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For first order programs (M. Hofmann & W. Chen)

Let Σ be a set of events and F a set of procedure identifiers.
I Syntax of expressions:

e ::= a | f | e1; e2 | e1 + e2 where a ∈ Σ and f ∈ F

I Program: an expression ef for every f ∈ F .

Examples:

f = a; b; g
g = d + (c; f )

u = a; v
v = v
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Policy Automaton
#define TIMEOUT 65536
while (true) {

int i,s; i = s = 0;
while (i++ < TIMEOUT && s == 0) {

s = auth();
}
work();

}

f = g; b; f
g = (a; g) + c

q1 q0 q2
a, b, c

a, b a, b, c

b

a, b, c

“If c occurs infinitely often, then b occurs infinitely often.”
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Büchi type system

Let GFb = (a∗b)ω be a type asserting “b occurs infinitely often”.

Consider the procedure:
f = a; f

Assuming f : GFb, we can derive (a; f ) : aGFb, and since
aGFb = GFb, that means we have a derivation

f : GFb ` (a; f ) : GFb

Under “usual” typing rules, this would allow us to establish

` f : GFb

which is clearly wrong.
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Büchi type system
Idea:

f : X ` ef : T (X)
` f : gfp(λX . T (X))

f = (a; f ) + b

Looks like a language equation X = aX + b
Smallest solution: X = a∗b
Greatest solution: X = a∗b + aω = L(f )

For first-order programs:

T (X) = U ·X + V

gfp(T ) = U ∗V + Uω
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Büchi Abstraction
Let L∗ = P(Σ∗) and Lω = P(Σω).
Given the policy automaton A, we can construct complete lattices
M∗ and Mω such that:

I They are finite.

I They are related to L∗, Lω by a galois insertion. There are
α∗/ω : L∗/ω →M∗/ω and γ∗/ω : M∗/ω → L∗/ω such that

γ∗/ω(α∗/ω(L)) ⊇ L and α∗/ω(γ∗/ω(U )) = U
I L ⊆ L(A) ⇐⇒ α(L) v α(L(A))
I The abstraction function α preserves unions, concatenation,
least fixpoints and ω-iteration (but not greatest fixpoints !):

M∗ Mω

L∗ Lω

(−)(ω)

(−)ω

α∗ αω
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Büchi Abstraction

Define the equivalence relation ∼A on Σ+ as follows: u ∼A v iff

∀q, q ′. (q u−→ q ′ ⇐⇒ q v−→ q ′) ∧ (q u−→F q ′ ⇐⇒ q v−→F q ′)

and extend it to Σ∗ such that [ε] = {ε}.

I Equivalence classes are regular languages.
I There’s a finite number of classes.
I For every class C , either C ∩ L∗(A) = ∅ or C ⊆ L∗(A).
I For every C , D, either CDω ∩ Lω(A) = ∅ or CDω ⊆ Lω(A).
I For every w ∈ Σω, there are C , D such that w ∈ CDω.

The sets CDω behave almost like classes, but they may overlap !
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Büchi Abstraction
Define M∗ = P(Σ∗/ ∼A)

γ∗(V) =
⋃

C∈V
C

α∗(L) = {C | C ∩ L 6= ∅}

and Mω = {V ⊆ (Σ∗/ ∼A)× (Σ∗/ ∼A) | V is closed}

γω(V) =
⋃

(C ,D)∈V
CDω

αω(L) = cl {(C ,D) | CDω ∩ L 6= ∅}
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Extending to Higher-order
Terms:

e ::= x | a | e1; e2 | e1 + e2 | fix e | λx. e | e1 e2

Types:
τ ::= o | τ1→τ2

Typing rules:

Γ ` x : Γ(x)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e : τ → τ

Γ ` fix e : τ Γ ` a : o
Γ ` e1 : o Γ ` e2 : o

Γ ` e1 + e2 : o
Γ ` e1 : o Γ ` e2 : o

Γ ` e1; e2 : o

Program: closed term of type o.
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Examples
First order: only use fix : (o → o)→ o.

I fix(λf . (a; f ) + b)
I fix(λf . a; b;fix(λg. d + (c; f )))

Call-by-value versus call-by-name:
I e = (λx. a; x) b −→ L∗(e) = {ab}

Non context-free examples:
I e′ = fix(λf .λx. (a; f (b; x; c))+x)

L∗(e′ d) = {anbndcn | n ≥ 0} Lω(e′ d) = {aω}

I e′′ = fix(λx. (e′ d); x)

L∗(e′′) = ∅ Lω(e′′) = (L∗(e′ d))ω ∪ {aω}
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Related Work
Higher-order model checking (Ong & Kobayashi, Walukiewicz &
Salvati, Melliès & Grellois).

