Wait-free Solvability of Equality
Negation Tasks

Eric Goubault'  Marijana Lazi¢>  Jérémy Ledent'  Sergio Rajsbaum?®

1Ecole Polytechnique, Palaiseau, France
2Ty Miinchen, Munich, Germany

3UNAM, Mexico City, Mexico

DISC 2019

Budapest, Hungary
October 16th, 2019

1/13



Equality Negation

(Lo and Hadzilacos, Nondeterministic wait-free hierarchies are not robust, 2000)

» Two processes P, () (represented in black and white).

v

Three possible inputs values ip,ig € {0,1,2}.

v

Binary decision values dp,dg € {0, 1}.

v

Goal: ip =ig <= dp # dg.
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Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)

(1) EN is not wait-free solvable using read/write registers.

Equality Negation

/

Read/Write
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Equality Negation (2)

Facts: (Lo and Hadzilacos, 2000)

(1) EN is not wait-free solvable using read/write registers.
(2) Consensus is not wait-free solvable using EN objects.
(3) The “Booster” object also has properties (1) and (2).
(4)

4) But EN + Booster can implement consensus!

Equality Negation

Consensus

Read/Write ~ EN + Booster

=t T
T

Booster
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Why is Equality Negation interesting?

Our goal: understand sub-consensus tasks better.
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Our goal: understand sub-consensus tasks better.

Equality negation shares characteristics with two important tasks:
» Consensus: if inputs are different, the processes must agree.

» Symmetry breaking: if inputs are equal, they must disagree.

We have two papers about this task:

(1) A Dynamic Epistemic Logic Analysis of the Equality Negation Task, DaLi'19.
— The reason why EN is not solvable cannot be expressed in
the language of epistemic logic.

(2) This talk:
— Extend the task to n processes and study its solvability.
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Equality Negation for n processes

» A fixed number n of processes P, ..., P,_1.
» At least n possible input values {0,1,...,n —1}.

» Binary decision values {0, 1}.
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Equality Negation for n processes

» A fixed number n of processes P, ..., P,_1.
» At least n possible input values {0,1,...,n —1}.
» Binary decision values {0,1}.
Let 1 < v < n denote the number of distinct input values.

Fix two parameters 1 < k < /¢ < n.

1 number of

k ¢ n distinct inputs
[ | | 1 >
[ T T >
disagree no constraint agree
ifl<ov<k ifk<v<( if{<v<n

— We get a family of tasks EN(k, /).
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Solvable cases

Reminder: parameters 1 < k </ <n.
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P N i —
disagree no constraint agree
#+ O
Theorem
If k+2 < ¢, the task EN(k,/) is wait-free solvable using read/write.J

» Very simple algorithm (one round of immediate-snapshot).
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Unsolvable cases
Parameter 1 < k < n.
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Unsolvable cases
Parameter 1 < k < n.

number of
1 k n distinct inputs
[ | ] >
T I 1 >
disagree agree
Theorem
If £ <n/2, the task EN(k,k + 1) is not solvable using registers. J

» Uses Sperner's Lemma

Theorem
If n — k is odd, the task EN(k,k + 1) is not solvable using registers.J

» Uses the Index Lemma
7/13



Proof sketch forn =3, £k =2

» Three processes: Black, Gray, White.
» Three inputs: 0, 1, 2.

The input complex Z looks like this (exploded view):
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» Three processes: Black, Gray, White.
» Three inputs: 0, 1, 2.

The input complex Z looks like this (exploded view):

> 2 distinct inputs < 2 distinct inputs
— agree — disagree
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Proof sketch forn =3, £k =2

We focus on a subcomplex S C 7 of the input complex:

Cut one half

SCT HCS
Disagree
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Proof sketch forn =3, £k =2

After immediate-snapshot communication (here, one round):

T C Output Complex

SubDiv(H) C Protocol Complex

The boundary of SubDiv(H) is winding twice around the boundary of T'. J
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The Index Lemma

A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).
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The Index Lemma

A combinatorial version of the notion of degree of a continuous
map (or winding number, in dimension 1).

Content =1

Index = 1

Index Lemma

In a pseudomanifold with boundary, Index = (—1)? Content.
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Proof sketch forn =3, £k =2

Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n
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Proof sketch forn =3, £k =2

Back to the subcomplex H of the input complex.
We color the vertices with the value:

process number + decision value mod n

UV

The index of H is 2. Moreover, chromatic subdividions preserve
the index, so the index of SubDiv(H) is also 2. By the Index
lemma, the content of SubDiv(H) is & 2. This implies that there
are monochromatic triangles w.r.t. decision values. O
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Conclusion

We have studied a family of tasks EN(k,¢), for 1 <k < ¢ < n.
» Solvable if kK +2 </,
» Unsolvable if k <n/2and { =k +1,
» Unsolvable if (n — k) is odd and ¢ =k + 1,
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0 2

Thank you!
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