A new algorithm for Higher-order model checking

Jérémy Ledent Martin Hofmann

For first order programs (M. Hofmann \& W. Chen)

Let Σ be a set of events and \mathcal{F} a set of procedure identifiers.

- Syntax of expressions:

$$
e::=\underline{a}|f| e_{1} ; e_{2} \mid e_{1}+e_{2} \quad \text { where } a \in \Sigma \text { and } f \in \mathcal{F}
$$

For first order programs (M. Hofmann \& W. Chen)

Let Σ be a set of events and \mathcal{F} a set of procedure identifiers.

- Syntax of expressions:

$$
e::=\underline{a}|f| e_{1} ; e_{2} \mid e_{1}+e_{2} \quad \text { where } a \in \Sigma \text { and } f \in \mathcal{F}
$$

- Program: an expression e_{f} for every $f \in \mathcal{F}$.

Examples:

$$
\begin{gathered}
f=\underline{a} ; \underline{b} ; g \\
g=\underline{d}+(\underline{c} ; f) \\
L(f)=(a b c)^{*} a b d \cup\left\{(a b c)^{\omega}\right\}
\end{gathered}
$$

For first order programs (M. Hofmann \& W. Chen)

Let Σ be a set of events and \mathcal{F} a set of procedure identifiers.

- Syntax of expressions:

$$
e::=\underline{a}|f| e_{1} ; e_{2} \mid e_{1}+e_{2} \quad \text { where } a \in \Sigma \text { and } f \in \mathcal{F}
$$

- Program: an expression e_{f} for every $f \in \mathcal{F}$.

Examples:

$$
\begin{array}{cl}
f=\underline{a} ; \underline{b} ; g & \begin{array}{l}
u=\underline{a} ; v \\
g=\underline{d}+(\underline{c} ; f) \\
v=v
\end{array} \\
& \\
L(f)=(a b c)^{*} a b d \cup\left\{(a b c)^{\omega}\right\} & \\
L(u)=\{a\} &
\end{array}
$$

For first order programs (M. Hofmann \& W. Chen)

Let Σ be a set of events and \mathcal{F} a set of procedure identifiers.

- Syntax of expressions:

$$
e::=\underline{a}|f| e_{1} ; e_{2} \mid e_{1}+e_{2} \quad \text { where } a \in \Sigma \text { and } f \in \mathcal{F}
$$

- Program: an expression e_{f} for every $f \in \mathcal{F}$.

Examples:

$$
\begin{array}{rl}
f=\underline{a} ; \underline{b} ; g & u=\underline{a} ; v \\
g=\underline{d}+(\underline{c} ; f) & v=v \\
& \\
L_{*}(f)=(a b \checkmark c \checkmark)^{*} a b \checkmark d & L_{\omega}(f)=\left\{(a b \checkmark c \checkmark)^{\omega}\right\} \\
L_{*}(u)=\varnothing & L_{\omega}(u)=\left\{a(\checkmark)^{\omega}\right\}
\end{array}
$$

Policy Automaton

```
#define TIMEOUT 65536
while (true) {
    int i,s; i = s = 0;
    while (i++ < TIMEOUT && s == 0) {
        s = auth();
    }
    work();
}
```


Policy Automaton

```
#define TIMEOUT 65536
while (true) {
    int i,s; i = s = 0;
    while (i++ < TIMEOUT && s == 0) {
        s = auth(); /* a */
    } /* c */
    work(); /* b */
}
    f = g;\underline{;};f
    g=(\underline{a};g)+\underline{c}
```


Policy Automaton

```
#define TIMEOUT 65536
while (true) {
    int i,s; i = s = 0;
    while (i++ < TIMEOUT && s == 0) {
        s = auth(); /* a */
    } /* c */
    work(); /* b */
}
```

 \(f=g ; \underline{b} ; f\)
 \(g=(\underline{a} ; g)+\underline{c}\)

"If c occurs infinitely often, then b occurs infinitely often."

Büchi type system

Let $G F b=\left(a^{*} b\right)^{\omega}$ be a type asserting " b occurs infinitely often".
Consider the procedure:

$$
f=\underline{a} ; f
$$

Assuming f : $G F b$, we can derive $(\underline{a} ; f): a G F b$, and since $a G F b=G F b$, that means we have a derivation

$$
f: G F b \vdash(\underline{a} ; f): G F b
$$

Büchi type system

Let $G F b=\left(a^{*} b\right)^{\omega}$ be a type asserting " b occurs infinitely often".
Consider the procedure:

$$
f=\underline{a} ; f
$$

Assuming $f: G F b$, we can derive $(\underline{a} ; f): a G F b$, and since $a G F b=G F b$, that means we have a derivation

$$
f: G F b \vdash(\underline{a} ; f): G F b
$$

Under "usual" typing rules, this would allow us to establish

$$
\vdash f: G F b
$$

which is clearly wrong.

Büchi type system

Idea:

$$
\frac{f: X \vdash e_{f}: T(X)}{\vdash f: \operatorname{gfp}(\lambda X . T(X))}
$$

Büchi type system

Idea:

$$
\frac{f: X \vdash e_{f}: T(X)}{\vdash f: \operatorname{gfp}(\lambda X . T(X))}
$$

$f=(\underline{a} ; f)+\underline{b}$
Looks like a language equation $X=a X+b$ Smallest solution: $X=a^{*} b$
Greatest solution: $X=a^{*} b+a^{\omega}=L(f)$

Büchi type system

Idea:

$$
\frac{f: X \vdash e_{f}: T(X)}{\vdash f: \operatorname{gfp}(\lambda X . T(X))}
$$

$f=(\underline{a} ; f)+\underline{b}$
Looks like a language equation $X=a X+b$ Smallest solution: $X=a^{*} b$
Greatest solution: $X=a^{*} b+a^{\omega}=L(f)$
For first-order programs:

$$
\begin{aligned}
T(X) & =U \cdot X+V \\
\operatorname{gfp}(T) & =U^{*} V+U^{\omega}
\end{aligned}
$$

Büchi Abstraction

Let $\mathfrak{L}_{*}=\mathcal{P}\left(\Sigma^{*}\right)$ and $\mathfrak{L}_{\omega}=\mathcal{P}\left(\Sigma^{\omega}\right)$.
Given the policy automaton \mathcal{A}, we can construct complete lattices \mathfrak{M}_{*} and \mathfrak{M}_{ω} such that:

- They are finite.

