
Extraction in Coq: an Overview

Pierre Letouzey

Laboratoire PPS, Université Paris Diderot - Paris 7
Case 7014, F-75205 Paris Cedex 13, France

letouzey@pps.jussieu.fr

Abstract. The extraction mechanism of Coq allows one to transform
Coq proofs and functions into functional programs. We illustrate the
behavior of this tool by reviewing several variants of Coq de�nitions for
Euclidean division, as well as some more advanced examples. We then
continue with a more general description of this tool: key features, main
examples, strengths, limitations and perspectives.

1 Introduction

This article describes the current status of the extraction mechanism available
in the Coq proof assistant [7, 8]. The extraction mechanism of Coq is a tool for
automatic generation of programs out of Coq proofs and functions. These ex-
tracted programs are expressed in functional languages such as Ocaml, Haskell
or Scheme, these three languages being the ones currently supported by Coq
extraction. The main motivation for this extraction mechanism is to produce
certi�ed programs: each property proved in Coq will still be valid after extrac-
tion.

Through a series of examples about Euclidean division, we will review several
alternatives that allow the user to express in Coq an algorithm that does not �t
naturally in this system. We will also see how these alternatives in�uence the
shape of the program obtained by extraction. We will then mention two advanced
situations that illustrate the fact that Coq's current extraction can handle any
Coq objects, even the ones de�ned via high-end features of Coq and without
direct counterpart in Ocaml or Haskell. We will summarize the key features of
Coq extraction, mention some signi�cant Coq developments taking advantage of
the extraction, and conclude on the current strengths of this tool, its limitations
and future research perspectives.

2 Extraction in practice : div

In this section, we illustrate the use of Coq extraction on a small yet revealing
example: Euclidean division amongst natural numbers. For sake of simplicity, we
will use the unary nat datatype for representing these natural numbers: every
number is stored as either zero or the successor S of another number. Even if this
representation is inherently ine�cient, the discussion that follows would be quite

similar with more clever coding of numbers. Coq's Standard Library provides
basic operations and relations on nat, such as +, *, <, ≤. In Coq, logical relations
do not necessarily have corresponding boolean test functions, but here a result
named le lt dec, noted ≤? afterwards, can be used as an e�ective comparison
function for determining whether n≤m or m<n for any numbers n and m.

Each Coq snippet proposed below is taken verbatim from a valid session1

with Coq 8.2, including unicode notations and other syntactic improvements.

2.1 A division that ful�lls the structural constraint

One usual algorithm for division on natural numbers is to proceed by successive
subtractions: div x y = 0 when x<y and div x y = S (div (x-y) y) other-
wise. But this cannot be written directly in Coq. Due to the intimate relationship
between proofs and programs in Coq, no Coq objects may be allowed to trigger
in�nite computations. A rather drastic constraint is hence required on recursive
functions in order to ensure their termination: they should have at least one
inductive parameter such that recursive calls are done on an immediate subterm
of this parameter2. Here, our recursive call fails this criterion, since (x-y) is
not an immediate subterm of x, and second parameter y has not changed. Even
worse, trying this algorithm with y=0 leads to an in�nite computation: Coq's
rejection is here quite legitimate.

For de�ning nonetheless our division in Coq, a �rst solution is to try to
live with this structural constraint, and adapt our algorithm accordingly. For
instance:

Fixpoint div x y := match x with

| 0 => 0

| S x' =>

let z := div x' y in

if (S z)*y ≤? x then S z else z

end.

Knowing the quotient for the predecessor of x can indeed be used to infer the
quotient for x. But proceeding this way leads to a costly test repeated x times.
This is a common situation with Coq: intended algorithms can be adapted to be
�structural�, but this may result in an awkward and/or less e�cient algorithm.

Command Extraction div can then be used to convert this division to
Ocaml code3:

let rec div x y =

match x with

| O -> O

| S x' ->

let z = div x' y in if le_lt_dec (mult (S z) y) x then S z else z

1 See http://www.pps.jussieu.fr/~letouzey/download/examples_CiE2008.v
2 For a more precise de�nition of this structural constraint, see Chap. 4 of Coq Ref-
erence Manual at http://coq.inria.fr.

