Chromatic simplicial complexes are models for epistemic logic

Éric Goubault ${ }^{1}$, Jérémy Ledent ${ }^{1}$, Sergio Rajsbaum ${ }^{2}$

${ }^{1}$ École Polytechnique

${ }^{2}$ National Autonomous University of Mexico (UNAM)
GETCO 2018, Oaxaca, Mexico
September 11, 2018

Introduction

Main idea: A close correspondence between two structures.

The chromatic simplicial complexes used in fault-tolerant distributed computability.

The Kripke models used in epistemic logic.

Epistemic logic

Multi-agent epistemic logic

Epistemic logic is the logic of knowledge.
Let \mathcal{A} be a finite set of agents and $A P$ a set of atomic propositions. The syntax of formulas is:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid K_{a} \varphi \quad \quad p \in A P, a \in \mathcal{A}
$$

$K_{a} \varphi$ is read " a knows φ ".

Multi-agent epistemic logic

Epistemic logic is the logic of knowledge.
Let \mathcal{A} be a finite set of agents and $A P$ a set of atomic propositions. The syntax of formulas is:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|K_{a} \varphi\right| C_{B} \varphi \quad p \in A P, a \in \mathcal{A}, B \subseteq \mathcal{A}
$$

$K_{a} \varphi$ is read " a knows φ ".
Common knowledge:

$$
C_{B} \varphi \equiv \bigwedge_{\substack{n \in \mathbb{N} \\ a_{1}, \ldots, a_{n} \in B}} K_{a_{1}} \ldots K_{a_{n}} \varphi
$$

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

B

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.

B

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.

B

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.
Fortunately, on this particular night, everything goes smooth. How long will it take to coordinate the attack?

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.
Fortunately, on this particular night, everything goes smooth. How long will it take to coordinate the attack?

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.
Fortunately, on this particular night, everything goes smooth. How long will it take to coordinate the attack?

Example: the two generals problem

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.
Fortunately, on this particular night, everything goes smooth. How long will it take to coordinate the attack?

Kripke models

A Kripke frame is a tuple $M=\left\langle W,\left(\sim_{a}\right)_{a \in \mathcal{A}}\right\rangle$, where:

- W is a set of worlds
- For every $a \in \mathcal{A}, \sim{ }_{a} \subseteq W \times W$ is an equivalence relation on W

Kripke models

A Kripke model is a tuple $M=\left\langle W,\left(\sim_{a}\right)_{a \in \mathcal{A}}, L\right\rangle$, where:

- W is a set of worlds
- For every $a \in \mathcal{A}, \sim{ }_{a} \subseteq W \times W$ is an equivalence relation on W
- $L: W \rightarrow \mathscr{P}(A P)$

Example: three agents with binary inputs.

- a, b, c are agents.
- $w \sim_{a} w^{\prime}$ is represented as an a-labeled edge between w and w^{\prime}.
- 101: input values of a, b, c, in that order.

Semantics of epistemic logic formulas

Let $M=\langle W, \sim, L\rangle$ be a Kripke model and $x \in W$ a world of M. We define the truth of a formula φ in x, written $M, x \models \varphi$, by induction on φ :

$$
\begin{array}{lll}
M, x \models p & \text { iff } & p \in L(x) \\
M, x \models \neg \varphi & \text { iff } & M, x \not \models \varphi \\
M, x \models \varphi \wedge \psi & \text { iff } & M, x \models \varphi \text { and } M, x \models \psi \\
M, x \models K_{a} \varphi & \text { iff } & \text { for all } y \in W, x \sim_{a} y \text { implies } M, y \models \varphi
\end{array}
$$

