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ABSTRACT
Approximate agreement is a weaker version of consensus where two
or more processes must agree on a real number within a distance ε
of each other. Many variants of this task have been considered in

the literature: continuous or discrete ones; multi-dimensional ones;

as well as agreement on graphs and other spaces. We focus on two

variants of approximate agreement on graphs, edge agreement and
clique agreement. We show that both tasks arise as special cases of

a more general, higher-dimensional, approximate agreement task,

where the processes must agree on the vertices of a simplex in a

given simplicial complex. This new point of view gives rise to a

novel topological perspective on the solvability of clique agreement.
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1 INTRODUCTION
Approximate agreement [6] is a weaker variant of the consensus
task, which is solvable in the wait-free read/write registers model.

Many variants of approximate agreement have been considered,

with a similar structure. Fix a finite number n of processes (Pi )i ∈[n].
Each process Pi starts the computation with an input value xi ∈ V ,

whereV is some set of values. At the end of the computation, each

process decides on an output value yi ∈ V , subject to some task-

specific constraints, known as validity and agreement. Validity re-

stricts the set of possible outputs depending on the set {xi | i ∈ [n]}
of inputs values; and agreement says that the output values chosen

by the processes should be “close from each other”. Thus, the setV

usually carries some additional structure (e.g. a metric space) in

order to have a notion of “closeness” of the values yi .
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ε-Approximate agreement. Fix a real number ε > 0. The set of

values isV = [0, 1], the set of real numbers between 0 and 1. The

goal is to decide outputs yi ∈ [0, 1] that are within distance ε . This
is formalized by two conditions, validity and agreement:

• Validity: for all i ∈ [n], minj ∈[n] x j ≤ yi ≤ maxj ∈[n] x j .
• Agreement: for all i, j ∈ [n], |yi − yj | ≤ ε .

For the analysis of distributed algorithms, it is often easier to manip-

ulate discrete data; so rather than working with the interval [0, 1],

it is handy to use the following discrete reformulation.

N -Approximate agreement. Fix some natural number N ∈ N>0,

and take the set of valuesV = {0, 1, 2, . . . ,N }. Processes start with

input values xi ∈ V and must decide outputs yi ∈ V such that:

• Validity: for all i ∈ [n], minj ∈[n] x j ≤ yi ≤ maxj ∈[n] x j .
• Agreement: for all i, j ∈ [n], |yi − yj | ≤ 1.

Thus, this is the same as the previous task for ε = 1

N , where the

processes are restricted to choose values of the form
k
N , 0 ≤ k ≤ N .

The N -approximate agreement task can also be viewed as a

special case of a graph agreement task. Let G be the graph with set

of vertices V = {0, 1, 2, . . . ,N }, and edges of the form {k,k + 1}
for each 0 ≤ k < N . The processes are given vertices of G as inputs,

and must decide on a vertex of G so that the set of all outputs is an

edge of G. There are actually several ways to generalize this task to

a general graph G. In the two tasks below, we fix a finite graph G,

and let the set of values V be the set of vertices of G.

Edge agreement. See e.g. [5] and [2].

• Validity: if all input vertices are equal, then every process

must output this vertex; if the input vertices span an edge,

then every process must output a vertex of that edge.

• Agreement: the set of output values {yi | i ∈ [n]} is either a
vertex or an edge of G.

Clique agreement. See e.g. [2], [12] and [3].

• Validity: if the set of inputs X = {xi | i ∈ [n]} is a clique
of G, then every output yi must be in X .

• Agreement: the set of outputs {yi | i ∈ [n]} is a clique of G.

In the literature, edge agreement is known as graph conver-
gence in [5] and edge gathering in [2]. Clique agreement is called

1-gathering in [2], and variants of it (with a stronger validity condi-

tion) are monophonic approximate agreement in [12], and graphical
approximate agreement in [3].

In the wait-free shared memory model, edge agreement is solv-

able for n ≥ 3 processes if and only if the graph G is a tree [5]. For

clique agreement, a precise characterization of solvability is not

known yet. In [12], an algorithm is given to solve clique agreement

on chordal graphs for n ≥ 3 processes; and in [3] on nicely bridged
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graphs. Clique agreement is unsolvable on large cycles [5], and on

graphs satisfying a so-called lower bound labelling condition [3].

Many other variants of approximate agreement have been stud-

ied. One of them is multi-dimensional approximate agreement [11],
where processes takes values in them-dimensional Euclidean space

V = Rm . As in the 1-dimensional case, processes must decide

output values within a distance ε of each other. One could imagine

similar tasks on various topological spaces (e.g. on a sphere or a

torus), but most of them would be unsolvable. Indeed, Herlihy and

Shavit [9] have shown that in the case where the space V ⊆ Rm

may contain holes, the corresponding approximate agreement task

is not wait-free solvable.

Other notable examples of approximate agreement tasks include

barycentric agreement [7], which is a discrete counterpart of multi-

dimensional agreement; rendezvous tasks [10], loop agreement [8];
and more generally abstract approximate agreement [12] whereV
is an abstract convexity space.

