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1. Introduction

Game theory is the study of how agents make decisions in order to max-

imise their outcomes (Osbourne and Rubinstein, 1994; Leyton-Brown and

Shoham, 2008). A strategy profile describes how each agent will play the

game, and is said to be a Nash equilibrium if no player has any incentive to

deviate from their strategy; it is called subgame perfect if it is a Nash equi-

librium in every subgame of the game. In a series of papers (Bridges, 1982,

1989, 1994, 2004), Douglas Bridges investigated constructive aspects of the

game theory of games where players move simultaneously (so-called normal

form games), and their preference relations. This article is concerned with

a constructive treatment of games where players move sequentially.

A common way to model sequential games is using their extensive form:

a game is represented as a decorated tree, whose branching structure re-

flects the decisions available to the players. When the number of rounds

in the game is infinite (e.g. because a finite game is repeated an infinite

number of times, or because the game may continue forever), the game

tree needs to be infinitely deep. One way to handle such infinite trees is

to consider them as the metric completion of finite trees, after equipping

them with a suitable metric (Mycielski and Taylor, 1976). However, as a

definitional principle, this only gives a method to construct functions into

other complete metric spaces, and the explicit construction as a quotient of

Cauchy sequences (Bishop and Bridges, 1985, §4.3) can be unwieldy to work

1
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with. Instead, we prefer to treat the infinite as the dual of the finite, in the

spirit of category theory and especially the theory of coalgebras (Rutten,

2000).

We are not the first to attack infinite extensive form games using coal-

gebraic methods. Lescanne (2013, 2018), Lescanne and Perrinel (2012)

and Abramsky and Winschel (2017) define infinite two-player games coal-

gebraically, and show that coinductive proof methods can be used to con-

structively prove properties of games. However, their definition only assigns

utility to finite plays. For that reason, they restrict attention to strongly

convergent strategies, i.e. strategy profiles that always lead to a leaf of the

tree in a finite number of steps. This restriction rules out infinitely re-

peated games, where utility could be assigned using discounted sums or

limiting averages — both methods crucially making use of the entire infi-

nite history of the game. Building on our on work on infinitely repeated

open games (Ghani et al., 2018), we extend Lescanne’s and Abramsky and

Winschel’s coalgebraic framework to not necessarily convergent strategies.

The one-shot deviation principle is a celebrated theorem of classical

game theory. It asserts that a strategy is a subgame perfect equilibrium if

and only if there is no profitable one-shot deviation in any subgame. While

this principle holds for all finite games, in the case of infinite trees, it re-

quires an extra assumption called continuity at infinity (see e.g. Fudenberg

and Tirole (1991, Chapter 4.2)). Essentially, this property says that the

actions taken in the distant future have a negligible impact on the current

payoff. In the coalgebraic setting, Abramsky and Winschel (2017) claim to

prove the one-shot principle without continuity assumptions — we argue

that this is not entirely the case. Indeed, they show that the natural coal-

gebraic equilibrium concept (which they call “SPE”) satisfies the one-shot

deviation principle. However they do not discuss how this coalgebraic con-

cept relates to the traditional notion of subgame perfect Nash equilibria.

As we show in Theorem 30, these two notions are indeed equivalent, but

only assuming continuity of the utility function. In that regard, the predi-

cate “SPE” of Abramsky and Winschel (called �Unimprov in our work) is

in fact closer to a coalgebraic version of the one-shot equilibrium.

Our proof of the one-shot deviation principle extends the previous ones

in several ways. Compared to the one of Abramsky and Winschel (2017),

it applies to games where infinite plays are possible; and it relates to the

more standard definition of subgame-perfect Nash equilibrium, �Nash. Ad-

ditionally, our theorem applies to any coalgebra of the extensive-form tree

functor, whereas Abramsky and Winschel only work with the final coalge-
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bra. Compared to the usual proofs found in the game theory literature, we

carefully analyse the constructivity of the proof. The only extra assump-

tion that we require is decidable equality on the set of players (which is

typically finite), and decidability of the order relation on the set of payoffs

(typically, the set of rational numbers). Moreover, continuity at infinity

is usually expressed using uniform continuity; we remark that pointwise

continuity suffices.

Structure of the paper We recall the basics of category theory and in

particular coalgebra in Section 2. In Section 3, we define infinite extensive

form games as final coalgebras, and use properties of coalgebras to define

notions such as strategies, moves, payoffs and equilibria in a game. We then

relate our coalgebraic notions with the existing notions from the literature

in Section 4. Throughout the paper, we demonstrate how coinductive proof

principles can be used to reason constructively about infinite games.

Notation We use P : Set→ Set for the covariant powerset functor map-

ping a set to its set of subsets. Given a set-indexed collection of sets

Y : I → Set, the dependent sum (Σi : I)Y i is the disjoint union of all of the

sets in the collection, while the dependent function space (Πi : I)Y (i) is

the set of functions mapping an input i ∈ I to an element of Y (i). We may

also use “Agda notation” (Norell, 2007) (i : I) → Y (i) for the dependent

function space. We write N for the natural numbers, N+ for the positive

natural numbers, and [n] = {0, . . . , n − 1} for a canonical n-element set.