Büchi Abstraction

Let $\mathfrak{L}_{*}=\mathcal{P}\left(\Sigma^{*}\right)$ and $\mathfrak{L}_{\omega}=\mathcal{P}\left(\Sigma^{\omega}\right)$.
Given the policy automaton \mathcal{A}, we can construct complete lattices \mathfrak{M}_{*} and \mathfrak{M}_{ω} such that:

- They are finite.
- They are related to $\mathfrak{L}_{*}, \mathfrak{L}_{\omega}$ by a galois insertion. There are $\alpha_{* / \omega}: \mathfrak{L}_{* / \omega} \rightarrow \mathfrak{M}_{* / \omega}$ and $\gamma_{* / \omega}: \mathfrak{M}_{* / \omega} \rightarrow \mathfrak{L}_{* / \omega}$ such that

$$
\gamma_{* / \omega}\left(\alpha_{* / \omega}(L)\right) \supseteq L \quad \text { and } \quad \alpha_{* / \omega}\left(\gamma_{* / \omega}(U)\right)=U
$$

Büchi Abstraction

Let $\mathfrak{L}_{*}=\mathcal{P}\left(\Sigma^{*}\right)$ and $\mathfrak{L}_{\omega}=\mathcal{P}\left(\Sigma^{\omega}\right)$.
Given the policy automaton \mathcal{A}, we can construct complete lattices \mathfrak{M}_{*} and \mathfrak{M}_{ω} such that:

- They are finite.
- They are related to $\mathfrak{L}_{*}, \mathfrak{L}_{\omega}$ by a galois insertion. There are $\alpha_{* / \omega}: \mathfrak{L}_{* / \omega} \rightarrow \mathfrak{M}_{* / \omega}$ and $\gamma_{* / \omega}: \mathfrak{M}_{* / \omega} \rightarrow \mathfrak{L}_{* / \omega}$ such that $\gamma_{* / \omega}\left(\alpha_{* / \omega}(L)\right) \supseteq L \quad$ and $\quad \alpha_{* / \omega}\left(\gamma_{* / \omega}(U)\right)=U$
- $L \subseteq L(\mathcal{A}) \Longleftrightarrow \alpha(L) \sqsubseteq \alpha(L(\mathcal{A}))$

Büchi Abstraction

Let $\mathfrak{L}_{*}=\mathcal{P}\left(\Sigma^{*}\right)$ and $\mathfrak{L}_{\omega}=\mathcal{P}\left(\Sigma^{\omega}\right)$.
Given the policy automaton \mathcal{A}, we can construct complete lattices \mathfrak{M}_{*} and \mathfrak{M}_{ω} such that:

- They are finite.
- They are related to $\mathfrak{L}_{*}, \mathfrak{L}_{\omega}$ by a galois insertion. There are $\alpha_{* / \omega}: \mathfrak{L}_{* / \omega} \rightarrow \mathfrak{M}_{* / \omega}$ and $\gamma_{* / \omega}: \mathfrak{M}_{* / \omega} \rightarrow \mathfrak{L}_{* / \omega}$ such that

$$
\gamma_{* / \omega}\left(\alpha_{* / \omega}(L)\right) \supseteq L \quad \text { and } \quad \alpha_{* / \omega}\left(\gamma_{* / \omega}(U)\right)=U
$$

- $L \subseteq L(\mathcal{A}) \Longleftrightarrow \alpha(L) \sqsubseteq \alpha(L(\mathcal{A}))$
- The abstraction function α preserves unions, concatenation, least fixpoints and ω-iteration (but not greatest fixpoints !):

$$
\begin{array}{cc}
\mathfrak{M}_{*} & \xrightarrow{(-)^{(\omega)}} \mathfrak{M}_{\omega} \\
\alpha_{*} \uparrow \\
\mathfrak{L}_{*} & \xrightarrow{(-)^{\omega}}{ }^{\left(\alpha_{\omega} \uparrow\right.} \mathfrak{L}_{\omega}
\end{array}
$$

Büchi Abstraction

Define the equivalence relation $\sim_{\mathcal{A}}$ on Σ^{+}as follows: $u \sim_{\mathcal{A}} v$ iff

$$
\forall q, q^{\prime} .\left(q \xrightarrow{u} q^{\prime} \Longleftrightarrow q \xrightarrow{v} q^{\prime}\right) \wedge\left(q \xrightarrow{u}_{F} q^{\prime} \Longleftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right)
$$

and extend it to Σ^{*} such that $[\varepsilon]=\{\varepsilon\}$.

Büchi Abstraction

Define the equivalence relation $\sim_{\mathcal{A}}$ on Σ^{+}as follows: $u \sim_{\mathcal{A}} v$ iff

$$
\forall q, q^{\prime} \cdot\left(q \xrightarrow{u} q^{\prime} \Longleftrightarrow q \xrightarrow{v} q^{\prime}\right) \wedge\left(q \xrightarrow{u}_{F} q^{\prime} \Longleftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right)
$$

and extend it to Σ^{*} such that $[\varepsilon]=\{\varepsilon\}$.

- Equivalence classes are regular languages.
- There's a finite number of classes.

Büchi Abstraction

Define the equivalence relation $\sim_{\mathcal{A}}$ on Σ^{+}as follows: $u \sim_{\mathcal{A}} v$ iff

$$
\forall q, q^{\prime} \cdot\left(q \xrightarrow{u} q^{\prime} \Longleftrightarrow q \xrightarrow{v} q^{\prime}\right) \wedge\left(q \xrightarrow{u}_{F} q^{\prime} \Longleftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right)
$$

and extend it to Σ^{*} such that $[\varepsilon]=\{\varepsilon\}$.

- Equivalence classes are regular languages.
- There's a finite number of classes.
- For every class C, either $C \cap L_{*}(\mathcal{A})=\varnothing$ or $C \subseteq L_{*}(\mathcal{A})$.

Büchi Abstraction

Define the equivalence relation $\sim_{\mathcal{A}}$ on Σ^{+}as follows: $u \sim_{\mathcal{A}} v$ iff

$$
\forall q, q^{\prime} \cdot\left(q \xrightarrow{u} q^{\prime} \Longleftrightarrow q \xrightarrow{v} q^{\prime}\right) \wedge\left(q \xrightarrow{u}_{F} q^{\prime} \Longleftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right)
$$

and extend it to Σ^{*} such that $[\varepsilon]=\{\varepsilon\}$.

- Equivalence classes are regular languages.
- There's a finite number of classes.
- For every class C, either $C \cap L_{*}(\mathcal{A})=\varnothing$ or $C \subseteq L_{*}(\mathcal{A})$.
- For every C, D, either $C D^{\omega} \cap L_{\omega}(\mathcal{A})=\varnothing$ or $C D^{\omega} \subseteq L_{\omega}(\mathcal{A})$.
- For every $w \in \Sigma^{\omega}$, there are C, D such that $w \in C D^{\omega}$.

