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The distributed computing setting

Task specification: (0,1,2,0,2) — (1,1,1,1,1) v or X ?
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a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.
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Asynchronous computability

a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

v

Compare the strength of objects.

v

Compare the difficulty of solving tasks.

v

v

Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

Failures? — Assume protocols are wait-free / t-resilient / etc.
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A topological approach

input simplex

set of legal output simplexes

FiG. 13, Asynchronous computability theorem.

THEOREM 3.1 (ASYNCHRONOUS COMPUTABILITY THEOREM). A decision task
(%, 0, A) has a wait-free protocol using read-write memory if and only if there exists
a chromatic subdivision o of $ and a color-preserving simplicial map

pio($) >0

such that for each simplex S in o($), p(S) € A(carrier(S, $)).

Herlihy and Shavit, 1999
2004 Godel prize

4/30



A topological approach

/ input simplex
/ set of legal output simplexes

FiG. 13, Asynchronous computability theorem.

THEOREM 3.1 (ASYNCHRONOUS COMPUTABILITY THEOREM). A decision task
(9, 0, A) has a wait-free protocol using read-write memory if and only if there exists
a chromatic subdivision o of $ and a color-preserving simplicial map

i o($) > 0
such that for each simplex S in a(%), u(S) € A(carrier(s, %)).

Herlihy and Shavit, 1999
2004 Godel prize

DisTRIBUTED COMPUTING

Herlihy, Kozlov, Rajsbaum,
2013
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Simplicial complexes

Definition

An (abstract) simplicial complex is a pair (V,S) where V is a set
of vertices and S is a downward-closed family of subsets of V'
called simplices (i.e., X € S and Y C X implies Y € 5).

4
T
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Example: binary input complex for 3 processes

» Every process has input value either 0 or 1.

» Every process knows its value, but not the other values.
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Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].
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Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)

A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:

» we replace "wait-free” by "“t-resilient”?
— Asynchronous Computability Theorems for t-resilient systems,
Saraph, Herlihy, Gafni (DISC 2016).

» we use other objects instead of read/write registers?
— Our goal here.
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Protocol complexes for other objects

For test-and-set protocols For synchronous message-passing
Herlihy, Rajsbaum, PODC'94 Herlihy, Rajsbaum, Tuttle, 2001
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Topological definition of solvability

Output complex
Protocol complex C

Protocol Task
specificati & (DA specification

Input complex
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Benefits and drawbacks
\/ We can prove very general abstract results:
Theorem

Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)
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Benefits and drawbacks
\/ We can prove very general abstract results:
Theorem

Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)

X How do we know our protocol is correctly modeled?

Goal: Give a concrete meaning to “solving a task” using arbitrary
objects, and prove that it agrees with the topological definition.
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Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.
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Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).
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Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok pop () 2
Py E ] E ]
pop (O 0
J Py E 3
push(2) OK
Py E ]
Write 7 for the set of all execution traces.
Definition
A concurrent specification is a subset o C T . J
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Concurrent specifications (2)

Concurrent specifications

Interval-linearizability

Set-linearizability

write-snapshot

Linearizabilit: .

Y X i validity

immediate snapshot

list exchanger adopt-commit
queue

T p— set-agreement

Concurrent Specifications Beyond Linearizability. Goubault, L., Mimram (OPODIS'18)
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Concurrent specifications (2)

Concurrent specifications

= (up to a few assumptions)
Interval-linearizability

Set-linearizability

write-snapshot

Linearizabilit: .

Y X i validity

immediate snapshot

list exchanger adopt-commit
queue

T p— set-agreement

Concurrent Specifications Beyond Linearizability. Goubault, L., Mimram (OPODIS'18)
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Tasks vs Objects

Recall that a task for n processes is a relation © C Val™ x Val™.

Tasks are less expressive than objects:

15/30



Tasks vs Objects

Recall that a task for n processes is a relation © C Val™ x Val™.

Tasks are less expressive than objects:

» A task is one-shot (it can be used only once),

15/30



Tasks vs Objects

Recall that a task for n processes is a relation © C Val™ x Val™.

Tasks are less expressive than objects:
» A task is one-shot (it can be used only once),

» A task only specifies traces of the following form:

consensus (42) 7
Py E 3
consensus (7) 7
P E ]
consensus (3) 7
Py E ]
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Turning a task into an object

How do we specify a consensus object?

consensus (42) 7
Py E 3
consensus (7) 7
P E 3
consensus (3) 7
Py E ]

16 /30



Turning a task into an object

How do we specify a consensus object?

consensus (42) 7
Py E ]

I
I

x P i

I

I

i

I

consensus(3)
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How do we specify a consensus object?

consensus (42) 7
C
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gy

consensus(7)
X Py E

consensus (3)
C

g

Py £

This defines a function G : Tasks — Objects.
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Turning a task into an object

How do we specify a consensus object?

consensus (42) 7
Py E 3

consensus(7)
X Py E

consensus (3)
Py E ]

gy

This defines a function G : Tasks — Objects.
There is also an obvious function F' : Objects — Tasks.

Theorem
The functions F' and G form a Galois connection:

0 CGO) < F(o)CO
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Tasks vs Objects (2)

Concurrent specifications

Interval-linearizability

Set-linearizability

Linearizability

One-shot concurrent specifications

Tasks

Unifying Concurrent Objects and Distributed Tasks: Interval-Linearizability.
Castafieda, Rajsbaum, Raynal (2018).
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Generalized Asynchronous Computability Theorem

Solving a task © simply means implementing the object F'(O).
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Generalized Asynchronous Computability Theorem

Solving a task © simply means implementing the object F'(O).

