Brief Announcement: Variants of Approximate Agreement on Graphs and Simplicial Complexes

Jérémy Ledent

June 2021

MSP Group, University of Strathclyde, Glasgow

Fix a connected graph $\mathscr{G} = (V, E)$, and let $n \ge 3$ be the number of processes. The graph approximate agreement task on \mathscr{G} is defined as follows.

Input: Each process is given a vertex $x_i \in V$.

Output: Each process decides on a vertex $y_i \in V$, such that:

- Agreement: The set of outputs $Y = \{y_i \mid 1 \le i \le n\}$ is a clique of \mathcal{G} .
- ▶ Validity: If the set of inputs $X = \{x_i \mid 1 \le i \le n\}$ is a clique of \mathcal{G} , then $Y \subseteq X$.

Fix a connected graph $\mathscr{G} = (V, E)$, and let $n \ge 3$ be the number of processes. The graph approximate agreement task on \mathscr{G} is defined as follows.

Input: Each process is given a vertex $x_i \in V$.

Output: Each process decides on a vertex $y_i \in V$, such that:

- Agreement: The set of outputs $Y = \{y_i \mid 1 \le i \le n\}$ is a clique of \mathcal{G} .
- ▶ Validity: If the set of inputs $X = \{x_i \mid 1 \le i \le n\}$ is a clique of \mathcal{G} , then $Y \subseteq X$.

► ✓ Solvable if 𝔅 is chordal.

► ✓ Solvable if 𝔅 is chordal.

Castañeda, Rajsbaum, Roy, Convergence and covering on graphs for wait-free robots, 2018:

• X Unsolvable if \mathscr{G} is a cycle of length ≥ 4 .

► ✓ Solvable if 𝔅 is chordal.

Castañeda, Rajsbaum, Roy, Convergence and covering on graphs for wait-free robots, 2018:

• X Unsolvable if \mathscr{G} is a cycle of length ≥ 4 .

Alistarh, Ellen, Rybicki, Wait-free approximate agreement on graphs, SIROCCO '21:

► ✓ Solvable if 𝔅 is nicely bridged.

► ✓ Solvable if 𝔅 is chordal.

Castañeda, Rajsbaum, Roy, Convergence and covering on graphs for wait-free robots, 2018:

• X Unsolvable if \mathscr{G} is a cycle of length ≥ 4 .

Alistarh, Ellen, Rybicki, Wait-free approximate agreement on graphs, SIROCCO '21:

- ► ✓ Solvable if 𝔅 is nicely bridged.
- ► X Unsolvable if 𝔐 admits a *lower bound labelling*.

Graphs Chordal graphs

Main Goal: show a more topological point of view on Graph Approximate Agreement.

• Replace the graph \mathscr{G} by a simplicial complex, $\kappa(\mathscr{G})$.

Main Goal: show a more topological point of view on Graph Approximate Agreement.

• Replace the graph \mathscr{G} by a simplicial complex, $\kappa(\mathscr{G})$.

Purpose:

• Better understanding of the results from the literature.

Main Goal: show a more topological point of view on Graph Approximate Agreement.

• Replace the graph \mathscr{G} by a simplicial complex, $\kappa(\mathscr{G})$.

Purpose:

- ► Better understanding of the results from the literature.
- ► Conjecture the exact class of graphs where the task is wait-free solvable.

Let $\mathscr{G} = (V, E)$ be a graph.

Definition

The complex of cliques of \mathscr{G} is the simplicial complex $\kappa(\mathscr{G}) = (V, S)$, where:

 $S = \{X \subseteq V \mid X \text{ is a clique of } \mathscr{G}\}$

Let $\mathcal{G} = (V, E)$ be a graph.

Definition

The complex of cliques of \mathscr{G} is the simplicial complex $\kappa(\mathscr{G}) = (V, S)$, where:

 $S = \{X \subseteq V \mid X \text{ is a clique of } \mathscr{G}\}$

Let $\mathscr{G} = (V, E)$ be a graph.

Definition

The complex of cliques of \mathscr{G} is the simplicial complex $\kappa(\mathscr{G}) = (V, S)$, where:

 $S = \{X \subseteq V \mid X \text{ is a clique of } \mathscr{G}\}$

Let $\mathscr{G} = (V, E)$ be a graph.

