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Introduction



Worlds and Views (1/3)

Example 1 (Card Game): Consider four cards, 1,2,3, 4, and three agents, a, b, c.
We deal one card to each agent, and keep the remaining card hidden.
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Example 1 (Card Game): Consider four cards, 1,2,3, 4, and three agents, a, b, c.
We deal one card to each agent, and keep the remaining card hidden.

- The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

W ={123,124,132,134,142,143,213,214,231,234, .. .}
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Worlds and Views (1/3)

Example 1 (Card Game): Consider four cards, 1,2,3, 4, and three agents, a, b, c.
We deal one card to each agent, and keep the remaining card hidden.

- The global states, a.k.a. possible worlds, are all the possible distributions of the cards:
W ={123,124,132,134,142,143,213, 214,231,234, ...}
- The local state, a.k.a. view, of an agent a is the card that this agent holds:
viewsq ={1L1,211,311,411} viewsp ={111, 121,131,141}

viewse ={111, 112,113, 114}
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Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, ¢, can be either clean (0) or dirty (1).
Each child can see the state of the other two children, but not themself.
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Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, ¢, can be either clean (0) or dirty (1).
Each child can see the state of the other two children, but not themself.

- The possible worlds are all the possible combinations of clean/dirty:

W ={000,001,010,011,100,101, 110, 111}
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Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, ¢, can be either clean (0) or dirty (1).
Each child can see the state of the other two children, but not themself.

- The possible worlds are all the possible combinations of clean/dirty:
W ={000,001,010,011,100,101, 110,111}
- The views of a child are the states of the other two children:
viewsq ={100, 101, 110, 111} viewsp, ={010,011,110,1L1}

viewse ={00.L,01L,10L,11L}
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Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!
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Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Views — Worlds: a world is a set of compatible views.

- Ex 1: the world 123 is composed of three views: 1L 1, 121 and L13.
- Ex 2: the world 010 is composed of three views: 110, 00 and 01.L.
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Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Views — Worlds: a world is a set of compatible views.
- Ex 1: the world 123 is composed of three views: 1L 1, 121 and L13.
- Ex 2: the world 010 is composed of three views: 110, 00 and 01.L.
Worlds — Views: a view is a set of indistinguishable worlds.

- Ex1: the a-view 2L L corresponds to the set of worlds {213,214,231,234, 241, 243}.
- Ex 2: the b-view 110 corresponds to the set of worlds {100, 110}.
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Kripke Models vs Simplicial Models

Kripke models:
- explicit worlds

- implicit views
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Kripke Models vs Simplicial Models

Kripke models: Simplicial models:
- explicit worlds - explicit views
- implicit views - implicit worlds
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- Part | - Pure Simplicial Models

1. Reminders on simplicial complexes
2. Definition and semantics of simplicial models
3. Equivalence with Kripke models

- Part Il - The ins and outs of Simplicial Models

4. Variants of simplicial models
5. Applications to distributed computing
6. Links between logic and topology
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Pure Simplicial Models




Crash course on Simplicial Complexes

An n-simplex is the convex hull of n+1 affinely independent points in R"*".
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Crash course on Simplicial Complexes

An n-simplex is the convex hull of n+1 affinely independent points in R"*".

An (abstract) simplicial complex is a pair (V,S) where:
- Vis a set of vertices

- SC2Yis a downward-closed family of subsets of V, called simplexes

7137



Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions

Syntax:
@ :=p|l—o|eNe|Dsge p € Prop,BCAg
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Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:
@ :=p|l—o|eNe|Dsge p € Prop,BCAg

Dg: “There is distributed knowledge among B that  is true”.

The usual knowledge operator, K, @, can be defined by:  Kq @ := Diqgy 0.
For example, typically: Ka@ N\ Kp (@ =) = Digpy
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Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:
@ :=p|l—o|eNe|Dsge p € Prop,BCAg

Dg: “There is distributed knowledge among B that  is true”.
The usual knowledge operator, K, @, can be defined by:  Kq @ := Diqgy 0.
For example, typically: Ka@ N\ Kp (@ =) = Digpy

Usually (in Kripke models), one defines the group indistinguishability relation ~g = [ ~q
aeB

8/37



Chromatic Simplicial Complexes

A chromatic simplicial complex is given by (V,S,x) where:

- (V,S) is a simplicial complex,
- x:V—Agis a coloring map,
such that every simplex X € S has all vertices of distinct colors.