Theorem (L., Mimram — CONCUR'19)

A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

18 /30



Work in progress

» Compositionality:
“If A solves B and B solves C, then A solves C.”

— Links with game semantics.
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Work in progress

» Compositionality:
“If A solves B and B solves C, then A solves C.”

— Links with game semantics.

» Directed Topology:

a b a b a b
P a b P b I3 a b
o R LT W LT T Q 43 43 0 3ty
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Part II: Geometric Models for
Epistemic Logic
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Multi-agent epistemic logic
Epistemic logic is the modal logic of knowledge.

Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

pu=plop|oANp| Koo pEAt, ac A

K, ¢ is read “a knows ¢".
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Multi-agent epistemic logic
Epistemic logic is the modal logic of knowledge.

Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

pu=plop|oANp|Kep|Cpp peAt, a€ A BCA

K, ¢ is read “a knows ¢".

Common knowledge:

Cpyp = /\ Ky ... Ky, 0

neN
ai,...,an€B
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Kripke models
A Kripke model is a tuple M = (W, ~, L), where:

» W is a set of worlds

» Foreverya € A, ~,C Wx W is an equivalence relation on W
» LW — Z(At)
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Kripke models
A Kripke model is a tuple M = (W, ~, L), where:

» W is a set of worlds

» Foreverya € A, ~,C Wx W is an equivalence relation on W

> LW — 2(At)

Example: three agents with
binary inputs.

» a, b, c are agents.

» w ~g w is represented

as an a-labeled edge
between w and w’.

» 101: input values of a, b,
¢, in that order.
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Semantics of epistemic logic formulas

Let M = (W, ~, L) be a Kripke model and x € W a world of M.
We define the truth of a formula ¢ in z, written M,z |= ¢, by

induction on :

M,z =p
M,z = -
M,z =p N
M,z E K,

iff
iff
iff
iff

p € L(z)

M,z [~ ¢

M,x = ¢ and M,z =

forally € W,z ~q y implies M,y |= ¢

22/30



An equivalence of categories

Theorem

The category of labeled pure chromatic simplicial complexes is
equivalent to the category of local proper Kripke models.

A Simplicial Complex Model for Dynamic Epistemic Logic, Goubault, L., Rajsbaum (GandALF'18)
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Example: card game

Consider the following situation: there are three agents and a deck
of four cards {0,1,2,3}. Each agent is given a card at random,
and the remaining card is kept hidden.
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Dynamic Epistemic Logic (DEL)

Syntax:
Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

¢ u= plopleNp| Kaplla]g
o = ‘action”

[a]  intuitively means “p will be true after the action a occurs”.
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Dynamic Epistemic Logic (DEL)

Syntax:
Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

o == plo|lpANp|Koplla]p

a = ‘action”
[a]  intuitively means “p will be true after the action a occurs”.

Semantics:

M,z = o]y iff Mla], zo] = ¢

25/30



Actions in distributed computing

Motto: the product-update construction M[«| plays the same role
as carrier maps.
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Actions in distributed computing

Motto: the product-update construction M[«| plays the same role
as carrier maps.

3 Decision?

A e > M[T]
Protocol model Output model
™ ™
M
Input model
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Case study: the Equality Negation task

(Nondeterministic wait-free hierarchies are not robust, Lo and Hadzilacos, 2000)

» Two processes P, Q) (represented in black and white).

v

Three possible inputs values ip,ig € {0,1,2}.

v

Binary decision values dp, dg € {0,1}.

v

Goal: ip = ig <= dp # dg.

Task specification

O

Input complex Output complex
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Task specification
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Case study: the Equality Negation task (2)

Using DEL, the task is modeled as follows:

] rx/i’ O
0 2 )
™
D
O 0 0/\/ 2
Input model M Output model M[T)]
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Using DEL, the task is modeled as follows:

o/
™
(1)
0 e
Input model M Output model M[T)]

In blue: processes decide 0
In red: processes decide 1
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Case study: the Equality Negation task (2)

Using DEL, the task is modeled as follows:

] rx/i’ O
0 2 )
™
D
O 0 0/\/ 2
Input model M Output model M[T)]

Intuitively, M[T] describes the knowledge that the processes
should acquire in order to solve the task.

28/ 30



Case study: the Equality Negation task (3)

We have two papers about this task:

» A Dynamic Epistemic Logic Analysis of the Equality Negation
Task, Goubault, Lazi¢, L., Rajsbaum (DalLi'19).
— The reason why EN is not solvable cannot be expressed in the
language of epistemic logic.
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Case study: the Equality Negation task (3)

We have two papers about this task:

» A Dynamic Epistemic Logic Analysis of the Equality Negation
Task, Goubault, Lazi¢, L., Rajsbaum (DalLi'19).
— The reason why EN is not solvable cannot be expressed in the
language of epistemic logic.

» Wait-free solvability of Equality Negation Tasks, Goubault,
Lazi¢, L., Rajsbaum (DISC'19).
— Extend the task to n processes and study its solvability.
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Conclusion

A link between epistemic logic and distributed computing

» For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.
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Conclusion

A link between epistemic logic and distributed computing

» For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

» For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:

» Simplicial complexes that are not pure.
— variable number of agents

» Model other epistemic notions: belief, distributed knowledge.

» Interpret bisimulation between models topologically.
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Thanks!
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