We also write 1 = [1], 2 = [2] and so on for fixed small finite sets.

2. Coalgebraic Preliminaries

We assume familiarity with basic category theory.

2.1. Final coalgebras

Let C be a category and F : C → C an endofunctor. An F -coalgebra is a pair

(A,α), where A is an object of C, and α : A → FA is a morphism. An F -

coalgebra homomorphism from (A,α) to (B, β) is a morphism f : A → B

preserving the coalgebra structure, i.e. such that the following diagram
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commutes:

A
α //

f

��

FA

F (f)

��
B

β
// FB

F -coalgebras and F -coalgebra homomorphisms form a category. If F is

well behaved (e.g. finitary), this category will have a final object, called

the final F -coalgebra, and denoted (νF, out). Its universal property is a

corecursion principle: for every coalgebra (A,α), there exists a unique

coalgebra homomorphism unfold : (A,α) → (νF, out). We will make use

of Lambek’s Lemma, which says that for a final coalgebra (νF, out), the

map out : νF → F (νF ) is an isomorphism.

2.2. Coinductive families and predicates

Let I be a set. The category SetI of I-indexed sets is the category whose

objects are functors from I (viewed as a discrete category) to Set, and whose

morphisms are natural transformations. A coinductive family indexed by I

is the final coalgebra νG of an endofunctor G on SetI . Its corresponding

“coinduction principle” says that for every I-indexed family P , if there is

a family of functions gi : P (i)→ G(P )(i), then there is a unique family of

morphisms unfoldg,i : P (i) → νG(i) commuting with the coalgebra maps,

i.e., as a diagram in SetI :

P
g //

unfold

��

G(P )

G(unfold)

��
νG

out
// G(νG)

In particular, we will be interested in coinductive families indexed by the

carrier A of a coalgebra (A, γ) of a functor F : Set → Set, in which case

there is a canonical way to obtain coinductive families via predicate liftings

of F , as we now explain.

A predicate lifting of a functor F : Set→ Set is a natural transformation

{ϕX : SetX → SetFX}
X∈Set. Given an F -coalgebra (X, γ : X → F (X))

and a predicate lifting ϕ of F , we can define an endofunctor on SetX by

SetX
ϕX // SetF (X) −◦γ // SetX

and consider its final coalgebra — in the case when (X, γ) is the final F -

coalgebra (νF, out), this gives the same coinduction principle as for νG
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above (with G = ϕνF ), as out : νF ∼= F (νF ) is an isomorphism by Lam-

bek’s Lemma.

3. Infinite Extensive Form Games

In the game theory literature (Kuhn, 1953; Selten, 1975; Leyton-Brown

and Shoham, 2008), extensive form games are typically defined using a

non-recursive formulation. We take advantage of a more categorical pre-

sentation, as it is more compact, supports (co-)recursive function definitions

and (co-)inductive reasoning, and smoothly generalises to richer semantic

domains, e.g. metric, probabilistic and topological spaces. Throughout this

section, let P be a finite set of players and R an ordered set of rewards

— eventually, we will need to assume that this order is trichotomous. We

write RP for the set of functions R→ P .

Definition 1. The set ETree∞ of infinite extensive form game trees is the

final coalgebra (ETree∞, outETree∞) of the functor FETree : Set→ Set defined

by

FETree(X) = 1 + P × (Σn : N+)([n]→ X).

This supports the Haskell-like data type

data ETree∞ = Leaf | Node P (n : N+) ([n]→ ETree∞)

Concretely a tree T : ETree∞ is either a leaf indicating no further plays are

possible, or an internal node labelled with a player p ∈ P who is to play

at that point in the game, and an arity n ∈ N+ representing the number

of different moves available, followed by n subtrees. Crucially, being a final

coalgebra, ETree∞ includes paths of infinite depth.

Example 2 (Dollar Auction). The Dollar auction is an infinite game in-

troduced by Shubik (1971) to exemplify a situation of ‘rational escalation’.

The game has two players, A and B, bidding over a dollar bill. Player A

bids first and then players alternate turns. At each turn, a player chooses

between two actions:

• quit, in which case the game ends and the other player wins the $1.

• bid, which costs $0.1, and yields the turn to the other player.

turnA turnB turnA · · ·

($0, $1) ($0.9, $0) (−$0.1, $0.9) · · ·

bid

quit

bid

quit

bid

quit
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Notice that when players bid, they immediately pay and are not refunded

in case they lose the auction. This game can be represented by an infinite

tree defined by mutual corecursion:

DollarA = Node A 2 (Leaf,DollarB)

DollarB = Node B 2 (Leaf,DollarA)

Then Dollar := DollarA, as A moves first. In terms of coalgebra of

FETree, Dollar is defined starting from a coalgebra (D, δ), where D =

{turnA, turnB , end}, P = {A,B} and δ is defined as

δ : D −→ 1 + P × (Σn : N+)([n]→ D)

δ turnA = inr (A, 2, (end, turnB))

δ turnB = inr (B, 2, (end, turnA))

δ end = inl ∗

The coalgebra (D, δ) can be represented by the automaton below, where

the two elements of 2 are named quit and bid:

turnA

end

turnB

bid

quit

bid

quit

By terminality of (ETree∞, outETree∞), there is a unique map unfold(D,δ) :

(D, δ) → (ETree∞, outETree∞), and we define Dollar := unfold(D,δ)(turnA).