A facet is a simplex that is maximal w.rt. inclusion.
A simplicial complex is pure if all facets have the same dimension.

Example: a pure chromatic simplicial complex of dimension 2.
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Pure Simplicial Models

Assume the number of agents is |Ag| =n+1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by € = (V,S,x.,£) where:
- (V,S,x) is a pure chromatic simplicial complex of dimension n.
- {:Facets(€¢) — 2P™P assigns to each facet of € a set of atomic propositions.
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Pure Simplicial Models

Assume the number of agents is |Ag| =n+1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by € = (V,S,x.,£) where:
- (V,S,x) is a pure chromatic simplicial complex of dimension n.
- {:Facets(€¢) — 2P™P assigns to each facet of € a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, 'a . @l
We deal one card to each agent, and keep the remaining card hidden.

Agent b

Card 2
Agent a Agent ¢
Card 1 Card 3

10/37



Pure Simplicial Models

Assume the number of agents is |Ag| =n+1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by € = (V,S,x.,£) where:
- (V,S,x) is a pure chromatic simplicial complex of dimension n.
- {:Facets(€¢) — 2P™P assigns to each facet of € a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, 'a . @l
We deal one card to each agent, and keep the remaining card hidden.

Agent b o Agent a
Card 2 v Card 4
Agent a Agent ¢
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Pure Simplicial Models

Assume the number of agents is |Ag| =n+1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by € = (V,S,x.,£) where:
- (V,S,x) is a pure chromatic simplicial complex of dimension n.
- {:Facets(€¢) — 2P™P assigns to each facet of € a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, 'a . @l
We deal one card to each agent, and keep the remaining card hidden.
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Pure Simplicial Models

Assume the number of agents is |Ag| =n+1.

Definition (Pure Simplicial Model)

A pure simplicial model is given by € = (V,S,x.,£) where:
- (V,S,x) is a pure chromatic simplicial complex of dimension n.
- {:Facets(€¢) — 2P™P assigns to each facet of € a set of atomic propositions.

Example 1: Consider four cards, 1,2,3,4, and three agents, 'a . @l
We deal one card to each agent, and keep the remaining card hidden.
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Example 2: the “Muddy Children” puzzle

Three children called [a . and ¢ are either clean (0) or dirty (1).
They can see the other two children, but not themselves.
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Semantics of simplicial models

We define the satisfaction relation €,X = ¢, where:

- € is a simplicial model,
- X e Facet(€) is a world of €,
- @ is an epistemic logic formula.
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Semantics of simplicial models

We define the satisfaction relation €,X = ¢, where:

- € is a simplicial model,
- X e Facet(€) is a world of €,
- @ is an epistemic logic formula.

By induction on ¢:

€. XED iff  pelX)

€. X=—@ if <€ XHo

€ XEeNY iff EXEe and €XEV

€. XEKqo iff €, YEforall YeFacet(€) such thataex(XnNY)
€. X=Dgo iff  €,YE ¢ forall YeFacet(€¢) such that BC x(XNY)
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Semantics of simplicial models

We define the satisfaction relation €,X = ¢, by induction on :

€ XE=p iff pelX)

ECXE—@ iff <€ XKoo

€. XN iff € Xk and € XV

€. X=Ka iff  €,YE e forall YeFacet(€¢) such thataex(XNY)
€. XEDgo iff  <€¢,YE @ forall YeFacet(€) such that BCx(XNY)

Example1: <€, XEKse iff €,YE¢ forwhichY?
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Semantics of simplicial models

We define the satisfaction relation €,X = ¢, by induction on :
€. XEDp iff  pelX)
€ XE—¢ iff  €XHE X and Y share an a-colored vertex

€. XN iff € Xk and € XV
€. X=Ka iff  €,YE e forall YeFacet(€¢) such thataex(XnY)
€. XEDgo iff  <€¢,YE @ forall YeFacet(€) such that BCx(XNY)

Example1: <€, XEKse iff €,YE¢ forwhichY?
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Semantics of simplicial models

We define the satisfaction relation €,X = ¢, by induction on :

€. XEDp iff
€. X=—@ iff
€ XEeAY iff
€, XEKq iff
€, XEDgo iff

Example 2:

%,X |= D{G,C} ©

p e {X)

€ X#E ¢

€. XE e and €. XEUV

€.Y k= @ forall Y e Facet(€) such that aex(XnY)
€,YE ¢ forall Ye Facet(€¢) such that BC x(XNY)

iff <¢,Ye=¢ forwhichY?

