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Introduction

The need for certified programs

Today, it is obvious to say that software occupies a dominating place in our modern
societies, including in critical roles. The list of these missions of confidence now filled by
programs lengthens unceasingly. It can be a matter of controlling high-risk equipments like
planes or nuclear thermal power stations, but it can also be more prosaic operations like
the management of electronic payments. In any case, whether human lives or money are in
questions, the stakes are huge.

Unfortunately, it is also a banality to note the perfectibility of these programs which
surround us. Without yielding to catastrophism, we cannot but note that software failures
regularly fill news headlines. The example the more frequently mentioned remains the ex-
plosion of the Ariane 5 rocket in 1996. More recently, one can quote the description by S.
Humpich of a vulnerability in the credit cards system. More alarming, the software editor
that currently dominates the PC market propose softwares that are repeatedly affected by
safety faults, which open the door to all kinds of virus, worms or trojans. Finally, here is a
testimony read in a discussion forum, answering an intervention opposing the low quality of
PC software with the great reliability of those intended for aeronautics:

I will bring however one small nuance concerning your parallel with airliners.
Their computer systems are not as solid as you say, I know something of it,
I am pilot on A320! In fact we regularly have one or more calculators which
fail. This is even normal, the software is reqularly modified to answer the new
legal or operational requirements, and so is also the hardware, without taking in
account that the whole must undergo the attack of tens of electric transfers per
day! Fortunately, all systems are doubled, tripled and even quintupled in some
certain cases, with the result that while one reboots quietly and carries out its
autotests, the other takes over, and safety is never compromised ...

There either, the situation is thus not perfect!, since the empirical solution of redundancy
is not foolproof.

This unsatisfactory practical situation contrasts in a startling way with the point of view
of scientists. “Computer science is an exact science”, wrote C. A. R. Hoare [45] in 1969. He
and others like R. W. Floyd or E. W. Dijkstra have indeed build a precise mathematical
framework for programming, specifying in the 1970s a concept of proof of program, as

'Even if in practical the great majority of air crashes are due to human errors...
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rigorous as a proof of theorem. Alas, the programming is still too often approached like an
experimental art: repetitions of tests, tests, errors and corrections. It is true that establishing
formally a program’s correctness asks currently very significant efforts, whereas it is often
very easy to carry out tests. But these tests could finally prove to be quite expensive, and
they can only rarely be exhaustive...

In any case, whether one wants to certify a program or simply to test it, the first step
is to produce a specification, describing the awaited behavior of this program. The mathe-
matical result to be proved in the case of a formal certification is that the program satisfies
its specification. Obviously, this specification step is a key moment: if the specification is
incomplete or incorrect, nothing will prevent a program that is certified to be correct with
respect to this specification to behave badly at the time of its execution.

The previously mentioned works of C. A. R. Hoare, R. W. Floyd and E. W. Dijkstra
are originally intended for imperative programs. For example, the Hoare logic is it made
of assertions relating the values of the program variables. And a specification of a portion
of code C has the form {P}C{Q}: if the pre-condition P is valid before the execution of the
code C, then the post-condition Q will be valid after the action of C on the contents of the
variables. In the same way, most tools for formal certification that are widespread in industry,
like the B method [1], are focused on proof of imperative programs. This is undoubtedly
explained simply by the omnipresence of imperative paradigm in industry, to the detriment
of functional languages. The main exception to date is the creation and the use of Erlang
at Ericsson. Nevertheless, we now will see that the functional languages are particularly well
suited for the creation of certified programs.

The Curry-Howard isomorphism

All the functional languages have a common theoretical core, namely the A-calculus. This
is true of Lisp, Scheme, the members of the ML family like Ocaml, or Haskell. However in
[26], H. Curry noticed in 1958 that in the simply typed A-calculus, any well-typed term has
necessarily a type that is a tautology in propositional intuitionistic logic?, as soon as one
assimilates functional type A—B and implication A=-B.

In addition to this isomorphism between types and propositions, H. Curry also establishes
a correspondence between terms and demonstrations. In particular, the constructive proof
of an implication A=B is a method which allows to transform any demonstration a of the
property A into a proof b of the property B. Via the isomorphism, this proof of A=B can
thus be seen like a function which for any object a of type A associates an object b of type
B.