Thus, Dollar is the following infinite tree:

NodeA NodeB NodeA NodeB

Leaf Leaf Leaf Leaf

bid

quit

bid

quit

bid

quit

bid

quit

Example 3 (Repeated game). Let T be a finite, perfect-information,

extensive-form game, with set of players P . Such games (without utility

information) are represented as the elements of the initial algebra of FETree

(see Capucci et al. (2021, Section 2)). Any such tree can be converted to

an FETree-coalgebra given by the automaton whose states and transitions

correspond, respectively, to nodes and branches of T .
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If we now identify the final states (given by leaves of T ) with the initial

state (given by the root of T ) of the automaton, we get another FETree-

coalgebra (RepT , ρT ): the repeated game coalgebra.

By terminality of (ETree∞, outETree∞), there is a unique map

unfold(RepT ,ρT ) : (RepT , ρT )→ (ETree∞, outETree∞), and we define

T∞ := unfold(RepT ,ρT )(root).

One concrete example is the Market Entry game (Selten, 1978), a game

with players P = {A,B} described by the extensive-form tree M (here with

payoff-labeled leaves):

A B (2, 2)

(1, 5) (0, 0)

in

out

accom

fight

Player A decides whether to enter a new market or not. If staying out,

the game ends, but if A enters then player B has to decide whether to

accommodate or fight the incumbent. In this case (RepT , ρT ) corresponds

to the automaton:

A B
in

out

accom

fight
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The induced infinite tree M∞ is then given by

A B A B · · ·

A · · · A · · · A · · · A · · ·

...
...

...
...

in

out

accom

fight

in

out

accom

fight

in

out

in

out

in

out

in

out

3.1. Strategies and moves

Throughout the section, let (X, γ) be an FETree-coalgebra.

3.1.1. Strategy profiles

A strategy profile for the coalgebra (X, γ) at state x ∈ X consists of a

choice of an action at each node in the game tree induced by (X, γ).

Definition 4. We define the set of strategy profiles prof(X,γ) : X → Set as

the final coalgebra associated with the lifting

ϕprof,X : (X → Set)→ FETree(X)→ Set

ϕprof,X P (inl ∗) = 1

ϕprof,X P (inr (q, n, f)) = [n]× (Π a ∈ [n]) (P (f a))

i.e. we define prof(X,γ) as the final coalgebra of the functor FProf : SetX →
SetX defined by FProf(P ) = ϕprof,X(P ) ◦ γ.

That prof(X,γ) is the final coalgebra implies that for every x ∈ X, there

is an isomorphism sx : prof(X,γ)(x) → ϕprof,X(prof(X,γ))(γ(x)). If γ(x) =

inr(q, n, f), we thus have

sx(σ) ∈ [n]× (Π a ∈ [n]) (prof(X,γ)(f a))

and we write sx(σ) = (now σ, nextσ), i.e. we have now σ ∈ [n] and nextσ a ∈
prof(X,γ)(f a) for every a ∈ [n].

Example 5 (Dollar Auction (continues from Example 2)). For the Dollar

game of Example 2, we would expect the set of strategy profiles to be

isomorphic to 2N, since a strategy profile selects, for every node of the

game, an action in 2 ∼= {bid, quit}.
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Formally, we check that prof(D,δ) : D → Set is the following family of

sets, where (D, δ) is the coalgebra that defines the Dollar game in Example 2.

prof(D,δ)(x) ∼=

{
1 if x = end

2N if x = turnA, turnB

Indeed, a function σ ∈ 2N contains exactly the data of a strategy profile in

prof(D,δ)(turnA), since we can define

now σ = σ(0) ∈ 2

next σ quit = ∗ ∈ 1 ∼= prof(D,δ)(end)

next σ bid = λn. σ(n+ 1) ∈ 2N ∼= prof(D,δ)(turnB)

and similarly for a profile σ ∈ prof(D,δ)(turnB). It is straightforward (but

cumbersome) to check that this satisfies the universal property of the final

coalgebra of FProf .

Example 6 (Repeated game (continues from Example 3)). For a fi-

nite game T , we have defined in Example 3 its repeated game coalgebra

(RepT , ρT ), whose unfolding is the infinitely repeated game T∞. A strategy

profile for (RepT , ρT ) with initial state x is given by the greatest solution

to

prof(RepT ,ρT )(x) ∼= {strategy profiles of T |x} ×
∏

`∈leaves x

prof(RepT ,ρT )(root)

where T |x is the subtree of T starting at x ∈ RepT , root is the state cor-

responding to the root of the tree T , and leaves x denotes the set of leaves

in the subtree T |x. In the concrete case of the market entry game, this

becomes (where we put profM = prof(RepM ,ρM ) to ease notation):

profM (A) ∼= {in, out} × {fight, accom} × profM (A)× profM (A)× profM (A)︸ ︷︷ ︸
3 leaves accessible from A

profM (B) ∼= {fight, accom} × profM (A)× profM (A)︸ ︷︷ ︸
2 leaves accessible from B