12/37



Semantics of simplicial models

We define the satisfaction relation €,X = ¢, by induction on :

€. XEDp iff
€. X=—@ iff
€ XEeAY iff
€, XEKq iff
€, XEDgo iff

Example 2:

%,X |= D{G,C} ©

p € t(X)

€ X#E ¢

€ XE @ S XandYsharea B-colored face

€.Y = @ forall Y e Facet(€) suct aex(Xny)

€,YE ¢ forall Ye Facet(€¢) such that BC x(XNY)

iff <¢,Ye=¢ forwhichY?

12/37



Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, Ag={ a . c}

12
=
5

W3
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Theorem (Goubault, L., Rajsbaum (2018, 2021))
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Corollary (Conservation of satisfiability)

€,wkE @ inapuresimplicial model iff M,wk= @ in the associated Kripke model.
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Variants of Simplicial Models




What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

(A] - Goubault, L., Rajsbaum (GandALF'18)
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What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

A} i : - Goubault, L., Rajsbaum (GandALF'18)

) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)
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What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

A} i : - Goubault, L., Rajsbaum (GandALF'18)

) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

(3) The worlds are facets vs. simplexes.

W W» W W3

o O o O - van Ditmarsch, Goubault, L., Rajsbaum (IACAP'21)
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What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

- Goubault, Kniazev, L., Rajsbaum (LICS'23)
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What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

- Goubault, Kniazev, L., Rajsbaum (LICS'23)

(5) Have several copies of the same world

(a.k.a. non-proper models).
a - Goubault, Kniazev, L., Rajsbaum (LICS'23)
O O
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Labelling the worlds vs Labelling the vertices

Example: recall the torus example with cards 1,2,3,4 and agents |a . C.
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Labelling the worlds vs Labelling the vertices

Example: recall the torus example with cards 1,2,3,4 and agents |a . C.

Consequence: , for every atomic proposition p € Prop.

Locp:  V Kap V Kg—p
aeAg
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Impure simplicial models

Impure simplicial complexes.
- Common in distributed computing. @ wo
- They model systems with crashes.
- Related to nonrigid sets of agents [FHMV'95].
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Impure simplicial models

Impure simplicial complexes.
- Common in distributed computing. @ wo
- They model systems with crashes.
- Related to nonrigid sets of agents [FHMV'95].

Why don't we just decide that dead agents
are in a special “crashed” state?
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Two approaches for impure simplicial models

The “two-valued” approach. [Goubault, L, Rajsbaum, Kniazev]

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics

- We lose Axiom T £ Kgp = @
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- Formulas can be true, false, or undefined

- We lose Axiom K: £ Kq(p = 1) = Kgo = Kab
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Two approaches for impure simplicial models

The “two-valued” approach. [Goubault, L, Rajsbaum, Kniazev]

- Trust the equivalence with Kripke models
- Keep the usual semantics of normal modal logics
- We lose Axiom T: £ Kqo = @

The “three-valued” approach. [van Ditmarsch, Kuznets, Randrianomentsoa]

- Define €, wx @: “o@ is well-defined”
- Formulas can be true, false, or undefined

- We lose Axiom K: £ Kq(p = 1) = Kgo = Kab

Can we find "@ ' such that €,wk3 ¢ < €. Wk, "@'? — Ask Roman Kniazev!
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Two-valued approach — Toy example

Recall the definition of the satisfaction relation:

€. X=Kee iff €, YE@ forall YeFacet(€¢) suchthat aex(XNY)
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Recall the definition of the satisfaction relation:

€. X=Kee iff €, YE@ forall YeFacet(€¢) suchthat aex(XNY)

Example: with Ag={'a . c }and Prop ={p}, where p is true in X; only.

19 /37



Two-valued approach — Toy example

Recall the definition of the satisfaction relation:

€. X=Kee iff €, YE@ forall YeFacet(€¢) suchthat aex(XNY)

Example: with Ag={'a . c }and Prop ={p}, where p is true in X; only.

