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Asynchronous computability
a.k.a. Fault-tolerant distributed computing

A fixed number n of asynchronous processes communicate through
shared objects in order to solve a concurrent task.

Tasks: Consensus, set agreement, renaming, . . .

Objects:

I Hardware: Read/Write registers, test&set, CAS,
I Data structures: lists, queues, hashmaps,
I Message-passing interfaces,
I Consensus object, set-agreement object, . . .

Problem
Can we solve the task Θ using the objects A1, . . . , An?
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A topological approach

Herlihy and Shavit, 1999
2004 Gödel prize

Herlihy, Kozlov, Rajsbaum,
2013
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Asynchronous Computability Theorem (2)

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:

I we replace “wait-free” by “t-resilient”?

−→ Asynchronous Computability Theorems for t-resilient systems,
Saraph, Herlihy, Gafni (DISC 2016).

I we use other objects instead of read/write registers?
−→ This talk.
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Protocol complexes for other objects

For test-and-set protocols
Herlihy, Rajsbaum, PODC’94

For synchronous message-passing
Herlihy, Rajsbaum, Tuttle, 2001
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Topological definition of solvability
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Benefits and drawbacks

X We can prove very general abstract results:

Theorem
Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)

7 Are we still talking about distributed computing?

Goal: Give a concrete meaning to “solving a task” using arbitrary
objects, and prove that it agrees with the topological definition.
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Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Asynchronous Computability Theorem
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.
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Specifying concurrent objects
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Getting rid of internal states
Example: how do we specify a list?

I Specify how each method modifies the internal state:

push(3)
pop() −→ 3
pop() −→ 7

12

73

I List all the possible execution traces:
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Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

X

Write T for the set of all execution traces.

Definition
A concurrent specification is a subset σ ⊆ T .
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Concurrent specifications (2)

Concurrent specifications

Interval-linearizability

validity

write-snapshot

adopt-commit

Set-linearizability

exchanger

set-agreement

immediate snapshot
Linearizability

list
queue

test-and-set

Concurrent Specifications Beyond Linearizability. Goubault, L., Mimram (OPODIS’18)
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A computational model
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Programs and Protocols

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these objects
can:

I call an object,
I do local computations,
I return an output.

Formally: an infinite state machine.

A protocol (Pi)i∈[n] consists of one
program for each process.

consen su s ( v ) {
a .wr i t e ( v ) ;
x := t . tes t&set ( ) ;
i f ( x = 0)

r e t u r n v ;
e l s e

v ’ := b.read ( ) ;
r e t u r n v ’ ;

}
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Protocol semantics
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Protocol semantics (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
can be produced by running the programs together.

Theorem
For any protocol P, JPK is a concurrent specification.

The protocol P implements an object specification σ if JPK ⊆ σ.

18 / 25



Protocol semantics (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
can be produced by running the programs together.

Theorem
For any protocol P, JPK is a concurrent specification.

The protocol P implements an object specification σ if JPK ⊆ σ.

18 / 25



Protocol semantics (2)

consensus(1) 0

consensus(0) 0
P0

P1

The semantics JPK of a protocol is the set of execution traces that
can be produced by running the programs together.

Theorem
For any protocol P, JPK is a concurrent specification.

The protocol P implements an object specification σ if JPK ⊆ σ.

18 / 25



Tasks vs Objects

A task for n processes is an input/output relation Θ ⊆ Vn × Vn.

Example: for consensus,

Θconsensus = {((v1, . . . , vn), (vk, . . . , vk)) | k ∈ [n] and v1, . . . , vn ∈ V}

Tasks are less expressive than objects:

I A task is one-shot (it can be used only once),
I A task only specifies traces of the following form:

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2
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Tasks vs Objects (2)

Concurrent specifications

Interval-linearizability

Set-linearizability

Linearizability

One-shot concurrent specifications

Tasks

Unifying Concurrent Objects and Distributed Tasks: Interval-Linearizability.
Castañeda, Rajsbaum, Raynal (2018).
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Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

?

This defines a function G : Tasks→ Objects.
There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ
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The protocol complex
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The notion of “view”

Informally, the view of a process at the end of an execution
represents the partial information that it gathered.

Example: for 3 processes.

I a trace T gives views (v0, v1, v2).
I a trace T ′ gives views (v0, v1, v

′
2).

Putting all the possible executions together,
we obtain the protocol complex.

T

v0 v1

v2

v′
2

Definition
The view of process Pi in a trace T is simply its final local state at
the end of the execution.
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Asynchronous Computability Theorem
for arbitrary objects

Let Θ be a task and P a wait-free protocol.

Theorem
The protocol P implements the object G(Θ) if and only if there
exists a decision map from the protocol complex to the output
complex which is carried by Θ.

I Not surprising: people have been using this for many years.

I Benefits:
We have a clearly-defined setting in which it works

We studied the properties of concurrent specifications
We understand better the difference between tasks and objects
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Future work

We can still generalize this theorem a bit more:
I ACT for t-resilient protocols using arbitrary objects

I ACT for synchronous computation
I ACT for stronger notions of tasks (Castañeda et al.)

Refined tasks
Long-lived tasks

Study the compositionality of protocols.
I Links with game semantics

I Can we build the protocol complex modularly?
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Thanks!
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