The sets $C D^{\omega}$ behave almost like classes, but they may overlap !

Büchi Abstraction

Define $\mathfrak{M}_{*}=\mathcal{P}\left(\Sigma^{*} / \sim_{\mathcal{A}}\right)$

$$
\begin{gathered}
\gamma_{*}(\mathcal{V})=\bigcup_{C \in \mathcal{V}} C \\
\alpha_{*}(L)=\{C \mid C \cap L \neq \varnothing\}
\end{gathered}
$$

Büchi Abstraction

Define $\mathfrak{M}_{*}=\mathcal{P}\left(\Sigma^{*} / \sim_{\mathcal{A}}\right)$

$$
\begin{gathered}
\gamma_{*}(\mathcal{V})=\bigcup_{C \in \mathcal{V}} C \\
\alpha_{*}(L)=\{C \mid C \cap L \neq \varnothing\}
\end{gathered}
$$

and $\mathfrak{M}_{\omega}=\left\{\mathcal{V} \subseteq\left(\Sigma^{*} / \sim_{\mathcal{A}}\right) \times\left(\Sigma^{*} / \sim_{\mathcal{A}}\right) \mid \mathcal{V}\right.$ is closed $\}$

$$
\begin{gathered}
\gamma_{\omega}(\mathcal{V})=\bigcup_{(C, D) \in \mathcal{V}} C D^{\omega} \\
\alpha_{\omega}(L)=\mathrm{cl}\left\{(C, D) \mid C D^{\omega} \cap L \neq \varnothing\right\}
\end{gathered}
$$

Extending to Higher-order

Terms:

$$
e::=x|\underline{a}| e_{1} ; e_{2}\left|e_{1}+e_{2}\right| \text { fix } e|\lambda x . e| e_{1} e_{2}
$$

Extending to Higher-order

Terms:

$$
e::=x|\underline{a}| e_{1} ; e_{2}\left|e_{1}+e_{2}\right| \text { fix } e|\lambda x . e| e_{1} e_{2}
$$

Types:

$$
\tau::=o \mid \tau_{1} \rightarrow \tau_{2}
$$

Typing rules:

$$
\begin{array}{cccc}
\overline{\Gamma \vdash x: \Gamma(x)} & \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}} & & \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \\
\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \operatorname{fix} e: \tau} & \frac{\Gamma \vdash e_{1}: o \quad \Gamma \vdash e_{2}: o}{\Gamma \vdash \underline{a}: o} & \frac{\Gamma \vdash e_{1}: o \quad \Gamma \vdash e_{2}: o}{\Gamma \vdash e_{1}+e_{2}: o} & \\
\Gamma \vdash e_{1} ; e_{2}: o
\end{array}
$$

Extending to Higher-order

Terms:

$$
e::=x|\underline{a}| e_{1} ; e_{2}\left|e_{1}+e_{2}\right| \text { fix } e|\lambda x . e| e_{1} e_{2}
$$

Types:

$$
\tau::=o \mid \tau_{1} \rightarrow \tau_{2}
$$

Typing rules:

$$
\begin{array}{cccc}
\overline{\Gamma \vdash x: \Gamma(x)} & \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}} & & \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \\
\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \text { fix } e: \tau} & \overline{\Gamma \vdash \underline{a}: o} & \frac{\Gamma \vdash e_{1}: o \quad \Gamma \vdash e_{2}: o}{\Gamma \vdash e_{1}+e_{2}: o} & \\
\frac{\Gamma \vdash e_{1}: o \quad \Gamma \vdash e_{2}: o}{\Gamma \vdash e_{1} ; e_{2}: o}
\end{array}
$$

Program: closed term of type o.

Examples

First order: only use fix : $(o \rightarrow o) \rightarrow o$.

- $\operatorname{fix}(\lambda f \cdot(\underline{a} ; f)+\underline{b})$
- $\operatorname{fix}(\lambda f \cdot \underline{a} ; \underline{b} ; \operatorname{fix}(\lambda g \cdot \underline{d}+(\underline{c} ; f)))$

Examples

First order: only use fix : $(o \rightarrow o) \rightarrow o$.

- $\operatorname{fix}(\lambda f \cdot(\underline{a} ; f)+\underline{b})$
- $\operatorname{fix}(\lambda f \cdot \underline{a} ; \underline{b} ; \operatorname{fix}(\lambda g \cdot \underline{d}+(\underline{c} ; f)))$

Call-by-value versus call-by-name:

- $e=(\lambda x \cdot \underline{a} ; x) \underline{b} \quad \longrightarrow \quad L_{*}(e)=\{a b\}$

Examples

First order: only use fix : $(o \rightarrow o) \rightarrow o$.

- $\operatorname{fix}(\lambda f \cdot(\underline{a} ; f)+\underline{b})$
- $\operatorname{fix}(\lambda f \cdot \underline{a} ; \underline{b} ; \operatorname{fix}(\lambda g \cdot \underline{d}+(\underline{c} ; f)))$

Call-by-value versus call-by-name:

- $e=(\lambda x \cdot \underline{a} ; x) \underline{b} \quad \longrightarrow \quad L_{*}(e)=\{a b\}$

Non context-free examples:

- $e^{\prime}=\operatorname{fix}(\lambda f \cdot \lambda x .(\underline{a} ; f(\underline{b} ; x ; \underline{c}))+x)$

$$
L_{*}\left(e^{\prime} \underline{d}\right)=\left\{a^{n} b^{n} d c^{n} \mid n \geq 0\right\} \quad L_{\omega}\left(e^{\prime} \underline{d}\right)=\left\{a^{\omega}\right\}
$$

Examples

First order: only use fix : $(o \rightarrow o) \rightarrow o$.