In 1969, W A. Howard proposed a A-calculus with dependent types that extends the
isomorphism to first-order intuitionistic logic [46]. For example, a constructive proof 3x,P (x)
stipulating the existence of an object satisfying the property P, gives via this isomorphism
a functional program building indeed this object. More precisely, this program will return a
couple (x,p) in which x is the sought object, and p is a certificate showing that we indeed
have P(x).

2For more details on intuitionistic and constructive logics, one may consult [10] or [80].
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Thereafter, this isomorphism was extended to all kinds of intuitionistic logical systems
with increasing expressivity, like for example the types theory of Martin-Lof [58] or the
Calculation of Inductive Constructions (CIC) which is used in the Coq proof assistant [78§].
And extraction, that is the possibility of deriving a program from a proof, was used in
practice in many systems, like PX [44], Nuprl [50], Coq, Minlog [30] or more recently Isabelle
[13, 14].

One can make here a comparison with the Hoare method. If we wish to build a program
certified taking as input an object x satisfying a pre-condition P(x) and then returning
another object y satisfying a post-condition Q(x,y), we only have to prove in a intuitionis-
tic formalism the proposition Vx,P(x) —dy,Q(x,y). The Curry-Howard isomorphism then
allows us to automatically derive from our proof a functional program that is correct by
construction.

In fact, the program obtained by a direct use of this isomorphism is not completely
the one expected. Instead of a program taking a x and returning a y, one obtains rather a
program with two arguments x and p and with two results y and q. And p and q are then
two certificates corresponding respectively to the proofs of P(x) and Q(x,y). The role of
the extraction is then to generate the natural program, i.e. without logical certificates, and
to justify this deletion of certificates. We first see how that is done in Coq, then we evoke
the case of the other proof assistants.

The extraction in Coq

This thesis was thus devoted to the study of the extraction in Coq. In fact, it could have
been entitled “Fifteen years of extraction in Coq”, since it intervenes fifteen years after a
first thesis on this same subject by C. Paulin [66, 67, 69]. We thus start by recalling what
has been made at the time and then explaining why that has left the possibility of a new
work in this field.

First of all, we should mentioned that Coq is built directly on top of Curry-Howard
isomorphism: in particular a proof is directly represented internally by a A-term. One is then
tempted to say that a Coq proof is precisely a functional program, and that the extraction
has only a recopy to make. But this approach, although correct, is too naive. Indeed, if
one takes again the example of an existential proposition 9x,P(x), a intuitionistic proof of
this proposition contains indeed the construction method for the witness x, but also logical
justifications ensuring that x is appropriate, that is satisfies P(x). From the programming
point of view, the constructive skeleton will give us the wanted program, whereas the logical
justifications are in general non-desirable in a program. The role of extraction is then to
derive from one term t of type T a program p containing only the computational contents
of t. And usually, correctness of this program p is guaranteed by a realizability relation r
connecting p and the initial type T. This concept of realizability was initially introduced by
S. C. Kleene in 1945 in [49]. The extraction function, which we will note &£, will be then
correct if one can establish that a typing relation t:T implies the realizability relation &£ (t)
r T after extraction.

In her thesis, C. Paulin defines a realizability adapted to the Calculation of Cons-
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tructions®, and an associated extraction. A first version of this realizability is based on
the semantic criterion of “pre-realized formulas”. Then in a second step, C. Paulin proposes
to replace this semantic criterion by one syntactic criterion, namely an object annotation
by the user, to mark its computational nature or conversely its logical nature. For that pur-
pose, instead of using only one Prop type of all propositions, one doubles this type with a
Set type of informative propositions*, whereas the propositions remaining in Prop are being
considered as purely logical.

This theoretical extraction presented and proved correct by C. Paulin outputs extracted
programs belonging to a restriction of the Calculation of Constructions, namely F,. This
work were implemented in the assistant Coq thereafter, initially by C. Paulin for the extrac-
tion part towards F,,, then by going B. Werner for the part going from F, to ML® (see [69]).
Later on, J.-C. Filliatre maintained and improved this implementation.

The contributions of this thesis

This initial work on the extraction Coq suffers from several limitations, some of them
present at the creation of Coq extraction, others appeared during evolutions of the Coq
system. Our work has primarily consisted in solving these limitations, which led us, as we
will see, to an almost complete redesign of this extraction mechanism. At the same time, we
made an effort to maintain as much as possible a compatibility with the previous extraction.
And this new implementation of the extraction was gradually integrated in versions 7.0 and
following of Coq.

