Concurrent specifications beyond linearizability

Éric Goubault Jérémy Ledent Samuel Mimram

École Polytechnique, France

OPODIS 2018, Hong Kong December 19, 2018

Processes communicate through shared objects. For example:

► Hardware: Read/Write registers, test&set, CAS,

- ► Hardware: Read/Write registers, test&set, CAS,
- Data structures: lists, queues, hashmaps, ...

- ► Hardware: Read/Write registers, test&set, CAS,
- Data structures: lists, queues, hashmaps, ...
- Message passing interfaces

- ► Hardware: Read/Write registers, test&set, CAS,
- Data structures: lists, queues, hashmaps, ...
- Message passing interfaces
- Immediate-snapshot, consensus, set-agreement, ...

Processes communicate through shared objects. For example:

- ► Hardware: Read/Write registers, test&set, CAS,
- Data structures: lists, queues, hashmaps, ...
- Message passing interfaces
- Immediate-snapshot, consensus, set-agreement,

Goal: can we implement object B using objects A_1, \ldots, A_k ?

Processes communicate through shared objects. For example:

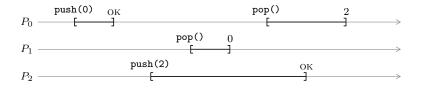
- ► Hardware: Read/Write registers, test&set, CAS,
- Data structures: lists, queues, hashmaps, ...
- Message passing interfaces
- Immediate-snapshot, consensus, set-agreement,

Goal: can we implement object B using objects A_1, \ldots, A_k ?

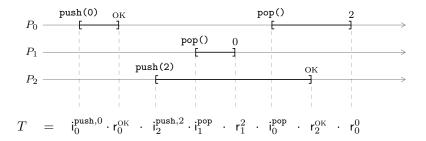
 \rightarrow We need to specify the behavior of the objects.

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).



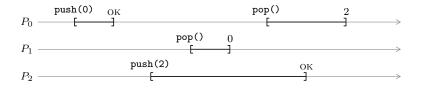
Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).



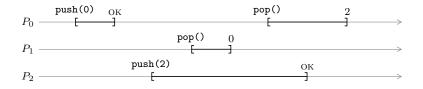
Trace formalism:

- Time is abstracted away.
- Alternation of invocations and responses on each process.

Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).



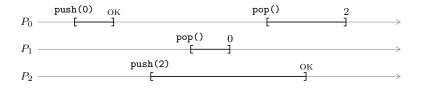
Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).



Write ${\mathcal T}$ for the set of all execution traces.

• A concurrent specification is a subset $\sigma \subseteq \mathcal{T}$.

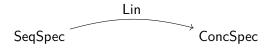
Idea: the specification of an object is the set of all the correct execution traces (Lamport, 1986).



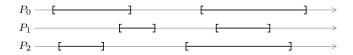
Write ${\mathcal T}$ for the set of all execution traces.

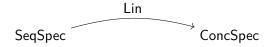
- A concurrent specification is a subset $\sigma \subseteq \mathcal{T}$.
- A program implements a specification σ if all the traces that it can produce belong to σ.

- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification Lin(*σ*).

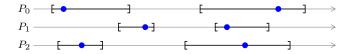


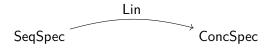
- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification $Lin(\sigma)$.



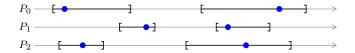


- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification $Lin(\sigma)$.

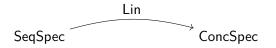




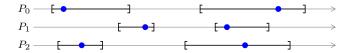
- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification Lin(*σ*).



 $\mathsf{Lin}(\sigma) = \{T \text{ concurrent trace } | T \text{ is linearizable w.r.t. } \sigma \}$



- **Input:** a sequential specification σ (e.g. list, queue, ...).
- **Output:** a concurrent specification $Lin(\sigma)$.

