × (X+ × Yarg)→ Vω ×V
Zop

arg
∗ )

× (Z+ → (V
Xop

arg×Yarg

∗ )X+)

(2)

The right-hand side of equation (1) together with the second
component of the right-hand side of equation (2) make up
λ(f)+, whereas the first component of the right-hand side of
equation (2) accounts for λ(f)arg.

To understand the app morphism, recall that we can decom-
pose a morphism f : X → Y into three parts

f+ : X+ → Y+

fγ : X+ × Yarg → Vω

fπ : X+ × Yarg ×Xop
arg → V∗

and remark that (X ⇒ Y )+ = X+ ⇒ (Y+ ×V
Yarg×Xop

arg
∗ ) is

just the types of f+ and fπ put together. Moreover, (X ⇒

Y )arg = X+ × Yarg is the input type of fγ : indeed, the Ext

functor sends the Zarg part of an object to V
Zarg
ω .

Now look at how a function f : X → Y is sent to λ(f) :
1→ (X ⇒ Y ), where 1 = ({?},∅) is the terminal object.

λ(f)+(?) = λx (f+(x), λ(η, ξ). fπ(x, η, ξ))
λ(f)γ(?, (x, η)) = fγ(x, η)
λ(f)π = ∅ (the empty function)

So in GFP, Ext(λ(f)) gives an element of (X ⇒ Y )+

obtained by amalgamating f+ and fπ , and an element of
V

(X⇒Y )arg
ω which is fγ .
Notice that in AFFV, g : (X ⇒ Y ) → Z has for second

component garg : (X ⇒ Y )+ → AfM(V
(X⇒Y )arg
ω ,V

Zarg
ω ).

Thus, it represents in GFP a map ext(garg) : (X ⇒
Y )+ ×V

(X⇒Y )arg
ω → V

Zarg
ω , which is affine w.r.t. its second

argument (which intuitively is the ’fγ’ part of the function
given as argument).

Finally, here is what app does: app+(f, x) just applies the
f+ part of f to x. Now, ext(farg) : X+ ×V

Xarg
ω → V

Yarg
ω is

the function

ext(farg)(x,X, η) = fγ(x, η) t
⊔

ξ∈Xarg

fπ(x, η, ξ) ·X(ξ)

apparg gives the prefixes of that expression, and it must
be affine w.r.t. both X and fγ . Thus, there is no constant
component; the prefix in front of fγ is ε when the argument
is (x, η) and 0 otherwise; and the prefix in front of X is given
by fπ .

It may seem surprising that one does not have (X ⇒ Y )+ =
X+ ⇒ Y+ as was the case with GFP and even more so that
the unusual definition we made does indeed work. It would
be interesting to know whether it is an instance of a more
general construction or perhaps has been described before, but
we could not find any source to that effect despite considerable
search and conversations with category theory experts.

Definition (Fixpoint in AFFV). Let f : Z ×X → X be such
that fπ((z, x), ξ, inr(ξ′)) ∈ V+. We define fix(f) : Z → X
as follows.

fix(f)+(z) = lfp(λx. f+(z, x))

fix(f)arg(z) = fixAfMV
(farg(z,fix(f)+(z)))

We would like to define a morphism fixX : (X ⇒ X) → X
by taking Z = (X ⇒ X) and f = app, but app does not
satisfy the condition on prefixes: appπ might return ε /∈ V+.

Instead, let us define an object (X ⇒+ Y ) for every X,Y ,
which is to be understood as the subspace of (X ⇒ Y )
consisting of functions which satisfy the prefix condition.

(X ⇒+ Y )+ = X+ → Y+ ×V
Yarg×Xop

arg

+

(X ⇒+ Y )arg = (X ⇒ Y )arg

That is, we replace V∗ by V+ in the definition of the function
space. The canonical injection ι : (X ⇒+ Y )→ (X ⇒ Y ) is
defined as ι+(f) = f and ιarg(f) = id(X⇒Y )arg .



Finally, we get the desired fixpoint operator fix′X : (X ⇒+

X)→ X by precomposing with ι before applying:

fix′X = fix(app ◦ (ι× idX))

Definition (Semantics in AFFL/AFFM). We define an in-
terpretation J−KL of types and terms in AFFL similarly to
what we did in GFP, except that we have to use the affine
map formalism. The interpretation J−KM in AFFM being very
similar, we only write its definition when it differs.