- $\operatorname{fix}(\lambda f .(\underline{a} ; f)+\underline{b})$
- $\operatorname{fix}(\lambda f \cdot \underline{a} ; \underline{b} ; \operatorname{fix}(\lambda g \cdot \underline{d}+(\underline{c} ; f)))$

Call-by-value versus call-by-name:

- $e=(\lambda x \cdot \underline{a} ; x) \underline{b} \quad \longrightarrow \quad L_{*}(e)=\{a b\}$

Non context-free examples:

- $e^{\prime}=\operatorname{fix}(\lambda f \cdot \lambda x .(\underline{a} ; f(\underline{b} ; x ; \underline{c}))+x)$

$$
L_{*}\left(e^{\prime} \underline{d}\right)=\left\{a^{n} b^{n} d c^{n} \mid n \geq 0\right\} \quad L_{\omega}\left(e^{\prime} \underline{d}\right)=\left\{a^{\omega}\right\}
$$

- $e^{\prime \prime}=\operatorname{fix}\left(\lambda x .\left(e^{\prime} \underline{d}\right) ; x\right)$

$$
L_{*}\left(e^{\prime \prime}\right)=\emptyset \quad L_{\omega}\left(e^{\prime \prime}\right)=\left(L_{*}\left(e^{\prime} \underline{d}\right)\right)^{\omega} \cup\left\{a^{\omega}\right\}
$$

Related Work

Higher-order model checking (Ong \& Kobayashi, Walukiewicz \& Salvati, Melliès \& Grellois).

- $\lambda \mathbf{Y}$, higher-order recursion schemes, higher-order pushdown automata with collapse.
- Model-checking of temporal logic, μ-calculus formulas.
- Relies heavily on tree properties, even if we are only interested in traces.

Related Work

Higher-order model checking (Ong \& Kobayashi, Walukiewicz \& Salvati, Melliès \& Grellois).

- $\lambda \mathbf{Y}$, higher-order recursion schemes, higher-order pushdown automata with collapse.
- Model-checking of temporal logic, μ-calculus formulas.
- Relies heavily on tree properties, even if we are only interested in traces.

Example: $\lambda \mathbf{Y}$.

Choose first-order constants
$a: o \rightarrow o \rightarrow o$
$b: o \rightarrow o$
$c: o$
$M=\mathbf{Y}(\lambda f . \lambda x . a x(f(b x)))$

Böhm-tree of $\left(\begin{array}{ll}M c\end{array}\right)$:

GFP semantics

We define the category GFP

- Its objects A are pairs $\left(A_{*}, A_{\omega}\right)$ of complete lattices.
- A morphism $f: A \rightarrow B$ is a pair $\left(f_{*}, f_{\omega}\right)$ where
- $f_{*}: A_{*} \rightarrow B_{*}$
- $f_{\omega}: A_{*} \times A_{\omega} \rightarrow B_{\omega}$

GFP semantics

We define the category GFP

- Its objects A are pairs $\left(A_{*}, A_{\omega}\right)$ of complete lattices.
- A morphism $f: A \rightarrow B$ is a pair $\left(f_{*}, f_{\omega}\right)$ where
- $f_{*}: A_{*} \rightarrow B_{*}$
- $f_{\omega}: A_{*} \times A_{\omega} \rightarrow B_{\omega}$

Composition $h=g \circ f$ is given by

- $h_{*}\left(a_{*}\right)=g_{*}\left(f_{*}\left(a_{*}\right)\right)$
- $h_{\omega}\left(a_{*}, a_{\omega}\right)=g_{\omega}\left(f_{*}\left(a_{*}\right), f_{\omega}\left(a_{*}, a_{\omega}\right)\right)$

GFP semantics

We define the category GFP

- Its objects A are pairs $\left(A_{*}, A_{\omega}\right)$ of complete lattices.
- A morphism $f: A \rightarrow B$ is a pair $\left(f_{*}, f_{\omega}\right)$ where
- $f_{*}: A_{*} \rightarrow B_{*}$
- $f_{\omega}: A_{*} \times A_{\omega} \rightarrow B_{\omega}$

Composition $h=g \circ f$ is given by

- $h_{*}\left(a_{*}\right)=g_{*}\left(f_{*}\left(a_{*}\right)\right)$
- $h_{\omega}\left(a_{*}, a_{\omega}\right)=g_{\omega}\left(f_{*}\left(a_{*}\right), f_{\omega}\left(a_{*}, a_{\omega}\right)\right)$

Proposition

GFP is cartesian-closed.

Cartesian products

- $(A \times B)_{*}=A_{*} \times B_{*}$
- $(A \times B)_{\omega}=A_{\omega} \times B_{\omega}$

Function spaces

- $(A \Rightarrow B)_{*}=B_{*}^{A_{*}}$
- $(A \Rightarrow B)_{\omega}=B_{\omega}^{A_{*} \times A_{\omega}}$

GFP semantics

GFP has the following fixpoint combinator for every A :

$$
\mathrm{fix}_{A}:(A \Rightarrow A) \rightarrow A
$$

where

- $\left(\operatorname{fix}_{A}\right)_{*}\left(f_{*}\right)=\operatorname{lfp}\left(f_{*}\right)$
- $\left(\operatorname{fix}_{A}\right)_{\omega}\left(f_{*}, f_{\omega}\right)=\operatorname{gfp}\left(\lambda a_{\omega} \cdot f_{\omega}\left(\operatorname{lfp}\left(f_{*}\right), a_{\omega}\right)\right)$

Proposition

This is indeed a fixpoint: $f\left(\operatorname{fix}_{A}(f)\right)=\operatorname{fix}_{A}(f)$ holds in the internal language of GFP

$$
\operatorname{app} \circ\left\langle\mathrm{id}_{A \Rightarrow A}, \mathrm{fix}_{A}\right\rangle=\mathrm{fix}_{A}
$$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

Interpretation of contexts:
To a context $\Gamma=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$, associate the object

$$
\llbracket \Gamma \rrbracket=\llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
$$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

Interpretation of contexts:
To a context $\Gamma=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$, associate the object

$$
\llbracket \Gamma \rrbracket=\llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
$$

Interpretation of terms:
To a derivation $\Gamma \vdash e: \tau$, associate a morphism $\llbracket e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

Interpretation of contexts:
To a context $\Gamma=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$, associate the object

$$
\llbracket \Gamma \rrbracket=\llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
$$

Interpretation of terms:
To a derivation $\Gamma \vdash e: \tau$, associate a morphism $\llbracket e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

- $\llbracket \underline{a} \rrbracket=(\{a\}, \varnothing)$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

Interpretation of contexts:
To a context $\Gamma=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$, associate the object

$$
\llbracket \Gamma \rrbracket=\llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
$$

Interpretation of terms:
To a derivation $\Gamma \vdash e: \tau$, associate a morphism $\llbracket e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

- $\llbracket \underline{a} \rrbracket=(\{a\}, \varnothing)$
- $\llbracket+\rrbracket_{*}\left(X_{*}, Y_{*}\right)=X_{*} \cup Y_{*}$
$\llbracket+\rrbracket_{\omega}\left(X_{*}, Y_{*}, X_{\omega}, Y_{\omega}\right)=X_{\omega} \cup Y_{\omega}$

GFP semantics

Interpretation of types:

