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Introduction
Main idea: A close correspondence between two structures.

The chromatic simplicial
complexes used in
fault-tolerant distributed
computability.
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The Kripke models used in
epistemic logic.
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Epistemic logic
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Multi-agent epistemic logic

Epistemic logic is the logic of knowledge.

Let A be a finite set of agents and AP a set of atomic
propositions. The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ

| CB ϕ

p ∈ AP, a ∈ A

, B ⊆ A

Ka ϕ is read “a knows ϕ”.

Common knowledge:

CB ϕ ≡
∧

n∈N
a1,...,an∈B

Ka1 . . .Kan ϕ
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Example: the two generals problem
Two divisions of the same army, commanded by general A and
general B, are surrounding an enemy fortress.

I They must attack simultaneously.
I They communicate by sending messengers.
I Messengers might be captured by the enemy, in which case,
the message is never received.

Fortunately, on this particular night, everything goes smooth. How
long will it take to coordinate the attack?

A B
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Kripke models
A Kripke frame is a tuple M = 〈W, (∼a)a∈A〉, where:

I W is a set of worlds
I For every a ∈ A, ∼a⊆W×W is an equivalence relation on W

I L : W →P(AP )

Example: three agents with
binary inputs.

I a, b, c are agents.
I w ∼a w

′ is represented
as an a-labeled edge
between w and w′.

I 101 : input values of a,
b, c, in that order.
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Semantics of epistemic logic formulas

Let M = 〈W,∼, L〉 be a Kripke model and x ∈W a world of M .
We define the truth of a formula ϕ in x, written M,x |= ϕ, by
induction on ϕ:

M,x |= p iff p ∈ L(x)
M,x |= ¬ϕ iff M,x 6|= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Ka ϕ iff for all y ∈W,x ∼a y implies M,y |= ϕ

M,x |= CB ϕ iff for all y in the B-connected component of x,
M, y |= ϕ
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Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).
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Chromatic simplicial complexes
Fix a finite set A of agents, represented as colors.

Definition
A chromatic simplicial complex is given by 〈V, S, χ〉 where:

I 〈V, S〉 is a simplicial complex,
I χ : V → A is a coloring map,

such that every simplex X ∈ S has vertices of distinct colors.

The dimension of a simplex X is |X| − 1. A simplicial complex is
pure if all the maximal simplices are of the same dimension.

Example: a pure chromatic simplicial complex of dimension 2.
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Equivalence

Assume we have n+ 1 agents A = {a0, . . . , an}.

Theorem
There is an equivalence of categories between the category of
(proper) Kripke frames and the category of pure chromatic
simplicial complexes of dimension n.

g, w b '

F

G
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Proof of the theorem

g, w b

F

G
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Proof of the theorem

F

From simplicial complexes to Kripke frames.
Let C be a chromatic simplicial complex. We associate the Kripke
frame F (C) = 〈W,∼〉, where:

I W is the set of maximal simplices
I For X,Y ∈W , X ∼a Y if X ∩ Y has an a-colored vertex.
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Proof of the theorem

g, w b

G

From Kripke frames to simplicial complexes.
Let M = 〈W,∼〉 be a Kripke frame and A = {a0, . . . , an} the set
of agents, then:

G(M) =
( ∐

x∈W

{vx
0 , . . . , v

x
n}
)
/ ≡

where vx
i ≡ v

y
i iff x ∼ai y.

10 / 26



Proof of the theorem

g, w b

G

From Kripke frames to simplicial complexes.
Let M = 〈W,∼〉 be a Kripke frame and A = {a0, . . . , an} the set
of agents, then:

G(M) =
( ∐

x∈W

{vx
0 , . . . , v

x
n}
)
/ ≡

where vx
i ≡ v

y
i iff x ∼ai y.

10 / 26



Proof of the theorem

g, w b

G

From Kripke frames to simplicial complexes.
Let M = 〈W,∼〉 be a Kripke frame and A = {a0, . . . , an} the set
of agents, then:

G(M) =
( ∐

x∈W

{vx
0 , . . . , v

x
n}
)
/ ≡

where vx
i ≡ v

y
i iff x ∼ai y.

10 / 26



Proof of the theorem

g, w b

G
≡

≡
≡

From Kripke frames to simplicial complexes.
Let M = 〈W,∼〉 be a Kripke frame and A = {a0, . . . , an} the set
of agents, then:

G(M) =
( ∐

x∈W

{vx
0 , . . . , v

x
n}
)
/ ≡

where vx
i ≡ v

y
i iff x ∼ai y.