Complete support of the universes

A first limitation relates to the question of Coquniverse or sorts. We have already evoked
the division of Prop, the universe of propositions, in two universes, one named Set for the
computational propositions, the other, Prop, for the logical propositions. But these two
universes Prop and Set are themselves parts of a higher level universe named Type. However
Coq treats these universes like all other terms of the system. One can thus form a universal
quantification on Type, which will concerns in particular Set and Prop. The extraction C.
Paulin was not able to work with such terms that includes reasoning on universes. Any
term where the higher universe Type was appearing was quite simply considered as not-
extractable. And this was not an artificial restriction, but indeed an intrinsic limitation of
this extraction method. A theoretical study as well as a practical study of the Type level
extraction thus remained to be made, which appeared to be not-obvious. This limitation
was becoming quite awkward as the use of the universe Type tends now to to spread in
Coq developments. For example, this universe allows to write data types compatible at the
same time with Set and with Prop. In addition, Type is also frequently used in association
with strong elimination in developments based on reflexion (or two levels approaches, see

3These Constructions were not yet Inductive at this moment...

4In the thesis of C. Paulin, Set was named Spec

"The various languages “spoken” by the extraction were Caml (Lourd then Light), LazyML and now
Ocaml, Haskell and Scheme.
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for example [16]). These developments were thus at the origin out of field of application for
Coq extraction.

Solving the typing problems

A second problem appears in the translation step from F, to one of the concrete ML-
like functional languages. This step, present in the implementation, is not dealt with by
C. Paulin’s thesis. However the F, type system is much richer than that ML’s one. The
extraction can then produce a extracted term not typable in ML. In practice, such a conflict
of typing seldom occurs, but occurs nonetheless. And the increasingly frequent use of the
Type universe tends to multiply these situations. Moreover, this low frequency of the typing
conflicts can be also explained by a form of user’s self-censorship, not very inclined to use
Type if he knows beforehand that this will leads to a not-extractable development. We have
developed a method consisting in identifying the locations of these typing conflicts, then in
solving them via the use of low-level functions influencing types. This way, the extracted
code is always usable with standard compiler for the target language. For the moment this
method was only implemented for the Ocaml language.

Correctness of strict evaluation

The principal problem of the old extraction is its lack of safety concerning the execution
of extracted terms via a strict strategy, as in Ocaml. In fact, execution of some extracted
terms in Coq version 5.x and 6.x can finish abnormally on several fatal errors, or quite to the
contrary loop and never finish. For a good understanding of the problem, let’s first come back
to the original extraction towards F,,. In her thesis, C. Paulin has proved that her extraction
produces well-typed terms in F,. This system satisfying the strong normalization property,
the reduction of these extracted terms is thus ensured to proceed correctly, whatever strategy
is employed, either strict or lazy.

But let’s now add an axiom A in Coq. When one extracts a proof that uses this axiom,
the extracted program will be incomplete unless one provide manually a program p corres-
pondent with this axiom A, that is realizing it: p r A. When this program p is typable in
F., the preceding result of correctness still holds, and any reduction will proceed without
problem. Unfortunately, three axioms that are particularly natural and significant for the
expressivity of the system do not have typable realizations in F,. Any extracted program
using the realizations of these axioms can then theoretically see its execution fail, and that
occurs indeed in some cases, at least when evaluation strategy is strict. Here are these three
axioms:

1 r=y P(z) WF(R) VX, (Vy, Ry, z) — P(y)) — P(y)

A P(y) VX, P(x)

e the first axiom is the contradiction elimination, which allows to treat the impossible
cases of proofs and programs. This axiom corresponds naturally to a function raising an
exception. But such a realization leads sometimes to evaluations finishing abnormally
on an uncaught exception.
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e the second axiom is the equality elimination. With the most general version of this
axiom, an equality between types makes it possible to modify the apparent typing of a
term. That does not pose any problems in Coq, but on the other hand after extraction
one can have all kinds of execution failures related to typing errors, for example (0
0).

e the third axiom allows to prove a property P by induction over a well-founded predicate
R. This axiom is realized easily by an fixpoint operator like Y. But when this realization
is used, the old extraction can then generate terms whose strict evaluation will loop.

