Simplicial Models: from global states to local states, and what lies in-between

Dagstuhl Seminar

Jérémy Ledent
Tuesday 4 July, 2023

Introduction

Worlds and Views (1/3)

Example 1 (Card Game): Consider four cards, 1, 2, 3, 4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Worlds and Views (1/3)

Example 1 (Card Game): Consider four cards, 1, 2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

- The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

$$
W=\{123,124,132,134,142,143,213,214,231,234, \ldots\}
$$

Worlds and Views ($1 / 3$)

Example 1 (Card Game): Consider four cards, 1, 2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

- The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

$$
W=\{123,124,132,134,142,143,213,214,231,234, \ldots\}
$$

- The local state, a.k.a. view, of an agent a is the card that this agent holds:

$$
\begin{gathered}
\text { views }_{a}=\{1 \perp \perp, 2 \perp \perp, 3 \perp \perp, 4 \perp \perp\} \quad \text { views }_{b}=\{\perp 1 \perp, \perp 2 \perp, \perp 3 \perp, \perp 4 \perp\} \\
\text { views }_{C}=\{\perp \perp 1, \perp \perp 2, \perp \perp 3, \perp \perp 4\}
\end{gathered}
$$

Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, c, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, c, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

- The possible worlds are all the possible combinations of clean/dirty:

$$
W=\{000,001,010,011,100,101,110,111\}
$$

Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, c, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

- The possible worlds are all the possible combinations of clean/dirty:

$$
W=\{000,001,010,011,100,101,110,111\}
$$

- The views of a child are the states of the other two children:

$$
\begin{gathered}
\text { views }_{a}=\{\perp 00, \perp 01, \perp 10, \perp 11\} \quad \text { views }_{b}=\{0 \perp 0,0 \perp 1,1 \perp 0,1 \perp 1\} \\
\text { views }_{C}=\{00 \perp, 01 \perp, 10 \perp, 11 \perp\}
\end{gathered}
$$

Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Views \rightarrow Worlds: a world is a set of compatible views.

- Ex 1: the world 123 is composed of three views: $1 \perp \perp, \perp 2 \perp$ and $\perp \perp 3$.
- Ex 2: the world 010 is composed of three views: $\perp 10,0 \perp 0$ and $01 \perp$.

Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Views \rightarrow Worlds: a world is a set of compatible views.

- Ex 1: the world 123 is composed of three views: $1 \perp \perp, \perp 2 \perp$ and $\perp \perp 3$.
- Ex 2: the world 010 is composed of three views: $\perp 10,0 \perp 0$ and $01 \perp$.

Worlds \rightarrow Views: a view is a set of indistinguishable worlds.

- Ex 1: the a-view $2 \perp \perp$ corresponds to the set of worlds $\{213,214,231,234,241,243\}$.
- Ex 2: the b-view $1 \perp 0$ corresponds to the set of worlds $\{100,110\}$.

Kripke Models vs Simplicial Models

Kripke models:

- explicit worlds
- implicit views

Kripke Models vs Simplicial Models

Kripke models:

- explicit worlds
- implicit views

Simplicial models:

- explicit views
- implicit worlds

Plan

- Part I - Pure Simplicial Models

1. Reminders on simplicial complexes
2. Definition and semantics of simplicial models
3. Equivalence with Kripke models

- Part II - The ins and outs of Simplicial Models

4. Variants of simplicial models
5. Applications to distributed computing
6. Links between logic and topology

Pure Simplicial Models

Crash course on Simplicial Complexes

Definition

An n-simplex is the convex hull of $n+1$ affinely independent points in \mathbb{R}^{n+1}.

0

2

Crash course on Simplicial Complexes

Definition

An n-simplex is the convex hull of $n+1$ affinely independent points in \mathbb{R}^{n+1}.