© 6. X1E—Kyp

19 /37



Two-valued approach — Toy example

Recall the definition of the satisfaction relation:

€. X=Kee iff €, YE@ forall YeFacet(€¢) suchthat aex(XNY)
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Two-valued approach — Toy example

Recall the definition of the satisfaction relation:

€. X=Kee iff €, YE@ forall YeFacet(€¢) suchthat aex(XNY)

Example: with Ag={'a . c }and Prop ={p}, where p is true in X; only.

© 6. X1E—Kyp
© €.X | (Ky=p) N\ (Ke—p)
€. X =Kap
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Definability of “alive” and “dead”

Define the following formulas, for an age'nt a € Ag:
dead(a) := K, false alive(a) := —dead(a)

One can check that:

€, wkalive(a) iff aex(w)
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Definability of “alive” and “dead”

Define the following formulas, for an age'nt a € Ag:
dead(a) := K, false alive(a) := —dead(a)

One can check that:
€, wkalive(a) iff aex(w)

Example: these formulas are valid in all impure simplicial models

- Dead agents know everything: E dead(a) = Kge.
- Alive agents know they are alive: [ alive(a) = Kgalive(a).
- Alive agents satisfy Axiom T: E alive(a) = (Kqgp = @).
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An equivalent class of Kripke models

Definition (Partial Equivalence Relations)

A partial equivalence relation RC X x X is a relation that is symmetric and transitive.
Equivalently: there exists Y C X such that RC Y x Y is an equivalence relation on Y.
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An equivalent class of Kripke models

Definition (Partial Equivalence Relations)
A partial equivalence relation RC X x X is a relation that is symmetric and transitive.
Equivalently: there exists Y C X such that RC Y x Y is an equivalence relation on Y.

Theorem (Goubault, L., Rajsbaum (2022))
Impure simplicial models are equivalent to proper Kripke models over PERs.

Example: e
N

a,b,c 1) b,c

n 2 Lo

R 1 4

o~ 7

w3
@)
b,c
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Epistemic Covering Models




Summary of our LICS'23 paper [Goubault, Kniazev, L., Rajsbaum]

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.
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Summary of our LICS'23 paper [Goubault, Kniazev, L., Rajsbaum]

With each new variant, one usually asks two fundamental questions:
1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models called epistemic coverings.

- We establish a dictionary:
Properties of coverings < Properties of Kripke models <= Axioms of the logic.

- This solves questions 1 and 2 for all the corresponding sub-classes of models!
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New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.
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New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

(2) Models are equipped with a discrete covering E,

=t 0

and a map p: E— B, tagging which simplexes are world
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Crash course on Semi-Simplicial Sets (1/3)

In Dimension 1:

1-dimensional simplicial complexes
a.k.a. simple (undirected) graphs

(V,E) where E C {{v,v'}|v#£V' eV}

1-dimensional semi-simplicial sets
a.k.a. (directed) graphs

t
Vi——FE

T
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Crash course on Semi-Simplicial Sets (2/3)

Definition

A semi-simplicial set is given by a sequence of sets (Sp)nen, together with face maps
di':Sp — Sp—q foreveryneNand 0 <i<n,

do do dd?
<—
— d —
So S % S, dy S3
d] — <—3

satisfying the simplicial identities: for alli<j, djod;=d;_j0d;.

Examples: on the board.
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Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

A chromatic semi-simplicial set colored by Ag is given by:

- aset S, for every A C Ag,
- a function dg:S, — Sg for every BCA,
- such that: dcodg =dc whenever CC BCA.
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Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:

A chromatic semi-simplicial set colored by Ag is given by:

- aset S, for every A C Ag,
- a function dg:S, — Sg for every BCA,
- such that: dcodg =dc whenever CC BCA.

Example: for Ag={a,b,c},

Sq ¢+——— Sac \
Sh %Sab S

Sc «—— Sp¢

abc
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Crash course on Semi-Simplicial Sets (References)

The original definition dates back to:

- Samuel Eilenberg, Joseph A. Zilber
Semi-simplicial complexes and singular homology, Annals of Mathematics 51:3 (1950)

Introductory papers:

« Greg Friedman, An elementary illustrated introduction to simplicial sets, Rocky Mountain J.
Math. 42(2): 353-423 (2012) (arXiv:0809.4221, doi:10.1216/RM]J-2012-42-2-353)

« Emily Riehl, A leisurely introduction to simplicial sets, 2008, 14 pages (pdf).