In fact, finding F_-typable realizations for these three axioms would have implied to
consider as computational the falsity, the equality, and the well-foundedness, ending finally
with almost no logical parts left. Instead, these three categories of problems, including the
two already evoked in [69], were ignored or minimized via empiric means® After all, if one
wished to ensure the correctness of the Ocaml-extracted terms, one could always work in a
stripped-down version of the system, without these three axioms — which however are part
the library initially loaded by the system.

To solve these problems of execution, we had to alter the extraction function £ signifi-
cantly, and in particular the elimination of logical A-abstractions, in order to guarantee a
correct evaluation whatever strategy is employed.

Support of the system’s evolutions

Since the first work on extraction, Coq evolution has accentuated the limitations of this
old extraction. We have already mentioned for example the increasingly frequent use of
the universe Type. In addition, the three axioms which put in danger the correctness of
the execution of the extracted terms are nevertheless essential for the expressivity of the
system. So, when it has been possible to modify Coq underlying logical system in order to
reinforce it and being able to prove these axioms, that has been done. And the extraction
was then facing potentially incorrect situations even without the least addition of axioms.
It thus became crucial to correct these problems, which was made.

Among the other evolutions of Coq which had an impact on the extraction, one can
quote of course the change from the Calculation of Constructions to Calculation of Inductive
Constructions, that is the addition of the primitive inductive types, or much more recently
the adoption of a system of modules and functors. Among these evolutions, some are benign
for the extraction. For example, the addition of the record types basically has not change
anything, since they are visible only by the user and are translated internally into inductive
types. In the same way, extracting the co-inductive types does not ask any particular work
if the target language is lazy like Haskell, and the old extraction was already supporting this
case. On the other hand, some enrichments required more substantial modifications of the
implementation, but without impact on the extraction theory. This is the case for example
of the support by B. Werner of the inductive types extraction or even of our adaptation of
the extraction for the new modules system.

6The function False_rec, raising an exception associated with the contradiction elimination, was in
particular always unfolded, since its definition itself was raising an exception.
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Modules and interfaces

Let’s stop for a second at this last extension of extraction in order to support the new Coq
modules, at least for Ocaml extraction, as well as the generation of an interface for any code
extracted towards this language. These two new features may seem minors in comparison
with the solving of flaws that were endangering the correctness of extracted code. But we
consider as really essential that the extracted code can be integrated easily in a broader
development. The generation of the interfaces is in fact only one positive side-effect of the
evoked solving of typing problems, but it now allows to predict the type of a extracted
function only by inspecting the Coq type of the initial object.

Our contribution in brief

Finally, our new extraction is thus characterized by the three following points:
1. It endeavors to manage any Coq term.

2. It ensures that the execution of the extracted terms will be correct, both with a lazy
or strict strategy.

3. It guarantees the good typing of the extracted code and provides an interface with
this code (in Ocaml only for the moment).

In fifteen years, the Coq extraction has been transformed from a still experimental tool to
a mature framework for development of certified code. In particular this tool is now able
to treat significant and realistic examples, like for example the library of finite sets used in
practical by Ocaml developers, based on modules and functors (see chapter 7).

Comparison with other extraction systems

We now will compare the extraction Coq with the similar tools present in other systems.
This comparison will be centered on the two essential points of Coq extraction, namely
the deletion of the logical parts in proofs, and then the translation into a true functional
programming language. For more details, one can consider the chapter 6 of [66], which
remains largely up-to-date.

Deletion of logical parts in proofs

First of all let us reconsider the distinction between logical part and computational part
in a Coq term. In the typical example of a term whose type is Vx,P(x) —3dy,Q(x,y), we
have seen that the Curry-Howard isomorphism gives us a function with two arguments x
and p and with two results y and q. If one wants to obtain a final function producing only y
from x, it is appropriate to make sure that the logical certificates p and q do not intervene
during this construction of y. If it is indeed the case, then p and q are simple decorations
or dead code from the point of view of the computation of y. And normally, the deletion of
such a dead code brings very significant profits concerning the size of the final program and
its speed of execution.
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Much work has been accomplished concerning the topic of automatic control of dead
code. In the beginning, S. Berardi studied this dead code elimination in context of simply
typed A-calculus [12], then L. Boerio has extended these techniques to the second order [15].
Then F. Prost generalized this work with Pure Type Systems [72].

We have however chosen to remain compatible with the old extraction of Coq, which
always relies on the annotation of the logical parts by the user. In practice this is not so
much a constraint, since it is enough to annotate only each new definition of object. One
has only to determine in advance, and once for all, the role of each object. By the way, these
annotations via the universes Prop, Set or Type also fulfill a another role apart from helping
the extraction: see the question of the impredicativity in the following chapter.