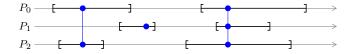


 $\mathsf{Lin}(\sigma) = \{T \text{ concurrent trace } | T \text{ is linearizable w.r.t. } \sigma \}$

Some objects are not linearizable!

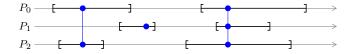
Their specification cannot be expressed as $Lin(\sigma)$, for any σ .

Set-linearizability (Neiger, 1994)



► Can specify: exchanger, immediate snapshot, set agreement.

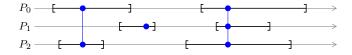
Set-linearizability (Neiger, 1994)



► Can specify: exchanger, immediate snapshot, set agreement.

Cannot specify: validity, write-snapshot.

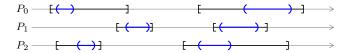
Set-linearizability (Neiger, 1994)



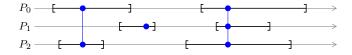
Can specify: exchanger, immediate snapshot, set agreement.

Cannot specify: validity, write-snapshot.

Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)



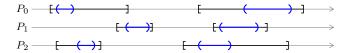
Set-linearizability (Neiger, 1994)



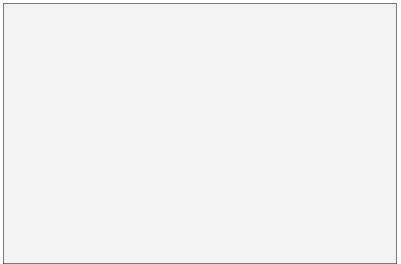
Can specify: exchanger, immediate snapshot, set agreement.

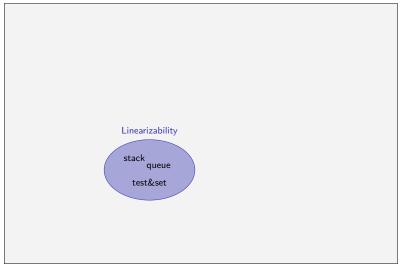
Cannot specify: validity, write-snapshot.

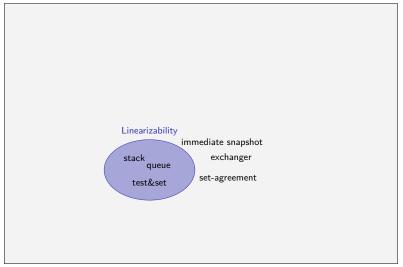
Interval-linearizability (Castañeda, Rajsbaum, Raynal, 2015)

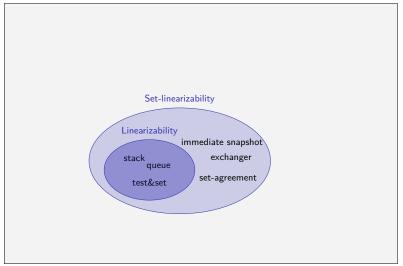


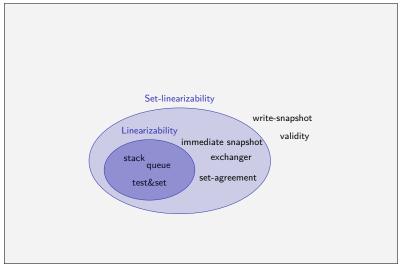
Can specify every task!

