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Equality Negation
(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.
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Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.

(2) Consensus is not wait-free solvable using EN objects.
(3) The “Booster” object also has properties (1) and (2).
(4) But EN + Booster can implement consensus!
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Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
I Consensus: if inputs are different, the processes must agree.
I Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi’19.
−→ The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
−→ Extend the task to n processes and study its solvability.
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Equality Negation for n processes

I A fixed number n of processes P0, . . . , Pn−1.
I At least n possible input values {0, 1, . . . , n− 1}.
I Binary decision values {0, 1}.

Let 1 ≤ v ≤ n denote the number of distinct input values.

Fix two parameters 1 ≤ k < ` ≤ n.

−→ We get a family of tasks EN(k, `).
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Solvable cases

Reminder: parameters 1 ≤ k < ` ≤ n.

number of
distinct inputs
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n
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Theorem
If k+ 2 ≤ `, the task EN(k,`) is wait-free solvable using read/write.

I Very simple algorithm (one round of immediate-snapshot).
I Not anonymous!
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Unsolvable cases
Parameter 1 ≤ k < n.

number of
distinct inputs

[
1

]
n

|
k

disagree agree

Theorem
If k ≤ n/2, the task EN(k,k + 1) is not solvable using registers.

I Uses Sperner’s Lemma

Theorem
If n− k is odd, the task EN(k,k+ 1) is not solvable using registers.

I Uses the Index Lemma
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Proof sketch for n = 3, k = 2

I Three processes: Black, Gray, White.
I Three inputs: 0, 1, 2.

The input complex I looks like this (exploded view):
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Proof sketch for n = 3, k = 2

We focus on a subcomplex S ⊆ I of the input complex:
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Proof sketch for n = 3, k = 2
After immediate-snapshot communication (here, one round):

SubDiv(H) ⊆ Protocol Complex

The boundary of SubDiv(H) is winding twice around the boundary of T .
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The Index Lemma
A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Index Lemma
In a pseudomanifold with boundary, Index = (−1)i Content.
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Proof sketch for n = 3, k = 2
Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

The index of H is 2. Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2. By the Index
lemma, the content of SubDiv(H) is ± 2. This implies that there
are monochromatic triangles w.r.t. decision values.
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Conclusion
We have studied a family of tasks EN(k,`), for 1 ≤ k < ` ≤ n.

I Solvable if k + 2 ≤ `,
I Unsolvable if k ≤ n/2 and ` = k + 1,
I Unsolvable if (n− k) is odd and ` = k + 1,

I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.
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I Open question if k > n/2 and (n− k) is even and ` = k+ 1.

Two key ingredients for impossibility:
I The Index lemma, also used for Weak Symmetry Breaking.
I Connectedness of some subcomplex of the input.

Thank you! Thank you!
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