Let us recall that Prop is mainly a copy of Set, but with one logical meaning, whereas
any object placed in universe Set and Type will be considered informative. We will see later
that Coq typing system ensures that computations on informative objects do not depend
on the computation results in logical parts. This prevents for example an unwanted use of
a auxiliary logical construction at a computational location, and thus justifies the deletion
during extraction of the objects having Prop as universe.

In fact, this method and the automatic dead code analysis are relatively orthogonal:
although the extraction cannot eliminate dead code placed in an informative universe, it
can on the contrary simplifying subterms which do not satisfy the dead code criteria (see in
particular the elimination of logical singleton inductive in section 2.3.2). Besides, it would not
be absurd to combine these two techniques, by applying for example a dead code analysis to
extracted code. The extraction, syntactic process, would then remove at low cost the broad
logical parts while a more complex and expensive dead code analysis could then work better
on the small extracted terms.

If we study now the PX system [44], we note that the elimination of the logical parts
relies in this system on a syntactic concept of formulas without computational contents
(known as of rank 0). One finds in particular among these formulas to eliminate the Harrop
formulas”, but also manual annotations oA, which are the formulas A which computational
contents is deliberately hidden.

In Nuprl [50], one first finds a certain number of formulas preset as being of null contents.
This concerns in particular equality and inequality, falsity and the relation a€A which express
that a is a proof of A. Beside that, in a type subset {x:A|B(x) }, the role of B is rather
similar to the one of a Coq object in Prop : one can make use of it only for establishing a
formula of null contents or another property on the right-hand side of a subset type.

Concerning Minlog, one finds in [30] distinction between Harrop formulas and other
formulas that are considered informative. Moreover, H. Schwichtenberg told us during a
private communication its interest for the use of two kinds quantifiers V and V., the second
one binding a variable without computational contents. By the way, let us mention here
many works around Minlog that aim at extracting programs from classical proofs.

Lastly, in Isabelle, S. Berghofer also carries out an automatic analysis of computational
contents for the terms being extracted, that amounts to eliminate the Harrop formulas. On

"This is a well-known class of formulas without computational contents, gathering the formulas without
disjunction or existential quantification in positive location.
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the other hand the status of predicate variables is not decided as long as these variables are
not instantiated. For a initial theorem with n predicate variables, it may be necessary to
generate at worst 2" alternative extractions to manage all the situations during the later use
of this theorem (see p.64 [14]). On another side, in the case of Isabelle/HOL, the extraction
relies on a manual annotation concerning the computational contents of inductive predicates
(see p.84 [14]). It should be noted that Isabelle is based on a classical logic. In fact, unlike
Minlog, the extraction only identifies the constructive parts of the terms, without seeking to
work on the classical parts.

Translation to a true functional language

Since the beginning, the successive versions of the extraction in Coq have all aimed at
producing source code for widespread functional languages, and not just outputting the raw
A-terms. Currently, our implementation supports three target languages: Ocaml [53], Haskell
[31] and Scheme [48]. Among these three languages, the extraction towards Ocaml is most
complete and mature, whereas on the contrary the one towards Scheme is still experimental.
There are three principal reasons for the use of such external target languages:

e First of all, the certified code produces can more easily be integrated in broader de-
velopments. This is made possible by the production of readable interfaces®. One can
for example obtain one autonomous program by adding to extracted code a manually-
written part for managing inputs and outputs (see examples of chapter 5). It is also
possible to develop a certified extracted library, which can be re-used thereafter in
multiple projects. For example, the chapter 7 presents the formalization of a library of
finite sets. This way, a broad community of programmers can profit from the extrac-
tion, including Coq non-users.

e Secondly, the use of such external languages allows substantial speed gains. As it
was previously said, one Coq proof can be directly seen as a program. And its direct
execution in Coq is possible via (Gdu(-reduction (cf. for example the command Eval
compute). But during this execution, Coq behaves primarily like an interpreter. And it
is well known that this is much less efficient than the use of a compiler. A natural idea is
then to use already existing and widespread compilers, like those for Ocaml or Haskell.
It should be noted however that the internal reduction in Coq is currently improving:
B. Grégoire worked at the implementation a compiler for the Coq terms [39, 40|. But
this compiler cannot ignore as much logical parts as the extraction, because it must
be able to to work with unclosed terms and to reduce under lambdas. And this, mixed
with elimination with certain logical parts, can lead to not-termination (see part 2.3.2).