Distributed computing model. Most of this paper is concerned

with comparing task specifications, which is independent from the

model used to solve the task. When we mention solvability, it will

usually be in the wait-free shared memory model.

Contributions. Consider the simplex agreement task, which is

a mild generalization of barycentric agreement
1
. Fix a simplicial

complex K , and let V be the vertices of K . Processes are given

input values xi ∈ V and must decide outputs yi ∈ V such that:

• Validity: if the set of input values X = {xi | i ∈ [n]} is a
simplex of K then every output yi must be in X .

• Agreement: the set of outputs values {yi | i ∈ [n]} must be

a simplex of K .

We show that both edge agreement and clique agreement arise

as special cases of this simplex agreement task. In particular, clique

agreement on a graph G is equivalent to simplex agreement on the

complex of cliques of G, that we denote by κ(G). Thus, we argue

that, despite being formulated on a graph, clique agreement is in

fact of a multi-dimensional nature. More precisely, the dimension

of the associated simplicial complex κ(G) is related to the clique

number ω(G) of the graph by the formula: dim(κ(G)) + 1 = ω(G).
This topological point of view sheds a new light on the solvability

of clique agreement. Indeed, the chordality of a graph is known

to be related to the contractibility of its complex of cliques [1].

Thus, we conjecture that clique agreement is solvable on a graph G

precisely whenκ(G) is contractible. This would connect nicely with
the continuous case, where multi-dimensional ε-agreement in a

subset V ⊆ Rm is known to be unsolvable if V contains a hole of

radius larger than ε [9].

Plan. In Section 2, we recall some basic definitions on graphs and

simplicial complexes, and state the relationship between a graph

and its complex of cliques as an adjunction between categories.

Then in Section 3, we show that both edge and clique agreement are

particular instances of the simplex agreement task. We highlight

the relevance of this fact by looking at known results on graph

agreement tasks through the lens of topology.

1
Barycentric agreement is recovered when the simplicial complex K is chosen to be

the iterated barycentric subdivision of a standard n-simplex.

2 ADJUNCTIONS BETWEEN GRAPHS AND
SIMPLICIAL COMPLEXES

We quickly recall the standard definitions of graphs and simplicial

complexes. Note that our graphs are non-directed and simple, i.e.,

without self-loops or parallel edges. The main purpose of this sec-

tion is to explain how every graph G can be turned into a simplicial

complex κ(G), called the complex of cliques. This complex κ(G)
is canonical, in the sense of Proposition 1. We use the language

of category theory to formally study κ, but a reader unfamiliar

with those notions should not worry: understanding the definition

of κ(G) is sufficient to follow the rest of the paper.

Definition 1 (Simplicial complex). A simplicial complex is a pair

K = (V , S), where V is a finite set of vertices, and S ⊆ P(V ) is a set

of non-empty subsets of V called simplices, such that:

• for every v ∈ V , {v} ∈ S , and
• S is downward-closed, i.e., for every Y ∈ S and for every

non-empty subset X ⊆ Y , X ∈ S .

The dimension of a simplexX ∈ S is defined by dim(X ) = card(X )−1.

We often identify a vertex v ∈ V with the 0-dimensional sim-

plex {v} ∈ S . Simplexes of dimension 1 are called edges, and
simplices of dimension 2 are triangles. The dimension of a sim-

plicial complex K is the maximal dimension of a simplex of K :

dim(K) = max{dim(X ) | X ∈ S}.

Definition 2 (Graph). A (non-directed, simple) graph G is a simpli-

cial complex of dimension 1. Such a graph is uniquely determined

by its setV of vertices and its set E of edges, so we write G = (V ,E).

We assume the reader is familiar with the notions of “cycle” and

“induced subgraph”. A graph is chordal when it has no induced cycle
of length ≥ 4. A clique of G is a set of vertices X ⊆ V such that for

every u,v ∈ X , {u,v} ∈ E is an edge of G. The clique-number of G,

written ω(G), is the maximum number of vertices in a clique.

We denote by SimCpx the category of simplicial complexes (and

simplicial maps), and Graph the category of graphs (and graph ho-

momorphisms). Since we defined graphs as a special case of simpli-

cial complexes, there is an inclusion functor ι : Graph → SimCpx.
Conversely, there is a functor skel1 : SimCpx → Graph that can

turn every simplicial complex into a graph (called its 1-skeleton)
by forgetting about the higher-dimensional simplices. Formally,

for a simplicial complex K = (V , S), its 1-skeleton is the graph

skel1(K) = (V ,E) where E = {X ∈ S | dim(X ) = 1}. Finally, we de-

fine a third functor κ : Graph → SimCpx that associates with each

graph G = (V ,E) its complex of cliques, defined by κ(G) = (V , S)
where S = {X ⊆ V | X is a clique of G}.

GraphSimCpx SimCpx

skel1skel1

ι κ

The relationship between these three functors is nicely summed up

in the following (folklore) proposition.

Proposition 1. The functor ι is left adjoint to the 1-skeleton func-
tor, and κ is its right adjoint: ι ⊣ skel1 ⊣ κ.



