
Geometric Semantics for Asynchronous
Computability

Jérémy Ledent

PhD defense – École Polytechnique

December 12, 2019

1 / 30

The distributed computing setting

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2

0
1

2
0

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2

0
1

2
0

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2

0
1

2
0

Register

write
read

read rea
d

write

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2

0
1

2
0

Test-and-set

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2

0
1

2
0 ?

Object(s)

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2→ 1

0→ 1
1→ 1

2→ 1
0→ 1

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?

2 / 30

The distributed computing setting

2→ 1

0→ 1
1→ 1

2→ 1
0→ 1

Task specification: (0, 1, 2, 0, 2)→ (1, 1, 1, 1, 1) 3 or 7 ?
2 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.

I Compare the difficulty of solving tasks.
I Failures?

→ Assume protocols are wait-free / t-resilient / etc.

I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.

I Compare the difficulty of solving tasks.
I Failures?

→ Assume protocols are wait-free / t-resilient / etc.

I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.
I Compare the difficulty of solving tasks.

I Failures?

→ Assume protocols are wait-free / t-resilient / etc.

I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.
I Compare the difficulty of solving tasks.
I Failures?

→ Assume protocols are wait-free / t-resilient / etc.
I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.
I Compare the difficulty of solving tasks.
I Failures? → Assume protocols are wait-free / t-resilient / etc.

I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.
I Compare the difficulty of solving tasks.
I Failures? → Assume protocols are wait-free / t-resilient / etc.
I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

Asynchronous computability
a.k.a. Fault-tolerant distributed computing

Goal: Study which concurrent tasks are solvable in various
computational models.

I Compare the strength of objects.
I Compare the difficulty of solving tasks.
I Failures? → Assume protocols are wait-free / t-resilient / etc.
I Synchrony vs Asynchrony

Our assumptions: Asynchronous and wait-free.

3 / 30

A topological approach

Herlihy and Shavit, 1999
2004 Gödel prize

Herlihy, Kozlov, Rajsbaum,
2013

4 / 30

A topological approach

Herlihy and Shavit, 1999
2004 Gödel prize

Herlihy, Kozlov, Rajsbaum,
2013

4 / 30

Simplicial complexes

Definition
An (abstract) simplicial complex is a pair 〈V, S〉 where V is a set
of vertices and S is a downward-closed family of subsets of V
called simplices (i.e., X ∈ S and Y ⊆ X implies Y ∈ S).

5 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 30

Example: binary input complex for 3 processes

I Every process has input value either 0 or 1.
I Every process knows its value, but not the other values.

In the picture below, the three process names are represented as
the colors black, grey, white:

0

1

1

1

0

0

6 / 30

Topological characterization of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

7 / 30

Topological characterization of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

7 / 30

Topological characterization of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

7 / 30

Topological characterization of task solvability

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

⊆

7 / 30

Part I: Operational Semantics

7 / 30

Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:

I we replace “wait-free” by “t-resilient”?

−→ Asynchronous Computability Theorems for t-resilient systems,
Saraph, Herlihy, Gafni (DISC 2016).

I we use other objects instead of read/write registers?
−→ Our goal here.

8 / 30

Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?

−→ Asynchronous Computability Theorems for t-resilient systems,
Saraph, Herlihy, Gafni (DISC 2016).

I we use other objects instead of read/write registers?
−→ Our goal here.

8 / 30

Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?
−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

I we use other objects instead of read/write registers?
−→ Our goal here.

8 / 30

Asynchronous Computability Theorem (ACT)

Theorem (Herlihy and Shavit, 1999)
A task is solvable by a wait-free protocol using read/write
registers if and only if there is a decision map from the protocol
complex into the output complex such that [...].

What if:
I we replace “wait-free” by “t-resilient”?
−→ Asynchronous Computability Theorems for t-resilient systems,

Saraph, Herlihy, Gafni (DISC 2016).

