Wait-free Solvability of Equality **Negation Tasks**

Éric Goubault¹

Marijana Lazić² Jérémy Ledent¹ Sergio Rajsbaum³

¹École Polytechnique, Palaiseau, France

²TU München, Munich, Germany

³UNAM, Mexico City, Mexico

DISC 2019 Budapest, Hungary October 16th, 2019

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- ▶ Two processes *P*, *Q* (represented in black and white).
- Three possible inputs values $i_P, i_Q \in \{0, 1, 2\}$.
- Binary decision values $d_P, d_Q \in \{0, 1\}$.

• Goal:
$$i_P = i_Q \iff d_P \neq d_Q$$
.

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- ▶ Two processes *P*, *Q* (represented in black and white).
- Three possible inputs values $i_P, i_Q \in \{0, 1, 2\}$.
- Binary decision values $d_P, d_Q \in \{0, 1\}$.
- Goal: $i_P = i_Q \iff d_P \neq d_Q$.

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- ▶ Two processes *P*, *Q* (represented in black and white).
- Three possible inputs values $i_P, i_Q \in \{0, 1, 2\}$.
- Binary decision values $d_P, d_Q \in \{0, 1\}$.

• Goal:
$$i_P = i_Q \iff d_P \neq d_Q$$
.

Facts: (Lo and Hadzilacos, 2000)(1) EN is not wait-free solvable using read/write registers.

Facts: (Lo and Hadzilacos, 2000)

- (1) EN is not wait-free solvable using read/write registers.
- (2) Consensus is not wait-free solvable using EN objects.

Facts: (Lo and Hadzilacos, 2000)

- (1) EN is not wait-free solvable using read/write registers.
- (2) Consensus is not wait-free solvable using EN objects.
- (3) The "Booster" object also has properties (1) and (2).

Facts: (Lo and Hadzilacos, 2000)

- (1) EN is not wait-free solvable using read/write registers.
- (2) Consensus is not wait-free solvable using EN objects.
- (3) The "Booster" object also has properties (1) and (2).
- (4) But EN + Booster can implement consensus!

Our goal: understand sub-consensus tasks better.

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:

- ► Consensus: if inputs are different, the processes must *agree*.
- Symmetry breaking: if inputs are equal, they must *disagree*.

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:

- Consensus: if inputs are different, the processes must agree.
- Symmetry breaking: if inputs are equal, they must *disagree*.

We have two papers about this task:

(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi'19.

 — The reason why EN is not solvable cannot be expressed in the language of epistemic logic.

Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:

- ► Consensus: if inputs are different, the processes must *agree*.
- Symmetry breaking: if inputs are equal, they must *disagree*.

We have two papers about this task:

A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi'19.

 — The reason why EN is not solvable cannot be expressed in the language of epistemic logic.

(2) This talk:

 \longrightarrow Extend the task to n processes and study its solvability.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

Let $1 \le v \le n$ denote the number of distinct input values. Fix two parameters $1 \le k < \ell \le n$.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

Let $1 \le v \le n$ denote the number of distinct input values. Fix two parameters $1 \le k < \ell \le n$.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

Let $1 \le v \le n$ denote the number of distinct input values. Fix two parameters $1 \le k < \ell \le n$.

- A fixed number n of processes P_0, \ldots, P_{n-1} .
- At least n possible input values $\{0, 1, \ldots, n-1\}$.
- ▶ Binary decision values {0,1}.

Let $1 \le v \le n$ denote the number of distinct input values. Fix two parameters $1 \le k < \ell \le n$.

 \longrightarrow We get a family of tasks EN (k, ℓ) .

Reminder: parameters $1 \le k < \ell \le n$.

Reminder: parameters $1 \le k < \ell \le n$.

Theorem If $k+2 \leq \ell$, the task EN (k,ℓ) is wait-free solvable using read/write.

Reminder: parameters $1 \le k < \ell \le n$.

Theorem If $k + 2 \le \ell$, the task EN (k, ℓ) is wait-free solvable using read/write.

Very simple algorithm (one round of immediate-snapshot).

Reminder: parameters $1 \le k < \ell \le n$.