10 / 26



Proof of the theorem

g, w b

G

From Kripke frames to simplicial complexes.
Let M = 〈W,∼〉 be a Kripke frame and A = {a0, . . . , an} the set
of agents, then:

G(M) =
( ∐

x∈W

{vx
0 , . . . , v

x
n}
)
/ ≡

where vx
i ≡ v

y
i iff x ∼ai y.

10 / 26



Simplicial models

Assume we have n+ 1 agents A = {a0, . . . , an}.

Definition
A simplicial model is given by 〈V, S, χ, `〉 where:

I 〈V, S, χ〉 is a pure chromatic simplicial complex of
dimension n.

I ` : V →P(AP )
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Example: binary input complex for 3 agents
I Every agent has input value either 0 or 1.
I Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors
black, grey, white:
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Theorem
The previous theorem still holds for models!
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Defining truth in simplicial models
Let M = 〈V, S, χ, `〉 be a simplicial model and X ∈ F(S) a
maximal simplex of M .

M,X |= p iff p ∈ `(X)
M,X |= ¬ϕ iff M,X 6|= ϕ
M,X |= ϕ ∧ ψ iff M,X |= ϕ and M,X |= ψ
M,X |= Ka ϕ iff for all Y ∈ F(S), if a ∈ χ(X ∩ Y ),

then M,Y |= ϕ

Theorem
This definition agrees with the usual one:

M,X |=S ϕ iff F (M), X |=K ϕ
N, x |=K ϕ iff G(N), G(x) |=S ϕ
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Example: card dealing
Consider the following situation: there are three agents and a deck
of four cards {0, 1, 2, 3}. Each agent is given a card at random,
and the remaining card is kept hidden.
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So what?

→ We have uncovered higher-dimensional topological information
which is hidden in Kripke models.

Does it allow us to say anything new about logic?
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Yes: examples from distributed computability!

Herlihy, Kozlov, Rajsbaum, 2013
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Distributed computability (Herlihy et. al.)
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Dynamic epistemic logic

17 / 26



Dynamic Epistemic Logic (DEL)
Syntax:
Let A be a finite set of agents and AP a set of atomic
propositions. The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ | CB ϕ | [α]ϕ
α ::= (see next slide)

[α]ϕ intuitively means “ϕ will be true after the action α occurs”.

Semantics:
M,x |= p iff p ∈ L(x)
M,x |= ¬ϕ iff M,x 6|= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Ka ϕ iff for all y ∈W,x ∼a y implies M,y |= ϕ
M,x |= CB ϕ iff . . .
M, x |= [α]ϕ iff M [α], x[α] |= ϕ
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Action models

Three agents, three cards {1, 2, 3}.
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Black announces publicly:
“I do not have card 2”.

Black says privately to White:
“I do not have card 2”.
→ this does not work.
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Action models
Definition
An action model is a tuple 〈T, (∼a)a∈A, pre〉 where:

I T is a set of actions,
I for each a ∈ A, ∼a is an equivalence relation on T ,
I for each t ∈ T , pre(t) ∈ LA,AP is a precondition.

Example:

Public announcement

Black: “¬2”

Black: “¬1” Black: “¬3”g
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Product update

LetM = 〈V, S, χ, `〉 be a simplicial model and T = 〈T,∼, pre an
action model. The product update model M[T ] is the following
simplicial model:

I its vertices are of the form (v, t) ∈ V × T ,
I χ(v, t) = χ(v) and `(v, t) = `(v),
I the maximal simplices are the (X, t) such thatM, X |= pre(t)

An action is α := (T , t).
The truth of a DEL formula is defined as:

M, X |= [(T , t)]ϕ iff M[T ], (X, t) |= ϕ
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Example: Private announcement
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Distributed computability via logic
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Distributed computability via logic
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Key Lemma: simplicial maps cannot gain knowledge

Lemma
Consider two simplicial models M and M ′, and a morphism
f : M →M ′. Let X ∈ F(M) be a maximal simplex of M , a an
agent, and ϕ a positive formula (ϕ does not contain negations
except, possibly, in front of atomic propositions). Then,

M ′, f(X) |= ϕ implies M,X |= ϕ

Recipe for impossibility proofs:
I Assume δ :M[P] −→M[T ]
I Find a suitable formula ϕ such that:
I ϕ is true everywhere in the output model
I ϕ is false somewhere in the protocol model
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Conclusions and perspectives

Benefits in both areas
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain higher-dimensional
topological information, and it is actually useful!

Future work
I Simplicial complexes that are not pure
→ variable number of agents

I New notions of knowledge?

Distributed computing Topology Logic
consensus connectedness common knowledge

k-set agreement k-connectedness ???
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