I we use other objects instead of read/write registers?
−→ Our goal here.

8 / 30

Protocol complexes for other objects

For test-and-set protocols
Herlihy, Rajsbaum, PODC’94

For synchronous message-passing
Herlihy, Rajsbaum, Tuttle, 2001

9 / 30

Topological definition of solvability

Input complex

Protocol complex

Protocol
specification

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

⊆

10 / 30

Benefits and drawbacks

X We can prove very general abstract results:

Theorem
Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)

7 How do we know our protocol is correctly modeled?

Goal: Give a concrete meaning to “solving a task” using arbitrary
objects, and prove that it agrees with the topological definition.

11 / 30

Benefits and drawbacks

X We can prove very general abstract results:

Theorem
Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)

7 How do we know our protocol is correctly modeled?

Goal: Give a concrete meaning to “solving a task” using arbitrary
objects, and prove that it agrees with the topological definition.

11 / 30

Benefits and drawbacks

X We can prove very general abstract results:

Theorem
Set-agreement is not solvable if the
protocol complex is a pseudomanifold.

Herlihy, Kozlov, Rajsbaum (2013)

7 How do we know our protocol is correctly modeled?

Goal: Give a concrete meaning to “solving a task” using arbitrary
objects, and prove that it agrees with the topological definition.

11 / 30

Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Generalized ACT
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

A Sound Foundation for the Topological Approach to Task Solvability. L., Mimram (CONCUR’19)

12 / 30

Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Generalized ACT
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

A Sound Foundation for the Topological Approach to Task Solvability. L., Mimram (CONCUR’19)

12 / 30

Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Generalized ACT
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

A Sound Foundation for the Topological Approach to Task Solvability. L., Mimram (CONCUR’19)

12 / 30

Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Generalized ACT
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

A Sound Foundation for the Topological Approach to Task Solvability. L., Mimram (CONCUR’19)

12 / 30

Outline

(1) Define a notion of concurrent object specification which is as
general as possible. It should include non-linearizable objects.

(2) Define an operational semantics for concurrent processes
communicating through arbitrary shared objects.

(3) Define the protocol complex associated to a given protocol.

(4) Prove the following:

Generalized ACT
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

A Sound Foundation for the Topological Approach to Task Solvability. L., Mimram (CONCUR’19)

12 / 30

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

X

Write T for the set of all execution traces.

Definition
A concurrent specification is a subset σ ⊆ T .

13 / 30

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

X

Write T for the set of all execution traces.

Definition
A concurrent specification is a subset σ ⊆ T .

13 / 30

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

X

Write T for the set of all execution traces.

Definition
A concurrent specification is a subset σ ⊆ T .

13 / 30

Concurrent specifications

Idea: the specification of an object is the set of all the correct
execution traces (Lamport, 1986).

push(0) ok

push(2) ok

pop() 0

pop() 2
P0

P1

P2

X

Write T for the set of all execution traces.

Definition
A concurrent specification is a subset σ ⊆ T .

13 / 30

Concurrent specifications (2)

Concurrent specifications

Interval-linearizability

validity

write-snapshot

adopt-commit

Set-linearizability

exchanger

set-agreement

immediate snapshot
Linearizability

list
queue

test-and-set

Concurrent Specifications Beyond Linearizability. Goubault, L., Mimram (OPODIS’18)

14 / 30

Concurrent specifications (2)

Concurrent specifications

Interval-linearizability

validity

write-snapshot

adopt-commit

Set-linearizability

exchanger

set-agreement

immediate snapshot
Linearizability

list
queue

test-and-set

= (up to a few assumptions)

Concurrent Specifications Beyond Linearizability. Goubault, L., Mimram (OPODIS’18)

14 / 30

Tasks vs Objects

Recall that a task for n processes is a relation Θ ⊆ Valn × Valn.