To every type τ, associate an object $\llbracket \tau \rrbracket$ of GFP

$$
\llbracket o \rrbracket=\left(\mathfrak{L}_{*}, \mathfrak{L}_{\omega}\right) \quad \text { and } \quad \llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket
$$

Interpretation of contexts:
To a context $\Gamma=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}$, associate the object

$$
\llbracket \Gamma \rrbracket=\llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
$$

Interpretation of terms:
To a derivation $\Gamma \vdash e: \tau$, associate a morphism $\llbracket e \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

- $\llbracket \underline{a} \rrbracket=(\{a\}, \varnothing)$
- $\llbracket+\rrbracket_{*}\left(X_{*}, Y_{*}\right)=X_{*} \cup Y_{*}$
$\llbracket+\rrbracket_{\omega}\left(X_{*}, Y_{*}, X_{\omega}, Y_{\omega}\right)=X_{\omega} \cup Y_{\omega}$
- $\llbracket \rrbracket_{*}\left(X_{*}, Y_{*}\right)=X_{*} Y_{*}$
$\llbracket ; \rrbracket_{\omega}\left(X_{*}, Y_{*}, X_{\omega}, Y_{\omega}\right)=X_{\omega} \cup X_{*} Y_{\omega}$

GFP semantics

Reminder: a program is a closed term of type o.
Let e be a program, then $\llbracket e \rrbracket: 1 \rightarrow \llbracket o \rrbracket$ is (isomorphic to) an element of $\mathfrak{L}_{*} \times \mathfrak{L}_{\omega}$.

Theorem

Let e be a program, write $\left(L_{*}, L_{\omega}\right)=\llbracket e \rrbracket$ its interpretation in GFP. Then we have $L_{*}(e)=L_{*}$ and $L_{\omega}(e)=L_{\omega}$.

GFP semantics

Reminder: a program is a closed term of type o.
Let e be a program, then $\llbracket e \rrbracket: 1 \rightarrow \llbracket o \rrbracket$ is (isomorphic to) an element of $\mathfrak{L}_{*} \times \mathfrak{L}_{\omega}$.

Theorem

Let e be a program, write $\left(L_{*}, L_{\omega}\right)=\llbracket e \rrbracket$ its interpretation in GFP. Then we have $L_{*}(e)=L_{*}$ and $L_{\omega}(e)=L_{\omega}$.

If we choose $\llbracket o \rrbracket=\left(\mathfrak{M}_{*}, \mathfrak{M}_{\omega}\right)$ instead, everything is computable. But α doesn't commute with greatest fixpoints :-(

Affine Functions

For first-order fixpoints:

The denotation of $f: o \rightarrow o$ has two components:

- $\llbracket f \rrbracket_{*}: \mathfrak{L}_{*} \rightarrow \mathfrak{L}_{*}$
- $\llbracket f \rrbracket_{\omega}: \mathfrak{L}_{*} \times \mathfrak{L}_{\omega} \rightarrow \mathfrak{L}_{\omega}$
$\llbracket f i x f \rrbracket$ involves some gfp of $\llbracket f \rrbracket_{\omega}$.

Affine Functions

For first-order fixpoints:

The denotation of $f: o \rightarrow o$ has two components:

- $\llbracket f \rrbracket_{*}: \mathfrak{L}_{*} \rightarrow \mathfrak{L}_{*}$
- $\llbracket f \rrbracket_{\omega}: \mathfrak{L}_{*} \times \mathfrak{L}_{\omega} \rightarrow \mathfrak{L}_{\omega}$

〔fix f 】involves some gfp of $\llbracket f \rrbracket_{\omega}$.
But every function $F: \mathfrak{L}_{*} \times \mathfrak{L}_{\omega} \rightarrow \mathfrak{L}_{\omega}$ that actually occurs as the interpretation of a term is affine: there exists $A: \mathfrak{L}_{*} \rightarrow \mathfrak{L}_{*}$ and $B: \mathfrak{L}_{*} \rightarrow \mathfrak{L}_{\omega}$ such that

$$
F(x, X)=A(x) \cdot X \cup B(x)
$$

Then $\operatorname{gfp}(F(x,-))=A(x)^{*} B(x) \cup A(x)^{\omega}$ commutes with α.

Affine Functions

For higher-order fixpoints:

Consider $f:(\tau \rightarrow o) \rightarrow(\tau \rightarrow o)$, then

$$
\llbracket f \rrbracket_{\omega}: \llbracket \tau \rightarrow o \rrbracket_{*} \times\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right) \rightarrow\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right)
$$

Affine Functions

For higher-order fixpoints:

Consider $f:(\tau \rightarrow o) \rightarrow(\tau \rightarrow o)$, then

$$
\llbracket f \rrbracket_{\omega}: \llbracket \tau \rightarrow o \rrbracket_{*} \times\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right) \rightarrow\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right)
$$

A function $F: S \times\left(T \Rightarrow \mathfrak{L}_{\omega}\right) \rightarrow\left(T \Rightarrow \mathfrak{L}_{\omega}\right)$ that occurs as the interpretation of a term will have the form:

$$
F(s, X)=\lambda t . A(s, t) \cup \bigcup_{t^{\prime} \in T} B\left(s, t, t^{\prime}\right) \cdot X\left(t^{\prime}\right)
$$

Affine Functions

For higher-order fixpoints:
Consider $f:(\tau \rightarrow o) \rightarrow(\tau \rightarrow o)$, then

$$
\llbracket f \rrbracket_{\omega}: \llbracket \tau \rightarrow o \rrbracket_{*} \times\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right) \rightarrow\left(\llbracket \tau \rrbracket_{*} \times \llbracket \tau \rrbracket_{\omega} \Rightarrow \mathfrak{L}_{\omega}\right)
$$

A function $F: S \times\left(T \Rightarrow \mathfrak{L}_{\omega}\right) \rightarrow\left(T \Rightarrow \mathfrak{L}_{\omega}\right)$ that occurs as the interpretation of a term will have the form:

$$
F(s, X)=\lambda t . A(s, t) \cup \bigcup_{t^{\prime} \in T} B\left(s, t, t^{\prime}\right) \cdot X\left(t^{\prime}\right)
$$

Then

$$
\begin{aligned}
& \operatorname{gfp}(F(s,-))(t)=\bigcup_{\substack{\left(t_{k}\right) \in T^{\mathbb{N}} \\
t_{0}=t}} \prod_{i=0}^{\infty} B\left(s, t_{i}, t_{i+1}\right) \\
& \quad \cup \bigcup_{t_{1}, \ldots, t_{n} \in T} B\left(s, t, t_{1}\right) \cdot B\left(s, t_{1}, t_{2}\right) \cdots B\left(s, t_{n-1}, t_{n}\right) \cdot A\left(s, t_{n}\right)
\end{aligned}
$$