Therefore profM (A) is the final coalgebra of the functor

X 7→ {in, out} × {fight, accom} ×X3

3.1.2. Moves

The set of moves in the game is the set of paths in the tree, which is another

coinductive family.
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Definition 7. We define the set of moves moves : X → Set as the final

coalgebra associated with the lifting

ϕmoves,X : (X → Set)→ FETree(X)→ Set

ϕmoves,X P (inl ∗) = 1

ϕmoves,X P (inr (q, n, f)) = (Σa : [n])(P (f a))

i.e. we define moves(X,γ) as the final coalgebra of the functor Fmoves : SetX →
SetX defined by Fmoves(P ) = ϕmoves,X(P ) ◦ γ.

Again, for every x ∈ X, we have an isomorphism mx : moves(X,γ)(x)→
ϕmoves,X(moves(X,γ))(γ(x)). If γ(x) = inr (q, n, f), we have

mx(π) ∈ (Σa : [n]) moves(X,γ)(f a)

Note that, as mx is iso, if γ(x) = inr (q, n, f) then for each a ∈ [n] and

π′ ∈ moves(X,γ)(f a) there is a unique element cons(a, π′) ∈ moves(X,γ)

such that mx(cons(a, π′)) = (a, π′).

Example 8 (Dollar Auction (continues from Example 5)). The moves of

Dollar are given by the final coalgebra of X 7→ 1 +X, i.e.

moves(Dollar) ∼= 1 + moves(Dollar)

The final coalgebra of this functor is known as the conatural numbers

(N∞, pred), which include all finite natural numbers and an ‘infinite’ num-

ber ω. The map pred maps 0 ∈ N∞ to inl ∗ and every other natural number

to the right injection of its predecessor. The predecessor of ω is itself,

pred ω = inrω. Note that it is not decidable if a given conatural number x

is finite or infinite; however, by applying pred a finite number of times, we

can decide if x ≥ n for any finite natural number n.

We interpret n ∈ moves(Dollar) as the path starting from the root and

ending at the n-th leaf, i.e. the play where players bid n times before one

of them∗ decides to quit. The unique infinite play ω corresponds to infinite

escalation, with players never quitting.

Similarly, moves(D,δ) is given by

moves(D,δ)(x) ∼=

{
1 if x = end

N∞ if x = turnA, turnB

Example 9 (Repeated game (continues from Example 6)). For any finite

extensive-form game tree T , one has

moves(RepT ,ρT )(x) ∼= (leaves x)× (leaves root)N.

∗The player who quits can be determined from the parity of n.
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In the specific instance of the market entry game M , moves are three:

1 : A
out→ ∗, 2 : A

in→ B
accom→ ∗ and 3 : A

in→ B
fight→ ∗, forming the set 3.

These are all accessible from A, therefore M∞ has set of moves specified

by the final coalgebra of

X 7→ 3×X
which is readily seen to be 3N. Indeed, a move of the repeated game is a

move for every stage game. On the other hand, only moves 2 and 3 are

accessible from B, therefore we get

moves(RepM ,ρM )(x) ∼=

{
3× 3N if x = A

2× 3N if x = B

3.2. Evaluating strategies

In order to compare strategies, we need a way to assign a payoff to them.

This is done in two steps: the play function turns a strategy profile into a

sequence of moves; and the payoff function explains how outcomes turn into

rewards for the players. This will allow us, in Section 3.3, to define several

equilibrium concepts, i.e., predicates on strategy profiles that express when

all players are happy with their given rewards.

3.2.1. The Play Function

We can use the universal property of final coalgebras to define a play func-

tion play(X,γ) : prof(X,γ) → moves(X,γ) which computes the sequence of

moves generated by playing according to a strategy profile.

To define play(X,γ) : prof(X,γ) → moves(X,γ), we use the finality of

moves(X,γ). It is sufficient to give, for Q : SetX , a natural transformation

pQ : ϕprof,X(Q)→ ϕmoves,X(Q) in SetFETree(X), which we can do as follows.

pQ (inl ∗) ∗ = ∗
pQ (inr (q, n, f)) (a, σ) = (a, σ a)

Instantiating at component pprof(X,γ) and composing with the isomorphism

sx gives prof(X,γ) a ϕmoves,X -coalgebra structure, as required. Hence there

is a unique function play(X,γ) : prof(X,γ) → moves(X,γ), which, up to the

isomorphisms sx and mx, satisfies the following definition.

play : (x : X)→ prof(X,γ)(x)→ moves(X,γ)(x)

play (inl ∗) ∗ = ∗
play (inr (q, n, f)) (a, σ) = (a, play (f a) (σ a))
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3.2.2. Payoff functions and the game coalgebra

A payoff function for an FETree-coalgebra (X, γ) at state x ∈ X is a function

u : moves(X,γ)(x) → RP where R is our set of possible payoffs (often the

rational numbers, but sometimes infinite payoffs might also be necessary)

and P is the set of players. The set of payoff functions for each x ∈ X is

denoted by pay(X,γ)(x).

