Simplicial Models: from global states to local states, and what lies in-between

Dagstuhl Seminar

Jérémy Ledent Tuesday 4 July, 2023

Introduction

Example 1 (Card Game): Consider four cards, 1,2,3,4, and three agents, *a*, *b*, *c*. We deal one card to each agent, and keep the remaining card hidden.

Example 1 (Card Game): Consider four cards, 1,2,3,4, and three agents, *a*, *b*, *c*. We deal one card to each agent, and keep the remaining card hidden.

• The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

 $W = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, \ldots\}$

Example 1 (Card Game): Consider four cards, 1,2,3,4, and three agents, *a*, *b*, *c*. We deal one card to each agent, and keep the remaining card hidden.

• The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

 $W = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, \ldots\}$

• The local state, a.k.a. view, of an agent *a* is the card that this agent holds:

 $views_a = \{1 \perp \perp, 2 \perp \perp, 3 \perp \perp, 4 \perp \perp\} \qquad views_b = \{\perp 1 \perp, \perp 2 \perp, \perp 3 \perp, \perp 4 \perp\}$ $views_c = \{\perp \perp 1, \perp \perp 2, \perp \perp 3, \perp \perp 4\}$

Example 2 (Muddy Children): Three children *a*, *b*, *c*, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

Example 2 (Muddy Children): Three children *a*, *b*, *c*, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

• The possible worlds are all the possible combinations of clean/dirty:

 $W = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Example 2 (Muddy Children): Three children *a*, *b*, *c*, can be either clean (0) or dirty (1). Each child can see the state of the other two children, but not themself.

• The possible worlds are all the possible combinations of clean/dirty:

 $W = \{000, 001, 010, 011, 100, 101, 110, 111\}$

• The views of a child are the states of the other two children:

views_a = { $\perp 00, \perp 01, \perp 10, \perp 11$ } views_b = { $0 \perp 0, 0 \perp 1, 1 \perp 0, 1 \perp 1$ } views_c = { $00 \perp, 01 \perp, 10 \perp, 11 \perp$ } Key idea: Worlds and views can be defined from one another!

Key idea: Worlds and views can be defined from one another!

 $\textit{Views} \rightarrow \textit{Worlds:}$ a world is a set of compatible views.

- **Ex 1**: the world 123 is composed of three views: $1 \perp \perp$, $\perp 2 \perp$ and $\perp \perp 3$.
- Ex 2: the world 010 is composed of three views: $\perp 10, 0 \perp 0$ and $01 \perp$.

Key idea: Worlds and views can be defined from one another!

Views \rightarrow Worlds: a world is a set of compatible views.

- **Ex 1**: the world 123 is composed of three views: $1 \perp \perp$, $\perp 2 \perp$ and $\perp \perp 3$.
- Ex 2: the world 010 is composed of three views: $\perp 10, 0 \perp 0$ and $01 \perp$.

Worlds \rightarrow Views: a view is a set of indistinguishable worlds.

- **Ex 1**: the *a*-view $2\perp\perp$ corresponds to the set of worlds {213, 214, 231, 234, 241, 243}.
- **Ex 2**: the *b*-view $1 \perp 0$ corresponds to the set of worlds {100, 110}.

Kripke models:

- \cdot explicit worlds
- implicit views

Kripke models:

- \cdot explicit worlds
- implicit views

Simplicial models:

- \cdot explicit views
- implicit worlds

• Part I – Pure Simplicial Models

- 1. Reminders on simplicial complexes
- 2. Definition and semantics of simplicial models
- 3. Equivalence with Kripke models

$\cdot\,$ Part II – The ins and outs of Simplicial Models

- 4. Variants of simplicial models
- 5. Applications to distributed computing
- 6. Links between logic and topology

Crash course on Simplicial Complexes

Definition

An *n*-simplex is the convex hull of n + 1 affinely independent points in \mathbb{R}^{n+1} .