Definition

An (abstract) simplicial complex is a pair (V, S) where:

- V is a set of vertices
- $S \subseteq 2^{V}$ is a downward-closed family of subsets of V, called simplexes

Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.
Syntax:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid D_{B} \varphi \quad p \in \operatorname{Prop}, B \subseteq \operatorname{Ag}
$$

Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.
Syntax:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid D_{B} \varphi \quad p \in \operatorname{Prop}, B \subseteq A g
$$

$D_{B} \varphi$: "There is distributed knowledge among B that φ is true".
The usual knowledge operator, $K_{a} \varphi$, can be defined by: $K_{a} \varphi:=D_{\{a\}} \varphi$.
For example, typically: $\quad K_{a} \varphi \wedge K_{b}(\varphi \Rightarrow \psi) \Longrightarrow D_{\{a, b\}} \psi$

Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.
Syntax:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid D_{B} \varphi \quad p \in \operatorname{Prop}, B \subseteq A g
$$

$D_{B} \varphi$: "There is distributed knowledge among B that φ is true".
The usual knowledge operator, $K_{a} \varphi$, can be defined by: $K_{a} \varphi:=D_{\{a\}} \varphi$.
For example, typically: $\quad K_{a} \varphi \wedge K_{b}(\varphi \Rightarrow \psi) \Longrightarrow D_{\{a, b\}} \psi$
Usually (in Kripke models), one defines the group indistinguishability relation $\sim_{B}=\bigcap_{a \in B} \sim_{a}$

Chromatic Simplicial Complexes

Definition

A chromatic simplicial complex is given by (V, S, X) where:

- (V, S) is a simplicial complex,
$\cdot \chi: V \rightarrow A g$ is a coloring map,
such that every simplex $X \in S$ has all vertices of distinct colors.

A facet is a simplex that is maximal w.r.t. inclusion.
A simplicial complex is pure if all facets have the same dimension.
Example: a pure chromatic simplicial complex of dimension 2.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, X) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1, 2, 3, 4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- ℓ : Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Pure Simplicial Models

Assume the number of agents is $|A g|=n+1$.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension n.
- $\ell:$ Facets $(\mathscr{C}) \rightarrow 2^{\text {Prop }}$ assigns to each facet of \mathscr{C} a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and keep the remaining card hidden.

Example 2: the "Muddy Children" puzzle

Three children called a, b, and c are either clean (0) or dirty (1). They can see the other two children, but not themselves.

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- \mathscr{C} is a simplicial model,
- $x \in \operatorname{Facet}(\mathscr{C})$ is a world of \mathscr{C},
- φ is an epistemic logic formula.

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- \mathscr{C} is a simplicial model,
- $x \in \operatorname{Facet}(\mathscr{C})$ is a world of \mathscr{C},
- φ is an epistemic logic formula.

By induction on φ :

$$
\begin{array}{lll}
\mathscr{C}, X \models p & \text { iff } & p \in \mathscr{C}(X) \\
\mathscr{C}, X \models \neg \varphi & \text { iff } & \mathscr{C}, X \not \models \varphi \\
\mathscr{C}, X \models \varphi \wedge \psi & \text { iff } & \mathscr{C}, X \models \varphi \text { and } \mathscr{C}, X \models \psi \\
\mathscr{C}, X \models K_{a} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in X(X \cap Y) \\
\mathscr{C}, X \models D_{B} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } B \subseteq X(X \cap Y)
\end{array}
$$

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$
\begin{array}{lll}
\mathscr{C}, X \models p & \text { iff } & p \in \ell(X) \\
\mathscr{C}, X \models \neg \varphi & \text { iff } & \mathscr{C}, X \not \models \varphi \\
\mathscr{C}, X \models \varphi \wedge \psi & \text { iff } & \mathscr{C}, X \models \varphi \text { and } \mathscr{C}, X \models \psi \\
\mathscr{C}, X \models K_{a} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in X(X \cap Y) \\
\mathscr{C}, X \models D_{B} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } B \subseteq X(X \cap Y)
\end{array}
$$

Example 1: $\quad \mathscr{C}, X \models K_{a} \varphi \quad$ iff $\quad \mathscr{C}, Y \models \varphi \quad$ for which Y ?

