Wait-free Solvability of Equality Negation Tasks

Éric Goubault ${ }^{1}$ Marijana Lazić ${ }^{2}$ Jérémy Ledent ${ }^{1}$ Sergio Rajsbaum ${ }^{3}$
${ }^{1}$ École Polytechnique, Palaiseau, France
${ }^{2}$ TU München, Munich, Germany
${ }^{3}$ UNAM, Mexico City, Mexico

DISC 2019
Budapest, Hungary
October 16th, 2019

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- Two processes P, Q (represented in black and white).
- Three possible inputs values $i_{P}, i_{Q} \in\{0,1,2\}$.
- Binary decision values $d_{P}, d_{Q} \in\{0,1\}$.
- Goal: $i_{P}=i_{Q} \Longleftrightarrow d_{P} \neq d_{Q}$.

Input complex \mathcal{I}

Output complex \mathcal{O}

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- Two processes P, Q (represented in black and white).
- Three possible inputs values $i_{P}, i_{Q} \in\{0,1,2\}$.
- Binary decision values $d_{P}, d_{Q} \in\{0,1\}$.
- Goal: $i_{P}=i_{Q} \Longleftrightarrow d_{P} \neq d_{Q}$.

Input complex \mathcal{I}

Output complex \mathcal{O}

Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

- Two processes P, Q (represented in black and white).
- Three possible inputs values $i_{P}, i_{Q} \in\{0,1,2\}$.
- Binary decision values $d_{P}, d_{Q} \in\{0,1\}$.
- Goal: $i_{P}=i_{Q} \Longleftrightarrow d_{P} \neq d_{Q}$.

Input complex \mathcal{I}
$\Theta: \mathcal{I} \rightarrow 2^{\mathcal{O}}$

Task specification

Output complex \mathcal{O}

Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.

Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.

Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.
(3) The "Booster" object also has properties (1) and (2).

Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)
(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.
(3) The "Booster" object also has properties (1) and (2).
(4) But EN + Booster can implement consensus!

Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.

Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.
Equality negation shares characteristics with two important tasks:

- Consensus: if inputs are different, the processes must agree.
- Symmetry breaking: if inputs are equal, they must disagree.

Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.
Equality negation shares characteristics with two important tasks:

- Consensus: if inputs are different, the processes must agree.
- Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi'19.
\longrightarrow The reason why EN is not solvable cannot be expressed in the language of epistemic logic.

Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.
Equality negation shares characteristics with two important tasks:

- Consensus: if inputs are different, the processes must agree.
- Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:
(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi'19.
\longrightarrow The reason why EN is not solvable cannot be expressed in the language of epistemic logic.
(2) This talk:
\longrightarrow Extend the task to n processes and study its solvability.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.

disagree
(not all decisions are equal)

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.
Fix two parameters $1 \leq k<\ell \leq n$.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.
Fix two parameters $1 \leq k<\ell \leq n$.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.
Fix two parameters $1 \leq k<\ell \leq n$.

Equality Negation for n processes

- A fixed number n of processes P_{0}, \ldots, P_{n-1}.
- At least n possible input values $\{0,1, \ldots, n-1\}$.
- Binary decision values $\{0,1\}$.

Let $1 \leq v \leq n$ denote the number of distinct input values.
Fix two parameters $1 \leq k<\ell \leq n$.

\longrightarrow We get a family of tasks $\operatorname{EN}(k, \ell)$.

Solvable cases

Reminder: parameters $1 \leq k<\ell \leq n$.

Solvable cases

Reminder: parameters $1 \leq k<\ell \leq n$.

Theorem
If $k+2 \leq \ell$, the task $\mathrm{EN}(k, \ell)$ is wait-free solvable using read/write.

Solvable cases

Reminder: parameters $1 \leq k<\ell \leq n$.

Theorem

If $k+2 \leq \ell$, the task $\mathrm{EN}(k, \ell)$ is wait-free solvable using read/write.

- Very simple algorithm (one round of immediate-snapshot).

Solvable cases

Reminder: parameters $1 \leq k<\ell \leq n$.

Theorem

If $k+2 \leq \ell$, the task $\mathrm{EN}(k, \ell)$ is wait-free solvable using read/write.

- Very simple algorithm (one round of immediate-snapshot).
- Not anonymous!

Unsolvable cases

Parameter $1 \leq k<n$.

Unsolvable cases

Parameter $1 \leq k<n$.

Theorem
If $k \leq n / 2$, the task $\mathrm{EN}(k, k+1)$ is not solvable using registers.

- Uses Sperner's Lemma

Unsolvable cases

Parameter $1 \leq k<n$.

Theorem
If $k \leq n / 2$, the task $\mathrm{EN}(k, k+1)$ is not solvable using registers.

- Uses Sperner's Lemma

Theorem

If $n-k$ is odd, the task $\mathrm{EN}(k, k+1)$ is not solvable using registers.

- Uses the Index Lemma

Proof sketch for $n=3, k=2$

- Three processes: Black, Gray, White.
- Three inputs: 0, 1, 2 .

The input complex \mathcal{I} looks like this (exploded view):

Proof sketch for $n=3, k=2$

- Three processes: Black, Gray, White.
- Three inputs: $0,1,2$.