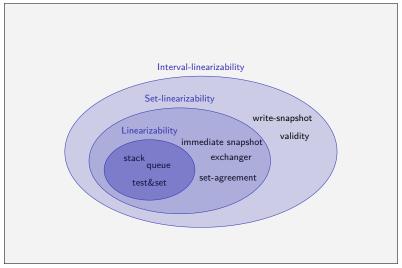


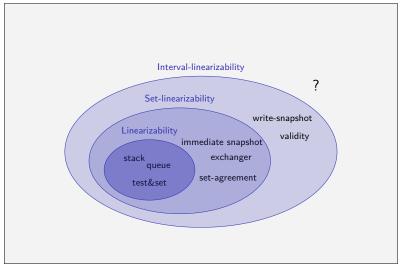


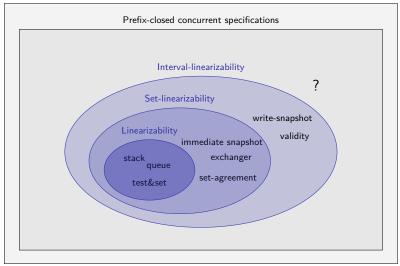


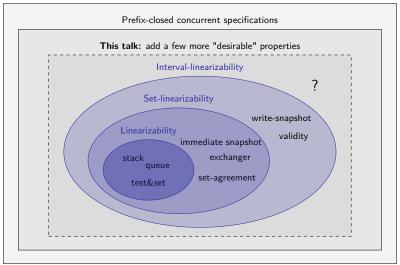


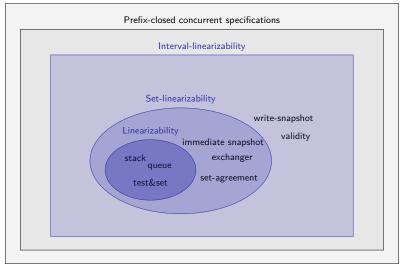












Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications $\sigma \subseteq \mathcal{T}$ satisfying the following properties.

- (1) prefix-closure: if $t \cdot t' \in \sigma$ then $t \in \sigma$,
- (2) non-emptiness: $\varepsilon \in \sigma$,
- (3) receptivity: if $t \in \sigma$ and t has no pending invocation of process i, then $t \cdot i_i^x \in \sigma$ for every input value x,

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications $\sigma \subseteq \mathcal{T}$ satisfying the following properties.

- (1) prefix-closure: if $t \cdot t' \in \sigma$ then $t \in \sigma$,
- (2) non-emptiness: $\varepsilon \in \sigma$,
- (3) receptivity: if $t \in \sigma$ and t has no pending invocation of process i, then $t \cdot i_i^x \in \sigma$ for every input value x,
- (4) *totality*: if $t \in \sigma$ and t has a pending invocation of process i, then there exists an output x such that $t \cdot r_i^x \in \sigma$,

Relevant concurrent specifications

We write ConcSpec for the set of concurrent specifications $\sigma \subseteq \mathcal{T}$ satisfying the following properties.

- (1) prefix-closure: if $t \cdot t' \in \sigma$ then $t \in \sigma$,
- (2) non-emptiness: $\varepsilon \in \sigma$,
- (3) receptivity: if $t \in \sigma$ and t has no pending invocation of process i, then $t \cdot i_i^x \in \sigma$ for every input value x,
- (4) *totality*: if $t \in \sigma$ and t has a pending invocation of process i, then there exists an output x such that $t \cdot \mathbf{r}_i^x \in \sigma$,
- (5) σ has the *expansion* property.

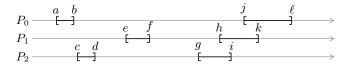
Expansion of intervals

A concurrent specification satisfies the expansion property if:

Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,



Expansion of intervals

A concurrent specification satisfies the expansion property if:

For any correct execution trace,

if we expand the intervals,

then the resulting trace is still correct.

Example: the Exchanger object

Similar to the one available in Java¹: "A synchronization point at which threads can pair and swap elements within pairs". Here, we consider a wait-free variant.

¹java.util.concurrent.Exchanger<V>

Example: the Exchanger object

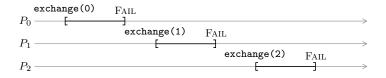
Similar to the one available in Java¹: "A synchronization point at which threads can pair and swap elements within pairs". Here, we consider a wait-free variant.