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$\mathscr{C}, X \models p$	iff	$p \in \ell(X) \quad$ iff
$\mathscr{C}, X \models \neg \varphi$	iff	$\mathscr{C}, X \neq \varphi \quad Y$ share an a-colored vertex
$\mathscr{C}, X \models \varphi \wedge \psi$	iff	$\mathscr{C}, X \models \varphi$ and $\mathscr{C}, X \models \psi$
$\mathscr{C}, X \models K_{a} \varphi$	iff	$\mathscr{C}, Y \models \varphi$ for all $Y \in$ Facet (\mathscr{C}) such that $a \in X(X \cap Y)$
$\mathscr{C}, X \models D_{B} \varphi$	iff	$\mathscr{C}, Y \models \varphi$ for all $Y \in$ Facet (\mathscr{C}) such that $B \subseteq X(X \cap Y)$

Example 1: $\quad \mathscr{C}, X \models K_{a} \varphi \quad$ iff $\quad \mathscr{C}, Y \models \varphi \quad$ for which Y ?

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$
\begin{array}{lll}
\mathscr{C}, X \models p & \text { iff } & p \in \ell(X) \\
\mathscr{C}, X \models \neg \varphi & \text { iff } & \mathscr{C}, X \not \models \varphi \\
\mathscr{C}, X \models \varphi \wedge \psi & \text { iff } & \mathscr{C}, X \models \varphi \text { and } \mathscr{C}, X \models \psi \\
\mathscr{C}, X \models K_{a} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \text { Facet }(\mathscr{C}) \text { such that } a \in \chi(X \cap Y) \\
\mathscr{C}, X \models D_{B} \varphi & \text { iff } & \mathscr{C}, Y \models \varphi \text { for all } Y \in \text { Facet }(\mathscr{C}) \text { such that } B \subseteq \chi(X \cap Y)
\end{array}
$$

Example 2: $\quad \mathscr{C}, X \models D_{\{a, c\}} \varphi \quad$ iff $\quad \mathscr{C}, Y \models \varphi \quad$ for which Y ?

Semantics of simplicial models

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

Example 2: $\mathscr{C}, X \models D_{\{a, c\}} \varphi \quad$ iff $\quad \mathscr{C}, Y \models \varphi \quad$ for which Y ?

Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.
Example: with three agents, $A g=\{a, b, c\}$,

\simeq

Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.
Example: with three agents, $A g=\{a, b, c\}$,

Corollary (Conservation of satisfiability)

$\mathscr{C}, w \models \varphi$ in a pure simplicial model iff $M, w \models \varphi$ in the associated Kripke model.

Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.
Example: with three agents, $A g=\{a, b, c\}$,

Corollary (Conservation of satisfiability)

$$
\mathscr{C}, w \models \varphi \text { in a pure simplicial model iff } M, w \models \varphi \text { in the associated Kripke model. }
$$

Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.
Example: with three agents, $A g=\{a, b, c\}$,

Corollary (Conservation of satisfiability)

$$
\mathscr{C}, w \models \varphi \text { in a pure simplicial model iff } M, w \models \varphi \text { in the associated Kripke model. }
$$

Variants of Simplicial Models

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

- Goubault, L., Rajsbaum (GandALF'18)

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

- Goubault, L., Rajsbaum (GandALF'18)
(2) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

- Goubault, L., Rajsbaum (GandALF'18)
(2) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)
(3) The worlds are facets vs. simplexes.

- van Ditmarsch, Goubault, L., Rajsbaum (IACAP'21)

What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

- Goubault, Kniazev, L., Rajsbaum (LICS'23)

What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

- Goubault, Kniazev, L., Rajsbaum (LICS'23)
(5) Have several copies of the same world (a.k.a. non-proper models).

- Goubault, Kniazev, L., Rajsbaum (LICS'23)

Labelling the worlds vs Labelling the vertices

Example: recall the torus example with cards 1,2,3,4 and agents a b b c.