Example 10 (Dollar Auction (continues from Example 8)). Recall that

moves(D,δ)(turnp) is given by conatural numbers. The payoff function for

the Dollar Auction game (where R = [−∞,+∞)†) can be defined in two

steps. First, we coinductively define a map into colists‡ of payoffs (which

we think of as ‘ledgers’):

led : (x : D)→ moves(D,δ)(x)→ List∞ RP

led end ∗ = Empty

led turnA m =

{
(A 7→ 0, B 7→ 1) :: Empty pred m = inl ∗
(A 7→ −0.1, B 7→ 0) :: (led turnB n) pred m = inr n

led turnB m =

{
(A 7→ 1, B 7→ 0) :: Empty pred m = inl ∗
(A 7→ 0, B 7→ −0.1) :: (led turnA n) pred m = inr n

Then the actual utility function is given by summing up componentwise all

the payoffs collected by the players during the game:

uDollar m =

+∞∑
n=0

pi, where p = led turnA m

where pi is defined to be zero when i is greater than the length of p.

In the case of m = ω, this will unfold into an infinite sum where the

summands alternate between (A 7→ −0.1, B 7→ 0) and (A 7→ 0, B 7→ −0.1),

therefore yielding the payoff vector (A 7→ −∞, B 7→ −∞).

Example 11 (Repeated game (continues from Example 9)). The payoff

function of an infinitely repeated game is obtained similarly to the previ-

ous example: ‘partial’ payoffs are summed at each iteration of the stage

game. Unlike the Dollar Auction however, in an infinitely repeated game

all plays are infinite, therefore discounting is adopted. This means that at

each successive stage of the game, payoff vectors are uniformly scaled by a

†We assume that −∞+m = −∞ for every m ∈ R.
‡Colists of A are ‘possibly infinite lists’, i.e. terms of the final coalgebra of X 7→ 1+A×X
for a given A. We denote inl ∗ as Empty and inr (a, x) as a ::x.
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discount factor 0 < δ < 1. Discounting reflects the real-world tendency to

value future payoffs less than present ones.

Thus let vT : (x : RepT )→ (leaves x)→ RP be the utility function of

the finite stage game T (such as the one represented by the diagram

of M in Example 3). For a given discount factor δ, we get a payoff

function uδT∞ : (x : RepT )→ moves(RepT ,ρT )(x)→ RP by setting (recall that

moves(RepT ,ρT )(x) = (leaves x)× (leaves root)N):

uδT∞ x (m0,ms) := (vT x m0) +

+∞∑
i=0

δi+1 · (vT x (ms i)).

Notice the assumption of |δ| < 1 guarantees the convergence of such a sum.

We are now ready to define the “game coalgebra”, an FETree-coalgebra,

that will enable us to study equilibria, by collecting all the information

needed for the equilibria: the current state of the game, a strategy profile,

and a payoff function.

Definition 12. Let (X, γ) be an FETree-coalgebra. The game coalgebra

(Z(X,γ),Γ) is the FETree-coalgebra with carrier set

Z(X,γ) = (Σx : X)
(
prof(X,γ)(x)× pay(X,γ)(x)

)
and dynamics given by the map Γ defined by

Γ(x, σ, u) =

{
inl ∗ if γ(x) = inl ∗
inr (q, n, λa.(f a, nextσ a, ua)) if γ(x) = inr (q, n, f)

where ua(π′) = u(cons(a, π′)), for a ∈ [n] and π′ ∈ moves(X,γ)(f a).

3.3. Equilibrium concepts

3.3.1. The ‘Everywhere’ modality

Notions from game theory such as subgame perfection require a predicate

to hold at every node of a tree (i.e., in every subgame). Using standard

techniques from coalgebra, we can construct such a lifting as follows:

Definition 13. Let (X, γ) be an FETree-coalgebra. Consider the predicate

lifting ϕ� : P(X)→ P(FETreeX) defined by

ϕ�(Q) = {inl ∗} ∪ {inr(q, n, f) | (∀a ∈ [n])Q(f a)}

and for a predicate P ∈ P(X), define �P to be the greatest fixpoint of

F�,P (U) = P ∩ γ−1(ϕ�(U)).
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A detailed discussion of this operator can be found e.g. in Jacobs (2016)

where � is referred to as the ”henceforth” operator. The � satisfies the

properties one would expect from basic modal logic.

Lemma 14. The modality � is monotone, i.e. if P implies Q then �P
implies �Q. Furthermore �P ⊆ P and �P ⊆ ��P .

Proof. Assume P ⊆ Q. To show �P ⊆ �Q, we use the finality of �Q
to conclude �P ⊆ �Q by showing that �P ⊆ F�,Q(�P ). This follows

since �P ⊆ F�,P (�P ) and P ⊆ Q. In the same way, �P ⊆ P and

�P ⊆ ��P .

3.3.2. Unimprovability

A very simple equilibrium concept is the following: at each node of the

game, the current player cannot improve their payoff by changing their

action. We call this the ‘one-shot’ equilibrium concept. Formally, we can

encode it as follows. First we define a predicate Unimprov which verifies

that, at a node in Z(X,γ), the current strategy is unimprovable for the

current player. We then ask that this predicate holds everywhere in the

tree using the ‘everywhere’ modality.