ω-semigroups (Perrin, Pin)

An ω-semigroup is a pair of sets $\mathcal{S}=\left(\mathcal{S}_{+}, \mathcal{S}_{\omega}\right)$ equipped with:

- a mapping $\mathcal{S}_{+} \times \mathcal{S}_{+} \rightarrow \mathcal{S}_{+}$called binary product
- a mapping $\mathcal{S}_{+} \times \mathcal{S}_{\omega} \rightarrow \mathcal{S}_{\omega}$ called mixed product
- a mapping $\pi: \mathcal{S}_{+}^{\mathbb{N}} \rightarrow \mathcal{S}_{\omega}$ called infinite product such that
- \mathcal{S}_{+}with the binary product is a semigroup
- for each $s, t \in \mathcal{S}_{+}$and $u \in \mathcal{S}_{\omega}, s(t u)=(s t) u$
- for every increasing sequence $\left(k_{n}\right)_{n} \in \mathbb{N}^{\mathbb{N}}$ and $\left(s_{n}\right)_{n} \in \mathcal{S}_{+}^{\mathbb{N}}$, one has $\pi\left(\left(s_{n}\right)_{n}\right)=\pi\left(\left(t_{n}\right)_{n}\right)$ where $t_{0}=s_{0} s_{1} \ldots s_{k_{0}}$ and $t_{n+1}=s_{k_{n}+1} \ldots s_{k_{n+1}}$
- $s \cdot \pi\left(s_{0}, s_{1}, s_{2}, \ldots\right)=\pi\left(s, s_{0}, s_{1}, s_{2}, \ldots\right)$

ω-semigroups (Perrin, Pin)

An ω-semigroup is a pair of sets $\mathcal{S}=\left(\mathcal{S}_{+}, \mathcal{S}_{\omega}\right)$ equipped with:

- a mapping $\mathcal{S}_{+} \times \mathcal{S}_{+} \rightarrow \mathcal{S}_{+}$called binary product
- a mapping $\mathcal{S}_{+} \times \mathcal{S}_{\omega} \rightarrow \mathcal{S}_{\omega}$ called mixed product
- a mapping $\pi: \mathcal{S}_{+}^{\mathbb{N}} \rightarrow \mathcal{S}_{\omega}$ called infinite product
such that
- \mathcal{S}_{+}with the binary product is a semigroup
- for each $s, t \in \mathcal{S}_{+}$and $u \in \mathcal{S}_{\omega}, s(t u)=(s t) u$
- for every increasing sequence $\left(k_{n}\right)_{n} \in \mathbb{N}^{\mathbb{N}}$ and $\left(s_{n}\right)_{n} \in \mathcal{S}_{+}^{\mathbb{N}}$, one has $\pi\left(\left(s_{n}\right)_{n}\right)=\pi\left(\left(t_{n}\right)_{n}\right)$ where $t_{0}=s_{0} s_{1} \ldots s_{k_{0}}$ and $t_{n+1}=s_{k_{n}+1} \ldots s_{k_{n+1}}$
- $s \cdot \pi\left(s_{0}, s_{1}, s_{2}, \ldots\right)=\pi\left(s, s_{0}, s_{1}, s_{2}, \ldots\right)$

Remark: An ω-semigroup is in particular a Wilke algebra.

\mathfrak{M} is an ω-semigroup

Examples of ω-semigroups:

- $\left(\Sigma^{+}, \Sigma^{\omega}\right)$ with the usual products

\mathfrak{M} is an ω-semigroup

Examples of ω-semigroups:

- $\left(\Sigma^{+}, \Sigma^{\omega}\right)$ with the usual products
- $\left(\mathfrak{L}_{+}, \mathfrak{L}_{\omega}\right)$ with the usual products

\mathfrak{M} is an ω-semigroup

Examples of ω-semigroups:

- $\left(\Sigma^{+}, \Sigma^{\omega}\right)$ with the usual products
- $\left(\mathfrak{L}_{+}, \mathfrak{L}_{\omega}\right)$ with the usual products
- $\left(\mathfrak{M}_{+}, \mathfrak{M}_{\omega}\right)$: the infinitary product is defined as follows.

Given $\left(s_{n}\right) \in \mathfrak{M}_{+}^{\mathbb{N}}$, define

$$
\pi\left(\left(s_{n}\right)_{n}\right)=\alpha_{\omega}\left(\prod_{n=0}^{\infty} \gamma_{*}\left(s_{n}\right)\right)
$$

\mathfrak{M} is an ω-semigroup

Examples of ω-semigroups:

- $\left(\Sigma^{+}, \Sigma^{\omega}\right)$ with the usual products
- $\left(\mathfrak{L}_{+}, \mathfrak{L}_{\omega}\right)$ with the usual products
- $\left(\mathfrak{M}_{+}, \mathfrak{M}_{\omega}\right)$: the infinitary product is defined as follows.

Given $\left(s_{n}\right) \in \mathfrak{M}_{+}^{\mathbb{N}}$, define

$$
\pi\left(\left(s_{n}\right)_{n}\right)=\alpha_{\omega}\left(\prod_{n=0}^{\infty} \gamma_{*}\left(s_{n}\right)\right)
$$

Proposition

The abstraction function $\alpha: \mathfrak{L} \rightarrow \mathfrak{M}$ is a morphism of ω-semigroups. In particular, for $\left(L_{n}\right)_{n \in \mathbb{N}}$ a family of languages,

$$
\alpha_{\omega}\left(\prod_{i=0}^{\infty} L_{n}\right)=\pi\left(\left(\alpha_{*}\left(L_{n}\right)\right)_{n}\right)
$$

Back to affine functions

Idea:

Restrict to the sub-category of GFP

- whose objects are of the form $\left(X_{*}, \mathfrak{L}_{\omega}^{X_{\text {arg }}}\right)$
- whose morphisms $f: X \rightarrow Y$ have an infinitary component $f_{\omega}: X_{*} \times \mathfrak{L}_{\omega}^{X_{\text {arg }}} \rightarrow \mathfrak{L}_{\omega}^{Y_{\text {arg }}}$ which is affine w.r.t. its second argument.

