
Concurrent specifications beyond linearizability

Éric Goubault Jérémy Ledent Samuel Mimram

École Polytechnique, France

OPODIS 2018, Hong Kong
December 19, 2018

1 / 14



Objects

Processes communicate through shared objects. For example:

I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .

I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .

I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces

I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Objects

Processes communicate through shared objects. For example:
I Hardware: Read/Write registers, test&set, CAS, . . .
I Data structures: lists, queues, hashmaps, . . .
I Message passing interfaces
I Immediate-snapshot, consensus, set-agreement, . . .

Goal: can we implement object B using objects A1, . . . , Ak?

→ We need to specify the behavior of the objects.

2 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

3 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

3 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

T = ipush,0
0 · rok

0 · ipush,2
2 · ipop

1 · r2
1 · ipop

0 · rok
2 · r0

0

Trace formalism:
I Time is abstracted away.
I Alternation of invocations and responses on each process.

3 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

3 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .

I A program implements a specification σ if all the traces that
it can produce belong to σ.

3 / 14



Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

Write T for the set of all execution traces.
I A concurrent specification is a subset σ ⊆ T .
I A program implements a specification σ if all the traces that
it can produce belong to σ.

3 / 14



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

4 / 14



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

4 / 14



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

4 / 14



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

4 / 14



Linearizability (Herlihy & Wing, 1990)

SeqSpec ConcSpec

Lin

I Input: a sequential specification σ (e.g. list, queue, . . .).
I Output: a concurrent specification Lin(σ).

P0

P1

P2

Lin(σ) = {T concurrent trace | T is linearizable w.r.t. σ}

Some objects are not linearizable!
Their specification cannot be expressed as Lin(σ), for any σ.

4 / 14



Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.

I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

5 / 14



Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

5 / 14



Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!

5 / 14



Concurrent variants of linearizability
Set-linearizability (Neiger, 1994)

P0

P1

P2

I Can specify: exchanger, immediate snapshot, set agreement.
I Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

P0

P1

P2

I Can specify every task!
5 / 14



Overview
Concurrent specifications

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

exchanger

set-agreement

immediate snapshot

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

Prefix-closed concurrent specifications

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot

Interval-linearizability

validity

write-snapshot

?

Prefix-closed concurrent specifications

This talk: add a few more "desirable" properties

6 / 14



Overview
Concurrent specifications

Linearizability

stack
queue

test&set

Set-linearizability

exchanger

set-agreement

immediate snapshot validity

write-snapshot

Prefix-closed concurrent specifications

Interval-linearizability

6 / 14



Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,

(4) totality: if t ∈ σ and t has a pending invocation of process i,
then there exists an output x such that t · rx

i ∈ σ,
(5) σ has the expansion property.

7 / 14



Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,
(4) totality: if t ∈ σ and t has a pending invocation of process i,

then there exists an output x such that t · rx
i ∈ σ,

(5) σ has the expansion property.

7 / 14



Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications σ ⊆ T
satisfying the following properties.

(1) prefix-closure: if t · t′ ∈ σ then t ∈ σ,
(2) non-emptiness: ε ∈ σ,
(3) receptivity: if t ∈ σ and t has no pending invocation of

process i, then t · ixi ∈ σ for every input value x,
(4) totality: if t ∈ σ and t has a pending invocation of process i,

then there exists an output x such that t · rx
i ∈ σ,

(5) σ has the expansion property.

7 / 14



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

8 / 14



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.

8 / 14



Expansion of intervals
A concurrent specification satisfies the expansion property if:

For any correct execution trace,

a b

c d

e f

j `

h k

g i

P0

P1

P2

if we expand the intervals,

a b

c d

e f

j `

h k

g i

P0

P1

P2

then the resulting trace is still correct.
8 / 14



Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
9 / 14



Example: the Exchanger object

Similar to the one available in Java1: “A synchronization point at
which threads can pair and swap elements within pairs”.
Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

exchange(0) 2

exchange(42) Fail

exchange(2) 0

exchange(’a’) Fail

exchange(’b’) ’c’

exchange(’c’) ’b’

P0

P1

P2

1java.util.concurrent.Exchanger<V>
9 / 14



Example: the Exchanger object (2)

The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

10 / 14



Example: the Exchanger object (2)

The following execution is correct:

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

Hence, according to the expansion property,

exchange(0) Fail

exchange(1) Fail

exchange(2) Fail

P0

P1

P2

should be considered correct too!

10 / 14



Expansion is a desirable property

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these objects can:
I call the objects,
I do local computations,
I use branching, loops.

Given a program P , we can define its semantics JP K, which is the
set of execution traces that P can produce.

Theorem
The semantics JP K of any program P has the expansion property.
Moreover, if P is wait-free, then JP K ∈ ConcSpec.

11 / 14



Expansion is a desirable property

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these objects can:
I call the objects,
I do local computations,
I use branching, loops.

Given a program P , we can define its semantics JP K, which is the
set of execution traces that P can produce.

Theorem
The semantics JP K of any program P has the expansion property.
Moreover, if P is wait-free, then JP K ∈ ConcSpec.

11 / 14



Expansion is a desirable property

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these objects can:
I call the objects,
I do local computations,
I use branching, loops.

Given a program P , we can define its semantics JP K, which is the
set of execution traces that P can produce.

Theorem
The semantics JP K of any program P has the expansion property.
Moreover, if P is wait-free, then JP K ∈ ConcSpec.

11 / 14



Expansion is a desirable property

We fix a set {A1, . . . , Ak} of shared objects, along with their
concurrent specifications.

A program P using these objects can:
I call the objects,
I do local computations,
I use branching, loops.

Given a program P , we can define its semantics JP K, which is the
set of execution traces that P can produce.

Theorem
The semantics JP K of any program P has the expansion property.
Moreover, if P is wait-free, then JP K ∈ ConcSpec.

11 / 14



Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

12 / 14



Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

12 / 14



Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

12 / 14



Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

12 / 14



Linearizability gives expansion for free
Linearizability-based techniques always produce specifications
which satisfy the expansion property.

Theorem
For every sequential specification σ, Lin(σ) ∈ ConcSpec.

Proof.
If some execution trace is linearizable,

P0

P1

P2

Then any trace obtained by expanding it is still linearizable.
P0

P1

P2

12 / 14



A Galois connection

SeqSpec ConcSpec

Lin

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

13 / 14



A Galois connection

SeqSpec ConcSpec

Lin

U

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

13 / 14



A Galois connection

SeqSpec ConcSpec>

Lin

U

Theorem
The maps Lin and U form a Galois connection: for every
σ ∈ SeqSpec and τ ∈ ConcSpec,

Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ)

13 / 14



Applications

I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

14 / 14



Applications

I By the properties of Galois connections,

Lin(U(Lin(σ))) = Lin(σ)

This yields a simple criterion to check whether a given
specification τ is linearizable: check whether Lin(U(τ)) = τ .

I The Galois connection for interval linearizability has the
following corollary:

Theorem
ConcSpec is the set of interval-linearizable specifications.

14 / 14



Thanks!

14 / 14


