A Simplicial Model for KB4: Epistemic Logic with Agents that May Die

Éric Goubault, Jérémy Ledent and Sergio Rajsbaum

Friday 18 March, 2022
MSP Group, University of Strathclyde

Introduction

Epistemic Logic: Syntax

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid K_{a} \varphi \quad p \in \text { Prop, } a \in \operatorname{Ag}
$$

Example formula: $\quad K_{a} \neg K_{b} \varphi \quad$ where $a, b \in \mathrm{Ag}$
"a knows that b does not know that the formula φ is true."

Epistemic Logic: Syntax

Let Ag be a finite set of agents and Prop a set of atomic propositions.

Syntax:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid K_{a} \varphi \quad p \in \text { Prop, } a \in \mathrm{Ag}
$$

Example formula: $\quad K_{a} \neg K_{b} \varphi \quad$ where $a, b \in \mathrm{Ag}$
"a knows that b does not know that the formula φ is true."
In distributed computing:
Agents $\longleftrightarrow \quad$ Processes
Atomic propositions $\longleftrightarrow \quad$ Facts about the system

Epistemic Logic : Semantics

Kripke semantics: Based on Hintikka's idea of "possible worlds".

Definition

An epistemic Kripke model $M=(W, \sim, L)$ is given by:

- a set W of possible worlds,
- for each $a \in A g$, an equivalence relation $\sim_{a} \subseteq W \times W$, called indistinguishability,
- a function $L: W \rightarrow \mathscr{P}$ (Prop) assigning atomic propositions to each world.

Example:

Epistemic Logic : Semantics

Kripke semantics: Based on Hintikka's idea of "possible worlds".

Definition

An epistemic Kripke model $M=(W, \sim, L)$ is given by:

- a set W of possible worlds,
- for each $a \in \mathrm{Ag}$, an equivalence relation $\sim_{a} \subseteq W \times W$, called indistinguishability,
- a function $L: W \rightarrow \mathscr{P}$ (Prop) assigning atomic propositions to each world.

Example:

Satisfaction relation: $M, w \vDash K_{a} \varphi$ iff $\quad M, w^{\prime} \vDash \varphi$ for all w^{\prime} such that $w \sim_{a} w^{\prime}$.

Simplicial complexes

Definition

A simplicial complex is a pair (V, S) where:

- V is a set of vertices,
- S is a downward-closed family of subsets of V, called simplexes.

Simplicial complexes

Definition

A simplicial complex is a pair (V, S) where:

- V is a set of vertices,
- S is a downward-closed family of subsets of V, called simplexes.

The dimension of a simplex $X \in S$ is $\operatorname{dim}(X)=|X|-1$.

Simplicial complexes

Definition

A simplicial complex is a pair (V, S) where:

- V is a set of vertices,
- S is a downward-closed family of subsets of V, called simplexes.

The dimension of a simplex $X \in S$ is $\operatorname{dim}(X)=|X|-1$.
A facet is a simplex which is maximal w.r.t. inclusion.
A simplicial complex is pure if all facets have the same dimension.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021))$

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a, b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Pure Simplicial Models

Definition (Goubault, Ledent, Rajsbaum $(2018,2021)$)

A pure simplicial model is given by $\mathscr{C}=(V, S, \chi, \ell)$ where:

- (V, S) is a pure simplicial complex.
- $\chi: V \rightarrow \mathrm{Ag}$ is a colouring map, such that every simplex has vertices of different colour,
- $\ell: V \rightarrow \mathscr{P}$ (Prop) assigns atomic propositions to the worlds.

Example: Consider a deck of four cards, 1,2,3,4, and three agents, a , b, c. We deal one card to each agent, and the remaining card is kept hidden.

Equivalence with Kripke models

Suppose the number of agents is $|\mathrm{Ag}|=n+1$.

Theorem (Goubault, Ledent, Rajsbaum $(2018,2021)$)

There is an equivalence of categories between the category of pure simplicial models of dimension n, and the category of proper and local Kripke models.

Equivalence with Kripke models

Suppose the number of agents is $|\mathrm{Ag}|=n+1$.

Theorem (Goubault, Ledent, Rajsbaum $(2018,2021)$)

There is an equivalence of categories between the category of pure simplicial models of dimension n, and the category of proper and local Kripke models.

Example: with three agents, $A g=\{a, b, c\}$,

Equivalence with Kripke models

Suppose the number of agents is $|\mathrm{Ag}|=n+1$.

Theorem (Goubault, Ledent, Rajsbaum $(2018,2021)$)

There is an equivalence of categories between the category of pure simplicial models of dimension n, and the category of proper and local Kripke models.

Example: with three agents, $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$,

w_{2}
W_{3}

Equivalence with Kripke models

Suppose the number of agents is $|\mathrm{Ag}|=n+1$.