Semantics of epistemic logic formulas

Let $M=\langle W, \sim, L\rangle$ be a Kripke model and $x \in W$ a world of M. We define the truth of a formula φ in x, written $M, x \models \varphi$, by induction on φ :

$$
\begin{array}{lll}
M, x \models p & \text { iff } & p \in L(x) \\
M, x \models \neg \varphi & \text { iff } & M, x \neq \varphi \\
M, x=\varphi \wedge \psi & \text { iff } & M, x \models \varphi \text { and } M, x \models \psi \\
M, x \models K_{a} \varphi & \text { iff } & \text { for all } y \in W, x \sim_{a} y \text { implies } M, y \models \varphi \\
M, x=C_{B} \varphi & \text { iff } & \text { for all } y \text { in the } B \text {-connected component of } x, \\
& & M, y \models \varphi
\end{array}
$$

Simplicial complexes

Definition

An (abstract) simplicial complex is a pair $\langle V, S\rangle$ where V is a set of vertices and S is a downward-closed family of subsets of V called simplices (i.e., $X \in S$ and $Y \subseteq X$ implies $Y \in S$).

Chromatic simplicial complexes

Fix a finite set \mathcal{A} of agents, represented as colors.

Definition

A chromatic simplicial complex is given by $\langle V, S, \chi\rangle$ where:

- $\langle V, S\rangle$ is a simplicial complex,
- $\chi: V \rightarrow \mathcal{A}$ is a coloring map,
such that every simplex $X \in S$ has vertices of distinct colors.

Chromatic simplicial complexes

Fix a finite set \mathcal{A} of agents, represented as colors.

Definition

A chromatic simplicial complex is given by $\langle V, S, \chi\rangle$ where:

- $\langle V, S\rangle$ is a simplicial complex,
- $\chi: V \rightarrow \mathcal{A}$ is a coloring map,
such that every simplex $X \in S$ has vertices of distinct colors.
The dimension of a simplex X is $|X|-1$. A simplicial complex is pure if all the maximal simplices are of the same dimension.

Chromatic simplicial complexes

Fix a finite set \mathcal{A} of agents, represented as colors.

Definition

A chromatic simplicial complex is given by $\langle V, S, \chi\rangle$ where:

- $\langle V, S\rangle$ is a simplicial complex,
- $\chi: V \rightarrow \mathcal{A}$ is a coloring map,
such that every simplex $X \in S$ has vertices of distinct colors.
The dimension of a simplex X is $|X|-1$. A simplicial complex is pure if all the maximal simplices are of the same dimension.

Example: a pure chromatic simplicial complex of dimension 2.

Equivalence

Assume we have $n+1$ agents $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$.

Theorem

There is an equivalence of categories between the category of (proper) Kripke frames and the category of pure chromatic simplicial complexes of dimension n.

Proof of the theorem

Proof of the theorem

From simplicial complexes to Kripke frames.
Let C be a chromatic simplicial complex. We associate the Kripke frame $F(C)=\langle W, \sim\rangle$, where:

- W is the set of maximal simplices
- For $X, Y \in W, X \sim_{a} Y$ if $X \cap Y$ has an a-colored vertex.

Proof of the theorem

From simplicial complexes to Kripke frames.
Let C be a chromatic simplicial complex. We associate the Kripke frame $F(C)=\langle W, \sim\rangle$, where:

- W is the set of maximal simplices
- For $X, Y \in W, X \sim_{a} Y$ if $X \cap Y$ has an a-colored vertex.

Proof of the theorem

From simplicial complexes to Kripke frames.
Let C be a chromatic simplicial complex. We associate the Kripke frame $F(C)=\langle W, \sim\rangle$, where:

- W is the set of maximal simplices
- For $X, Y \in W, X \sim_{a} Y$ if $X \cap Y$ has an a-colored vertex.

Proof of the theorem

From Kripke frames to simplicial complexes.
Let $M=\langle W, \sim\rangle$ be a Kripke frame and $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ the set of agents, then:

$$
G(M)=\left(\coprod_{x \in W}\left\{v_{0}^{x}, \ldots, v_{n}^{x}\right\}\right) / \equiv
$$

where $v_{i}^{x} \equiv v_{i}^{y}$ iff $x \sim_{a_{i}} y$.