A typical execution of the exchanger looks like this:

¹java.util.concurrent.Exchanger<V>

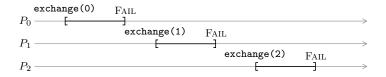
Example: the Exchanger object (2)

The following execution is correct:

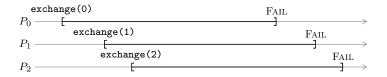


Example: the Exchanger object (2)

The following execution is correct:



Hence, according to the expansion property,



should be considered correct too!

We fix a set $\{A_1,\ldots,A_k\}$ of shared objects, along with their concurrent specifications.

We fix a set $\{A_1,\ldots,A_k\}$ of shared objects, along with their concurrent specifications.

- A program P using these objects can:
 - call the objects,
 - do local computations,
 - use branching, loops.

We fix a set $\{A_1, \ldots, A_k\}$ of shared objects, along with their concurrent specifications.

A program P using these objects can:

- call the objects,
- do local computations,
- use branching, loops.

Given a program P, we can define its semantics $[\![P]\!],$ which is the set of execution traces that P can produce.

We fix a set $\{A_1,\ldots,A_k\}$ of shared objects, along with their concurrent specifications.

A program P using these objects can:

- call the objects,
- do local computations,
- use branching, loops.

Given a program P, we can define its semantics $[\![P]\!]$, which is the set of execution traces that P can produce.

Theorem

The semantics $\llbracket P \rrbracket$ of any program P has the expansion property. Moreover, if P is wait-free, then $\llbracket P \rrbracket \in \mathsf{ConcSpec.}$

Linearizability-based techniques always produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ , $Lin(\sigma) \in ConcSpec$.

Linearizability-based techniques always produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ , $Lin(\sigma) \in ConcSpec$.

Proof.

If some execution trace is linearizable,

Linearizability-based techniques always produce specifications which satisfy the expansion property.

Theorem

For every sequential specification σ , $Lin(\sigma) \in ConcSpec$.

Proof.

If some execution trace is linearizable,

Linearizability-based techniques always produce specifications which satisfy the expansion property.

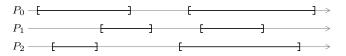
Theorem

For every sequential specification σ , $Lin(\sigma) \in ConcSpec$.

Proof.

If some execution trace is linearizable,

Then any trace obtained by expanding it is still linearizable.



Linearizability-based techniques always produce specifications which satisfy the expansion property.

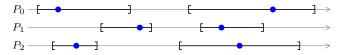
Theorem

For every sequential specification σ , $Lin(\sigma) \in ConcSpec$.

Proof.

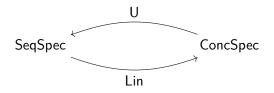
If some execution trace is linearizable,

Then any trace obtained by expanding it is still linearizable.

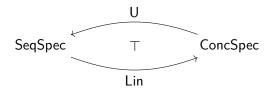


A Galois connection

A Galois connection



A Galois connection



Theorem

The maps Lin and U form a Galois connection: for every $\sigma \in SeqSpec$ and $\tau \in ConcSpec$,

 $\mathsf{Lin}(\sigma) \subseteq \tau \qquad \Longleftrightarrow \qquad \sigma \subseteq \mathsf{U}(\tau)$

Applications

By the properties of Galois connections,

 $\mathsf{Lin}(\mathsf{U}(\mathsf{Lin}(\sigma))) = \mathsf{Lin}(\sigma)$

This yields a simple criterion to check whether a given specification τ is linearizable: check whether $Lin(U(\tau)) = \tau$.

Applications

By the properties of Galois connections,

 $\mathsf{Lin}(\mathsf{U}(\mathsf{Lin}(\sigma))) = \mathsf{Lin}(\sigma)$

This yields a simple criterion to check whether a given specification τ is linearizable: check whether $Lin(U(\tau)) = \tau$.

The Galois connection for interval linearizability has the following corollary:

Theorem

ConcSpec is the set of interval-linearizable specifications.

Thanks!