Tasks are less expressive than objects:

I A task is one-shot (it can be used only once),
I A task only specifies traces of the following form:

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

15 / 30

Tasks vs Objects

Recall that a task for n processes is a relation Θ ⊆ Valn × Valn.

Tasks are less expressive than objects:
I A task is one-shot (it can be used only once),

I A task only specifies traces of the following form:

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

15 / 30

Tasks vs Objects

Recall that a task for n processes is a relation Θ ⊆ Valn × Valn.

Tasks are less expressive than objects:
I A task is one-shot (it can be used only once),
I A task only specifies traces of the following form:

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

15 / 30

Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

?

This defines a function G : Tasks→ Objects.
There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

16 / 30

Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

7

consensus(3) 7

P0

P1

P2

7

This defines a function G : Tasks→ Objects.
There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

16 / 30

Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

7

This defines a function G : Tasks→ Objects.

There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

16 / 30

Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

7

This defines a function G : Tasks→ Objects.
There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

16 / 30

Turning a task into an object
How do we specify a consensus object?

consensus(42) 7

consensus(7) 7

consensus(3) 7

P0

P1

P2

7

This defines a function G : Tasks→ Objects.
There is also an obvious function F : Objects→ Tasks.

Theorem
The functions F and G form a Galois connection:

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

16 / 30

Tasks vs Objects (2)

Concurrent specifications

Interval-linearizability

Set-linearizability

Linearizability

One-shot concurrent specifications

Tasks

Unifying Concurrent Objects and Distributed Tasks: Interval-Linearizability.
Castañeda, Rajsbaum, Raynal (2018).

17 / 30

Generalized Asynchronous Computability Theorem

Solving a task Θ simply means implementing the object F (Θ).

Theorem (L., Mimram – CONCUR’19)
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

18 / 30

Generalized Asynchronous Computability Theorem

Solving a task Θ simply means implementing the object F (Θ).

Theorem (L., Mimram – CONCUR’19)
A wait-free protocol solves a task if and only if there is a simplicial
map from the protocol complex to the output complex which is
carried by the task specification.

18 / 30

Work in progress

I Compositionality:

“If A solves B and B solves C, then A solves C.”

−→ Links with game semantics.

I Directed Topology:

a b

c

d

a b

c

d

a b

c

d

a b

c d
P

Q

a b

c d
P

Q

a b

c d
P

Q

19 / 30

Work in progress

I Compositionality:

“If A solves B and B solves C, then A solves C.”

−→ Links with game semantics.

I Directed Topology:

a b

c

d

a b

c

d

a b

c

d

a b

c d
P

Q

a b

c d
P

Q

a b

c d
P

Q

19 / 30

Part II: Geometric Models for
Epistemic Logic

19 / 30

Multi-agent epistemic logic

Epistemic logic is the modal logic of knowledge.

Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ

| CB ϕ

p ∈ At, a ∈ A

, B ⊆ A

Ka ϕ is read “a knows ϕ”.

Common knowledge:

CB ϕ ≡
∧
n∈N

a1,...,an∈B

Ka1 . . .Kan ϕ

20 / 30

Multi-agent epistemic logic

Epistemic logic is the modal logic of knowledge.

Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ | CB ϕ p ∈ At, a ∈ A, B ⊆ A

Ka ϕ is read “a knows ϕ”.

Common knowledge:

CB ϕ ≡
∧
n∈N

a1,...,an∈B

Ka1 . . .Kan ϕ

20 / 30

Kripke models
A Kripke model is a tuple M = 〈W,∼, L〉, where:

I W is a set of worlds
I For every a ∈ A, ∼a⊆W×W is an equivalence relation on W
I L : W →P(At)

Example: three agents with
binary inputs.

I a, b, c are agents.
I w ∼a w′ is represented
as an a-labeled edge
between w and w′.

I 101: input values of a, b,
c, in that order.