Definition 15. We define the predicate Unimprov on Z(X,γ) by:

(x, σ, u) |= Unimprov if γ(x) = inl ∗
or γ(x) = inr (q, n, f)

and now σ ∈ argmax(λa.πq(ua(play (f a) (nextσ a))))

The ‘one-shot’ equilibrium concept can now be defined as �Unimprov.

This equilibrium concept also occurs in Lescanne and Perrinel (2012)

and Abramsky and Winschel (2017), who call it “subgame perfect equilib-

ria”. We prefer to reserve that name for the predicate �Nash that we will

define in the next section.

3.3.3. Nash Equilibria and Subgame Perfection

The predicate Unimprov from the previous section says that a player cannot

improve their payoff by changing their action at the current node only. In

contrast, Nash equilibria are concerned with deviations where a player may

change their action at several nodes simultaneously. The only restriction is

that all such nodes must belong to the same player. So, we first define a
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predicate ≡p which characterises when two strategy profiles are the same,

except for deviations by one player p. Since we want to allow an infinite

number of deviations by player p, we define this as a coinductive predicate.

Definition 16. For each player p ∈ P we define a family of relations

≡p: (x : X)→ P(prof(X,γ)(x)× prof(X,γ)(x))

as the maximal family such that for all σ, σ′ ∈ prof(X,γ)(x) and x ∈ X we

have σ ≡p σ′ if and only if one of the following is satisfied:

(1) γ(x) = inl ∗, or

(2) γ(x) = inr (p, n, f) and nextσ a ≡p nextσ′ a for all a ∈ [n], or

(3) γ(x) = inr (q, n, f) with q 6= p, now σ = now σ′ and nextσ a ≡p nextσ′ a

for all a ∈ [n].

We can use the universal property of ≡p to deduce the following:

Lemma 17. Assume the set of players P has decidable equality. For each

player p ∈ P , the relation ≡p is reflexive.

Using ≡p to talk about deviations, we can now formulate the Nash

equilibrium concept. This is defined in terms of previous definitions, and

is thus neither an inductive nor a coinductive definition.

Definition 18. In the game coalgebra (Z(X,γ),Γ) we define

(x, σ, u) |= Nash

if ∀p ∈ P. ∀σ′ ∈ prof(X,γ)(x).

(σ ≡p σ′)→ (πpu(play x σ) ≥ πpu(play x σ′))

We can now succinctly define the solution concept of subgame perfect

Nash equilibria simply as �Nash — a strategy profile is subgame perfect if

it is a Nash equilibrium in every subgame of the tree.

4. Relating Unimprovability and Subgame Perfect Nash

Equilibria

In this section, we relate the coalgebraic subgame perfect Nash equilibria

�Nash and the one-deviation equilibrium �Unimprov, thus connecting our

coalgebraic treatment with the standard notions from game theory. One

direction is almost immediate:
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Lemma 19. Assume the set of players P has decidable equality. Let

(x, σ, u) be a state of the game coalgebra (Z(X,γ),Γ). If (x, σ, u) |= �Nash

then (x, σ, u) |= �Unimprov.

Proof. Since � is monotone by Lemma 14, it is sufficient to show that

(x, σ, u) |= Nash implies (x, σ, u) |= Unimprov. If γ(x) = inl ∗, this is trivial,

so we concentrate on the case when γ(x) = inr (q, n, f). By definition, we

have to show that

πq(unow σ(play (f(now σ)) (nextσ (now σ)))) ≥ πq(ua(play (f a) (nextσ a)))

for every a ∈ [n]. For each a, let σa be the strategy profile with now σa = a

and nextσa = nextσ. By Lemma 17, σ ≡q σa, and the conclusion follows

from the assumption that (x, σ, u) |= Nash.

For the other direction, we need to assume that the utility function is

suitably well behaved; this is known as continuity at infinity in the game

theory literature (Fudenberg and Tirole, 1991, Chapter 4.2). We formulate

it more generally for arbitrary Fmoves-coalgebras.

4.1. Continuity at infinity

To formally define continuity at infinity we assume that the set of payoffs R

is a metric space and RP is the P -fold product of this metric space obtained

via taking the maximum. To obtain a metric on a Fmoves-coalgebra we use

the projections into the terminal sequence of Fmoves. This technique can be

formulated for arbitrary functors on indexed sets.

Definition 20. LetH : SetX → SetX a functor, and (A, γ) anH-coalgebra.

Recall that >X(x) = 1 is the terminal object in SetX . We define a family

of natural transformations (γi : A→ Hi(>X))i∈N inductively by:

γ0 = !A

γi+1 = (Hγi) ◦ γ
where !A is the unique morphism from A into the terminal object. We call

states a, a′ ∈ A(x) n-step equivalent, and we write a ∼n a′, when γnx (a) =

γnx (a′). This induces a pseudometric on A(x) by putting dx(A,γ)(a, a
′) =

2−m, where m = sup{n | a ∼n a′}.