I λY, higher-order recursion schemes, higher-order pushdown
automata with collapse.

I Model-checking of temporal logic, µ-calculus formulas.
I Relies heavily on tree properties, even if we are only interested
in traces.

Example: λY.

Choose first-order constants
a : o → o → o
b : o → o
c : o

M = Y(λf . λx. a x (f (b x)))

Böhm-tree of (M c):
a

c a

b

c

. . .
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GFP semantics
We define the category GFP

I Its objects A are pairs (A∗,Aω) of complete lattices.
I A morphism f : A→ B is a pair (f∗, fω) where

f∗ : A∗ → B∗
fω : A∗ ×Aω → Bω

Composition h = g ◦ f is given by
I h∗(a∗) = g∗(f∗(a∗))
I hω(a∗, aω) = gω(f∗(a∗), fω(a∗, aω))

Proposition
GFP is cartesian-closed.

Cartesian products
I (A× B)∗ = A∗ × B∗
I (A× B)ω = Aω × Bω

Function spaces
I (A⇒ B)∗ = BA∗

∗
I (A⇒ B)ω = BA∗×Aω

ω
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GFP semantics

GFP has the following fixpoint combinator for every A:

fixA : (A⇒ A)→ A

where
I (fixA)∗(f∗) = lfp(f∗)
I (fixA)ω(f∗, fω) = gfp(λaω. fω(lfp(f∗), aω))

Proposition
This is indeed a fixpoint: f (fixA(f )) = fixA(f ) holds in the internal
language of GFP

app ◦ 〈idA⇒A, fixA〉 = fixA

13 / 25



GFP semantics
Interpretation of types:
To every type τ , associate an object JτK of GFP

JoK = (L∗,Lω) and Jσ → τK = JσK⇒ JτK

Interpretation of contexts:
To a context Γ = x1 : τ1, . . . , xn : τn , associate the object

JΓK = Jτ1K× . . .× JτnK

Interpretation of terms:
To a derivation Γ ` e : τ , associate a morphism JeK : JΓK→ JτK

I JaK = ({a},∅)
I J+K∗(X∗,Y∗) = X∗ ∪Y∗

J+Kω(X∗,Y∗,Xω,Yω) = Xω ∪Yω

I J ; K∗(X∗,Y∗) = X∗Y∗
J ; Kω(X∗,Y∗,Xω,Yω) = Xω ∪X∗Yω
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GFP semantics

Reminder: a program is a closed term of type o.

Let e be a program, then JeK : 1→ JoK is (isomorphic to) an
element of L∗ × Lω.

Theorem
Let e be a program, write (L∗,Lω) = JeK its interpretation in GFP.
Then we have L∗(e) = L∗ and Lω(e) = Lω.

If we choose JoK = (M∗,Mω) instead, everything is computable.

But α doesn’t commute with greatest fixpoints :-(
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Affine Functions

For first-order fixpoints:
The denotation of f : o → o has two components:

I Jf K∗ : L∗ → L∗
I Jf Kω : L∗ × Lω → Lω

Jfix f K involves some gfp of Jf Kω.

But every function F : L∗ × Lω → Lω that actually occurs as the
interpretation of a term is affine: there exists A : L∗ → L∗ and
B : L∗ → Lω such that

F(x,X) = A(x) ·X ∪ B(x)

Then gfp(F(x,−)) = A(x)∗B(x) ∪ A(x)ω commutes with α.
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Affine Functions
For higher-order fixpoints:
Consider f : (τ → o)→ (τ → o), then

Jf Kω : Jτ → oK∗ × (JτK∗ × JτKω ⇒ Lω)→ (JτK∗ × JτKω ⇒ Lω)

A function F : S × (T ⇒ Lω)→ (T ⇒ Lω) that occurs as the
interpretation of a term will have the form:

F(s,X) = λt. A(s, t) ∪
⋃

t′∈T
B(s, t, t ′) ·X(t ′)

Then

gfp(F(s,−))(t) =
⋃

(tk)∈TN

t0=t

∞∏
i=0

B(s, ti , ti+1)