Crash course on Simplicial Complexes

Definition

An *n*-simplex is the convex hull of n + 1 affinely independent points in \mathbb{R}^{n+1} .

Definition

An (abstract) simplicial complex is a pair (V, S) where:

- *V* is a set of vertices
- $S \subseteq 2^V$ is a downward-closed family of subsets of V, called simplexes

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:

$$\varphi ::= p \mid \neg \phi \mid \phi \land \phi \mid D_B \phi \qquad p \in \mathsf{Prop}, B \subseteq \mathsf{Ag}$$

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid D_B \varphi \qquad p \in \operatorname{Prop}, B \subseteq \operatorname{Ag}$$

 $D_B \varphi$: "There is distributed knowledge among B that φ is true". The usual knowledge operator, $K_a \varphi$, can be defined by: $K_a \varphi := D_{\{a\}} \varphi$. For example, typically: $K_a \varphi \wedge K_b (\varphi \Rightarrow \psi) \Longrightarrow D_{\{a,b\}} \psi$ Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid D_B \varphi \qquad p \in \mathsf{Prop}, B \subseteq \mathsf{Ag}$$

 $D_B \varphi$: "There is distributed knowledge among B that φ is true". The usual knowledge operator, $K_a \varphi$, can be defined by: $K_a \varphi := D_{\{a\}} \varphi$. For example, typically: $K_a \varphi \wedge K_b (\varphi \Rightarrow \psi) \Longrightarrow D_{\{a,b\}} \psi$

Usually (in Kripke models), one defines the group indistinguishability relation $\sim_B = \bigcap_{a \in B} \sim_a$

Chromatic Simplicial Complexes

Definition

A chromatic simplicial complex is given by (V, S, χ) where:

- (V,S) is a simplicial complex,
- $\cdot \chi : V \rightarrow Ag$ is a *coloring* map,

such that every simplex $X \in S$ has all vertices of distinct colors.

A facet is a simplex that is maximal w.r.t. inclusion. A simplicial complex is pure if all facets have the same dimension.

Example: a pure chromatic simplicial complex of dimension 2.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, *a*, *b*, *c*. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1, 2, 3, 4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1, 2, 3, 4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1, 2, 3, 4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Assume the number of agents is |Ag| = n + 1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:

- (V, S, χ) is a pure chromatic simplicial complex of dimension *n*.
- · l: Facets(𝒞) → 2^{Prop} assigns to each facet of 𝒞 a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, **a**, **b**, **c**. We deal one card to each agent, and keep the remaining card hidden.

Three children called **a**, **b**, and **c** are either clean (0) or dirty (1). They can see the other two children, but not themselves.

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- $\cdot \ {\mathscr C}$ is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- $\cdot \, \phi$ is an epistemic logic formula.

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- \mathscr{C} is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- $\cdot \, \phi$ is an epistemic logic formula.

By induction on φ :

€,X⊨p it	ff	$p \in \ell(X)$
€,X⊨¬φ it	ff	$\mathscr{C}, X \not\models \varphi$
\mathscr{C} , X \models $\phi \land \psi$ if	ff	$\mathscr{C}, X \models \varphi$ and $\mathscr{C}, X \models \psi$
$\mathscr{C}, X \models K_a \varphi$ if	ff	$\mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } a \in \chi(X \cap Y)$
$\mathscr{C}, X \models D_B \varphi$ if	ff	$\mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } B \subseteq \chi(X \cap Y)$

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$\begin{array}{lll} \mathscr{C}, X \models p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \phi & \text{iff} & \mathscr{C}, X \not\models \phi \\ \mathscr{C}, X \models \phi \land \psi & \text{iff} & \mathscr{C}, X \models \phi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } a \in \chi(X \cap Y) \\ \mathscr{C}, X \models D_B \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } B \subseteq \chi(X \cap Y) \end{array}$$

Example 1: $\mathscr{C}, X \models K_a \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