Theorem

If $k+2 \leq \ell$, the task EN (k,ℓ) is wait-free solvable using read/write.

- Very simple algorithm (one round of immediate-snapshot).
- Not anonymous!

Unsolvable cases

Unsolvable cases

Theorem

If $k \leq n/2$, the task EN(k, k+1) is not solvable using registers.

Uses Sperner's Lemma

Unsolvable cases

Theorem

If $k \leq n/2$, the task EN(k, k+1) is not solvable using registers.

Uses Sperner's Lemma

Theorem

If n - k is odd, the task EN(k, k + 1) is not solvable using registers.

Uses the Index Lemma

- ► Three processes: Black, Gray, White.
- ▶ Three inputs: 0, 1, 2.

The input complex \mathcal{I} looks like this (exploded view):

- ► Three processes: Black, Gray, White.
- ▶ Three inputs: 0, 1, 2.

The input complex \mathcal{I} looks like this (exploded view):

> 2 distinct inputs \rightarrow agree

 $\leq 2 \text{ distinct inputs} \\ \rightarrow \text{ disagree}$

After immediate-snapshot communication (here, one round):

 $\mathsf{SubDiv}(H)\subseteq\mathsf{Protocol}\ \mathsf{Complex}$

After immediate-snapshot communication (here, one round):

 $\mathsf{SubDiv}(H) \subseteq \mathsf{Protocol}\ \mathsf{Complex}$

After immediate-snapshot communication (here, one round):

 $\mathsf{SubDiv}(H)\subseteq\mathsf{Protocol}\ \mathsf{Complex}$

After immediate-snapshot communication (here, one round):

 $\mathsf{SubDiv}(H)\subseteq\mathsf{Protocol}\ \mathsf{Complex}$

After immediate-snapshot communication (here, one round):

 $\mathsf{SubDiv}(H) \subseteq \mathsf{Protocol Complex}$

The boundary of SubDiv(H) is winding twice around the boundary of T.

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Index Lemma

In a pseudomanifold with boundary, Index = $(-1)^i$ Content.

Back to the subcomplex H of the input complex. We color the vertices with the value:

process number + decision value $\mod n$

Back to the subcomplex H of the input complex. We color the vertices with the value:

process number + decision value $\mod n$

The index of H is 2.

Back to the subcomplex H of the input complex. We color the vertices with the value:

process number + decision value $\mod n$

The index of H is 2. Moreover, chromatic subdividions preserve the index, so the index of SubDiv(H) is also 2.

Back to the subcomplex H of the input complex. We color the vertices with the value:

process number + decision value $\mod n$

The index of H is 2. Moreover, chromatic subdividions preserve the index, so the index of SubDiv(H) is also 2. By the Index lemma, the content of SubDiv(H) is ± 2 . This implies that there are monochromatic triangles w.r.t. decision values.

We have studied a family of tasks $EN(k,\ell)$, for $1 \le k < \ell \le n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \le n/2$ and $\ell = k + 1$,
- Unsolvable if (n k) is odd and $\ell = k + 1$,

We have studied a family of tasks $EN(k,\ell)$, for $1 \le k < \ell \le n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \le n/2$ and $\ell = k + 1$,
- Unsolvable if (n k) is odd and $\ell = k + 1$,
- Open question if k > n/2 and (n-k) is even and $\ell = k+1$.

We have studied a family of tasks $EN(k,\ell)$, for $1 \le k < \ell \le n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \le n/2$ and $\ell = k + 1$,
- Unsolvable if (n k) is odd and $\ell = k + 1$,
- Open question if k > n/2 and (n-k) is even and $\ell = k+1$.

Two key ingredients for impossibility:

- The Index lemma, also used for Weak Symmetry Breaking.
- Connectedness of some subcomplex of the input.

We have studied a family of tasks $EN(k,\ell)$, for $1 \le k < \ell \le n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \le n/2$ and $\ell = k + 1$,
- Unsolvable if (n k) is odd and $\ell = k + 1$,
- Open question if k > n/2 and (n-k) is even and $\ell = k+1$.

Two key ingredients for impossibility:

- ► The Index lemma, also used for Weak Symmetry Breaking.
- Connectedness of some subcomplex of the input.

