Semi-simplicial Set Models for Distributed Knowledge

LICS 2023, Boston, USA

Éric Goubault¹, Roman Kniazev^{1,2}, **Jérémy Ledent³** and Sergio Rajsbaum⁴

¹École Polytechnique, Palaiseau
 ²ENS Paris-Saclay, Gif-sur-Yvette
 ³University of Strathclyde, Glasgow (soon: IRIF, Université Paris Cité)
 ⁴UNAM, Mexico and IRIF, Université Paris Cité

Tuesday 27 June, 2023

Simplicial Models for Epistemic Logic

Logic, Topology and Computing

Let Ag a finite set of agents and At a set of atomic propositions.

Syntax :

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_a \varphi \mid \dots \qquad p \in At, \ a \in Ag$$

• $K_a \varphi$ is read: "agent *a* knows φ ".

Let Ag a finite set of agents and At a set of atomic propositions.

Syntax :

$$\varphi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_a \phi \mid D_A \phi \qquad p \in At, \ a \in Ag, \ A \subseteq Ag$$

- $K_a \varphi$ is read: "agent *a* knows φ ".
- + $D_A \phi$ is read: "there is distributed knowledge among A of ϕ ".
- $\cdot D_{\{a\}} \phi \iff K_a \phi.$

Let Ag a finite set of agents and At a set of atomic propositions.

Syntax :

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_a \varphi \mid D_A \varphi \qquad \qquad p \in At, \ a \in Ag, \ A \subseteq Ag$$

- $K_a \varphi$ is read: "agent *a* knows φ ".
- $D_A \phi$ is read: "there is distributed knowledge among A of ϕ ".
- $\cdot D_{\{a\}} \phi \iff K_a \phi.$

In distributed computing:

 $\begin{array}{ccc} \mbox{Agents} & \longleftrightarrow & \mbox{Processes} \\ \mbox{Atomic propositions} & \longleftrightarrow & \mbox{Facts about the system} \end{array}$

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- $\cdot \ \chi : V \to \mbox{Ag}$ assigns an agent to each vertex.
- l: Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- $\cdot \ \chi : V \to \mbox{Ag}$ assigns an agent to each vertex.
- l: Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

Definition (Goubault, L., Rajsbaum – 2018, 2021)

A simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$, where:

- (V, S) is a simplicial complex.
- + $\chi: V \to \mbox{Ag}$ assigns an agent to each vertex.
- ℓ : Facets(\mathscr{C}) $\rightarrow 2^{At}$ assigns a set of atomic propositions to each facet of \mathscr{C} .

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- $\cdot \ {\mathscr C}$ is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- $\cdot \, \phi$ is an epistemic logic formula.

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, where:

- \mathscr{C} is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- $\cdot \, \phi$ is an epistemic logic formula.

By induction on φ :

$\mathscr{C},X\models p$	iff	$p \in \ell(X)$
$\mathscr{C},X\models \neg \varphi$	iff	\mathscr{C} ,X $\not\models \phi$
$\mathscr{C},X\models \phi\wedge\psi$	iff	$\mathscr{C}, X \models \phi$ and $\mathscr{C}, X \models \psi$
$\mathscr{C}, X \models K_a \varphi$	iff	$\mathscr{C}, Y \models \varphi$ for all $Y \in Facet(\mathscr{C})$ such that $a \in \chi(X \cap Y)$
$\mathscr{C}, X \models D_A \varphi$	iff	$\mathscr{C}, Y \models \varphi$ for all $Y \in Facet(\mathscr{C})$ such that $A \subseteq \chi(X \cap Y)$

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$\begin{array}{lll} \mathscr{C}, X \models p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \phi & \text{iff} & \mathscr{C}, X \not\models \phi \\ \mathscr{C}, X \models \phi \land \psi & \text{iff} & \mathscr{C}, X \models \phi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } a \in \chi(X \cap Y) \\ \mathscr{C}, X \models D_A \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } A \subseteq \chi(X \cap Y) \end{array}$$

Example 1: $\mathscr{C}, X \models K_a \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

Example 1: $\mathscr{C}, X \models K_a \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

$$\begin{array}{lll} \mathscr{C}, X \models p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \phi & \text{iff} & \mathscr{C}, X \not\models \phi \\ \mathscr{C}, X \models \phi \land \psi & \text{iff} & \mathscr{C}, X \models \phi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } a \in \chi(X \cap Y) \\ \mathscr{C}, X \models D_A \phi & \text{iff} & \mathscr{C}, Y \models \phi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \text{ such that } A \subseteq \chi(X \cap Y) \end{array}$$

Example 2: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

We define the satisfaction relation $\mathscr{C}, X \models \varphi$, by induction on φ :

Example 2: $\mathscr{C}, X \models D_{\{a,c\}} \varphi$ iff $\mathscr{C}, Y \models \varphi$ for which Y?

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, $Ag = \{ a, b, c \}, \}$

Theorem (Goubault, L., Rajsbaum (2018, 2021))

The category of pure simplicial models is equivalent to the one of proper Kripke models.

Example: with three agents, $Ag = \{a, b, c\}$,

Corollary (Conservation of satisfiability)

 $\mathscr{C}, w \models \phi \text{ in a pure simplicial model} \quad \textit{iff} \quad M, w \models \phi \text{ in the associated Kripke model}.$

Variants of Simplicial Models

What can we do differently?

(1) Pure vs. impure simplicial complexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

What can we do differently?

(1) Pure vs. impure simplicial complexes.

(2) Atomic propositions on the worlds vs. vertices.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

• Goubault, L., Rajsbaum (GandALF'18)

What can we do differently?

(1) Pure vs. impure simplicial complexes.

(2) Atomic propositions on the worlds vs. vertices.

(3) The worlds are facets vs. simplexes.

- van Ditmarsch (WoLLIC'21)
- van Ditmarsch, Kuznets, Randrianomentsoa (2022)
- Goubault, L., Rajsbaum (STACS'22)

• Goubault, L., Rajsbaum (GandALF'18)

• van Ditmarsch, Goubault, L., Rajsbaum (IACAP'21)

Our Contribution

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our Contribution

With each new variant, one usually asks two fundamental questions:

1. Find an equivalent class of Kripke models.

and

2. Give a sound and complete axiomatization.

Our contribution:

- We define a very general class of simplicial models: epistemic coverings.
- We establish a dictionary:
 Properties of coverings ↔ Properties of Kripke models ↔ Axioms of the logic.
- This solves questions 1 and 2 for all the corresponding sub-classes of models!

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

New features of Epistemic Coverings

(1) Models are based on semi-simplicial sets, generalizing simplicial complexes.

(2) Models are equipped with a discrete covering E,

and a map $p: E \rightarrow B$, tagging which simplexes are worlds.

 Epistemic Coverings	
Simplicial Complex base	

Conclusion

Key messages:

- S5 Kripke models have an underlying higher-dimensional structure.
- Distributed knowledge = higher-dimensional connectivity.
- We introduced epistemic coverings, a very large class of simplicial models.
- Many interesting variants occur as sub-classes defined by various properties.
- Each sub-class has (1) a Kripke counterpart; (2) a sound and complete axiomatization.

Key messages:

- S5 Kripke models have an underlying higher-dimensional structure.
- Distributed knowledge = higher-dimensional connectivity.
- We introduced epistemic coverings, a very large class of simplicial models.
- Many interesting variants occur as sub-classes defined by various properties.
- Each sub-class has (1) a Kripke counterpart; (2) a sound and complete axiomatization.

Thanks!