Example 1: $\mathscr{C}, X \models K_a \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$\begin{array}{lll} \mathscr{C}, X \models p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \phi & \text{iff} & \mathscr{C}, X \not\models \phi \\ \mathscr{C}, X \models \phi \land \psi & \text{iff} & \mathscr{C}, X \models \phi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } a \in \chi(X \cap Y) \\ \mathscr{C}, X \models D_B \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } B \subseteq \chi(X \cap Y) \end{array}$$

Example 2: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

Example 2: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

 \sim

Example: with three agents, $Ag = \{ a, b, c \}, \}$

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, $Ag = \{ a, b, c \}, \}$

Corollary (Conservation of satisfiability)

 $\mathscr{C}, w \models \varphi$ in a pure simplicial model iff $M, w \models \varphi$ in the associated Kripke model.

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, $Ag = \{ a, b, c \}, \}$

Corollary (Conservation of satisfiability)

 $\mathscr{C}, w \models \varphi$ in a pure simplicial model iff $M, w \models \varphi$ in the associated Kripke model.

Questions so far?

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, $Ag = \{ a, b, c \}, \}$

Corollary (Conservation of satisfiability)

 $\mathscr{C}, w \models \varphi$ in a pure simplicial model iff $M, w \models \varphi$ in the associated Kripke model.

Questions so far?

Variants of Simplicial Models

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

• Goubault, L., Rajsbaum (GandALF'18)

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

• Goubault, L., Rajsbaum (GandALF'18)

(2) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

(2) Pure vs. impure simplicial complexes.

(3) The worlds are facets vs. simplexes.

• Goubault, L., Rajsbaum (GandALF'18)

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

• van Ditmarsch, Goubault, L., Rajsbaum (IACAP'21)

What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

• Goubault, Kniazev, L., Rajsbaum (LICS'23)

What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

• Goubault, Kniazev, L., Rajsbaum (LICS'23)

(5) Have several copies of the same world (a.k.a. non-proper models).

• Goubault, Kniazev, L., Rajsbaum (LICS'23)

Example: recall the torus example with cards 1, 2, 3, 4 and agents a, b, c.

Example: recall the torus example with cards 1, 2, 3, 4 and agents a, b, c.

Consequence: Axiom of Locality, for every atomic proposition $p \in Prop$.

$$\mathsf{Loc}_{\mathsf{p}}: \bigvee_{a \in \mathsf{Ag}} K_a p \lor K_a \neg p$$

Impure simplicial models

Impure simplicial complexes.

- Common in distributed computing.
- They model systems with crashes.
- Related to nonrigid sets of agents [FHMV'95].

Impure simplicial models

Impure simplicial complexes.

- Common in distributed computing.
- They model systems with crashes.
- Related to nonrigid sets of agents [FHMV'95].

Why don't we just decide that dead agents are in a special "crashed" state?

The "two-valued" approach.

[Goubault, L., Rajsbaum, Kniazev]

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not\models K_a \phi \Rightarrow \phi$

The "two-valued" approach.

[Goubault, L., Rajsbaum, Kniazev]

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not\models K_a \phi \Rightarrow \phi$

The "three-valued" approach.

[van Ditmarsch, Kuznets, Randrianomentsoa]

- Define $\mathscr{C}, w \bowtie \phi$: " ϕ is well-defined"
- Formulas can be true, false, or undefined
- We lose Axiom K: $\not\models K_a(\varphi \Rightarrow \psi) \Rightarrow K_a \varphi \Rightarrow K_a \psi$

The "two-valued" approach.

[Goubault, L., Rajsbaum, Kniazev]

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: $\not\models K_a \phi \Rightarrow \phi$

The "three-valued" approach.