Labelling the worlds vs Labelling the vertices

Example: recall the torus example with cards 1, 2,3,4 and agents a, b, c.

Consequence: Axiom of Locality, for every atomic proposition $p \in$ Prop.

$$
\operatorname{Loc}_{p}: \bigvee_{a \in \operatorname{Ag}} K_{a} p \vee K_{a} \neg p
$$

Impure simplicial models

Impure simplicial complexes.

- Common in distributed computing.

Impure simplicial models

Impure simplicial complexes.

- Common in distributed computing.

O w_{10}

- They model systems with crashes.
- Related to nonrigid sets of agents [FHMV'95].

Two approaches for impure simplicial models

The "two-valued" approach.

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not \models K_{a} \varphi \Rightarrow \varphi$

Two approaches for impure simplicial models

The "two-valued" approach.

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not \models K_{a} \varphi \Rightarrow \varphi$

The "three-valued" approach.

- Define $\mathscr{C}, w \bowtie \varphi$: " φ is well-defined"
- Formulas can be true, false, or undefined
- We lose Axiom K: $\forall \neq K_{a}(\varphi \Rightarrow \psi) \Rightarrow K_{a} \varphi \Rightarrow K_{a} \psi$

Two approaches for impure simplicial models

The "two-valued" approach.

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not \models K_{a} \varphi \Rightarrow \varphi$

The "three-valued" approach.

- Define $\mathscr{C}, w \bowtie \varphi$: " φ is well-defined"
- Formulas can be true, false, or undefined
- We lose Axiom K: $\forall \neq K_{a}(\varphi \Rightarrow \psi) \Rightarrow K_{a} \varphi \Rightarrow K_{a} \psi$

Can we find $\ulcorner\varphi\urcorner$ such that $\mathscr{C}, w \models_{3} \varphi \Longleftrightarrow \mathscr{C}, w \models_{2}\ulcorner\varphi\urcorner$? $\quad \longrightarrow$ Ask Roman Kniazev!

Two-valued approach - Toy example

Recall the definition of the satisfaction relation:

$$
\mathscr{C}, X \models K_{a} \varphi \quad \text { iff } \quad \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi(X \cap Y)
$$

Two-valued approach - Toy example

Recall the definition of the satisfaction relation:

$$
\mathscr{C}, X \models K_{a} \varphi \quad \text { iff } \quad \mathscr{C}, Y \models \varphi \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi(X \cap Y)
$$

Example: with $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and Prop $=\{p\}$, where p is true in X_{1} only.

Two-valued approach - Toy example

Recall the definition of the satisfaction relation:

$$
\mathscr{C}, X \models K_{a} \varphi \quad \text { iff } \quad \mathscr{C}, Y \models \varphi \quad \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi(X \cap Y)
$$

Example: with $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and Prop $=\{p\}$, where p is true in X_{1} only.

$$
\text { - } \mathscr{C}, X_{1} \models \neg K_{b} p
$$

Two-valued approach - Toy example

Recall the definition of the satisfaction relation:

$$
\mathscr{C}, X \models K_{a} \varphi \quad \text { iff } \quad \mathscr{C}, Y \models \varphi \quad \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi(X \cap Y)
$$

Example: with $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and Prop $=\{p\}$, where p is true in X_{1} only.

- $\mathscr{C}, X_{1} \models \neg K_{b} p$
- $\mathscr{C}, X_{4} \models\left(K_{b} \neg p\right) \wedge\left(K_{c} \neg p\right)$

Two-valued approach - Toy example

Recall the definition of the satisfaction relation:

$$
\mathscr{C}, X \models K_{a} \varphi \quad \text { iff } \quad \mathscr{C}, Y \models \varphi \quad \text { for all } Y \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi(X \cap Y)
$$

Example: with $A g=\{a, b, c\}$ and Prop $=\{p\}$, where p is true in X_{1} only.

