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Introduction



Worlds and Views (1/3)

Example 1 (Card Game): Consider four cards, 1,2,3,4, and three agents, a,b,c.
We deal one card to each agent, and keep the remaining card hidden.

• The global states, a.k.a. possible worlds, are all the possible distributions of the cards:

W= {123,124,132,134,142,143,213,214,231,234, . . .}

• The local state, a.k.a. view, of an agent a is the card that this agent holds:

viewsa = {1⊥⊥,2⊥⊥,3⊥⊥,4⊥⊥} viewsb = {⊥1⊥,⊥2⊥,⊥3⊥,⊥4⊥}

viewsc = {⊥⊥1,⊥⊥2,⊥⊥3,⊥⊥4}
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Worlds and Views (2/3)

Example 2 (Muddy Children): Three children a, b, c, can be either clean (0) or dirty (1).
Each child can see the state of the other two children, but not themself.

• The possible worlds are all the possible combinations of clean/dirty:

W= {000,001,010,011,100,101,110,111}

• The views of a child are the states of the other two children:

viewsa = {⊥00,⊥01,⊥10,⊥11} viewsb = {0⊥0,0⊥1,1⊥0,1⊥1}

viewsc = {00⊥,01⊥,10⊥,11⊥}
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Worlds and Views (3/3)

Key idea: Worlds and views can be defined from one another!

Views→ Worlds: a world is a set of compatible views.

• Ex 1: the world 123 is composed of three views: 1⊥⊥, ⊥2⊥ and ⊥⊥3.
• Ex 2: the world 010 is composed of three views: ⊥10, 0⊥0 and 01⊥.

Worlds→ Views: a view is a set of indistinguishable worlds.

• Ex 1: the a-view 2⊥⊥ corresponds to the set of worlds {213,214,231,234,241,243}.
• Ex 2: the b-view 1⊥0 corresponds to the set of worlds {100,110}.
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Kripke Models vs Simplicial Models

Kripke models:
• explicit worlds
• implicit views
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Simplicial models:
• explicit views
• implicit worlds
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Plan

• Part I – Pure Simplicial Models
1. Reminders on simplicial complexes
2. Definition and semantics of simplicial models
3. Equivalence with Kripke models

• Part II – The ins and outs of Simplicial Models
4. Variants of simplicial models
5. Applications to distributed computing
6. Links between logic and topology
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Pure Simplicial Models



Crash course on Simplicial Complexes

Definition
An n-simplex is the convex hull of n+ 1 affinely independent points in Rn+1.

Definition
An (abstract) simplicial complex is a pair (V,S) where:
• V is a set of vertices
• S⊆ 2V is a downward-closed family of subsets of V, called simplexes
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Epistemic Logic with Distributed Knowledge

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:
φ ::= p | ¬φ | φ∧φ | DBφ p∈ Prop,B⊆ Ag

DBφ: “There is distributed knowledge among B that φ is true”.

The usual knowledge operator, Kaφ, can be defined by: Kaφ := D{a}φ.

For example, typically: Kaφ ∧ Kb (φ⇒ψ) =⇒ D{a,b}ψ

Usually (in Kripke models), one defines the group indistinguishability relation ∼B =
∩
a∈B

∼a
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Chromatic Simplicial Complexes

Definition
A chromatic simplicial complex is given by (V,S,χ) where:
• (V,S) is a simplicial complex,
• χ : V→ Ag is a coloring map,

such that every simplex X∈ S has all vertices of distinct colors.

A facet is a simplex that is maximal w.r.t. inclusion.
A simplicial complex is pure if all facets have the same dimension.

Example: a pure chromatic simplicial complex of dimension 2.
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Pure Simplicial Models

Assume the number of agents is |Ag|= n+ 1.