3 The complete list of extraction commands can be found in the Coq Reference Manual.

This �rst extracted div highlights the fact that on basic Coq functions, ex-
traction is mainly performing a straightforward syntactic translation. But even
on such a simple function, some proof elimination occurs during extraction. In
fact, comparison le lt dec a b is not producing a mere boolean, but rather
a proof-carrying boolean type {a≤b}+{b<a}, which is an inductive type inter-
nally named sumbool, with two constructors left and right both having a
proof as parameter, here respectively a proof of a≤b and a proof of b<a. Ex-
traction removes these proofs, hence obtaining an extracted sumbool datatype
with two constant constructors, isomorphic to bool. In order to get precisely the
extracted code shown above, one could then teach Coq to take advantage of this
isomorphism, via : Extract Inductive sumbool => bool [true false].

One should note that the proof elimination done during extraction is based on
earlier declarations by the user (or by the library designer). Here, proof-carrying
boolean {a≤b}+{b<a} is exactly isomorphic to logical disjunction a≤b ∨ b<a

(instead of left and right, constructors are named or introl and or intror).
Simply, the former is declared in the logical world named Prop and is pruned
during extraction whereas the latter is declared in Set, the world of Coq pro-
grams, and simply loses at extraction the logical parameters of its constructors.
Similarly, two existential types coexist in Coq: the logical one ∃x:A,P x and the
informative one { x:A | P x }.

2.2 A division with an explicit counter

Let's now try to implement a function closer to our intended division algorithm,
instead of the ad-hoc structural version of the last section. A solution is to
arti�cially add a new structurally decreasing parameter that will control the
number of allowed recursive calls. Here for instance, if y 6=0, it is clear that at
most x successive subtractions can occur before the algorithm stops. A common
presentation is to separate the function to iterate div F from the actual counter-
based recursive iterator div loop. The main function div is then a simple call
to div loop with the right initial counter value.

Definition div_F div x y := if y ≤? x then S (div (x-y) y) else 0.

Fixpoint div_loop (n:nat) :=

match n with

| 0 => fun _ _ => 0

| S n => div_F (div_loop n)

end.

Definition div x y := div_loop x x y.

One more time, extraction is straightforward and mostly amounts to replac-
ing Coq keywords with Ocaml ones. The counter, whose type is nat, is kept by
the extraction, even though it is morally useless for the computation. At the
same time, removing it and replacing div loop by an unbounded loop would
change the semantics of the program at least for y=0: with the above de�nition,

div 5 0 computes to 5, while a Ocaml version without counter would loop for-
ever. As a consequence, the extraction cannot be expected to detect and remove
automatically such a �useless� parameter.

Using such an explicit counter is often an interesting compromise: the written
Coq code is not exactly what we intended in the �rst place, but is close to it,
there is no complex internal Coq object as with the methods we will study in the
next sections, computations can be done both in Coq and after extraction, and
the additional cost induced by the presence of the counter is often modest. Here
for instance the x value would have been computed anyway. Another example
of this technique can be found in module Numtheory of the Standard Library,
where a gcd function is de�ned on binary numbers thanks to a counter that can
be the depth (i.e. the logarithm) of these binary numbers.

2.3 A division by general recursion, historical approach

We can in fact build a Coq div function that will produce exactly the intended
algorithm after extraction. Before presenting the modern ways of writing such a
function with two frameworks recently added to Coq, let us �rst mention the his-
torical approach. For a long time, the only possibility has been to play with acces-
sibility predicates and induction principles such as well founded induction4.
In this case, recursive functions do satisfy the structural constraint of Coq, not
via their regular arguments, but rather via an additional logical argument ex-
pressing that some quantity is accessible. Recursive calls can then be done on
quantities that are �more easily accessible� than before. This extra logical pa-
rameter is then meant to disappear during extraction. In practice, non-trivial
functions are impossible to write as a whole with this approach, due to the nu-
merous logical details to provide. Such functions are hence built piece by piece
using Coq interactive tactics, as for proofs. Reasoning a posteriori on the body
of such functions is also next to impossible, so key properties of these func-
tions are to be attached to their output, via post-conditions { a:A | P a }.
Pre-conditions can also be added to restrict functions on a certain domain: for
instance, div will be de�ned only for y 6=0. Here comes the complete speci�cation
of our div and its implementation in a proof-like style:

Definition div : ∀x y, y6=0 → { z | z*y ≤ x < (S z)*y }.