If H is finitary, i.e. determined by its action on finitely presentable

objects (Adamek and Rosicky, 1994), then if two states in an H-coalgebra

(A, γ) agree for all finite observations, they are equal. Hence in this case

dx(A,γ) is actually a metric:
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Lemma 21. Let H : SetX → SetX be a finitary functor. For each H-

coalgebra (A, γ) and x ∈ X, dx(A,γ) is a metric on A(x).

The lemma is a straightforward consequence of a similar result for Set-

functors (Barr, 1993; Worrell, 2000). We apply the above lemma to the

functor Fmoves : SetX → SetX from Definition 7, which is finitary. As a

result, we are now ready to define continuity at infinity coalgebraically.

Definition 22. Let (X, γ) be an FETree-coalgebra. We call u ∈ pay(X,γ)(x)

continuous at infinity if u : moves(X,γ)(x)→ RP is uniformly continuous as

a map between metric spaces, i.e., if

∀ε > 0. ∃δ > 0. ∀m,m′. dxmoves(X,γ)
(m,m′) < δ → dRP (u(m), (u m′)) < ε

Remark 23. This generalises the usual formulation of continuity at infin-

ity from the game theory literature (see e.g. Fudenberg and Tirole (1991,

Def. 4.1)) to coalgebras. We observe that the weaker assumption of point-

wise continuity would be sufficient to prove Theorem 30 (or the correspond-

ing traditional statement (Fudenberg and Tirole, 1991, Theorem 4.2)).

Classically, moves(X,γ)(x) is compact (Kurz and Pattinson, 2002), and the

distinction disappears, but this is of course not constructively valid.

Spelling out the definition of dxmoves(X,γ)
and dRP , we arrive at the fol-

lowing concrete definition of continuity at infinity:

Proposition 24. Let (X, γ) be an FETree-coalgebra. A payoff function u ∈
pay(X,γ)(x) is continuous at infinity if and only if

∀ε > 0. ∃n ∈ N. ∀m,m′. (m ∼n m′) → ∀p ∈ P. dR(πp(u m), πp(u m
′)) < ε

Example 25 (Dollar Auction (continues from Example 10)). We claim the

payoff function for Dollar is continuous at infinity. It will suffice to focus

on one component, say uA = πA ◦ u, since πB ◦ u is the same up to a shift.

Let us begin by specifying a metric on R = [−∞,+∞):

dR(r, r′) = | arctan r − arctan r′|

This choice of metric makes R into a bounded space, since evidently

diam(R) = π. In particular, dR((uA m), (uA m
′)) is finite for every

m,m′ ∈ moves(D,δ)(x).

By applying tan at both sides§ of dR((uA m), (uA m′)) < ε, our thesis

§Which, by virtue of being monotone on the domain (−π/2,+π/2), preserves inequalities

for small enough ε (and, by previous considerations on the diameter of R, for every value
of dR((uA m), (uA m′)))
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becomes

∀ε > 0. ∃n ∈ N. ∀m,m′. m ∼n m′ →
|(uA m)− (uA m

′)|
1 + (uA m)(uA m′)

< tan ε. (1)

Observe that, when m,m′ → +∞,

g((uA m), (uA m
′)) −→ 0 where g(x, y) =

|x− y|
1 + xy

.

since (uA m), (uA m′) → −∞ by the definition of uA and g(x, y) → 0 as

x, y → −∞. This convergence gives an n ∈ N for each chosen tan ε > 0.

Suppose now m ∼n m′. In this particular example, this can happen if and

only if either m,m′ < n and m = m′, or m,m′ ≥ n. In the first case,

dRP ((uA m), (uA m′)) = 0 < tan ε. In the second case, we’ve chosen n

to satisfy dRP ((uA m), (uA m′)) < tan ε. Thus we conclude that (1) is

satisfied.

Example 26 (Repeated game (continues from Example 11)). The utility

function of a repeated game with discounting is almost immediately seen to

be continuous. Setting v = πp ◦ (vT A) (using notation from Example 11),

we see we are tasked to prove:

∀ε > 0. ∃n ∈ N. ∀(m0,ms), (m
′
0,ms

′).

(m0,ms
′) ∼n (m′0,ms

′) →

∣∣∣∣∣(v m0 − v m′0) +

+∞∑
i=0

δi+1(v (ms i))− v (ms′ i))

∣∣∣∣∣ < ε

In this case, (m0,ms
′) ∼n (m′0,ms

′) holds exactly when m0 and m′0 agree

and (if n > 0) if ms and ms′ also agree on their first n entries. When this

happens, the first n + 1 terms of the series cancel out. By convergence of

said series (easily obtainable by comparison with a geometric series), we

can make that quantity as small as we need to by eliding enough leading

terms.

4.2. The one-shot deviation principle

The one-shot equilibrium concept states that there is no profitable single-

node deviation. As an intermediate step towards subgame perfect Nash

equilibria, we can also consider a profitable deviations in a finite number

of nodes. Following Lescanne (2013, §5), this concept can be formalised as

an inductive definition as follows:

Definition 27. Let p ∈ P be a player and (X, γ) an FETree-coalgebra. We

define a family of relations ≡fin
p : (x : X) → P(prof(X,γ)(x) × prof(X,γ)(x))

inductively as the least family such that for all σ, σ′ ∈ prof(X,γ)(x) and

x ∈ X we have σ ≡fin
p σ′ iff one of the following is satisfied
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(1) σ = σ′, or

(2) γ(x) = inl ∗, or

(3) γ(x) = inr p n f and nextσ a ≡fin
p nextσ′ a for all a ∈ [n], or

(4) γ(x) = inr q n f with q 6= p, now σ = now σ′ and nextσ a ≡fin
p nextσ′ a

for all a ∈ [n].