Finally, we mention the following topological characterization of

chordal graphs in terms of contractibility.

Theorem 1 ([1]). A graph G is chordal if and only if for every
induced subgraphH of G, the complex of cliques κ(H) is contractible.

Note that it is not true that a graph G is chordal if and only if κ(G)
is contractible: the counter-example below depicts a non-chordal

graph (left) whose clique complex (right) is contractible, since it is

homeomorphic to a 2-dimensional disc.

κ

3 GRAPH AGREEMENT TASKS AND SIMPLEX
AGREEMENT

We can now relate the three tasks defined in the introduction:

edge agreement, clique agreement, and simplex agreement. In the

statement below, when we say that two tasks are the same, we mean

that they have the same set of valuesV , and that their validity and

agreement requirements are (respectively) equivalent.

Theorem 2. Let G = (V ,E) be a graph. Then:
(1) Edge agreement on the graph G is the same task as simplex

agreement on the simplicial complex ι(G).
(2) Clique agreement on G is the same task as simplex agreement

on its simplicial complex of cliques, κ(G).

Proof. By definition, both ι(G) and κ(G) have the same set of

vertices V as the graph G, therefore all four tasks use the same set

of valuesV = V . To prove (2), notice that a simplex of κ(G) is by
definition a clique of G, so both validity and agreement conditions

are the same. For (1), remark that a simplex of ι(G) can be either

a vertex or an edge of G. Once again, this observation makes the

two validity and agreement conditions equivalent. □

The purpose of Theorem 2 is to offer a new point of view on

these two graph agreement tasks. While edge agreement is truly a

graph task (because the complex ι(G) is 1-dimensional), we argue

that clique agreement is better understood when we look at the

complex of cliques of the graph G, to expose its topological nature.

As an example, consider the following result of [12] about solving

clique agreement for n processes on a connected chordal graph G,

in a message-passing model with Byzantine faults:

Theorem 3 ([12]). For a chordal graph G, clique agreement is
solvable with f Byzantine faults if n > (ω(G) + 1)f .

Now, observe that the simplicial complex κ(G) is of dimension

ω(G) − 1, where ω(G) denotes the clique number of G. Thus, the

above result can be compared with the one of Mendes et al. [11] for

multidimensional agreement, which says that approximate agree-

ment in Rm can be reached among n processes with f Byzantine

faults if and only if n > (m+2)f . Hence, it appears that clique agree-
ment behavesmuch like a discrete counterpart of them-dimensional

approximate agreement task, form = dim(κ(G)).

A more recent paper [3] improved the solvability result of [12],

in the wait-free model, to also work on some non-chordal graphs

such as the hexagonal one depicted at the end of Section 2. They

also proved an impossibility result: clique agreement is not wait-

free solvable when the graph G satisfies a so-called lower bound
labelling condition. This mysterious condition can be understood

topologically: it implies that the complex of cliques κ(G) is not
simply connected. In fact, we conjecture that it is equivalent.

This topological point of view allows us to make the following

conjecture, by analogy with the continuous case, where Herlihy

and Shavit proved that ε-approximate agreement is impossible

whenever the space V ⊆ Rm contains holes of radius ≥ ε [9].

Conjecture. Simplex agreement on a simplicial complex K is
wait-free solvable if and only if K is contractible.

Methods based on algebraic topology are well established in dis-

tributed computing to prove impossibility results [7]. In particular,

the “only if” direction of the conjecture seems like it could be a

direct consequence of the topological characterization of solvability

for colorless tasks (also called convergence tasks in [4]), of which

simplex agreement is an example.

For graphs, the conjecture implies that clique agreement on a

graph G is solvable if and only if its complex of cliques κ(G) is
contractible. This is consistent with the solvability result of [12],

since chordal graphs have a contractible complex of cliques by Theo-

rem 1. Our conjecture is also consistent with the impossibility result

of [3], because graphs that admit a lower bound labelling have a

non-simply connected complex of cliques (hence, non-contractible).

One case whose wait-free solvability is still unsettled is when

the graph G is a triangulated sphere. For instance, take G to be

the graph of edges of an icosahedron. Our conjecture says that,

since the associated simplicial complex is not contractible, clique

agreement on G should be unsolvable in the wait-free model.

4 CONCLUSION
We have shown that edge agreement and clique agreement both

arise as particular cases of the simplex agreement task. While edge

agreement is truly of a graph-theoretic nature, clique agreement

appears to be better understood through the lens of simplicial com-

plexes. With this new point of view, one can replace the graph-

theoretic notions of “clique number” and “chordality” by the topo-

logical ones of “dimension” and “contractibility”. With this in mind,

parallels can be drawn with various results on multi-dimensional

approximate agreement, which gives a better understanding on the

wait-free solvability of graph agreement tasks.

All the tasks that we considered have a very permissive validity

condition, where any output is allowed unless the input vertices

already form a clique. By contrast, [12] and [3] have stronger valid-

ity conditions, requiring every output vertex to lie on a chordless

or shortest path between the inputs. It would be insightful to study

these conditions topologically, for example, to see whether they

relate to notions of convex hull on manifolds.
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