We interpret the base type comm as JcommKL =
(L+, {?}). A term a ∈ Σ is interpreted as the morphism
JaKL : 1 → JcommKL (recall that 1 = ({?},∅)) defined
by JaKL+(?) = {a} and JaKLarg(?) = (∅,∅). (In AFFM, we
put JaKM+ (?) = [a], the equivalence class of a.)

We then define morphisms J+KL, J ; KL : JcommKL ×
JcommKL → JcommKL as follows:

J+KL+(L1, L2) = L1 ∪ L2

J+KLarg(L1, L2, ?) = (∅, λη. ε)
J ; KL+(L1, L2) = L1L2

J ; KLarg(L1, L2, ?) =

(
∅, λη. case(η)

{
inl ? 7→ ε

inr ? 7→ L1

)
Abstraction and application are interpreted using the cartesian-
closed structure. Finally for the fixpoint operator, we define as
in GFP a morphism Xτ by induction on the types:

Xcomm,+(L) = X · L
Xcomm,arg(L) = (∅, λη.X)
Xτ→τ ′ = JτKL ⇒ Xτ ′

(In AFFM, replace X by [X] ∈M+.)
Notice that Xτ→τ : (JτKL ⇒ JτKL) → (JτKL ⇒+ JτKL).

We can then define:

Jfixτ KL = fix′JτK ◦Xτ→τ : (JτKL ⇒ JτKL)→ JτKL

Remark. Notice that we have defined J−KL so that
Ext(JcommKL) = JcommKGFP, Ext(JaKL) = JaKGFP,
Ext(J+KL) = J+KGFP and Ext(J ; KL) = J ; KGFP.

However, we do not get those relations for higher-typed
constants fix, app and λ since Ext does not preserve expo-
nentials. We therefore use a logical relation as in the proof of
Theorem 1.

As before, we write Gl(JXKGFP) and Gl(JXKL) for the
set of global elements of X , that is, morphisms from the
terminal object to X in the categories GFP and AFFL. Recall
that in GFP, a global element of an object (X+, Xω) is a
pair (x+, xω) ∈ X+ × Xω . In AFFL, a global element of
(X+, Xarg) is a pair (x+, xω) ∈ X+ × Lω

Xarg . In particular,
Gl(JcommKGFP) and Gl(JcommKL) are isomorphic; their
elements are (up to isomorphism) pairs (L+, Lω) ∈ L+×Lω .
This isomorphism is actually the Ext functor; in the following,
we treat it as an equality.

We define a relation ∼τ ⊆ Gl(JτKGFP)×Gl(JτKL) for every
type τ as follows.
• (L+, Lω) ∼comm (L′+, L

′
ω) iff L+ = L′+ and Lω = L′ω .

• (f+, fω) ∼τ→τ ′ f ′ iff whenever (x+, xω) ∼τ x′, then
(f+(x+), fω(x+, xω)) ∼τ ′ app ◦ 〈f ′, x′〉.

Lemma 3. Suppose there is a derivation Γ ` e : τ and two
valuations η(x) ∈ Gl(JΓ(x)KGFP) and η′(x) ∈ Gl(JΓ(x)KL)
such that for every x ∈ dom(Γ), η(x) ∼Γ(x) η′(x). Then
JeKGFP ◦ η ∼τ JeKL ◦ η′.

Proof. As usual by induction on derivations. The cases of
basic terms follow from the above remark about Ext. Abstrac-
tion and application follow from the fact that both categories
in question are cartesian-closed. The fix-case, finally, follows
from the fact that both fixpoint operators yield, when applica-
ble, least fixpoints in the first component and greatest fixpoints
in the second one.

Corollary 1. For every program e (closed term of type
comm) we have, up to isomorphism, JeKL = (L+(e), Lω(e)).

Proof. From Lemma 3 we get JeKL = JeKGFP, and Theorem 1
then yields the announced statement.

Now consider the interpretation J−KM with respect to some
Büchi abstraction M = (M+,Mω) with Galois insertion α, γ.

Theorem 3. Let e be a program. Then α+/ω(JeKL) = JeKM.