111

011101

001

110

010100

000

bcac
ab

bc ac

ab ac

ab
bc

bc

ab
ac

21 / 30

Kripke models
A Kripke model is a tuple M = 〈W,∼, L〉, where:

I W is a set of worlds
I For every a ∈ A, ∼a⊆W×W is an equivalence relation on W
I L : W →P(At)

Example: three agents with
binary inputs.

I a, b, c are agents.
I w ∼a w′ is represented
as an a-labeled edge
between w and w′.

I 101: input values of a, b,
c, in that order.

111

011101

001

110

010100

000

bcac
ab

bc ac

ab ac

ab
bc

bc

ab
ac

21 / 30

Semantics of epistemic logic formulas

Let M = 〈W,∼, L〉 be a Kripke model and x ∈W a world of M .
We define the truth of a formula ϕ in x, written M,x |= ϕ, by
induction on ϕ:

M,x |= p iff p ∈ L(x)
M,x |= ¬ϕ iff M,x 6|= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Ka ϕ iff for all y ∈W,x ∼a y implies M,y |= ϕ

22 / 30

An equivalence of categories

'

111

011101

001

110

010100

000

bcac
ab

bc ac

ab ac

ab
bc

bc

ab
ac

Theorem
The category of labeled pure chromatic simplicial complexes is
equivalent to the category of local proper Kripke models.

A Simplicial Complex Model for Dynamic Epistemic Logic, Goubault, L., Rajsbaum (GandALF’18)

23 / 30

Example: card game

Consider the following situation: there are three agents and a deck
of four cards {0, 1, 2, 3}. Each agent is given a card at random,
and the remaining card is kept hidden.

24 / 30

Example: card game

Consider the following situation: there are three agents and a deck
of four cards {0, 1, 2, 3}. Each agent is given a card at random,
and the remaining card is kept hidden.

1 4 1 4 1 4 1

3 2 3 2 3 2 3

1 4 1 4 1 4 1

A

A

B

B

24 / 30

Example: card game

Consider the following situation: there are three agents and a deck
of four cards {0, 1, 2, 3}. Each agent is given a card at random,
and the remaining card is kept hidden.

24 / 30

Dynamic Epistemic Logic (DEL)
Syntax:
Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ | [α]ϕ
α ::= “action”

[α]ϕ intuitively means “ϕ will be true after the action α occurs”.

Semantics:
M,x |= p iff p ∈ L(x)
M,x |= ¬ϕ iff M,x 6|= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Ka ϕ iff for all y ∈W,x ∼a y implies M,y |= ϕ
M,x |= [α]ϕ iff M [α], x[α] |= ϕ

25 / 30

Dynamic Epistemic Logic (DEL)
Syntax:
Let A be a finite set of agents and At a set of atomic propositions.
The syntax of formulas is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ | [α]ϕ
α ::= “action”

[α]ϕ intuitively means “ϕ will be true after the action α occurs”.

Semantics:
M,x |= p iff p ∈ L(x)
M,x |= ¬ϕ iff M,x 6|= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Ka ϕ iff for all y ∈W,x ∼a y implies M,y |= ϕ
M,x |= [α]ϕ iff M [α], x[α] |= ϕ

25 / 30

Actions in distributed computing

Motto: the product-update construction M [α] plays the same role
as carrier maps.

26 / 30

Actions in distributed computing

Motto: the product-update construction M [α] plays the same role
as carrier maps.

Input complex

Protocol complex

Computation

0 0

0

1 1

1

Output complex

Task
specification

∃ Decision?

⊆

26 / 30

Actions in distributed computing

Motto: the product-update construction M [α] plays the same role
as carrier maps.

M
Input model

M[P]
Protocol model

M[T]
Output model

πM πM

∃ Decision?

