
Wait-free Solvability of Equality
Negation Tasks

Éric Goubault1 Marijana Lazić2 Jérémy Ledent1 Sergio Rajsbaum3

1École Polytechnique, Palaiseau, France

2TU München, Munich, Germany

3UNAM, Mexico City, Mexico

DISC 2019
Budapest, Hungary
October 16th, 2019

1 / 13



Equality Negation
(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex I

0

0 1

1
Output complex O

Task specification

Θ : I → 2O

2 / 13



Equality Negation
(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex I

0

0 1

1
Output complex O

Task specification

Θ : I → 2O

2 / 13



Equality Negation
(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex I

0

0 1

1
Output complex O

Task specification

Θ : I → 2O

2 / 13



Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.

(2) Consensus is not wait-free solvable using EN objects.
(3) The “Booster” object also has properties (1) and (2).
(4) But EN + Booster can implement consensus!

Read/Write

Equality Negation

/

3 / 13



Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.

(3) The “Booster” object also has properties (1) and (2).
(4) But EN + Booster can implement consensus!

Read/Write

Equality Negation

Consensus

/ /

3 / 13



Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.
(3) The “Booster” object also has properties (1) and (2).

(4) But EN + Booster can implement consensus!

Read/Write

Equality Negation

Booster

Consensus

/ /

/ /

3 / 13



Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.
(3) The “Booster” object also has properties (1) and (2).
(4) But EN + Booster can implement consensus!

Read/Write

Equality Negation

Booster

Consensus
' EN + Booster

/ /

/ /

3 / 13



Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
I Consensus: if inputs are different, the processes must agree.
I Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi’19.
−→ The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
−→ Extend the task to n processes and study its solvability.

4 / 13



Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
I Consensus: if inputs are different, the processes must agree.
I Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi’19.
−→ The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
−→ Extend the task to n processes and study its solvability.

4 / 13



Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
I Consensus: if inputs are different, the processes must agree.
I Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi’19.
−→ The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
−→ Extend the task to n processes and study its solvability.

4 / 13



Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
I Consensus: if inputs are different, the processes must agree.
I Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi’19.
−→ The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
−→ Extend the task to n processes and study its solvability.

4 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
v

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
v

agree
(all decisions are equal)

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
v

disagree
(not all decisions are equal)

agree
(all decisions are equal)

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
v

disagree
(not all decisions are equal)

agree
(all decisions are equal)

?

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.
Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.
Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree
if 1 ≤ v ≤ k

agree
if ` ≤ v ≤ n

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.
Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree
if 1 ≤ v ≤ k

no constraint
if k < v < `

agree
if ` ≤ v ≤ n

−→ We get a family of tasks EN(k, `).

5 / 13



Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.
Fix two parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree
if 1 ≤ v ≤ k

no constraint
if k < v < `

agree
if ` ≤ v ≤ n

−→ We get a family of tasks EN(k, `).

5 / 13



Solvable cases

Reminder: parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree no constraint agree

Theorem
If k+ 2 ≤ `, the task EN(k,`) is wait-free solvable using read/write.

I Very simple algorithm (one round of immediate-snapshot).
I Not anonymous!

6 / 13



Solvable cases

Reminder: parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree no constraint
6= ∅

agree

Theorem
If k+ 2 ≤ `, the task EN(k,`) is wait-free solvable using read/write.

I Very simple algorithm (one round of immediate-snapshot).
I Not anonymous!

6 / 13



Solvable cases

Reminder: parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree no constraint
6= ∅

agree

Theorem
If k+ 2 ≤ `, the task EN(k,`) is wait-free solvable using read/write.

I Very simple algorithm (one round of immediate-snapshot).

I Not anonymous!

6 / 13



Solvable cases

Reminder: parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs

[
1

]
n

|
k

|
`

disagree no constraint
6= ∅

agree

Theorem
If k+ 2 ≤ `, the task EN(k,`) is wait-free solvable using read/write.

I Very simple algorithm (one round of immediate-snapshot).
I Not anonymous!

6 / 13



Unsolvable cases
Parameter 1 ≤ k < n.

number of
distinct inputs

[
1

]
n

|
k

disagree agree

Theorem
If k ≤ n/2, the task EN(k,k + 1) is not solvable using registers.

I Uses Sperner’s Lemma

Theorem
If n− k is odd, the task EN(k,k+ 1) is not solvable using registers.

I Uses the Index Lemma

7 / 13



Unsolvable cases
Parameter 1 ≤ k < n.

number of
distinct inputs

[
1

]
n

|
k

disagree agree

Theorem
If k ≤ n/2, the task EN(k,k + 1) is not solvable using registers.

I Uses Sperner’s Lemma

Theorem
If n− k is odd, the task EN(k,k+ 1) is not solvable using registers.