∪
⋃

t1,...,tn∈T
B(s, t, t1) · B(s, t1, t2) · · ·B(s, tn−1, tn) ·A(s, tn)
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ω-semigroups (Perrin, Pin)
An ω-semigroup is a pair of sets S = (S+,Sω) equipped with:

I a mapping S+ × S+ → S+ called binary product
I a mapping S+ × Sω → Sω called mixed product
I a mapping π : SN+ → Sω called infinite product

such that
I S+ with the binary product is a semigroup
I for each s, t ∈ S+ and u ∈ Sω, s(tu) = (st)u
I for every increasing sequence (kn)n ∈ NN and (sn)n ∈ SN+,
one has π((sn)n) = π((tn)n) where t0 = s0s1 . . . sk0 and
tn+1 = skn+1 . . . skn+1

I s · π(s0, s1, s2, . . .) = π(s, s0, s1, s2, . . .)

Remark: An ω-semigroup is in particular a Wilke algebra.
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M is an ω-semigroup
Examples of ω-semigroups:

I (Σ+,Σω) with the usual products

I (L+,Lω) with the usual products
I (M+,Mω): the infinitary product is defined as follows.
Given (sn) ∈MN

+, define

π((sn)n) = αω(
∞∏

n=0
γ∗(sn))

Proposition
The abstraction function α : L→M is a morphism of
ω-semigroups. In particular, for (Ln)n∈N a family of languages,

αω(
∞∏

i=0
Ln) = π((α∗(Ln))n)
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Back to affine functions

Idea:
Restrict to the sub-category of GFP

I whose objects are of the form (X∗,L
Xarg
ω )

I whose morphisms f : X → Y have an infinitary component
fω : X∗ × L

Xarg
ω → L

Yarg
ω which is affine w.r.t. its second

argument.

What is an affine function ?

−→ a function of the form f (x) = ax + b.
−→ a pair (a, b).
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The category AFFS
Let S = (S+,Sω) be an ω-semigroup.

I Objects are pairs (X∗,Xarg)
I A morphism f : X → Y is given by

f∗ : X∗ → Y∗

farg : X∗ ×Yarg → Sω × S
Xop

arg
∗

Notation: we decompose farg in two components
fc : X∗ ×Yarg → Sω and fp : X∗ ×Yarg ×Xop

arg → S∗

There is a functor Ext : AFFS → GFP defined as:
I Ext(X∗,Xarg) = (X∗,S

Xarg
ω )

I Ext(f∗, farg) = (f∗, fω) where fω : X∗ × S
Xarg
ω → SYarg

ω is
defined as

fω(x,X , η) = fc(x, η) ∪
⋃

ξ∈Xarg

fp(x, η, ξ) ·X(ξ)
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The category AFFS

Composition is defined so that Ext(g ◦ f ) = Ext(g) ◦ Ext(f ).

The cartesian product (X ×Y ) is given by:
I (X ×Y )∗ = X∗ ×Y∗
I (X ×Y )arg = Xarg + Yarg

The function space (X ⇒ Y ) is given by:
I (X ⇒ Y )∗ = X∗ ⇒ (Y∗ × S

Yarg×Xop
arg

∗ )
I (X ⇒ Y )arg = X∗ ×Yarg

Proposition
The category AFFS is cartesian-closed.
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Affine Semantics
Base type: JoK = (S∗, {?})

Terms:

I JaK∗(?) = a
JaKarg(?) = (∅,∅)

I J+K∗(s1, s2) = s1 ∪ s2
J+Karg(s1, s2, ?) = (∅, λη. ε)

I J ; K∗(s1, s2) = s1s2

J ; Karg(s1, s2, ?) =
(
∅, λη. case(η)

{
inl ? 7→ ε

inr ? 7→ s1

)

Remarks:
I One needs an element a ∈ S∗: pick {a} for L∗ and [a] for M∗.

I The fixpoint operator can be defined accordingly.
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Putting it all together
Theorem
For every program e, we have JeKGFP = Ext(JeKL).

Corollary
For every program e, JeKL = (L∗(e),Lω(e)).

Theorem
For every program e, α(JeKL) = JeKM.

Corollary
Let e be a program, and write JeKM = (X∗,Xω).
Then L∗/ω(e) ⊆ L∗/ω(A) ⇐⇒ X∗/ω v α∗/ω(L∗/ω(A)).
Moreover, JeKM is effectively computable.
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Thanks !
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