Proof of the theorem

Proof of the theorem

From Kripke frames to simplicial complexes.
Let $M=\langle W, \sim\rangle$ be a Kripke frame and $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ the set of agents, then:

$$
G(M)=\left(\coprod_{x \in W}\left\{v_{0}^{x}, \ldots, v_{n}^{x}\right\}\right) / \equiv
$$

where $v_{i}^{x} \equiv v_{i}^{y}$ iff $x \sim_{a_{i}} y$.

Proof of the theorem

From Kripke frames to simplicial complexes.
Let $M=\langle W, \sim\rangle$ be a Kripke frame and $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ the set of agents, then:

$$
G(M)=\left(\coprod_{x \in W}\left\{v_{0}^{x}, \ldots, v_{n}^{x}\right\}\right) / \equiv
$$

where $v_{i}^{x} \equiv v_{i}^{y}$ iff $x \sim_{a_{i}} y$.

Proof of the theorem

From Kripke frames to simplicial complexes.
Let $M=\langle W, \sim\rangle$ be a Kripke frame and $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ the set of agents, then:

$$
G(M)=\left(\coprod_{x \in W}\left\{v_{0}^{x}, \ldots, v_{n}^{x}\right\}\right) / \equiv
$$

where $v_{i}^{x} \equiv v_{i}^{y}$ iff $x \sim_{a_{i}} y$.

Simplicial models

Assume we have $n+1$ agents $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$.

Definition

A simplicial model is given by $\langle V, S, \chi, \ell\rangle$ where:

- $\langle V, S, \chi\rangle$ is a pure chromatic simplicial complex of dimension n.
- $\ell: V \rightarrow \mathscr{P}(A P)$

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Example: binary input complex for 3 agents

- Every agent has input value either 0 or 1 .
- Every agent knows its value, but not the other values.

In the picture below, the three agents are represented as the colors black, grey, white:

Theorem

The previous theorem still holds for models!

Defining truth in simplicial models

Let $M=\langle V, S, \chi, \ell\rangle$ be a simplicial model and $X \in \mathcal{F}(S)$ a maximal simplex of M.

```
\(M, X \models p \quad\) iff \(\quad p \in \ell(X)\)
\(M, X \models \neg \varphi \quad\) iff \(\quad M, X \not \models \varphi\)
\(M, X \models \varphi \wedge \psi \quad\) iff \(\quad M, X \models \varphi\) and \(M, X \models \psi\)
\(M, X \models K_{a} \varphi \quad\) iff \(\quad\) for all \(Y \in \mathcal{F}(S)\), if \(a \in \chi(X \cap Y)\),
then \(M, Y \models \varphi\)
```


Defining truth in simplicial models

Let $M=\langle V, S, \chi, \ell\rangle$ be a simplicial model and $X \in \mathcal{F}(S)$ a maximal simplex of M.

```
\(M, X \models p \quad\) iff \(\quad p \in \ell(X)\)
\(M, X \models \neg \varphi \quad\) iff \(\quad M, X \not \models \varphi\)
\(M, X \models \varphi \wedge \psi \quad\) iff \(\quad M, X \models \varphi\) and \(M, X \models \psi\)
\(M, X \models K_{a} \varphi \quad\) iff \(\quad\) for all \(Y \in \mathcal{F}(S)\), if \(a \in \chi(X \cap Y)\),
then \(M, Y \models \varphi\)
\(M, x=C_{B} \varphi \quad\) iff \(\quad .\).
```


Defining truth in simplicial models

Let $M=\langle V, S, \chi, \ell\rangle$ be a simplicial model and $X \in \mathcal{F}(S)$ a maximal simplex of M.

```
\(M, X \models p \quad\) iff \(\quad p \in \ell(X)\)
\(M, X \models \neg \varphi \quad\) iff \(\quad M, X \not \models \varphi\)
\(M, X \models \varphi \wedge \psi \quad\) iff \(\quad M, X \models \varphi\) and \(M, X \models \psi\)
\(M, X \models K_{a} \varphi \quad\) iff \(\quad\) for all \(Y \in \mathcal{F}(S)\), if \(a \in \chi(X \cap Y)\),
then \(M, Y \models \varphi\)
\(M, x \models C_{B} \varphi \quad\) iff \(\quad \ldots\)
```