Theorem (Goubault, Ledent, Rajsbaum $(2018,2021)$)

There is an equivalence of categories between the category of pure simplicial models of dimension n, and the category of proper and local Kripke models.

Example: with three agents, $A g=\{a, b, c\}$,

Equivalence with Kripke models

Suppose the number of agents is $|\mathrm{Ag}|=n+1$.

Theorem (Goubault, Ledent, Rajsbaum $(2018,2021)$)

There is an equivalence of categories between the category of pure simplicial models of dimension n, and the category of proper and local Kripke models.

Example: with three agents, $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$,

Contribution

What about impure simplicial models?

What about impure simplicial models?

- Previous paper: pure simplicial models, i.e., all worlds must have the same dimension.
- This paper: what happens if we lift this restriction?

Contributions:

- Find an equivalent class of Kripke models.
- Axiomatise the logic.

What about impure simplicial models?

- Previous paper: pure simplicial models, i.e., all worlds must have the same dimension.
- This paper: what happens if we lift this restriction?

Contributions:

- Find an equivalent class of Kripke models.
- Axiomatise the logic.

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

$$
\begin{array}{lll}
\mathscr{C}, w \vDash p & \text { iff } & p \in \ell(w) \\
\mathscr{C}, w \mid=\neg \varphi & \text { iff } & \mathscr{C}, w \not \vDash \varphi \\
\mathscr{C}, w \mid=\varphi \wedge \psi & \text { iff } & \mathscr{C}, w \mid=\varphi \text { and } \mathscr{C}, w \mid=\psi \\
\mathscr{C}, w \vDash K_{a} \varphi & \text { iff } & \mathscr{C}, w^{\prime} \mid=\varphi \text { for all } w^{\prime} \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi\left(w \cap w^{\prime}\right)
\end{array}
$$

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\(\mathscr{C}, w \mid=p \quad\) iff \(\quad p \in \ell(w)\)
\(\mathscr{C}, w \vDash \neg \varphi \quad\) iff \(\quad \mathscr{C}, w \not \vDash \varphi\)
\(\mathscr{C}, w=\varphi \wedge \psi \quad\) iff \(\quad \mathscr{C}, w=\varphi\) and \(\mathscr{C}, w \mid=\psi\)
\(\mathscr{C}, w \mid=K_{a} \varphi \quad\) iff \(\quad \mathscr{C}, w^{\prime} \mid=\varphi\) for all \(w^{\prime} \in \operatorname{Facet}(\mathscr{C})\) such that \(a \in \chi\left(w \cap w^{\prime}\right)\)
```


Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

$$
\begin{array}{lll}
\mathscr{C}, w \mid=p & \text { iff } & p \in \ell(w) \\
\mathscr{C}, w \mid=\neg \varphi & \text { iff } & \mathscr{C}, w \mid \vDash \varphi \\
\mathscr{C}, w \mid=\varphi \wedge \psi & \text { iff } & \mathscr{C}, w \mid=\varphi \text { and } \mathscr{C}, w \mid=\psi \\
\mathscr{C}, w \mid=K_{a} \varphi & \text { iff } & \mathscr{C}, w^{\prime} \mid=\varphi \text { for all } w^{\prime} \in \operatorname{Facet}(\mathscr{C}) \text { such that } a \in \chi\left(w \cap w^{\prime}\right)
\end{array}
$$

Example: with $\mathrm{Ag}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\operatorname{Prop}=\{p\}$.

p is true in w_{1} only.

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\mathscr{C},w|=p\quad iff}\quadp\in\ell(w
\mathscr{C},w|\neg\neg\varphi\quad iff }\mathscr{C},w\not\vDash
\mathscr{C},w|\varphi\varphi^\psi iff }\quad\mathscr{C},w|\varphi=\varphi\mathrm{ and }\mathscr{C},w|=
\mathscr{C},w|=Ka}\varphi\quad\mathrm{ iff }\mathscr{C},\mp@subsup{w}{}{\prime}|\varphi\mathrm{ for all w'}\in\operatorname{Facet(\mathscr{C}) such that a\in\chi(w\cap\mp@subsup{w}{}{\prime})
```

Example: with $\mathrm{Ag}=\{a, b, c\}$ and $\operatorname{Prop}=\{p\}$.

p is true in w_{1} only.