Proof.

induction x as [x Hrec] using (well_founded_induction lt_wf).

intros y Hy.

destruct (y ≤? x) as [Hyx|Hyx]. (* do we have y≤x or x<y ? *)

(* first case: y≤x *)

assert (Hxy : x-y < x) by omega.

destruct (Hrec (x-y) Hxy y Hy) as [z Hz]. (* ie: let z = div (x-y) y *)

exists (S z); simpl in *; omega. (* ie: z+1 fits as (div x y) *)

(* second case: x<y *)

exists 0; omega.

Defined.

4 See for instance Chap. 1 of [8] for more details on this topic.

We use lt wf, which states that < is well-founded on natural numbers. When
combined with well founded induction, this allows us to perform recursive
calls at will on any strictly smaller numbers. Doing such a recursive call can be
quite cumbersome: for calling Hrec on x-y, we need to have already built a proof
Hxy stating that x-y < x. Without additional help such as comments, it is also
very tedious to keep track on the algorithm used in such a proof. Fortunately,
extraction can do it for us:

let rec div x y =

if le_lt_dec y x then S (div (minus x y) y) else O

2.4 A division by general recursion with the Russell framework

The function-as-proof paradigm of the last section can be used on a relatively
large scale, see for instance union and the few other non-structural operations on
well-balanced trees in early versions of module FSetAVL in the Standard Library.
But such Coq functions are hardly readable and maintainable, consume lots of
resources during their de�nitions and in practice almost always fail to compute
in Coq.

Recent versions of Coq include Russell, a framework due to M. Sozeau [10]
that greatly eases the design of general recursive and/or dependently-typed func-
tions. With this framework, bodies of functions can be written without being
bothered by proof parts or by structural constraints. Simply, such de�nitions
are fully accepted by Coq only when some corresponding proof obligations have
been proved later on. For instance:

Definition id (n:nat) := n.

Program Fixpoint div (x:nat)(y:nat|y6=0) { measure id x }

: { z | z*y ≤ x < (S z)*y }

:= if y ≤? x then S (div (x-y) y) else 0.

Next Obligation. (* Measure decreases on recursive call : x-y < x *)

unfold id; simpl; omega.

Qed.

Next Obligation. (* Post-condition enforcement : z*y ≤ x < (S z)*y *)

destruct_call div; simpl in *; omega.

Qed.

After this de�nition and the proofs of corresponding obligations, a Coq object
div is added to the environment, mixing the pure algorithm and the logical
obligations. This object is similar to the dependently-typed div of the previous
section, and its extraction produces the very same Ocaml code.

Russell framework can be seen as a sort of anti-extraction, in the spirit of
C. Parent's earlier works [9]. Even if it is still considered as experimental, it
is already quite usable. For instance, we have a version of FSetAVL where the
aforementioned non-structural operations on well-balanced trees are written and
proved using Russell.

2.5 A division by general recursion with the Function framework

An alternative framework can also be used to de�ne our div function: Function,
due to J. Forest and alii [4]. It is similar to Russell to some extent: algorithms
can be written in a natural way, while proof obligations may have to be solved
afterwards. Here, as for Russell, these proof obligations are trivial:

Function div (x y:nat)(Hy:y6=0) { measure id x } : nat :=

if y ≤? x then S (div (x-y) y Hy) else 0.

Proof.

intros; unfold id; omega.

Defined.