Back to affine functions

Idea:

Restrict to the sub-category of GFP

- whose objects are of the form $\left(X_{*}, \mathfrak{L}_{\omega}^{X_{\text {arg }}}\right)$
- whose morphisms $f: X \rightarrow Y$ have an infinitary component $f_{\omega}: X_{*} \times \mathfrak{L}_{\omega}^{X_{\text {arg }}} \rightarrow \mathfrak{L}_{\omega}{ }^{Y_{\text {arg }}}$ which is affine w.r.t. its second argument.

What is an affine function ?

Back to affine functions

Idea:

Restrict to the sub-category of GFP

- whose objects are of the form $\left(X_{*}, \mathfrak{L}_{\omega}^{X_{\text {arg }}}\right)$
- whose morphisms $f: X \rightarrow Y$ have an infinitary component $f_{\omega}: X_{*} \times \mathfrak{L}_{\omega}^{X_{\text {arg }}} \rightarrow \mathfrak{L}_{\omega}^{Y_{\text {arg }}}$ which is affine w.r.t. its second argument.

What is an affine function ?
\longrightarrow a function of the form $f(x)=a x+b$.

Back to affine functions

Idea:

Restrict to the sub-category of GFP

- whose objects are of the form $\left(X_{*}, \mathfrak{L}_{\omega}^{X_{\text {arg }}}\right)$
- whose morphisms $f: X \rightarrow Y$ have an infinitary component $f_{\omega}: X_{*} \times \mathfrak{L}_{\omega}^{X_{\text {arg }}} \rightarrow \mathfrak{L}_{\omega}^{Y_{\text {arg }}}$ which is affine w.r.t. its second argument.

What is an affine function ?
\longrightarrow a function of the form $f(x)=a x+b$.
\longrightarrow a pair (a, b).

The category AFF $_{\mathcal{S}}$

Let $\mathcal{S}=\left(\mathcal{S}_{+}, \mathcal{S}_{\omega}\right)$ be an ω-semigroup.

- Objects are pairs $\left(X_{*}, X_{\text {arg }}\right)$
- A morphism $f: X \rightarrow Y$ is given by
- $f_{*}: X_{*} \rightarrow Y_{*}$
- $f_{\text {arg }}: X_{*} \times Y_{\text {arg }} \rightarrow \mathcal{S}_{\omega} \times \mathcal{S}_{*}^{X_{\text {arg }}^{\mathrm{op}}}$

The category $\mathbf{A F F}_{\mathcal{S}}$

Let $\mathcal{S}=\left(\mathcal{S}_{+}, \mathcal{S}_{\omega}\right)$ be an ω-semigroup.

- Objects are pairs $\left(X_{*}, X_{\text {arg }}\right)$
- A morphism $f: X \rightarrow Y$ is given by
- $f_{*}: X_{*} \rightarrow Y_{*}$
- $f_{\text {arg }}: X_{*} \times Y_{\text {arg }} \rightarrow \mathcal{S}_{\omega} \times \mathcal{S}_{*}^{X_{\text {arg }}^{\text {op }}}$

Notation: we decompose $f_{\text {arg }}$ in two components
$f_{c}: X_{*} \times Y_{\text {arg }} \rightarrow \mathcal{S}_{\omega} \quad$ and $\quad f_{p}: X_{*} \times Y_{\text {arg }} \times X_{\text {arg }}^{\mathrm{op}} \rightarrow \mathcal{S}_{*}$

The category $\mathbf{A F F}_{\mathcal{S}}$

Let $\mathcal{S}=\left(\mathcal{S}_{+}, \mathcal{S}_{\omega}\right)$ be an ω-semigroup.

- Objects are pairs $\left(X_{*}, X_{\text {arg }}\right)$
- A morphism $f: X \rightarrow Y$ is given by
- $f_{*}: X_{*} \rightarrow Y_{*}$
- $f_{\text {arg }}: X_{*} \times Y_{\text {arg }} \rightarrow \mathcal{S}_{\omega} \times \mathcal{S}_{*}^{X_{\text {arg }}^{\text {op }}}$

Notation: we decompose $f_{\text {arg }}$ in two components
$f_{c}: X_{*} \times Y_{\text {arg }} \rightarrow \mathcal{S}_{\omega} \quad$ and $\quad f_{p}: X_{*} \times Y_{\text {arg }} \times X_{\text {arg }}^{\mathrm{op}} \rightarrow \mathcal{S}_{*}$
There is a functor Ext : $\mathbf{A F F}_{\mathcal{S}} \rightarrow \mathbf{G F P}$ defined as:

- $\operatorname{Ext}\left(X_{*}, X_{\text {arg }}\right)=\left(X_{*}, \mathcal{S}_{\omega}^{X_{\text {arg }}}\right)$
- $\operatorname{Ext}\left(f_{*}, f_{\arg }\right)=\left(f_{*}, f_{\omega}\right)$ where $f_{\omega}: X_{*} \times \mathcal{S}_{\omega}^{X_{\text {arg }}} \rightarrow \mathcal{S}_{\omega}^{Y_{\text {arg }}}$ is defined as

$$
f_{\omega}(x, X, \eta)=f_{c}(x, \eta) \cup \bigcup_{\xi \in X_{\arg }} f_{p}(x, \eta, \xi) \cdot X(\xi)
$$

The category $\mathbf{A F F}_{\mathcal{S}}$

Composition is defined so that $\operatorname{Ext}(g \circ f)=\operatorname{Ext}(g) \circ \operatorname{Ext}(f)$.

The category $\mathbf{A F F}_{\mathcal{S}}$

Composition is defined so that $\operatorname{Ext}(g \circ f)=\operatorname{Ext}(g) \circ \operatorname{Ext}(f)$.
The cartesian product $(X \times Y)$ is given by:

- $(X \times Y)_{*}=X_{*} \times Y_{*}$
- $(X \times Y)_{\text {arg }}=X_{\text {arg }}+Y_{\text {arg }}$

The category $\mathbf{A F F}_{\mathcal{S}}$

Composition is defined so that $\operatorname{Ext}(g \circ f)=\operatorname{Ext}(g) \circ \operatorname{Ext}(f)$.
The cartesian product $(X \times Y)$ is given by:

- $(X \times Y)_{*}=X_{*} \times Y_{*}$
- $(X \times Y)_{\text {arg }}=X_{\text {arg }}+Y_{\text {arg }}$

The function space $(X \Rightarrow Y)$ is given by:

- $(X \Rightarrow Y)_{*}=X_{*} \Rightarrow\left(Y_{*} \times \mathcal{S}_{*}^{Y_{\mathrm{arg}} \times X_{\mathrm{arg}}^{\mathrm{op}}}\right)$
- $(X \Rightarrow Y)_{\arg }=X_{*} \times Y_{\arg }$

The category $\mathbf{A F F}_{\mathcal{S}}$

Composition is defined so that $\operatorname{Ext}(g \circ f)=\operatorname{Ext}(g) \circ \operatorname{Ext}(f)$.
The cartesian product $(X \times Y)$ is given by:

- $(X \times Y)_{*}=X_{*} \times Y_{*}$
- $(X \times Y)_{\text {arg }}=X_{\text {arg }}+Y_{\text {arg }}$

The function space $(X \Rightarrow Y)$ is given by:

- $(X \Rightarrow Y)_{*}=X_{*} \Rightarrow\left(Y_{*} \times \mathcal{S}_{*}^{Y_{\arg } \times X_{\text {arg }}^{\mathrm{op}}}\right)$
- $(X \Rightarrow Y)_{\text {arg }}=X_{*} \times Y_{\text {arg }}$

Proposition

The category $\mathbf{A F F}_{\mathcal{S}}$ is cartesian-closed.