Thus strategies with σ ≡fin
p σ′ can differ in their choice of action now σ 6=

now σ′ at p-nodes; since the definition is inductive, this can only happen a

finite number of times before reaching a base case. Given two strategies σ

and σ′, we can “truncate” σ after n rounds by replacing it with σ′ instead,

resulting in a new strategy dσeσ′

n .

Lemma 28. If σ ≡p σ′, then σ ≡fin
p dσeσ

′

n . Conversely, if σ ≡fin
p σ′ then

σ ≡p σ′.

Although allowing a finite number of deviations might seem like a

stronger notion of equilibrium than allowing just one, they turn out to

be equivalent. This is because the one-shot equilibrium concept is quan-

tified on every subgame: assuming a player can improve their payoff with

a finite number of deviations, we can find a single profitable deviation by

restricting to the subgame starting at the last deviation. Recall that an

order relation < is trichotomous if, for every pair of elements x, y, it is

decidable whether x < y or x > y or x = y.

Lemma 29. Let (x, σ, u) be a state of the game coalgebra (Z(X,γ),Γ). As-

sume that the order relation < on R is trichotomous. If there is a player p

and a strategy σ′ such that σ ≡fin
p σ′ and πp(u(play xσ′)) > πp(u(play xσ))

then (x, σ, u) |= ¬�Unimprov.

Proof. By induction on the proof that σ ≡fin
p σ′, we can find a strategy σ′′

that differs from σ (and instead agrees with σ′) a minimum number of times,

whilst still being a profitable deviation. In addition, there is a deepest

node where σ′′ differs from σ; let σ′′′ be the strategy that agrees with σ

everywhere but at this node, where it instead agrees with σ′. By trichotomy,

we either have πp(u(play xσ′′′)) > πp(u(play xσ)) or πp(u(play xσ′′′)) ≤
πp(u(play xσ)). If the former, then this contradicts Unimprov at this node

as required, so we only need to show that the latter is impossible. This is

so, because the latter case violates the assumption that σ′′ is minimal.

Armed with this lemma, we can now tackle the difficult direction of the

one-shot deviation principle, assuming the payoff function is continuous.
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For simplicity, we only state the theorem for R = Q with the standard

metric dQ(x, y) = |x − y|. Note that the order on Q certainly is trichoto-

mous.

Theorem 30. Let (x, σ, u) be a state of the game coalgebra (Z(X,γ),Γ). with

rewards R = Q. If u is continuous at infinity and (x, σ, u) |= �Unimprov,

then (x, σ, u) |= �Nash.

Proof. Since �P ⊆ ��P and � is monotone by Lemma 14, it is sufficient to

show that (x, σ, u) |= �Unimprov implies (x, σ, u) |= Nash. Hence, assume

a player p and a strategy σ′ with σ ≡p σ′ are given; by trichotomy of <, it

is enough the show that

up(play x σ) < up(play x σ′)

where we write up(m) = πp(u(m)), is impossible. By continuity of u with

ε = up(play x σ′) − up(play x σ), we find n such that if m ∼n play x σ′

then |up(play x σ′) − up(m)| < ε. Consider the history m = play x σ′′,

where σ′′ = dσ′eσn is σ′ up to depth n, and σ thereafter. By construc-

tion, m ∼n play x σ′. We claim that σ′′ is still a strictly profitable de-

viation, i.e. up(play x σ) < up(play x σ′′), by trichotomy of < again: if

up(play x σ) ≥ up(play x σ′′) then both |up(play x σ′) − up(play x σ′′)| ≥ ε

and |up(play x σ′) − up(play x σ′′)| < ε, which is absurd. Hence we have

found a profitable finite deviation, which by Lemmas 28 and 29 contradicts

the assumption that (x, σ, u) |= �Unimprov. Hence we must instead have

up(play x σ) ≥ up(play x σ′) as required.

5. Conclusions and future work

In this paper, we have built on Lescanne’s and Abramksy and Winschel’s

coalgebraic treatment of infinite extensive form games to also consider plays

that go on forever, rather than just convergent strategies that eventually

lead to a terminal node. We are thus able to treat games such as infinitely

repeated games, in addition to the games previously considered. We also

connected the coalgebraic and traditional notions of equilibira by proving

them equal under the assumption that the payoff function is continuous

— a well-known result in the game theory literature, here extended to

more general coalgebras. In future work, we plan to exploit techniques

from coalgebra & automata theory to use our framework to solve various

infinite-horizon games. We also hope to extend our recent translation of

finite extensive form games into the framework of open games (Capucci
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et al., 2021) to infinite games; since open games are well-suited for software

implementation, this might point to another approach for computing the

equilibria of infinite extensive form games in practice.
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