[van Ditmarsch, Kuznets, Randrianomentsoa]

- · Define $\mathscr{C}, w \bowtie \phi$: " ϕ is well-defined"
- Formulas can be true, false, or undefined
- We lose Axiom K: $\not\models K_a(\varphi \Rightarrow \psi) \Rightarrow K_a \varphi \Rightarrow K_a \psi$

Can we find $\lceil \varphi \rceil$ such that $\mathscr{C}, w \models_3 \varphi \iff \mathscr{C}, w \models_2 \lceil \varphi \rceil? \longrightarrow$ Ask Roman Kniazev!

 $\mathscr{C}, X \models K_a \varphi$ iff $\mathscr{C}, Y \models \varphi$ for all $Y \in Facet(\mathscr{C})$ such that $a \in \chi(X \cap Y)$

$$\mathscr{C}, X \models K_a \varphi$$
 iff $\mathscr{C}, Y \models \varphi$ for all $Y \in \text{Facet}(\mathscr{C})$ such that $a \in \chi(X \cap Y)$

Example: with $Ag = \{ a, b, c \}$ and $Prop = \{p\}$, where p is true in X_1 only.

$$\mathscr{C}, X \models K_a \varphi$$
 iff $\mathscr{C}, Y \models \varphi$ for all $Y \in \text{Facet}(\mathscr{C})$ such that $a \in \chi(X \cap Y)$

Example: with $Ag = \{ a, b, c \}$ and $Prop = \{p\}$, where p is true in X_1 only.

•
$$\mathscr{C}, X_1 \models \neg K_b p$$

$$\mathscr{C}, X \models K_a \varphi$$
 iff $\mathscr{C}, Y \models \varphi$ for all $Y \in \text{Facet}(\mathscr{C})$ such that $a \in \chi(X \cap Y)$

Example: with Ag = { a, b, c } and Prop = {p}, where p is true in X_1 only.

- $\begin{array}{l} \cdot & \mathscr{C}, X_1 \models \neg K_b p \\ \cdot & \mathscr{C}, X_4 \models (K_b \neg p) \land (K_c \neg p) \end{array}$

$$\mathscr{C}, X \models K_a \varphi$$
 iff $\mathscr{C}, Y \models \varphi$ for all $Y \in \text{Facet}(\mathscr{C})$ such that $a \in \chi(X \cap Y)$

Example: with $Ag = \{a, b, c\}$ and $Prop = \{p\}$, where p is true in X_1 only.

- $\mathscr{C}, X_1 \models \neg K_b p$
- $\mathscr{C}, X_4 \models (K_b \neg p) \land (K_c \neg p)$

• $\mathscr{C}, X_2 \models K_a p$

Define the following formulas, for an age'nt $a \in Ag$:

 $dead(a) := K_a false$ $alive(a) := \neg dead(a)$

One can check that:

 $\mathscr{C}, w \models alive(a)$ iff $a \in \chi(w)$

Define the following formulas, for an age nt $a \in Ag$:

 $dead(a) := K_a false$ $alive(a) := \neg dead(a)$

One can check that:

 $\mathscr{C}, w \models alive(a)$ iff $a \in \chi(w)$

Example: these formulas are valid in all impure simplicial models

- Dead agents know everything: $\models \text{dead}(a) \Longrightarrow K_a \varphi$.
- Alive agents know they are alive:
- Alive agents satisfy Axiom T:

- \models alive(a) \implies K_a alive(a).
- $\models alive(a) \implies (K_a \phi \Rightarrow \phi).$

An equivalent class of Kripke models

Definition (Partial Equivalence Relations)

A partial equivalence relation $R \subseteq X \times X$ is a relation that is symmetric and transitive. Equivalently: there exists $Y \subseteq X$ such that $R \subseteq Y \times Y$ is an equivalence relation on Y.

An equivalent class of Kripke models

Definition (Partial Equivalence Relations)

A partial equivalence relation $R \subseteq X \times X$ is a relation that is symmetric and transitive. Equivalently: there exists $Y \subseteq X$ such that $R \subseteq Y \times Y$ is an equivalence relation on Y.