e Lastly, a pragmatic reason for this choice in favor of external target languages is the
impossibility of writing back some extracted terms in Coq. We saw that in the be-
ginning, the work of C. Paulin on Coq extraction was using a internal intermediary
step This idea is also found in internal extraction of P. Severi & N Szasz [76]. But
the theoretical system currently used in Coq differs appreciably of those used in these

81n practice, we even try to also produce source code that is as readable as possible.
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studies. And the same enrichments that we have seen calling into question the correct-
ness of the old extraction, also prevent from realizing henceforth a complete internal
extraction. In particular, Coq now accepts the definition of informative fixpoints based
on a logical decreasing measure. So is defined for example the the accessibility relation
Acc and of its associated fixpoints Acc_rec and Acc_iter that we will study later.
An internal extraction of these terms would then lead to fixpoints without decreasing
measure, and thus potentially to non-strongly normalizing terms (see an example in
section 2.3.2). However such objects with infinite reduction are proscribed in Cogq.

A contrario, it is obvious that the use of a target internal language simplifies greatly the
justification of the extraction correctness. Indeed, starting from a (not necessarily formal)
proof of correctness by realizability of an internal extraction, one can then easily implement
a procedure which builds explicitly, in addition to the extracted term, the proof that this
particular extracted term realize indeed its specification. Such tools of automatic generation
for particular correctness proofs have been implemented in particular in Minlog and Isabelle.
Of course, having a external extraction does not exclude the creation of a formal correctness
proof. But a stage should then be added to the process, namely a formalization of our target
language semantics, in order to be able to express the adequacy between the extracted term,
this semantics and the initial specification. For lack of time, this correctness proof have only
be made on paper during this work, and is the subject of chapter 2.

It should be noted that these two systems are not confronted with the problems coming
from the richness of Coq logic. In particular, the extracted functions in Minlog are typable
in Godel’s system T, and one cannot obtain by extraction any non-structural (but well-
founded) inductions or any other object that prevent an Coq internal extraction. One must
choose between a rich logic and a complex but expressive extraction on the one hand, and
a more minimal logic and a simple extraction on the other hand.

Moreover, S. Berghofer also mentions in [14] the possibility of generating true ML code
starting from its internally extracted terms. This step, even if it may seem obvious because
of the proximity between his internal terms and the ML syntax, must nevertheless be made
with the greatest caution. One can indeed make a parallel with the generation of F,, internal
terms in the old Coq extraction, and their later translation towards ML in an informal step.
We have indeed just seen that this could end with extracted terms whose strict evaluation
fails, in spite of one result of correctness on the F, level.

Finally, in Nuprl, the extraction also produced an internal A-term, that can be reduced
by using an internal reduction machine inside Nuprl. But it does not seem currently that the
correctness proof of an extracted A-term can be obtained automatically.

Summary

This work begins with a progressive introduction to the Coq proof assistant. The first
part of the chapter 1 presents via examples the principal features of this system, and in
particular those which influence the extraction. The second part of this chapter exposes
more formally the Cic, which is Coq’s underlying theoretical system.

After this brief review of Coq and CIC, we start a first half of this manuscript dedicated
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to the presentation of our new extraction. The chapter 2 first of all present our redesign of
the extraction function £ for terms, and complementary two proofs of its correctness. The
first proof is a syntactic proof stating that reduction of extracted terms cannot not fail, the
second proof is a semantic proof ensuring the correctness of extracted terms with respect to
theirs specifications.

The chapter 3 is then dedicated to the typing of the extracted terms. We start by studying
in detail which kind of non-typability the extracted terms may presents in a ML-like typing
system, then we propose a solution for skirting these difficulties.

Lastly, the chapter 4 supplements the description of our new extraction by presenting
the last aspects of our work: extraction of modules, of co-inductive types, of record types,
and lastly optimization of the extracted code. Finally we briefly present the implementation
carried out, from both developer’s and user’s point of view.

The chapter 5 starts the second half of the manuscript, devoted to case studies. In this
chapter, we first review the users contributions from the point of view of extraction, these
users contributions forming an already consequent library of examples of Coq developments.
Then we detail the case of two of these contributions, which put at fault the old extraction:
the first on exceptions by continuations, due to J.-F. Monin, and the second on Higman’s
lemma, by H. Herbelin.