Definition (Pure Simplicial Model)
A pure simplicial model is given by C = (V,S,χ,ℓ) where:
• (V,S,χ) is a pure chromatic simplicial complex of dimension n.
• ℓ : Facets(C )→ 2Prop assigns to each facet of C a set of atomic propositions.
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Example 2: the “Muddy Children” puzzle

Three children called a , b , and c are either clean (0) or dirty (1).
They can see the other two children, but not themselves.
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Semantics of simplicial models

We define the satisfaction relation C ,X |=φ, where:

• C is a simplicial model,
• X∈ Facet(C ) is a world of C ,
• φ is an epistemic logic formula.

C ,X |= p iff p∈ ℓ(X)
C ,X |=¬φ iff C ,X ̸|=φ
C ,X |=φ∧ψ iff C ,X |=φ and C ,X |=ψ
C ,X |= Kaφ iff C ,Y |=φ for all Y∈ Facet(C ) such that a∈ χ(X∩Y)
C ,X |= DBφ iff C ,Y |=φ for all Y∈ Facet(C ) such that B⊆ χ(X∩Y)
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Equivalence with Kripke models

Theorem (Goubault, L., Rajsbaum (2018, 2021))
The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, Ag= { a , b , c },

b

c

a

b

a

c

w1 w2 w3 ≃ w1 w2 w3

a

c

b

Corollary (Conservation of satisfiability)
C ,w |=φ in a pure simplicial model iff M,w |=φ in the associated Kripke model.

Questions so far?
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Variants of Simplicial Models



What can we do differently? (1/2)

(1) Atomic propositions on the worlds vs. vertices.

123
1 3

2

(2) Pure vs. impure simplicial complexes.

(3) The worlds are facets vs. simplexes.

w1 w2 w3w1

• Goubault, L., Rajsbaum (GandALF’18)

• van Ditmarsch (WoLLIC’21)
• van Ditmarsch, Kuznets, Randrianomentsoa (2022)
• Goubault, L., Rajsbaum (STACS’22)

• van Ditmarsch, Goubault, L., Rajsbaum (IACAP’21)
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What can we do differently? (2/2)

(4) Use Simplicial complexes vs. (Semi)-simplicial sets.

(5) Have several copies of the same world
(a.k.a. non-proper models).

w w1,w2

• Goubault, Kniazev, L., Rajsbaum (LICS’23)

• Goubault, Kniazev, L., Rajsbaum (LICS’23)
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Labelling the worlds vs Labelling the vertices

Example: recall the torus example with cards 1,2,3,4 and agents a , b , c .

123
423

413
124 412

1 3

2 4

1

4 2

Consequence: Axiom of Locality, for every atomic proposition p∈ Prop.

Locp :
∨
a∈Ag

Kap ∨ Ka¬p
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Impure simplicial models

Impure simplicial complexes.
• Common in distributed computing.
• They model systems with crashes.
• Related to nonrigid sets of agents [FHMV’95].

Why don’t we just decide that dead agents
are in a special “crashed” state?

w5

w4
w3 w2 w1

w9

w8

w7

w6
w11 w12

w10

w0
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Two approaches for impure simplicial models

The “two-valued” approach. [Goubault, L., Rajsbaum, Kniazev]

• Trust the equivalence with Kripke models
• Keep the usual semantics of normal modal logics
• We lose Axiom T: ̸|= Kaφ⇒φ

The “three-valued” approach. [van Ditmarsch, Kuznets, Randrianomentsoa]

• Define C ,w ▷◁φ: “φ is well-defined”
• Formulas can be true, false, or undefined
• We lose Axiom K: ̸|= Ka(φ⇒ψ)⇒ Kaφ⇒ Kaψ

Can we find ⌜φ⌝ such that C ,w |=3 φ ⇐⇒ C ,w |=2 ⌜φ⌝ ? −→ Ask Roman Kniazev!
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Two-valued approach – Toy example

Recall the definition of the satisfaction relation:

C ,X |= Kaφ iff C ,Y |=φ for all Y∈ Facet(C ) such that a∈ χ(X∩Y)

Example: with Ag= { a , b , c } and Prop= {p}, where p is true in X1 only.