Proof. We lift the abstraction α to products, coproducts,
and monotone function spaces as described at the head of
Section VII. It is then clear that it preserves the entire structure
that participates in the definition of the semantics in a Büchi
algebra: Least upper bounds, concatenation, infinite prod-
ucts, basic symbols, and the cartesian-closed structure. Thus,
α(JeKL) can be rewritten to JeKM and the result follows.

Putting everything together we thus obtain:

Corollary 2 (Main result). Let e be a program and U+/ω ∈
M+/ω . We have L+/ω(e) ⊆ γ+/ω(U+/ω) iff X+/ω v U+/ω

where JeKM = (X+, Xω). In particular, when A is the
policy automaton, taking U+/ω = α+/ω(L+/ω(A)), we get
L+/ω(e) ⊆ L+/ω(A) iff X+/ω v α+/ω(L+/ω(A)).

Moreover, JeKM is effectively computable by evaluation in
the finite model M.

The last part of the corollary requires a little bit of expla-
nation. The only difficulty is the computation of the fixpoints,
which involve infinite supremums of infinite products. It
amounts to the following task:

Given a finite poset P , elements p, p′ ∈ P and a finite
function f : P × P →M+, compute:

A(p, p′) =
⊔

~p∈P+

~p : p p′

f(~p) and B(p) :=
⊔

~p∈Pω

~p : p 

f(~p)

Write An(p, p′) to mean A(p, p′) where the supremum
ranges over sequences ~p of length smaller than n. Then An

is computable since it is a finite supremum of finite prod-
ucts, and moreover ACard(M∗)(p, p′) = A(p, p′), so A(p, p′)
is effectively computable. In practise, we can compute An



iteratively from An−1, and halt when it stops increasing using
the same idea as in the Floyd-Warshall algorithm.

To compute B, we notice that

B(p) =
⊔
q∈P

A(p, q) ·A(q, q)ω

where A(q, q)ω = π(A(q, q)A(q, q) · · · ).
Indeed, given any ~p : p  , by the infinite pigeonhole

principle, there is a q ∈ P that appears infinitely many times
in ~p, and thus f(~p) v A(p, q)A(q, q)ω .

Finally, the fact that A(q, q)ω is computable was already
present in [14]. Given X ∈ M+, Xω is by definition
αω(γ+(X)ω). Since γ+(X)ω is regular, given a patch (C,D),
we can decide whether CDω ∩ γ+(X)ω 6= ∅ using Büchi
nonemptiness and then compute the closure.

We remark that this algorithm shows that in the case of
finite Büchi algebras the special case of ω-powers, cf. Wilke
algebras, is sufficient.

VIII. CONCLUSION

We have shown how to construct a cartesian-closed cate-
gory with fixpoints from a given Büchi automaton such that
interpretation of a λY-term in this category allows one to
determine whether its finite and infinite traces are accepted by
the automaton.

The interpretations of all types in this category are finite
lattices; as a result the interpretation of a term is computable
and thus leads to a new algorithm for higher-order model
checking of trace properties and as such constitutes a new step
in Salvati and Walukiewicz’s programme of Model Checking
by Evaluating Effective Semantics in the terminology of [20].

While we have not rigorously checked this, it appears that
our algorithm fits the known [15] complexity bound n − 1-
EXPTIME for nth-order model checking of trace properties in
λY. Notice here that our type comm of order 0 corresponds
in traditional λY to o→ o, of order 1 thus one level is “saved”.

A natural next step would be to design a type-and-effect
system based on our interpretation. Here, we would use
elements of JτKM to refine the higher-order type τ . In addition,
we could use regions to abstract objects and pointers and thus
obtain a refined type system for a higher-order language with
objects such as modern versions of Java or Scala.

Also, it would be interesting to run some benchmarks in
order to find out whether our procedure competes with or is
(on path properties!) better than existing implementations of
higher-order model checking such as [19], [18], [17].
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inclusion testing. Proc. CONCUR, pages 187–202. Springer, 2011.

[2] Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. The monadic
second-order theory of trees given by arbitrary level-two recursion
schemes is decidable. Proc. TLCA, pages 39–54. Springer, 2005.

[3] Lennart Beringer, Robert Grabowski, and Martin Hofmann. Verifying
pointer and string analyses with region type systems. Computer
Languages, Systems & Structures, 39(2):49–65, 2013.

[4] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability
analysis of pushdown automata: Application to model-checking. Proc.
CONCUR, pages 135–150. Springer, 1997.
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