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\mathscr{C},w|=p\quad iff}\quadp\in\ell(w
\mathscr{C},w|\neg\varphi iff }\mathscr{C},w\vDash\vDash
\mathscr{C},w|\varphi\varphi^\psi iff }\quad\mathscr{C},w|\varphi\mathrm{ and }\mathscr{C},w|=
\mathscr{C},w|=Ka}\varphi\quad\mathrm{ iff }\mathscr{C},\mp@subsup{w}{}{\prime}|\varphi\mathrm{ for all w'}\in\operatorname{Facet(\mathscr{C}) such that a\in\chi(w\cap\mp@subsup{w}{}{\prime})
```

Example: with $\mathrm{Ag}=\{a, b, c\}$ and $\operatorname{Prop}=\{p\}$.

p is true in w_{1} only.

- $\mathscr{C}, w_{1} l=K_{a} p$
- $\mathscr{C}, w_{1}=\neg K_{b} p$

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\mathscr{C},w|=p\quad iff}\quadp\in\ell(w
\mathscr{C},w\vDash\neg\varphi iff }\mathscr{C},w\not\vDash
\mathscr{C},w|\varphi\varphi^\psi iff }\quad\mathscr{C},w|\varphi=\varphi\mathrm{ and }\mathscr{C},w|=
C},w|=\mp@subsup{K}{a}{}\varphi\quad\mathrm{ iff }\mathscr{C},\mp@subsup{w}{}{\prime}|\varphi\mathrm{ for all w' }\in\operatorname{Facet}(\mathscr{C})\mathrm{ such that }a\in\chi(w\cap\mp@subsup{w}{}{\prime}
```

Example: with $\mathrm{Ag}=\{a, b, c\}$ and Prop $=\{p\}$.

- $\mathscr{C}, w_{1} l=K_{a} p$
- $\mathscr{C}, w_{1}=\neg K_{b} p$
- $\mathscr{C}, w_{4}=\left(K_{b} \neg p\right) \wedge\left(K_{c} \neg p\right)$
p is true in w_{1} only.

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\mathscr{C},w|=p\quad iff}\quadp\in\ell(w
\mathscr{C},w\vDash\neg\varphi iff }\mathscr{C},w\not\vDash
\mathscr{C},w|\varphi\varphi^\psi iff }\quad\mathscr{C},w|\varphi=\varphi\mathrm{ and }\mathscr{C},w|=
C},w|=\mp@subsup{K}{a}{}\varphi\quad\mathrm{ iff }\mathscr{C},\mp@subsup{w}{}{\prime}|\varphi\mathrm{ for all w' }\in\operatorname{Facet}(\mathscr{C})\mathrm{ such that }a\in\chi(w\cap\mp@subsup{w}{}{\prime}
```

Example: with $\mathrm{Ag}=\{a, b, c\}$ and Prop $=\{p\}$.

p is true in w_{1} only.

- $\mathscr{C}, w_{1} l=K_{a} p$
- $\mathscr{C}, w_{1}=\neg K_{b} p$
- $\mathscr{C}, w_{4}=\left(K_{b} \neg p\right) \wedge\left(K_{c} \neg p\right)$
- $\mathscr{C}, w_{2}=K_{a} p$

Satisfaction relation

- Define $\mathscr{C}, w \vDash \varphi$, where w is a facet of \mathscr{C} :