X1
X2

X4X3

• C ,X1 |=¬Kbp
• C ,X4 |= (Kb¬p) ∧ (Kc¬p)
• C ,X2 |= Kap
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Definability of “alive” and “dead”

Define the following formulas, for an age‘nt a∈ Ag:

dead(a) := Ka false alive(a) := ¬dead(a)

One can check that:

C ,w |= alive(a) iff a∈ χ(w)

Example: these formulas are valid in all impure simplicial models

• Dead agents know everything: |= dead(a) =⇒ Kaφ.
• Alive agents know they are alive: |= alive(a) =⇒ Ka alive(a).
• Alive agents satisfy Axiom T: |= alive(a) =⇒ (Kaφ ⇒ φ).
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An equivalent class of Kripke models

Definition (Partial Equivalence Relations)
A partial equivalence relation R⊆ X×X is a relation that is symmetric and transitive.
Equivalently: there exists Y⊆ X such that R⊆ Y×Y is an equivalence relation on Y.

Theorem (Goubault, L., Rajsbaum (2022))
Impure simplicial models are equivalent to proper Kripke models over PERs.

Example:

w1a

c

b c

b

w2

w4

w3

≃ w1

w2

w3

w4

a,b,c

b,c

b,c

b,c
b

c

c

b

21 / 37



An equivalent class of Kripke models

Definition (Partial Equivalence Relations)
A partial equivalence relation R⊆ X×X is a relation that is symmetric and transitive.
Equivalently: there exists Y⊆ X such that R⊆ Y×Y is an equivalence relation on Y.

Theorem (Goubault, L., Rajsbaum (2022))
Impure simplicial models are equivalent to proper Kripke models over PERs.

Example:

w1a

c

b c

b

w2

w4

w3

≃ w1

w2

w3

w4

a,b,c

b,c

b,c

b,c
b

c

c

b

21 / 37



Epistemic Covering Models



Summary of our LICS’23 paper [Goubault, Kniazev, L., Rajsbaum]

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

• We define a very general class of simplicial models called epistemic coverings.
• We establish a dictionary:
Properties of coverings ⇐⇒ Properties of Kripke models ⇐⇒ Axioms of the logic.

• This solves questions 1 and 2 for all the corresponding sub-classes of models!
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New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

B =

w0

(2) Models are equipped with a discrete covering E,

E =

w1

w ′
1

w2 w3
w0

and a map p : E→ B, tagging which simplexes are worlds.

23 / 37



New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

B =
w1,w ′

1 w2 w3

w0

(2) Models are equipped with a discrete covering E,

E =

w1

w ′
1

w2 w3
w0

and a map p : E→ B, tagging which simplexes are worlds.

23 / 37



Crash course on Semi-Simplicial Sets (1/3)

In Dimension 1:

1-dimensional simplicial complexes 1-dimensional semi-simplicial sets
a.k.a. simple (undirected) graphs a.k.a. (directed) graphs

(V,E) where E ⊆ {{v,v ′} | v ̸= v ′ ∈ V} V E
s
t
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Crash course on Semi-Simplicial Sets (2/3)

Definition
A semi-simplicial set is given by a sequence of sets (Sn)n∈N, together with face maps
dni : Sn→ Sn−1 for every n∈N and 0⩽ i⩽ n,

S0 S1 S2 S3 · · ·
d0

d1

d0

d2
d1

d1
d2

d0

d3

satisfying the simplicial identities: for all i < j, di ◦dj = dj−1 ◦di.

Examples: on the board.
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Crash course on Semi-Simplicial Sets (3/3)

Now we add colors to the vertices:
Definition
A chromatic semi-simplicial set colored by Ag is given by:
• a set SA for every A⊆ Ag,
• a function dB : SA→ SB for every B⊆ A,
• such that: dC ◦dB = dC whenever C⊆ B⊆ A.