Moreover, as for Russell, this framework builds complex internal Coq objects,
and extraction of these objects produces back precisely the expected code. But
unlike Russell, Function is not meant to manipulate dependent types: in partic-
ular the y 6=0 pre-condition is possible here only since it is passed unmodi�ed
to the recursive call. On the contrary, Function focuses on the ease of reasoning
upon functions de�ned with it, see for instance the functional induction tac-
tics, allowing to prove separately properties of div that would have been post-
conditions with Russell. Once again, the sensitive operations on well-balanced
trees have be successfully tried and de�ned using Function.

3 Examples beyond ML type system

All our experiments on de�ning and extracting a division algorithm lead to
legitimate Ocaml (or Haskell) code. But the type system of Coq allows us to
build objects that have no counterparts in Ocaml nor Haskell. In this case,
the type-checkers of these systems are locally bypassed by unsafe type casts
(Obj.magic or unsafeCoerce). These unsafe type casts are now automatically
inserted by the extraction in the produced code. We present now two of the
various situations where such type casts are required.

3.1 Functions of variable arity

In Coq, a type may depend on an object such as a number. This allows us to
write the type nArrow of n-ary functions (over nat), such that nArrow 0 = nat
and nArrow 1 = nat → nat and so on.

Fixpoint nArrow n : Set := match n with

| O => nat

| S n => nat → nArrow n

end.

Furthermore, we can write a function nSum whose �rst parameter determines
the number of subsequent parameters this function will accept (and sum to-
gether):

Fixpoint nSum n : nArrow (S n) :=

match n return nArrow (S n) with

| O => fun a => a

| S m => fun a b => nSum m (a+b)

end.

Eval compute in (nSum 2) 3 8 5.

The example (nSum 2) expects (S 2) = 3 arguments and computes here
3+8+5=16. Without much of a surprise nSum cannot be typecheked in ML, so
unsafe type casts are inserted during extraction:

let rec nSum n x =

match n with

| O -> Obj.magic x

| S m -> Obj.magic (fun b -> nSum m (plus x b))

3.2 Existential structures

Another situation is quite common in developments on algebra: records can
be used in Coq to de�ne structures characterized by the existence of various
elements and operations upon a certain type, with possibly some constraints on
these elements and operations. For instance, let's de�ne a structure of monoid,
and show that (nat,0,+) is indeed a monoid:

Record aMonoid : Type :=

{ dom : Type;

zero : dom;

op : dom → dom → dom;

assoc : ∀x y z:dom, op x (op y z) = op (op x y) z;

zerol : ∀x:dom, op zero x = x;

zeror : ∀x:dom, op x zero = x }.

Definition natMonoid :=

Build_aMonoid nat 0 plus plus_assoc plus_0_l plus_0_r.

Proofs concerning monoids can then be done in a generic way upon an
abstract object of type aMonoid, and be applied to concrete monoids such as
natMonoid. This kind of approach is heavily used in CoRN development at Ni-
jmegen. For the point of view of extraction, this aMonoid type hides from the
outside the type placed in its dom �eld. Such dependency is currently translated
to unsafe cast by extraction:

let natMonoid =

{ zero = (Obj.magic O); op = (Obj.magic plus) }

In the future, it might be possible to exploit recent and/or planned extensions
of Haskell and Ocaml type-checkers to allow a nicer extraction of this example.
Considering Haskell Type Classes and/or Ocaml's objects might also help.

4 Key features of extraction

Let us summarize now the current status of Coq extraction. The theoretical
extraction function described in [7] is still relevant and used as the core of the
extraction system. This function collapses (but cannot completely remove) both
logical parts (living in sort Prop) and types. A complete removal would induce
dangerous changes in the evaluation of terms, and can even lead to errors or non-
termination in some situations. Terms extracted by this theoretical function are
untyped λ-terms with inductive constructions, they cannot be accepted by Coq
in general, nor by ML-like languages. Two separate studies of correctness have
been done for this theoretical phase.

The correctness of this theoretical phase is justi�ed in several steps. First, we
prove that the reduction of an extracted term is related to the reduction of the
initial term in a bisimulation-alike manner (see [7] or Sect. 2.3 of [8]. Since this
�rst approach is really syntactic and cannot cope for instance with the presence
of axioms, we then started a semantical study based on realizability (see Sect. 2.4
of [8]). Finally, di�erences between theoretical reduction rules and the situation
in real languages have been investigated, especially in the case of Haskell (see
Sect. 2.6 of [8]).