 \sim

Theorem (Goubault, L., Rajsbaum (2022))

Impure simplicial models are equivalent to proper Kripke models over PERs.

Example:

Epistemic Covering Models

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

• We define a very general class of simplicial models called epistemic coverings.

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.
- We establish a dictionary:

Properties of coverings \iff Properties of Kripke models \iff Axioms of the logic.

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.
- We establish a dictionary:
 Properties of coverings ↔ Properties of Kripke models ↔ Axioms of the logic.
- This solves questions 1 and 2 for all the corresponding sub-classes of models!

New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

(2) Models are equipped with a discrete covering E,

and a map $p: E \rightarrow B$, tagging which simplexes are worlds.

In Dimension 1:

1-dimensional simplicial complexes a.k.a. **simple (undirected) graphs**

(V, E) where $E \subseteq \{\{v, v'\} \mid v \neq v' \in V\}$

1-dimensional semi-simplicial sets a.k.a. (directed) graphs

Definition

A semi-simplicial set is given by a sequence of sets $(S_n)_{n \in \mathbb{N}}$, together with face maps $d_i^n : S_n \to S_{n-1}$ for every $n \in \mathbb{N}$ and $0 \leq i \leq n$,

$$S_0 \xleftarrow{d_0} S_1 \xleftarrow{d_0} S_1 \xleftarrow{d_0} S_2 \xleftarrow{d_0} S_2 \xleftarrow{d_0} S_3$$

satisfying the simplicial identities: for all i < j, $d_i \circ d_j = d_{j-1} \circ d_i$.

Examples: on the board.

Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

Definition

A chromatic semi-simplicial set colored by Ag is given by:

- a set S_A for every $A \subseteq Ag$,
- a function $d_B: S_A \rightarrow S_B$ for every $B \subseteq A$,
- such that: $d_C \circ d_B = d_C$ whenever $C \subseteq B \subseteq A$.
Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

Definition

A chromatic semi-simplicial set colored by Ag is given by:

- a set S_A for every $A \subseteq Ag$,
- a function $d_B: S_A \rightarrow S_B$ for every $B \subseteq A$,
- such that: $d_C \circ d_B = d_C$ whenever $C \subseteq B \subseteq A$.

Example: for $Ag = \{a, b, c\}$,

The original definition dates back to:

• Samuel Eilenberg, Joseph A. Zilber

Semi-simplicial complexes and singular homology, Annals of Mathematics 51:3 (1950)

Introductory papers:

- <u>Greg Friedman</u>, An elementary illustrated introduction to simplicial sets, Rocky Mountain J. Math. 42(2): 353-423 (2012) (<u>arXiv:0809.4221</u>, <u>doi:10.1216/RMJ-2012-42-2-353</u>)
- Emily Riehl, A leisurely introduction to simplicial sets, 2008, 14 pages (pdf).
- Francis Sergeraert, Introduction to Combinatorial Homotopy Theory, July 7, 2013, pdf.
- Christian Rüschoff, Simplicial Sets, Lecture Notes 2017 (pdf, pdf)

- Agent *a* holds an encrypted message $m \in \{0, 1\}$.
- Agent *b* holds the encryption key $k \in \{0, 1\}$.
- The secret is obtained by $s = (m+k) \mod 2$.

- Agent *a* holds an encrypted message $m \in \{0, 1\}$.
- Agent *b* holds the encryption key $k \in \{0, 1\}$.
- The secret is obtained by $s = (m+k) \mod 2$.

- Agent *a* holds an encrypted message $m \in \{0, 1\}$.
- Agent *b* holds the encryption key $k \in \{0, 1\}$.
- The secret is obtained by $s = (m+k) \mod 2$.