Example: for Ag= {a,b,c},

SabcSab

Sac

Sbc

Sa

Sb

Sc
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Crash course on Semi-Simplicial Sets (References)

The original definition dates back to:

• Samuel Eilenberg, Joseph A. Zilber
Semi-simplicial complexes and singular homology, Annals of Mathematics 51:3 (1950)

Introductory papers:
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A tentative example about crypto

Example (Secret Sharing): two agents a, b use a 1-bit One-Time Pad protocol.

• Agent a holds an encrypted message m∈ {0,1}.
• Agent b holds the encryption key k∈ {0,1}.
• The secret is obtained by s= (m+k) mod 2.

a

b a

b

C ,w |=¬Ka (s= 1)
C ,w |=¬Kb (s= 1)
C ,w |= D{a,b} (s= 1)

a

b

s= 1 s= 0
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Bisimilarity between simplicial sets and complexes

Theorem
Every semi-simplicial set model is bisimilar to one whose base is a simplicial complex.

So what does that mean?

• Semi-simplicial sets are not interesting... :(

• or: Semi-simplicial sets can help produce smaller models.
• or: Semi-simplicial sets can help to abstract away implementation details.
• or: We need a stronger logic that can “see” the difference between them.
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An equivalent class of Kripke models

Definition (Kripke pseudo-models with PERs)
A Kripke pseudo-model is given by M= ⟨W,∼,L⟩ where:
• W is a set of worlds,
• For every B⊆ Ag, ∼B is a partial equivalence relation on W,
• L :W→ 2Prop is a valuation.

such that:
• for all B ′ ⊆ B, w ∼B w ′ =⇒ w ∼B ′ w ′

• for all B,B ′ ⊆ Ag, (w ∼B w∧w ∼B ′ w) =⇒ w ∼B∪B ′ w

Theorem (Goubault, Kniazev, L., Rajsbaum (2023))
Epistemic Covering models are equivalent to Kripke pseudo-models.
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The many sub-classes of Epistemic Coverings

Epistemic Coverings [GKLR’23]
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Simplicial Complex base

Pure
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Pro
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[GLR’22]

MinimalMaximal
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Applications to Distributed
Computing



Topological characterization of task solvability (Herlihy et al.)

Input complex

Protocol complex

Execution

0 0

0

1 1

1

Output complex

Task
specification

∃ δ?
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Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ.

Lemma (Knowledge Gain)
Let δ :C −→C ′ be a morphism of simplicial models, and let φ be a positive formula.
Then:

C ′,δ(X) |=φ implies C ,X |=φ

Recipe for impossibility proofs:

• Assume by contradiction that δ :P −→ O exists.
• Choose a suitable formula φ such that:
• φ is true everywhere in the output model
• φ is false somewhere in the protocol model
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Links between Knowledge and
Topology



Distributed knowledge = Higher-dimensional connectivity

Recall: C ,X |= D{a,c}φ

b c

a b

c

b

a

c

aX

With Common Distributed Knowledge, we can
explore the 2-connected component:

CDβφ, where β= {{a1,a2} | a1 ̸= a2 ∈ Ag}

(Fig. by Richard Cushman)
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A formula for Sperner’s Lemma

Cf work by Susumu Nishimura:
Proving Unsolvability of Set Agreement Task with Epistemic mu-Calculus (2022).
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Disaster

Theorem
Every simplicial model C is bisimilar to its unravelled model U(C ).

Consequences?

• U(C ) has a very poor topological structure (infinite tree).
• No hope to see features like holes and loops without a radically new logic.
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Conclusion



Conclusion

Key messages:

• Kripke models have a hidden higher-dimensional structure
• Distributed knowledge = higher-dimensional connectivity
• Simplicial models can be generalized beyond the usual S5 Kripke models
• Lots of research directions!

Thanks!
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