Definition

The complex of cliques of \mathscr{G} is the simplicial complex $\kappa(\mathscr{G}) = (V, S)$, where:

 $S = \{X \subseteq V \mid X \text{ is a clique of } \mathscr{G}\}$

Let $\mathscr{G} = (V, E)$ be a graph.

Definition

The complex of cliques of \mathscr{G} is the simplicial complex $\kappa(\mathscr{G}) = (V, S)$, where:

 $S = \{X \subseteq V \mid X \text{ is a clique of } \mathscr{G}\}$

Fix a simplicial complex $\mathcal{K} = (V, S)$.

The simplex agreement task on \mathcal{G} is defined as follows.

Input: Each process is given a vertex $x_i \in V$.

Output: Each process decides on a vertex $y_i \in V$, such that:

- Agreement: The set of outputs $Y = \{y_i \mid 1 \le i \le n\}$ is a simplex of \mathcal{K} .
- ▶ Validity: If the set of inputs $X = \{x_i \mid 1 \le i \le n\}$ is a simplex of \mathcal{K} , then $Y \subseteq X$.

 $\bigwedge \mathcal{K}$ is **not** the input complex of the task.

Fix a simplicial complex $\mathcal{K} = (V, S)$.

The simplex agreement task on \mathcal{G} is defined as follows.

Input: Each process is given a vertex $x_i \in V$.

Output: Each process decides on a vertex $y_i \in V$, such that:

- Agreement: The set of outputs $Y = \{y_i \mid 1 \le i \le n\}$ is a simplex of \mathcal{K} .
- ▶ Validity: If the set of inputs $X = \{x_i \mid 1 \le i \le n\}$ is a simplex of \mathcal{K} , then $Y \subseteq X$.

Theorem

Graph Approximate Agreement on \mathscr{G} is the same task as Simplex Agreement on $\kappa(\mathscr{G})$.

Fact: The dimension of the complex of cliques is $\dim(\kappa(\mathscr{G})) = \omega(\mathscr{G}) - 1$.

Fact: The dimension of the complex of cliques is $\dim(\kappa(\mathscr{G})) = \omega(\mathscr{G}) - 1$.

Now compare the following results:

Theorem (Nowak and Rybicki, DISC 2019)

For a chordal graph \mathcal{G} , graph agreement is solvable with f Byzantine faults if $n > (\omega(\mathcal{G}) + 1)f$.

Theorem (Mendes, Helihy, Vaidya, Garg, 2015)

Multidimensional approx. agreement in \mathbb{R}^d is solvable with f Byzantine faults iff n > (d+2)f.

Fact: The dimension of the complex of cliques is $\dim(\kappa(\mathscr{G})) = \omega(\mathscr{G}) - 1$.

Now compare the following results:

Theorem (Nowak and Rybicki, DISC 2019)

For a chordal graph \mathcal{G} , graph agreement is solvable with f Byzantine faults if $n > (\omega(\mathcal{G}) + 1)f$.

Theorem (Mendes, Helihy, Vaidya, Garg, 2015)

Multidimensional approx. agreement in \mathbb{R}^d is solvable with f Byzantine faults iff n > (d+2)f.

Motto: Simplex Agreement is the discrete counterpart of Multidimensional Agreement.

In the wait-free shared memory model:

Theorem (Herlihy and Shavit, STOC 1993)

Multidimensional ε -approximate agreement is unsolvable in a subspace $\mathcal{V} \subseteq \mathbb{R}^d$ that contains holes of radius $\geq \varepsilon$.

In the wait-free shared memory model:

Theorem (Herlihy and Shavit, STOC 1993)

Multidimensional ε -approximate agreement is unsolvable in a subspace $\mathcal{V} \subseteq \mathbb{R}^d$ that contains holes of radius $\geq \varepsilon$.

By analogy with the continuous case, we can conjecture the following:

Conjecture

- Simplex agreement on \mathcal{K} is solvable iff \mathcal{K} is contractible.
- Graph approximate agreement on \mathscr{G} is solvable iff $\kappa(\mathscr{G})$ is contractible.

Thanks!