Even if the actual implementation of the extraction mechanism is based on
this theoretical study, it also integrates several additional features. First, the
untyped λ-terms coming from the theoretical phase are translated to Ocaml,
Haskell or Scheme syntax. In addition, several simpli�cations and optimizations
are performed on extracted terms, in order to compensate the frequent awkward
aspect of terms due to the incomplete pruning of logical parts. Indeed, complete
removal of proof parts is often unsafe. Consider for instance a partial application
of the div function of section 2.5, such as div 0 0 : 06=0→nat. This partial
application is quite legal in Coq, even if it does not produce much, being blocked
by the need of an impossible proof of 0 6=0. On the opposite, an extraction that
would brutally remove all proof parts would produce div 0 0 : nat for this ex-
emple, leading to an in�nite computation. The answer of our theoretical model
of extraction is to be very conservative and produce anonymous abstractions
corresponding to all logical preconditions such as this Hy:y 6=0. The presence of
these anonymous abstractions permits a simple and safe translation of all terms,
including partial applications. At the same time, dangerous partial applications
are quite rare, so our actual implementation favors the removal of these anony-
mous abstractions, at least in head position of extracted functions, leading here
to the expected div of type nat→nat→nat, whereas a special treatment is done
for corresponding partial applications: any occurrences of div 0 0 would become
fun -> div 0 0, preventing the start of an in�nite loop during execution.

Moreover, the extraction embeds an type-checker based on [5] whose purpose
is to identify locations of ML type errors in extracted code. Unsafe type cast
Obj.magic or unsafeCoerce are then automatically inserted at these locations.
This type-checking is done accordingly to a notion of approximation of Coq types
into ML ones (see Chap. 3 of [8]). In addition, Coq modules and functors are

supported by the Ocaml extraction, while coinductive types can be extracted
into Ocaml, Haskell or Scheme.

5 Some signi�cant Coq developments using extraction

A list of user contributions related to extraction can be found at http://coq.
inria.fr/contribs/extraction-eng.html. Let us highlight some of them, and
also mention some developments not (yet?) in this list.

� CoRN: This development done in Nijmegen contains in particular a con-
structive proof of the fundamental theorem of algebra. But all attempts
made in order to compute approximations of polynomial roots by extraction
have been unsuccessful up to now [2]. This example illustrates how a large,
strati�ed, mathematically-oriented development with a peculiar notion of
logical/informative distinction can lead to a nightmare in term of extracted
code e�ciency and readability.

� Tait: This proof of strong normalization of simply typed λ-calculus produces
after extraction a term interpretor [1]. This study with H. Schwichtenberg et
alii has allowed us to compare several proof assistants and their respective
extractions. In particular Minlog turned out to allow a �ner control of what
was eliminated or kept during extraction, while Coq Prop/Set distinction
was rather rigid. At the same time, Coq features concerning proof manage-
ment were quite helpful, and the extracted code was decent, even if not as
nice as the one obtained via Minlog.

� FSets: Started with J.C. Filliâtre some years ago [3], this certi�cation of
Ocaml �nite set and map libraries is now included in the Coq Standard
Library. This example has allowed us to investigate a surprisingly wide range
of questions, in particular concerning speci�cations and implementations via
Coq modules, or concerning the best style for expressing delicate algorithms
(tactics or Fixpoint or Russell or Function). It has been one of the �rst large
example to bene�t from extraction of modules and functors.

� CompCert: X. Leroy and alii have certi�ed in Coq a compiler from C (with
minor restrictions) to powerpc assembly [6]. While this development is quite
impressive, its extraction is rather straightforward, since Coq functions have
been written in a direct, structural way. The compiler obtained by extraction
is performing quite well.