26 / 30

Case study: the Equality Negation task
(Nondeterministic wait-free hierarchies are not robust, Lo and Hadzilacos, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex

0

0 1

1
Output complex

Task specification

27 / 30

Case study: the Equality Negation task
(Nondeterministic wait-free hierarchies are not robust, Lo and Hadzilacos, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex

0

0 1

1
Output complex

Task specification

27 / 30

Case study: the Equality Negation task
(Nondeterministic wait-free hierarchies are not robust, Lo and Hadzilacos, 2000)

I Two processes P,Q (represented in black and white).
I Three possible inputs values iP , iQ ∈ {0, 1, 2}.
I Binary decision values dP , dQ ∈ {0, 1}.
I Goal: iP = iQ ⇐⇒ dP 6= dQ.

0

0 1

1 2

2

Input complex

0

0 1

1
Output complex

Task specification

27 / 30

Case study: the Equality Negation task (2)

Using DEL, the task is modeled as follows:

0

0 1

1 2

2

Input model M

0

1

2

2

1

0

0

1

2

0

1

2

Output model M [T]

πM

28 / 30

Case study: the Equality Negation task (2)

Using DEL, the task is modeled as follows:

0

0 1

1 2

2

Input model M

0

1

2

2

1

0

0

1

2

0

1

2

Output model M [T]

πM

In blue: processes decide 0
In red: processes decide 1

28 / 30

Case study: the Equality Negation task (2)

Using DEL, the task is modeled as follows:

0

0 1

1 2

2

Input model M

0

1

2

2

1

0

0

1

2

0

1

2

Output model M [T]

πM

Intuitively, M [T] describes the knowledge that the processes
should acquire in order to solve the task.

28 / 30

Case study: the Equality Negation task (3)

We have two papers about this task:

I A Dynamic Epistemic Logic Analysis of the Equality Negation
Task, Goubault, Lazić, L., Rajsbaum (DaLi’19).
−→ The reason why EN is not solvable cannot be expressed in the
language of epistemic logic.

I Wait-free solvability of Equality Negation Tasks, Goubault,
Lazić, L., Rajsbaum (DISC’19).
−→ Extend the task to n processes and study its solvability.

29 / 30

Case study: the Equality Negation task (3)

We have two papers about this task:

I A Dynamic Epistemic Logic Analysis of the Equality Negation
Task, Goubault, Lazić, L., Rajsbaum (DaLi’19).
−→ The reason why EN is not solvable cannot be expressed in the
language of epistemic logic.

I Wait-free solvability of Equality Negation Tasks, Goubault,
Lazić, L., Rajsbaum (DISC’19).
−→ Extend the task to n processes and study its solvability.

29 / 30

Conclusion

A link between epistemic logic and distributed computing
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:
I Simplicial complexes that are not pure.
→ variable number of agents

I Model other epistemic notions: belief, distributed knowledge.
I Interpret bisimulation between models topologically.

30 / 30

Conclusion

A link between epistemic logic and distributed computing
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:
I Simplicial complexes that are not pure.
→ variable number of agents

I Model other epistemic notions: belief, distributed knowledge.
I Interpret bisimulation between models topologically.

30 / 30

Conclusion

A link between epistemic logic and distributed computing
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:
I Simplicial complexes that are not pure.
→ variable number of agents

I Model other epistemic notions: belief, distributed knowledge.
I Interpret bisimulation between models topologically.

30 / 30

Conclusion

A link between epistemic logic and distributed computing
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:
I Simplicial complexes that are not pure.
→ variable number of agents

I Model other epistemic notions: belief, distributed knowledge.

I Interpret bisimulation between models topologically.

30 / 30

Conclusion

A link between epistemic logic and distributed computing
I For computer scientists: we can now understand the abstract
topological proofs of impossibility in terms of knowledge.

I For logicians: Kripke models contain geometric information
that can be used to reason about knowledge.

Future work:
I Simplicial complexes that are not pure.
→ variable number of agents

I Model other epistemic notions: belief, distributed knowledge.
I Interpret bisimulation between models topologically.

30 / 30

Thanks!

30 / 30