- Agent *a* holds an encrypted message $m \in \{0, 1\}$.
- Agent *b* holds the encryption key $k \in \{0, 1\}$.
- The secret is obtained by $s = (m+k) \mod 2$.

$$\mathcal{C}, w \models \neg K_a (s = 1)$$

$$\mathcal{C}, w \models \neg K_b (s = 1)$$

$$\mathcal{C}, w \models D_{\{a,b\}} (s = 1)$$

- Agent *a* holds an encrypted message $m \in \{0, 1\}$.
- Agent *b* holds the encryption key $k \in \{0, 1\}$.
- The secret is obtained by $s = (m+k) \mod 2$.

$$\mathcal{C}, w \models \neg K_a (s = 1)$$

$$\mathcal{C}, w \models \neg K_b (s = 1)$$

$$\mathcal{C}, w \models D_{\{a,b\}} (s = 1)$$

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

• Semi-simplicial sets are not interesting... :(

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... :(
- or: Semi-simplicial sets can help produce smaller models.
- or: Semi-simplicial sets can help to abstract away implementation details.

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... :(
- or: Semi-simplicial sets can help produce smaller models.
- or: Semi-simplicial sets can help to abstract away implementation details.
- or: We need a stronger logic that can "see" the difference between them.

An equivalent class of Kripke models

Definition (Kripke pseudo-models with PERs)

A Kripke pseudo-model is given by $M = \langle W, \sim, L \rangle$ where:

- W is a set of worlds,
- For every $B \subseteq Ag$, \sim_B is a partial equivalence relation on W,
- $L: W \rightarrow 2^{\text{Prop}}$ is a valuation.

such that:

- for all $B' \subseteq B$, $w \sim_B w' \implies w \sim_{B'} w'$
- for all $B, B' \subseteq Ag$, $(w \sim_B w \land w \sim_{B'} w) \implies w \sim_{B \cup B'} w$

Theorem (Goubault, Kniazev, L., Rajsbaum (2023))

Epistemic Covering models are equivalent to Kripke pseudo-models.

Applications to Distributed Computing

Input complex

Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ .

Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ .

Lemma (Knowledge Gain)

Let $\delta:\mathscr{C}\longrightarrow \mathscr{C}'$ be a morphism of simplicial models, and let ϕ be a positive formula. Then:

 $\mathscr{C}', \delta(X) \models \varphi$ implies $\mathscr{C}, X \models \varphi$

Idea: find a logical obstruction to the existence of the simplicial map δ .

Lemma (Knowledge Gain)

Let $\delta:\mathscr{C}\longrightarrow \mathscr{C}'$ be a morphism of simplicial models, and let ϕ be a positive formula. Then:

 $\mathscr{C}', \delta(X) \models \varphi$ implies $\mathscr{C}, X \models \varphi$

Recipe for impossibility proofs:

- Assume by contradiction that $\delta: \mathscr{P} \longrightarrow \mathscr{O}$ exists.
- Choose a suitable formula $\boldsymbol{\phi}$ such that:
- + ϕ is true everywhere in the output model
- $\cdot \, \, \phi$ is false somewhere in the protocol model

Links between Knowledge and Topology

Distributed knowledge = Higher-dimensional connectivity

Recall: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$

Distributed knowledge = Higher-dimensional connectivity

Recall: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$

With Common Distributed Knowledge, we can explore the 2-connected component:

 $CD_{\beta} \varphi$, where $\beta = \{\{a_1, a_2\} \mid a_1 \neq a_2 \in Ag\}$

A formula for Sperner's Lemma

Cf work by Susumu Nishimura:

Proving Unsolvability of Set Agreement Task with Epistemic mu-Calculus (2022).

35 / 37

Every simplicial model \mathscr{C} is bisimilar to its unravelled model $U(\mathscr{C})$.

Consequences?

- $U(\mathscr{C})$ has a very poor topological structure (infinite tree).
- No hope to see features like holes and loops without a radically new logic.

Conclusion

Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual **S5** Kripke models
- Lots of research directions!

Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual S5 Kripke models
- Lots of research directions!

Thanks!