Affine Semantics

Base type: $\llbracket o \rrbracket=\left(\mathcal{S}_{*},\{\star\}\right)$

Affine Semantics

Base type: $\quad \llbracket o \rrbracket=\left(\mathcal{S}_{*},\{\star\}\right)$

Terms:

- $\llbracket \underline{a} \rrbracket_{*}(*) \quad=a$

$$
\llbracket \underline{a} \rrbracket_{\arg }(\star) \quad=(\varnothing, \varnothing)
$$

$-\llbracket+\rrbracket_{*}\left(s_{1}, s_{2}\right) \quad=\quad s_{1} \cup s_{2}$
$\llbracket+\rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=(\varnothing, \lambda \eta \cdot \varepsilon)$

- $\llbracket ; \rrbracket_{*}\left(s_{1}, s_{2}\right)=s_{1} s_{2}$

$$
\llbracket ; \rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=\left(\varnothing, \lambda \eta \cdot \operatorname{case}(\eta)\left\{\begin{array}{c}
\operatorname{inl} \star \mapsto \varepsilon \\
\operatorname{inr} \star \mapsto s_{1}
\end{array}\right)\right.
$$

Affine Semantics

Base type: $\quad \llbracket o \rrbracket=\left(\mathcal{S}_{*},\{\star\}\right)$

Terms:

$$
\begin{aligned}
& \text { - } \llbracket \underline{a} \rrbracket_{*}(*) \quad=a \\
& \llbracket \underline{a} \rrbracket \arg (\star) \quad=(\varnothing, \varnothing) \\
& -\llbracket+\rrbracket_{*}\left(s_{1}, s_{2}\right) \quad=\quad s_{1} \cup s_{2} \\
& \llbracket+\rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=(\varnothing, \lambda \eta \cdot \varepsilon) \\
& \text { - } \llbracket ; \rrbracket_{*}\left(s_{1}, s_{2}\right)=s_{1} s_{2} \\
& \llbracket ; \rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=\left(\varnothing, \lambda \eta \cdot \operatorname{case}(\eta)\left\{\begin{array}{c}
\operatorname{inl} \star \mapsto \varepsilon \\
\operatorname{inr} \star \mapsto s_{1}
\end{array}\right)\right.
\end{aligned}
$$

Remarks:

- One needs an element $a \in \mathcal{S}_{*}:$ pick $\{a\}$ for \mathfrak{L}_{*} and $[a]$ for \mathfrak{M}_{*}.

Affine Semantics

Base type: $\quad \llbracket o \rrbracket=\left(\mathcal{S}_{*},\{\star\}\right)$

Terms:

- $\llbracket \underline{a} \rrbracket_{*}(*) \quad=a$

$$
\llbracket \underline{a} \rrbracket \arg (\star) \quad=(\varnothing, \varnothing)
$$

- $\llbracket+\rrbracket_{*}\left(s_{1}, s_{2}\right)=s_{1} \cup s_{2}$

$$
\llbracket+\rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=(\varnothing, \lambda \eta \cdot \varepsilon)
$$

- $\llbracket ; \rrbracket_{*}\left(s_{1}, s_{2}\right)=s_{1} s_{2}$

$$
\llbracket ; \rrbracket_{\arg }\left(s_{1}, s_{2}, \star\right)=\left(\varnothing, \lambda \eta \cdot \operatorname{case}(\eta)\left\{\begin{array}{c}
\operatorname{inl} \star \mapsto \varepsilon \\
\operatorname{inr} \star \mapsto s_{1}
\end{array}\right)\right.
$$

Remarks:

- One needs an element $a \in \mathcal{S}_{*}$: pick $\{a\}$ for \mathfrak{L}_{*} and $[a]$ for \mathfrak{M}_{*}.
- The fixpoint operator can be defined accordingly.

Putting it all together

Theorem

For every program e, we have $\llbracket e \rrbracket^{G \boldsymbol{F P}}=\operatorname{Ext}\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)$.

Putting it all together

Theorem

For every program e, we have $\llbracket \ell \rrbracket^{\text {GFP }}=\operatorname{Ext}\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)$.
Corollary
For every program $e, \llbracket e \rrbracket^{\mathfrak{L}}=\left(L_{*}(e), L_{\omega}(e)\right)$.

Putting it all together

Theorem

For every program e, we have $\llbracket e \rrbracket^{\text {GFP }}=\operatorname{Ext}\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)$.
Corollary
For every program $e, \llbracket e \rrbracket^{\mathfrak{L}}=\left(L_{*}(e), L_{\omega}(e)\right)$.
Theorem
For every program $e, \alpha\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)=\llbracket e \rrbracket^{\mathfrak{M}}$.

Putting it all together

Theorem

For every program e, we have $\llbracket e \rrbracket^{\text {GFP }}=\operatorname{Ext}\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)$.

Corollary

For every program $e, \llbracket e \rrbracket^{\mathfrak{L}}=\left(L_{*}(e), L_{\omega}(e)\right)$.

Theorem

For every program $e, \alpha\left(\llbracket e \rrbracket^{\mathfrak{L}}\right)=\llbracket \ell \rrbracket^{\mathfrak{M}}$.

Corollary

Let e be a program, and write $\llbracket e \rrbracket^{\mathfrak{M}}=\left(X_{*}, X_{\omega}\right)$.
Then $L_{* / \omega}(e) \subseteq L_{* / \omega}(\mathcal{A}) \Longleftrightarrow X_{* / \omega} \sqsubseteq \alpha_{* / \omega}\left(L_{* / \omega}(\mathcal{A})\right)$.
Moreover, $\llbracket e \rrbracket^{\mathfrak{M}}$ is effectively computable.

Thanks!