- $\mathscr{C}, X_{1} \models \neg K_{b} p$
- $\mathscr{C}, X_{4} \models\left(K_{b} \neg p\right) \wedge\left(K_{c} \neg p\right)$
- $\mathscr{C}, X_{2} \models K_{a} P$

Definability of "alive" and "dead"

Define the following formulas, for an age'nt $a \in \operatorname{Ag}$:

$$
\operatorname{dead}(a):=K_{a} \text { false } \quad \operatorname{alive}(a):=\neg \operatorname{dead}(a)
$$

One can check that:

$$
\mathscr{C}, w \models \operatorname{alive}(a) \quad \text { iff } \quad a \in \chi(w)
$$

Definability of "alive" and "dead"

Define the following formulas, for an age'nt $a \in \mathrm{Ag}$:

$$
\operatorname{dead}(a):=K_{a} \text { false } \quad \operatorname{alive}(a):=\neg \operatorname{dead}(a)
$$

One can check that:

$$
\mathscr{C}, w \models \operatorname{alive}(a) \quad \text { iff } \quad a \in \chi(w)
$$

Example: these formulas are valid in all impure simplicial models

- Dead agents know everything: $\quad \vDash \operatorname{dead}(a) \Longrightarrow K_{a} \varphi$.
- Alive agents know they are alive: \models alive $(a) \Longrightarrow K_{a}$ alive (a).
- Alive agents satisfy Axiom T : $\quad \vDash$ alive $(a) \Longrightarrow\left(K_{a} \varphi \Rightarrow \varphi\right)$.

An equivalent class of Kripke models

Definition (Partial Equivalence Relations)

A partial equivalence relation $R \subseteq X \times X$ is a relation that is symmetric and transitive. Equivalently: there exists $Y \subseteq X$ such that $R \subseteq Y \times Y$ is an equivalence relation on Y.

An equivalent class of Kripke models

Definition (Partial Equivalence Relations)

A partial equivalence relation $R \subseteq X \times X$ is a relation that is symmetric and transitive. Equivalently: there exists $Y \subseteq X$ such that $R \subseteq Y \times Y$ is an equivalence relation on Y.

Theorem (Goubault, L., Rajsbaum (2022)) Impure simplicial models are equivalent to proper Kripke models over PERs.

Example:

Epistemic Covering Models

Summary of our LICS'23 paper

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.
and
2. Give a sound and complete axiomatization.

Summary of our LICS'23 paper

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.
and
2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.

Summary of our LICS'23 paper

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.
and
2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.
- We establish a dictionary: Properties of coverings \Longleftrightarrow Properties of Kripke models \Longleftrightarrow Axioms of the logic.

Summary of our LICS'23 paper

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.
and
2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.
- We establish a dictionary: Properties of coverings \Longleftrightarrow Properties of Kripke models \Longleftrightarrow Axioms of the logic.
- This solves questions 1 and 2 for all the corresponding sub-classes of models!

New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

$$
B=
$$

(2) Models are equipped with a discrete covering E,

and a map $p: E \rightarrow B$, tagging which simplexes are worlds.

Crash course on Semi-Simplicial Sets (1/3)

In Dimension 1:

1-dimensional simplicial complexes
a.k.a. simple (undirected) graphs
(V, E) where $E \subseteq\left\{\left\{v, v^{\prime}\right\} \mid v \neq v^{\prime} \in V\right\}$

1-dimensional semi-simplicial sets a.k.a. (directed) graphs

Crash course on Semi-Simplicial Sets (2/3)

Definition

A semi-simplicial set is given by a sequence of sets $\left(S_{n}\right)_{n \in \mathbb{N}}$, together with face maps $d_{i}^{n}: S_{n} \rightarrow S_{n-1}$ for every $n \in \mathbb{N}$ and $0 \leqslant i \leqslant n$,

satisfying the simplicial identities: for all $i<j, \quad d_{i} \circ d_{j}=d_{j-1} \circ d_{j}$.

Examples: on the board.

Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

Definition

A chromatic semi-simplicial set colored by Ag is given by:

- a set S_{A} for every $A \subseteq A g$,
- a function $d_{B}: S_{A} \rightarrow S_{B}$ for every $B \subseteq A$,
- such that: $d_{C} \circ d_{B}=d_{C}$ whenever $C \subseteq B \subseteq A$.

Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

Definition

A chromatic semi-simplicial set colored by Ag is given by:

- a set S_{A} for every $A \subseteq A g$,
- a function $d_{B}: S_{A} \rightarrow S_{B}$ for every $B \subseteq A$,
- such that: $d_{C} \circ d_{B}=d_{C}$ whenever $C \subseteq B \subseteq A$.

Example: for $\mathrm{Ag}=\{a, b, c\}$,

Crash course on Semi-Simplicial Sets (References)

The original definition dates back to:

- Samuel Eilenberg, Joseph A. Zilber Semi-simplicial complexes and singular homology, Annals of Mathematics 51:3 (1950)

Introductory papers:

- Greg_Friedman, An elementary illustrated introduction to simplicial sets, Rocky Mountain J. Math. 42(2): 353-423 (2012) (arXiv:0809.4221, doi:10.1216/RMJ-2012-42-2-353)
- Emily Riehl, A leisurely introduction to simplicial sets, 2008, 14 pages (pdf).
- Francis Sergeraert, Introduction to Combinatorial Homotopy Theory, July 7, 2013, pdf.
- Christian Rüschoff, Simplicial Sets, Lecture Notes 2017 (pdf, pdf)

A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message $m \in\{0,1\}$.
- Agent b holds the encryption key $k \in\{0,1\}$.
- The secret is obtained by $s=(m+k) \bmod 2$.

A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message $m \in\{0,1\}$.
- Agent b holds the encryption key $k \in\{0,1\}$.
- The secret is obtained by $s=(m+k) \bmod 2$.

A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message $m \in\{0,1\}$.
- Agent b holds the encryption key $k \in\{0,1\}$.
- The secret is obtained by $s=(m+k) \bmod 2$.

A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message $m \in\{0,1\}$.
- Agent b holds the encryption key $k \in\{0,1\}$.
- The secret is obtained by $s=(m+k) \bmod 2$.

$$
\begin{aligned}
& \mathscr{C}, w \models \neg K_{a}(s=1) \\
& \mathscr{C}, w \models-K_{b}(s=1) \\
& \mathscr{C}, w \models D_{\{a, b\}}(s=1)
\end{aligned}
$$

A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message $m \in\{0,1\}$.
- Agent b holds the encryption key $k \in\{0,1\}$.
- The secret is obtained by $s=(m+k) \bmod 2$.

$$
\begin{aligned}
& \mathscr{C}, w \models \neg K_{a}(s=1) \\
& \mathscr{C}, w \models-K_{b}(s=1) \\
& \mathscr{C}, w \models D_{\{a, b\}}(s=1)
\end{aligned}
$$

Bisimilarity between simplicial sets and complexes

Theorem

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

Bisimilarity between simplicial sets and complexes

Theorem

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... :(

Bisimilarity between simplicial sets and complexes

Theorem

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... :(
- or: Semi-simplicial sets can help produce smaller models.
- or: Semi-simplicial sets can help to abstract away implementation details.

Bisimilarity between simplicial sets and complexes

Theorem

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... :(
- or: Semi-simplicial sets can help produce smaller models.
- or: Semi-simplicial sets can help to abstract away implementation details.
- or: We need a stronger logic that can "see" the difference between them.