```
\mathscr{C},w|=p\quad iff}\quadp\in\ell(w
\mathscr{C},w|\neg\neg\varphi\quad iff }\mathscr{C},w\not\vDash
\mathscr{C},w|\varphi\varphi^\psi iff }\quad\mathscr{C},w|\varphi\mathrm{ and }\mathscr{C},w|=
C},w|=\mp@subsup{K}{a}{}\varphi\quad\mathrm{ iff }\mathscr{C},\mp@subsup{w}{}{\prime}=\varphi\mathrm{ for all w' }\in\operatorname{Facet}(\mathscr{C})\mathrm{ such that }a\in\chi(w\cap\mp@subsup{w}{}{\prime}
```

Example: with $\mathrm{Ag}=\{a, b, c\}$ and Prop $=\{p\}$.

p is true in w_{1} only.

- $\mathscr{C}, w_{1} l=K_{a} p$
- $\mathscr{C}, w_{1}=\neg K_{b} p$
- $\mathscr{C}, w_{4}=\left(K_{b} \neg p\right) \wedge\left(K_{c} \neg p\right)$
- $\mathscr{C}, w_{2}=K_{a} p$
- $\mathscr{C}, w_{1}=K_{b} K_{a} p$

Dead or Alive?

Define the following formulas:

$$
\operatorname{dead}(a)=K_{a} \text { false } \quad \operatorname{alive}(a)=\neg \operatorname{dead}(a)
$$

One can check that:

$$
\mathscr{C}, w \vDash \operatorname{alive}(a) \quad \text { iff } \quad a \in \chi(w)
$$

Dead or Alive?

Define the following formulas:

$$
\operatorname{dead}(a)=K_{a} \text { false } \quad \operatorname{alive}(a)=\neg \operatorname{dead}(a)
$$

One can check that:

$$
\mathscr{C}, w \mid=\operatorname{alive}(a) \quad \text { iff } \quad a \in \chi(w)
$$

In every simplicial model:

- Dead agents know everything: $\quad \vDash \operatorname{dead}(a) \Longrightarrow K_{a} \varphi$.
- Alive agents satisfy Axiom $\mathbf{T}: \quad \vDash$ alive $(a) \Longrightarrow\left(K_{a} \varphi \Rightarrow \varphi\right)$.
- Alive agents know they are alive: $\quad \vDash$ alive $(a) \Longrightarrow\left(K_{a}\right.$ alive $\left.(a)\right)$.

Axiomatisation

KB4: the following axioms are valid in all simplicial models.

$$
\mathbf{K}: K_{a} \varphi \wedge K_{a}(\varphi \Rightarrow \psi) \Longrightarrow K_{a} \psi \quad \text { B : } \varphi \Longrightarrow K_{a} \neg K_{a} \neg \varphi \quad \text { 4: } K_{a} \varphi \Longrightarrow K_{a} K_{a} \varphi
$$

Axiomatisation

KB4: the following axioms are valid in all simplicial models.

$$
\mathbf{K}: K_{a} \varphi \wedge K_{a}(\varphi \Rightarrow \psi) \Longrightarrow K_{a} \psi \quad \text { B : } \varphi \Longrightarrow K_{a} \neg K_{a} \neg \varphi \quad \text { 4: } K_{a} \varphi \Longrightarrow K_{a} K_{a} \varphi
$$

Two extra axioms: not provable in KB4, but valid in all simplicial models.

- NE: there is at least one alive agent.
- SA: if an agent alone, then this agent knows that it is alone.

$$
\text { NE : } \bigvee_{a \in \mathrm{Ag}} \operatorname{alive}(a)
$$

$$
\mathbf{S A}_{a}:\left(\operatorname{alive}(a) \wedge \bigwedge_{b \in \operatorname{Ag} \backslash\{a\}} \operatorname{dead}(b)\right) \Longrightarrow K_{a} \bigwedge_{b \in \mathrm{Ag} \backslash\{a\}} \operatorname{dead}(b)
$$

Axiomatisation

KB4: the following axioms are valid in all simplicial models.

$$
\mathbf{K}: K_{a} \varphi \wedge K_{a}(\varphi \Rightarrow \psi) \Longrightarrow K_{a} \psi \quad \text { B : } \varphi \Longrightarrow K_{a} \neg K_{a} \neg \varphi \quad \text { 4: } K_{a} \varphi \Longrightarrow K_{a} K_{a} \varphi
$$

Two extra axioms: not provable in KB4, but valid in all simplicial models.

- NE: there is at least one alive agent.
- SA: if an agent alone, then this agent knows that it is alone.

$$
\mathbf{N E}: \bigvee_{a \in \mathrm{Ag}} \operatorname{alive}(a) \quad \mathbf{S A}_{a}:\left(\operatorname{alive}(a) \wedge \bigwedge_{b \in \mathrm{Ag} \backslash\{a\}} \operatorname{dead}(b)\right) \Longrightarrow K_{a} \bigwedge_{b \in \mathrm{Ag} \backslash\{a\}} \operatorname{dead}(b)
$$

Theorem (Completeness)

The axiom system KB4+NE+SA is sound and complete w.r.t. (impure) simplicial models.

Extensions (Journal version)

Worlds are facets vs. Worlds are simplexes.

Extensions (Journal version)

Worlds are facets vs. Worlds are simplexes.

Dynamic Epistemic Logic.

Synchronous message-passing model with crashes

Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

- Dead agents know nothing.
- Axiom \mathbf{T} is true, Axiom \mathbf{K} is false.
- Complete axiomatization is an open question.

Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

- Dead agents know nothing.
- Axiom \mathbf{T} is true, Axiom \mathbf{K} is false.
- Complete axiomatization is an open question.

Future work.

- Many other variants are possible.

Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

- Dead agents know nothing.
- Axiom \mathbf{T} is true, Axiom \mathbf{K} is false.
- Complete axiomatization is an open question.

Future work.

- Many other variants are possible.
- The importance of topology is well-established in distributed computing.

Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

- Dead agents know nothing.
- Axiom \mathbf{T} is true, Axiom \mathbf{K} is false.
- Complete axiomatization is an open question.

Future work.

- Many other variants are possible.
- The importance of topology is well-established in distributed computing.

- Can we make use of it for other applications?

Conclusions

Related work.

Hans van Ditmarsch (WoLLIC 2021):
Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes.

- Dead agents know nothing.
- Axiom \mathbf{T} is true, Axiom \mathbf{K} is false.
- Complete axiomatization is an open question.

Future work.

- Many other variants are possible.
- The importance of topology is well-established in distributed computing.

- Can we make use of it for other applications?

Thanks for listening!

