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Introduction



Epistemic Logic: Syntax

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:
ϕ ::= p | ¬ϕ | ϕ∧ϕ | Kaϕ p ∈Prop, a ∈Ag

Example formula: Ka¬Kb ϕ where a,b ∈Ag

“a knows that b does not know that the formula ϕ is true.”

In distributed computing:

Agents ←→ Processes
Atomic propositions ←→ Facts about the system
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Epistemic Logic : Semantics

Kripke semantics : Based on Hintikka’s idea of “possible worlds”.

Definition
An epistemic Kripke model M = (W ,∼,L) is given by:

Ï a set W of possible worlds,

Ï for each a ∈Ag, an equivalence relation ∼a ⊆W×W , called indistinguishability,

Ï a function L :W →P (Prop) assigning atomic propositions to each world.

Example:
w1 w2 w3

a

b

c

Satisfaction relation : M ,w |=Kaϕ iff M ,w ′ |=ϕ for all w ′ such that w ∼a w
′.
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Simplicial complexes

Definition
A simplicial complex is a pair (V ,S) where:

Ï V is a set of vertices,

Ï S is a downward-closed family of subsets of V , called simplexes.
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Simplicial complexes

Definition
A simplicial complex is a pair (V ,S) where:

Ï V is a set of vertices,

Ï S is a downward-closed family of subsets of V , called simplexes.

The dimension of a simplex X ∈ S is dim(X )= |X |−1.
A facet is a simplex which is maximal w.r.t. inclusion.
A simplicial complex is pure if all facets have the same dimension.
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Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum (2018, 2021))

A pure simplicial model is given by C = (V ,S ,χ,`) where:

Ï (V ,S) is a pure simplicial complex.

Ï χ :V →Ag is a colouring map, such that every simplex has vertices of different colour,

Ï ` :V →P(Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents,
We deal one card to each agent, and the remaining card is kept hidden.
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Equivalence with Kripke models

Suppose the number of agents is |Ag| = n+1.

Theorem (Goubault, Ledent, Rajsbaum (2018, 2021))

There is an equivalence of categories between the category of pure simplicial models of
dimension n, and the category of proper and local Kripke models.

Example: with three agents, Ag= { a , b , c },
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Contribution



What about impure simplicial models?

Ï Previous paper: pure simplicial models, i.e.,
all worlds must have the same dimension.

Ï This paper: what happens if we lift this
restriction?

Contributions:
Ï Find an equivalent class of Kripke models.

Ï Axiomatise the logic.

w5

w4
w3 w2 w1

w9

w8

w7

w6

w11 w12

w10

w0
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Satisfaction relation

Ï Define C ,w |=ϕ, where w is a facet of C :

C ,w |= p iff p ∈ `(w)

C ,w |= ¬ϕ iff C ,w 6|=ϕ
C ,w |=ϕ∧ψ iff C ,w |=ϕ and C ,w |=ψ
C ,w |=Kaϕ iff C ,w ′ |=ϕ for all w ′ ∈Facet(C ) such that a ∈χ(w ∩w ′)

Example: with Ag= { a , b , c } and Prop= {p}.

w1
w2

w4
w3

p is true in w1 only.

Ï C ,w1 |=Kap

Ï C ,w1 |= ¬Kb p

Ï C ,w4 |= (Kb¬p) ∧ (Kc¬p)
Ï C ,w2 |=Kap

Ï C ,w1 |=KbKap
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Dead or Alive?

Define the following formulas:

dead(a)=Ka false alive(a)=¬dead(a)

One can check that:

C ,w |= alive(a) iff a ∈χ(w)

In every simplicial model:

Ï Dead agents know everything: |= dead(a) =⇒ Kaϕ.

Ï Alive agents satisfy Axiom T: |= alive(a) =⇒ (Kaϕ ⇒ ϕ).

Ï Alive agents know they are alive: |= alive(a) =⇒ (Ka alive(a)).
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Axiomatisation

KB4: the following axioms are valid in all simplicial models.

K : Kaϕ∧Ka(ϕ⇒ψ) =⇒ Kaψ B : ϕ =⇒ Ka¬Ka¬ϕ 4 : Kaϕ =⇒ KaKaϕ

Two extra axioms: not provable in KB4, but valid in all simplicial models.

Ï NE: there is at least one alive agent.

Ï SA: if an agent alone, then this agent knows that it is alone.

NE :
∨

a∈Ag
alive(a) SAa :

(
alive(a)∧ ∧

b∈Ag\{a}

dead(b)

)
=⇒ Ka

∧
b∈Ag\{a}

dead(b)

Theorem (Completeness)

The axiom system KB4+NE+SA is sound and complete w.r.t. (impure) simplicial models.
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Extensions (Journal version)

Worlds are facets vs. Worlds are simplexes.

a b
w0

a

w1

b

w3
w2

⇒ Axiom SA is false

Dynamic Epistemic Logic.

Synchronous message-passing
model with crashes
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Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

Ï Dead agents know nothing.
Ï Axiom T is true, Axiom K is false.
Ï Complete axiomatization is an open question.

Future work.
Ï Many other variants are possible.

Ï The importance of topology is well-established
in distributed computing.

Ï Can we make use of it for other applications?

c

b

a

cw1 w2

Thanks for listening!
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