« Francis Sergeraert, Introduction to Combinatorial Homotopy Theory, July 7, 2013, pdf.
» Christian Ruschoff, Simplicial Sets, Lecture Notes 2017 (pdf, pdf)
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A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message m €{0,1}.
- Agent b holds the encryption key k €{0,1}.
- The secret is obtained by s=(m+R) mod 2.
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- Agent b holds the encryption key k €{0,1}.
- The secret is obtained by s=(m+R) mod 2.

m
k

0
0

> 3
I
- o
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A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

- Agent a holds an encrypted message m €{0,1}.
- Agent b holds the encryption key k €{0,1}.
- The secret is obtained by s=(m+R) mod 2.

E.WE—Kq(s=1)
ECWE—Kp(s=1) s=1 s=0
(ng':D{a,b} (521)

28 /37



Bisimilarity between simplicial sets and complexes

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.
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Bisimilarity between simplicial sets and complexes

Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

- Semi-simplicial sets are not interesting... (

- or: Semi-simplicial sets can help produce smaller models.

- or: Semi-simplicial sets can help to abstract away implementation details.
- or: We need a stronger logic that can “see” the difference between them.
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An equivalent class of Kripke models

Definition (Kripke pseudo-models with PERs)

A Kripke pseudo-model is given by M= (W, ~, L) where:
- Wis a set of worlds,
- For every BC Ag, ~g is a partial equivalence relation on W,
- L:W—2PP is a valuation.
such that:
- forall B’ C B, W~ W = w~g W

- forall BB’ CAg, (W~gWAW~g W) = W~pgp' W

Theorem (Goubault, Kniazev, L., Rajsbaum (2023))

Epistemic Covering models are equivalent to Kripke pseudo-models.
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The many sub-classes of Epistemic Coverings

/- ' Epistemic Coverings [GKLR'23] 7 N\
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/// Simplicial Complex base 7 N
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The many sub-classes of Epistemic Coverings

/- ' Epistemic Coverings [GKLR'23] 7 N\
/// Simplicial Complex base 7 N
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[ Pure simplicial 2
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\ models [GLR'18]
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The many sub-classes of Epistemic Coverings

/ 7 Epistemic Coverings [GKLR'23] ' \
Maximal / Minimal \

/ Simplicial Complex base \

Pure simplicial

2,
models [GLR'18] 5

S5 Kripke models

[GLR'22] \ )

S~ \_ \\:// Y.
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Applications to Distributed
Computing




Topological characterization of task solvability (Herlihy et al.)

Input complex
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Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map 6.
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Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map 6.

Lemma (Knowledge Gain)

Let :6 — €' be a morphism of simplicial models, and let ¢ be a positive formula.
Then:

€' 6(X) =@ implies € XEo@

Recipe for impossibility proofs:

- Assume by contradiction that §:22 — @ exists.
- Choose a suitable formula ¢ such that:
- @ is true everywhere in the output model

- @ is false somewhere in the protocol model
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Links between Knowledge and
Topology




Distributed knowledge = Higher-dimensional connectivity

Recall: €,XkEDig

34 /37



Distributed knowledge = Higher-dimensional connectivity

Recall: €,XkEDig

With Common Distributed Knowledge, we can
explore the 2-connected component:

CDpp, where p={{a1,02}| a1 # a; € Ag)

(Fig. by Richard Cushman)
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A formula for Sperner’s Lemma

Cf work by Susumu Nishimura:
Proving Unsolvability of Set Agreement Task with Epistemic mu-Calculus (2022).

) = v [OFUN AVALIDA  /\ (DEC4 = D4(KNOW A AGREEj A Z))}
0CACII
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Every simplicial model € is bisimilar to its unravelled model U(€).

Consequences?

- U(€) has a very poor topological structure (infinite tree).
- No hope to see features like holes and loops without a radically new logic.
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Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual S5 Kripke models

- Lots of research directions!
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Conclusion

Key messages:

- Kripke models have a hidden higher-dimensional structure
- Distributed knowledge = higher-dimensional connectivity
- Simplicial models can be generalized beyond the usual S5 Kripke models

- Lots of research directions!
Thanks!
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