I Uses the Index Lemma

7 / 13



Unsolvable cases
Parameter 1 ≤ k < n.

number of
distinct inputs

[
1

]
n

|
k

disagree agree

Theorem
If k ≤ n/2, the task EN(k,k + 1) is not solvable using registers.

I Uses Sperner’s Lemma

Theorem
If n− k is odd, the task EN(k,k+ 1) is not solvable using registers.

I Uses the Index Lemma
7 / 13



Proof sketch for n = 3, k = 2

I Three processes: Black, Gray, White.
I Three inputs: 0, 1, 2.

The input complex I looks like this (exploded view):

0
0

0

1
1

1 1
1

1

2
2

2

2
2

0

0
0

20

0

0

1

1

1

22

2

2 2

2

8 / 13



Proof sketch for n = 3, k = 2

I Three processes: Black, Gray, White.
I Three inputs: 0, 1, 2.

The input complex I looks like this (exploded view):

0
0

0

1
1

1 1
1

1

2
2

2

2
2

0

0
0

20

0

0

1

1

1

22

2

2 2

2

> 2 distinct inputs
→ agree

≤ 2 distinct inputs
→ disagree

8 / 13



Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:

0
0

0

1
1

1

S ⊆ I
Disagree

9 / 13



Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:

0
0

0

1
1

1

S ⊆ I
Disagree

9 / 13



Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:

0
0

0

1
1

12

S ⊆ I
Disagree

Agree

9 / 13



Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:

0
0

0

1
1

1

S ⊆ I
Disagree

9 / 13



Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:

0
0

0

1
1

1

S ⊆ I
Disagree

0

0

0

1

1

1

H ⊆ S

Cut one half

9 / 13



Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

The boundary of SubDiv(H) is winding twice around the boundary of T .

10 / 13



Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

0 0

0

11

1

T ⊆ Output Complex

decision map δ

The boundary of SubDiv(H) is winding twice around the boundary of T .

10 / 13



Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

0 0

0

11

1

T ⊆ Output Complex

decision map δ

The boundary of SubDiv(H) is winding twice around the boundary of T .

10 / 13



Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

0 0

0

11

1

T ⊆ Output Complex

decision map δ

The boundary of SubDiv(H) is winding twice around the boundary of T .

10 / 13



Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

0 0

0

11

1

T ⊆ Output Complex

decision map δ

The boundary of SubDiv(H) is winding twice around the boundary of T .

10 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Simplicial map

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Simplicial map

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Simplicial map

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

	
	

	

	

	
	

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

	
	

	

	

	
	

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

	

	
	

+

+

−

Content = 1

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

+

Content = 1

Index = 1

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

	

	
	

+

+

−

+

Content = 1

Index = 1

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.

11 / 13



Proof sketch for n = 3, k = 2
Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

The index of H is 2. Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2. By the Index
lemma, the content of SubDiv(H) is ± 2. This implies that there
are monochromatic triangles w.r.t. decision values.

12 / 13



Proof sketch for n = 3, k = 2
Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

The index of H is 2.

Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2. By the Index
lemma, the content of SubDiv(H) is ± 2. This implies that there
are monochromatic triangles w.r.t. decision values.

12 / 13



Proof sketch for n = 3, k = 2
Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

The index of H is 2. Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2.

By the Index
lemma, the content of SubDiv(H) is ± 2. This implies that there
are monochromatic triangles w.r.t. decision values.

12 / 13



Proof sketch for n = 3, k = 2
Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

The index of H is 2. Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2. By the Index
lemma, the content of SubDiv(H) is ± 2. This implies that there
are monochromatic triangles w.r.t. decision values.

12 / 13



Conclusion
We have studied a family of tasks EN(k,`), for 1 ≤ k < ` ≤ n.

I Solvable if k + 2 ≤ `,
I Unsolvable if k ≤ n/2 and ` = k + 1,
I Unsolvable if (n− k) is odd and ` = k + 1,

I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.

0

0 1

1 2

2

13 / 13



Conclusion
We have studied a family of tasks EN(k,`), for 1 ≤ k < ` ≤ n.

I Solvable if k + 2 ≤ `,
I Unsolvable if k ≤ n/2 and ` = k + 1,
I Unsolvable if (n− k) is odd and ` = k + 1,
I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.

0

0 1

1 2

2

13 / 13



Conclusion
We have studied a family of tasks EN(k,`), for 1 ≤ k < ` ≤ n.

I Solvable if k + 2 ≤ `,
I Unsolvable if k ≤ n/2 and ` = k + 1,
I Unsolvable if (n− k) is odd and ` = k + 1,
I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.

0

0 1

1 2

2

13 / 13



Conclusion
We have studied a family of tasks EN(k,`), for 1 ≤ k < ` ≤ n.

I Solvable if k + 2 ≤ `,
I Unsolvable if k ≤ n/2 and ` = k + 1,
I Unsolvable if (n− k) is odd and ` = k + 1,
I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.

Thank you! Thank you!

0

0 1

1 2

2

13 / 13