Theorem

This definition agrees with the usual one:

$$
\begin{array}{lll}
M, X \models \mathcal{S} \varphi & \text { iff } & F(M), X \models \mathcal{K} \varphi \\
N, x \models \mathcal{K} \varphi & \text { iff } & G(N), G(x) \models \mathcal{S} \varphi
\end{array}
$$

Example: card dealing

Consider the following situation: there are three agents and a deck of four cards $\{0,1,2,3\}$. Each agent is given a card at random, and the remaining card is kept hidden.

Example: card dealing

Consider the following situation: there are three agents and a deck of four cards $\{0,1,2,3\}$. Each agent is given a card at random, and the remaining card is kept hidden.

So what?

\rightarrow We have uncovered higher-dimensional topological information which is hidden in Kripke models.

So what?

\rightarrow We have uncovered higher-dimensional topological information which is hidden in Kripke models.

Does it allow us to say anything new about logic?

Yes: examples from distributed computability!

Herlihy, Kozlov, Rajsbaum, 2013

Distributed computability (Herlihy et. al.)

Input complex

Distributed computability (Herlihy et. al.)

Input complex

Distributed computability (Herlihy et. al.)

Distributed computability (Herlihy et. al.)

Dynamic epistemic logic

Dynamic Epistemic Logic (DEL)

Syntax:

Let \mathcal{A} be a finite set of agents and $A P$ a set of atomic propositions. The syntax of formulas is:

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|K_{a} \varphi\right| C_{B} \varphi \mid[\alpha] \varphi \\
& \alpha::=\text { (see next slide) }
\end{aligned}
$$

$[\alpha] \varphi$ intuitively means " φ will be true after the action α occurs".

Dynamic Epistemic Logic (DEL)

Syntax:
Let \mathcal{A} be a finite set of agents and $A P$ a set of atomic propositions. The syntax of formulas is:

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|K_{a} \varphi\right| C_{B} \varphi \mid[\alpha] \varphi \\
& \alpha::=\text { (see next slide) }
\end{aligned}
$$

$[\alpha] \varphi$ intuitively means " φ will be true after the action α occurs".
Semantics:

```
M, x = p
M,x =\neg\varphi
M,x =\varphi\wedge\psi
M,x = K Ka
M,x = = CB}
M,x\models[\alpha]\varphi iff }\quadM[\alpha],x[\alpha]\models
```


Action models

Three agents, three cards $\{1,2,3\}$.

Action models

Three agents, three cards $\{1,2,3\}$.

Black announces publicly: "I do not have card 2".

Action models

Three agents, three cards $\{1,2,3\}$.

Black announces publicly: "I do not have card 2".

Action models

Three agents, three cards $\{1,2,3\}$.

Black announces publicly:
"I do not have card 2".

Black says privately to White: "I do not have card 2".
\rightarrow this does not work.

Action models

Definition

An action model is a tuple $\left\langle T,\left(\sim_{a}\right)_{a \in \mathcal{A}}\right.$, pre \rangle where:

- T is a set of actions,
- for each $a \in \mathcal{A}, \sim_{a}$ is an equivalence relation on T,
- for each $t \in T$, $\operatorname{pre}(t) \in \mathcal{L}_{\mathcal{A}, A P}$ is a precondition.

Action models

Definition

An action model is a tuple $\left\langle T,\left(\sim_{a}\right)_{a \in \mathcal{A}}\right.$, pre \rangle where:

- T is a set of actions,
- for each $a \in \mathcal{A}, \sim_{a}$ is an equivalence relation on T,
- for each $t \in T$, $\operatorname{pre}(t) \in \mathcal{L}_{\mathcal{A}, A P}$ is a precondition.