� Fingertrees: In [10], M. Sozeau experiments with his Russell framework.
The �ngertrees structure, relying heavily on dependent types, is a good test-
case for both this framework and the extraction. In particular, the code
obtained by extraction contains several unsafe type casts, its aspect could
be improved but at least it can be executed and is reasonably e�cient.

6 Conclusion and future works

Coq extraction is hence a rich framework allowing to obtain certi�ed programs
expressed in Ocaml, Haskell or Scheme out of Coq developments. Even if some

details can still be improved, it is already quite mature, as suggested by the va-
riety of examples mentioned above. This framework only seems to reach its limit
when one tries to discover algorithm buried in large mathematical development
such as CoRN, or when one seeks a �ne control a la Minlog on the elimination
performed by extraction. Most of the time, the Prop/Set distinction, which is
a rather simple type-based elimination criterion, is quite e�cient at producing
reasonable extracted terms with little guidance by the user. Moreover, new tools
such as Russel or Function now allow to easily de�ne general recursive functions
in Coq, hence allowing a wider audience to play with extraction of non-trivial
Coq objects.

The correctness of this extraction framework currently rely on the theoretical
studies made in [7, 8]. The next perspective is to obtain a mechanically-checked
guarantee of this correctness. Work on this topic has already started with a
student, S. Glondu. Starting from B. Barras CCI-in-Coq development, he has
already de�ned a theoretical extraction in this framework and proved one of the
main theorem of [7]. Another interesting approach currently under investigation
is to use a Coq-encoded Mini-ML syntax as output of the current uncerti�ed
extraction, and have an additional mechanism try to build a proof of semantic
preservation for each run of this extraction. Such extracted terms expressed in
Mini-ML could then be fed to the certi�ed ML compiler which is currently being
built in the CompCert project of X. Leroy.

Some additional work can also be done concerning the typing of extracted
code. For instance, thanks to advanced typing aspects of Haskell and/or Ocaml,
examples such as the existential structure aMonoid may be typed some day
without unsafe type casts. This would help getting some sensible program out of
CoRN, which make extensive use of such structures. Manual experiments seem to
show that Ocaml object-oriented features may help in this prospect. At the same
time, some preliminary work has started in Coq in order to propose Haskell-like
type classes, adding a support for these type classes to the Haskell extraction
may help compensating the lack of module and functor extraction to Haskell.

References

[1] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program extraction
from normalization proofs. Studia Logica, 82, 2005. Special issue.

[2] L. Cruz-Filipe and P. Letouzey. A Large-Scale Experiment in Executing Extracted
Programs. In 12th Symposium on the Integration of Symbolic Computation and

Mechanized Reasoning, Calculemus'2005, 2005.
[3] J.-C. Filliâtre and P. Letouzey. Functors for Proofs and Programs. In D. Schmidt,

editor, European Symposium on Programing, ESOP'2004, volume 2986 of Lecture
Notes in Computer Science. Springer-Verlag, 2004.

[4] D. Pichardie G. Barthe, J. Forest and V. Rusu. De�ning and reasoning about
recursive functions: a practical tool for the coq proof assistant. In FLOPS'06,
volume 3945 of LNCS, 2006.

[5] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algo-
rithm. ACM Transactions on Programming Languages and Systems, 20(4):707�
723, July 1998.

[6] Xavier Leroy. Formal certi�cation of a compiler back-end, or: programming a
compiler with a proof assistant. In 33rd symposium Principles of Programming

Languages, pages 42�54. ACM Press, 2006.
[7] P. Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk, editors,

TYPES 2002, volume 2646 of LNCS. Springer-Verlag, 2003.
[8] P. Letouzey. Programmation fonctionnelle certi�ée � L'extraction de programmes

dans l'assistant Coq. PhD thesis, Université Paris-Sud, July 2004. see http:

//www.pps.jussieu.fr/~letouzey/download/these_letouzey_English.ps.gz.
[9] C. Parent. Synthèse de preuves de programmes dans le Calcul des Constructions

Inductives. thèse d'université, École Normale Supérieure de Lyon, January 1995.
[10] M. Sozeau. Program-ing Finger Trees in Coq. In ICFP'07, pages 13�24. ACM

Press, 2007.