The input complex \mathcal{I} looks like this (exploded view):

>2 distinct inputs
\rightarrow agree

≤ 2 distinct inputs
\rightarrow disagree

Proof sketch for $n=3, k=2$

We focus on a subcomplex $S \subseteq \mathcal{I}$ of the input complex:

$$
\begin{gathered}
S \subseteq \mathcal{I} \\
\text { Disagree }
\end{gathered}
$$

Proof sketch for $n=3, k=2$

We focus on a subcomplex $S \subseteq \mathcal{I}$ of the input complex:

$$
\begin{gathered}
S \subseteq \mathcal{I} \\
\text { Disagree }
\end{gathered}
$$

Proof sketch for $n=3, k=2$

We focus on a subcomplex $S \subseteq \mathcal{I}$ of the input complex:

$$
\begin{gathered}
S \subseteq \mathcal{I} \\
\text { Disagree }
\end{gathered}
$$

Proof sketch for $n=3, k=2$

We focus on a subcomplex $S \subseteq \mathcal{I}$ of the input complex:

$$
\begin{gathered}
S \subseteq \mathcal{I} \\
\text { Disagree }
\end{gathered}
$$

Proof sketch for $n=3, k=2$

We focus on a subcomplex $S \subseteq \mathcal{I}$ of the input complex:

Proof sketch for $n=3, k=2$

After immediate-snapshot communication (here, one round):

SubDiv $(H) \subseteq$ Protocol Complex

Proof sketch for $n=3, k=2$

After immediate-snapshot communication (here, one round):

$T \subseteq$ Output Complex
SubDiv $(H) \subseteq$ Protocol Complex

Proof sketch for $n=3, k=2$

After immediate-snapshot communication (here, one round):

$T \subseteq$ Output Complex
SubDiv $(H) \subseteq$ Protocol Complex

Proof sketch for $n=3, k=2$

After immediate-snapshot communication (here, one round):

$T \subseteq$ Output Complex

SubDiv $(H) \subseteq$ Protocol Complex

Proof sketch for $n=3, k=2$

After immediate-snapshot communication (here, one round):

$T \subseteq$ Output Complex

SubDiv $(H) \subseteq$ Protocol Complex
The boundary of $\operatorname{SubDiv}(\mathrm{H})$ is winding twice around the boundary of T.

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Simplicial map

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Simplicial map

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Simplicial map

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Content $=1$

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Content $=1$

Index $=1$

The Index Lemma

A combinatorial version of the notion of degree of a continuous map (or winding number, in dimension 1).

Content $=1$

Index $=1$

Index Lemma

In a pseudomanifold with boundary, Index $=(-1)^{i}$ Content.

Proof sketch for $n=3, k=2$

Back to the subcomplex H of the input complex. We color the vertices with the value:

$$
\text { process number }+ \text { decision value } \bmod n
$$

Proof sketch for $n=3, k=2$

Back to the subcomplex H of the input complex. We color the vertices with the value:

$$
\text { process number }+ \text { decision value } \bmod n
$$

The index of H is 2 .

Proof sketch for $n=3, k=2$

Back to the subcomplex H of the input complex. We color the vertices with the value:

$$
\text { process number }+ \text { decision value } \bmod n
$$

The index of H is 2 . Moreover, chromatic subdividions preserve the index, so the index of $\operatorname{SubDiv}(\mathrm{H})$ is also 2 .

Proof sketch for $n=3, k=2$

Back to the subcomplex H of the input complex. We color the vertices with the value:

$$
\text { process number }+ \text { decision value } \bmod n
$$

The index of H is 2 . Moreover, chromatic subdividions preserve the index, so the index of $\operatorname{SubDiv}(\mathrm{H})$ is also 2. By the Index lemma, the content of $\operatorname{SubDiv}(H)$ is ± 2. This implies that there are monochromatic triangles w.r.t. decision values.

Conclusion

We have studied a family of tasks $\mathrm{EN}(k, \ell)$, for $1 \leq k<\ell \leq n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \leq n / 2$ and $\ell=k+1$,
- Unsolvable if $(n-k)$ is odd and $\ell=k+1$,

Conclusion

We have studied a family of tasks $\mathrm{EN}(k, \ell)$, for $1 \leq k<\ell \leq n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \leq n / 2$ and $\ell=k+1$,
- Unsolvable if $(n-k)$ is odd and $\ell=k+1$,
- Open question if $k>n / 2$ and $(n-k)$ is even and $\ell=k+1$.

Conclusion

We have studied a family of tasks $\mathrm{EN}(k, \ell)$, for $1 \leq k<\ell \leq n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \leq n / 2$ and $\ell=k+1$,
- Unsolvable if $(n-k)$ is odd and $\ell=k+1$,
- Open question if $k>n / 2$ and $(n-k)$ is even and $\ell=k+1$.

Two key ingredients for impossibility:

- The Index lemma, also used for Weak Symmetry Breaking.
- Connectedness of some subcomplex of the input.

Conclusion

We have studied a family of tasks $\operatorname{EN}(k, \ell)$, for $1 \leq k<\ell \leq n$.

- Solvable if $k+2 \leq \ell$,
- Unsolvable if $k \leq n / 2$ and $\ell=k+1$,
- Unsolvable if $(n-k)$ is odd and $\ell=k+1$,
- Open question if $k>n / 2$ and $(n-k)$ is even and $\ell=k+1$.

Two key ingredients for impossibility:

- The Index lemma, also used for Weak Symmetry Breaking.
- Connectedness of some subcomplex of the input.

Thank you!