Example:
Public announcement

$$
\text { Black: " } \neg 2 "
$$

Action models

Definition

An action model is a tuple $\left\langle T,\left(\sim_{a}\right)_{a \in \mathcal{A}}\right.$, pre \rangle where:

- T is a set of actions,
- for each $a \in \mathcal{A}, \sim_{a}$ is an equivalence relation on T,
- for each $t \in T$, $\operatorname{pre}(t) \in \mathcal{L}_{\mathcal{A}, A P}$ is a precondition.

Example:
Private announcement of Black to White

Product update

Let $\mathcal{M}=\langle V, S, \chi, \ell\rangle$ be a simplicial model and $\mathcal{T}=\langle T, \sim$, pre an action model. The product update model $\mathcal{M}[\mathcal{T}]$ is the following simplicial model:

- its vertices are of the form $(v, t) \in V \times T$,
- $\chi(v, t)=\chi(v)$ and $\ell(v, t)=\ell(v)$,
- the maximal simplices are the (X, t) such that $\mathcal{M}, X \models \operatorname{pre}(t)$

Product update

Let $\mathcal{M}=\langle V, S, \chi, \ell\rangle$ be a simplicial model and $\mathcal{T}=\langle T, \sim$, pre an action model. The product update model $\mathcal{M}[\mathcal{T}]$ is the following simplicial model:

- its vertices are of the form $(v, t) \in V \times T$,
- $\chi(v, t)=\chi(v)$ and $\ell(v, t)=\ell(v)$,
- the maximal simplices are the (X, t) such that $\mathcal{M}, X \models \operatorname{pre}(t)$

An action is $\alpha:=(\mathcal{T}, t)$.
The truth of a DEL formula is defined as:

$$
\mathcal{M}, X \models[(\mathcal{T}, t)] \varphi \quad \text { iff } \quad \mathcal{M}[\mathcal{T}],(X, t) \models \varphi
$$

Example: Public announcement

$\mathcal{M} \times \mathcal{T}=$

Example: Public announcement

$\mathcal{M}[\mathcal{T}]=$

Example: Private announcement

$$
\mathcal{M}[\mathcal{T}]=
$$

Distributed computability via logic

Protocol complex

Decision

\exists ?

Output complex

Input complex

Distributed computability via logic

Key Lemma: simplicial maps cannot gain knowledge

Lemma

Consider two simplicial models M and M^{\prime}, and a morphism $f: M \rightarrow M^{\prime}$. Let $X \in \mathcal{F}(M)$ be a maximal simplex of M, a an agent, and φ a positive formula (φ does not contain negations except, possibly, in front of atomic propositions). Then,

$$
M^{\prime}, f(X) \models \varphi \quad \text { implies } \quad M, X \models \varphi
$$

Recipe for impossibility proofs:

- Assume $\delta: \mathcal{M}[\mathcal{P}] \longrightarrow \mathcal{M}[\mathcal{T}]$
- Find a suitable formula φ such that:
- φ is true everywhere in the output model
- φ is false somewhere in the protocol model

Conclusions and perspectives

Benefits in both areas

- For computer scientists: we can now understand the abstract topological proofs of impossibility in terms of knowledge.

Conclusions and perspectives

Benefits in both areas

- For computer scientists: we can now understand the abstract topological proofs of impossibility in terms of knowledge.
- For logicians: Kripke models contain higher-dimensional topological information, and it is actually useful!

Conclusions and perspectives

Benefits in both areas

- For computer scientists: we can now understand the abstract topological proofs of impossibility in terms of knowledge.
- For logicians: Kripke models contain higher-dimensional topological information, and it is actually useful!

Future work

- Simplicial complexes that are not pure
\rightarrow variable number of agents

Conclusions and perspectives

Benefits in both areas

- For computer scientists: we can now understand the abstract topological proofs of impossibility in terms of knowledge.
- For logicians: Kripke models contain higher-dimensional topological information, and it is actually useful!

Future work

- Simplicial complexes that are not pure \rightarrow variable number of agents
- New notions of knowledge?

Distributed computing	Topology	Logic
consensus	connectedness	common knowledge
k-set agreement	k-connectedness	???

Thanks!