An equivalent class of Kripke models

Definition (Kripke pseudo-models with PERs)

A Kripke pseudo-model is given by $M=\langle W, \sim, L\rangle$ where:

- W is a set of worlds,
- For every $B \subseteq A g, \sim_{B}$ is a partial equivalence relation on W,
- $L: W \rightarrow 2^{\text {Prop }}$ is a valuation.
such that:
- for all $B^{\prime} \subseteq B, \quad w \sim B w^{\prime} \Longrightarrow w \sim_{B^{\prime}} w^{\prime}$
- for all $B, B^{\prime} \subseteq A g, \quad\left(w \sim_{B} w \wedge w \sim_{B^{\prime}} w\right) \Longrightarrow w \sim_{B \cup B^{\prime}} w$

Theorem (Goubault, Kniazev, L., Rajsbaum (2023))

Epistemic Covering models are equivalent to Kripke pseudo-models.

The many sub-classes of Epistemic Coverings

Epistemic Coverings [GKLR'23]

The many sub-classes of Epistemic Coverings

Epistemic Coverings [GKLR'23]

Simplicial Complex base

The many sub-classes of Epistemic Coverings

Epistemic Coverings [GKLR'23]

Simplicial Complex base

S5 Kripke models

The many sub-classes of Epistemic Coverings

Epistemic Coverings [GKLR'23]

The many sub-classes of Epistemic Coverings

Applications to Distributed Computing

Topological characterization of task solvability (Herlihy et al.)

Input complex

Topological characterization of task solvability (Herlihy et al.)

Output complex

Topological characterization of task solvability (Herlihy et al.)

Protocol complex

Topological characterization of task solvability (Herlihy et al.)

Output complex
Protocol complex

Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ.

Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ.

Lemma (Knowledge Gain)

Let $\delta: \mathscr{C} \longrightarrow \mathscr{C}^{\prime}$ be a morphism of simplicial models, and let φ be a positive formula. Then:

$$
\mathscr{C}^{\prime}, \delta(X) \models \varphi \quad \text { implies } \quad \mathscr{C}, X \models \varphi
$$

Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ.

Lemma (Knowledge Gain)

Let $\delta: \mathscr{C} \longrightarrow \mathscr{C}^{\prime}$ be a morphism of simplicial models, and let φ be a positive formula. Then:

$$
\mathscr{C}^{\prime}, \delta(X) \models \varphi \quad \text { implies } \quad \mathscr{C}, X \models \varphi
$$

Recipe for impossibility proofs:

- Assume by contradiction that $\delta: \mathscr{P} \longrightarrow \mathscr{O}$ exists.
- Choose a suitable formula φ such that:
- φ is true everywhere in the output model
- φ is false somewhere in the protocol model

Links between Knowledge and
Topology

Distributed knowledge = Higher-dimensional connectivity

Recall: $\mathscr{C}, X \models D_{\{a, c\}} \varphi$

Distributed knowledge = Higher-dimensional connectivity

Recall: $\mathscr{C}, X \models D_{\{a, c\}} \varphi$

With Common Distributed Knowledge, we can explore the 2-connected component:

$$
C D_{\beta} \varphi \text {, where } \beta=\left\{\left\{a_{1}, a_{2}\right\} \mid a_{1} \neq a_{2} \in \mathrm{Ag}\right\}
$$

(Fig. by Richard Cushman)

A formula for Sperner's Lemma

Cf work by Susumu Nishimura:
Proving Unsolvability of Set Agreement Task with Epistemic mu-Calculus (2022).

$$
\Phi_{k}=\nu Z \cdot\left[\mathrm{OFUN} \wedge \operatorname{VALID} \wedge \bigwedge_{\emptyset \subseteq A \subseteq \Pi}\left(\mathrm{DEC}_{A} \Rightarrow \mathrm{D}_{A}\left(\mathrm{KNOW} \wedge \mathrm{AGREE}_{k} \wedge Z\right)\right)\right]
$$

Disaster

Theorem

Every simplicial model \mathscr{C} is bisimilar to its unravelled model $U(\mathscr{C})$.

Consequences?

- $U(\mathscr{C})$ has a very poor topological structure (infinite tree).
- No hope to see features like holes and loops without a radically new logic.

Conclusion

Conclusion

Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual S5 Kripke models
- Lots of research directions!

Conclusion

Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual S5 Kripke models
- Lots of research directions!

Thanks!