The chapter 6 gives a progress report on an ambitious project consisting in developing a
library of arithmetic real exact by extraction of a development of constructive real analysis.
The development in question is the C-CoRN project at the university of Nijmegen. We will
see that one is still far from the goal, but that at the same time enormous progress were
already accomplished. In addition, we present a small alternative experimentation around
constructive reals made in collaboration with H. Schwichtenberg.

Lastly, the chapter 7 presents the certification of the Ocaml library of finite sets which we
carried out in collaboration with J.-C. Filliatre. This development is one of first to combine
modules, functors and extraction.
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Syntactic conventions

Throughout this document, fragments of source code given in example will be highlighted
as follows:

Definition zero := 0.

The contents of these fragments could be in Coq, Ocaml or Haskell according to the example.
The short examples will be mentioned with only font change, such as (plus 0 0).
Some examples will also show user’s interactions with Coq :

Coq < Eval compute in 1+1.
=2
: nat

We reuse here the syntax of the old coqtop text interface: the lines preceded by the prompt
“Coq <” correspond to user’s inputs, whereas the other lines are Coq outputs. In the same
way, the examples of use of Ocaml interactive loop will be presented as follows, with the
character “#” as prompt:

# 1+1;;
- ant = 2

The Coq examples are intended to be used with Coq version 8.0 or later [78]. It should
be noted that this version inaugurates a new syntax, much more pleasant. Beyond the use
of this new syntax, we also have improved the readability of examples using some recent
advanced features of the system:

e Some original ASCII keywords were replaced by theirs Unicode equivalents®:

forall |exists | ->|<>|<> |~ |/\|\/|<=
i 3 — — 7& AV <

e We used the most readable syntax for arithmetic expressions, for example 0+1 instead
of (plus 0 (S 0)), as allowed by the Scope mechanism.

e When the type of a quantification can be deduced from the context, Coq now authorizes
its omission. We sometimes use this possibility.

9This can indeed be done in Coq, via the Notation command and the use of an Unicode-compatible
interface, such as CoqlDE [78] for example.
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Chapitre 1

A presentation of Coq

This chapter has a double goal:

e First of all, the reader discovering the Coq proof assistant will find here a quick des-
cription of this system, and more particularly its underlying logical system, namely
the Calculus of Inductive Constructions (CIC in summary). Ideally, the only require-
ment for reading this part is a basic knowledge in type theory and in A-calculus. Of
course, this chapter does not intend to replace the documentation coming with Coq.
The reader may thus consult as well:

— the Tutorial [47] for a more gradual introduction,

— the Reference Manual [78], and in particular its chapter 4 on the Cic, for an
exhaustive formal description of Coq.

e At the same time, this presentation of Coq is of course centered on the extraction.
Even if this extraction is introduced only in the following chapter, we will detail here
all the features the Cic logical system that will influence the extraction.

1.1 An introduction via examples

1.1.1 Coq as a logical system

The objective goal of Coq is to be an proof assistant, and thus to allow the formalization
of mathematical reasoning. Let us take an obvious statement: A — A, where A is one
unspecified proposition. Here is a proof in natural deduction (cf [71]):

(Az)

A A

Tao Al

This proof can be directly transcribed in the Coq system. First, one is given a proposi-
tional variable.

Parameter A : Prop.

We will detail later this Prop, but here one can consider it simply as the set of all logical
propositions.
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Lemma easy : A — A.
Proof.

intro.

assumption.
Qed.

This portion of Coq script starts with the name and the statement of our lemma. Then
between the keywords Proof and Qed is the proof of this statement, made of directives or
tactics. These tactics reflect here the structure of the natural deduction proof. The intro
tactic corresponds to the use of introduction rule for the arrow (—I). And the assumption
tactic corresponds to the axiom rule (Ax).

The script presented here is complete, but the system Coq, by its interactive nature,
allows to build this proof step by step. Thus, if one stops after the order intro, the system
prints the current state of the goal(s) to prove:

1 subgoal
H: 4
4

Here we have to find a proof of A under the assumption A (this assumption being named H).
Many interfaces exist to facilitate this interaction with the Coq system, such as Proof-general
[4], Pcoq [3], or more recently CoqlDE [78]. Since the extraction works on finished proof, we
will not detail more this concept of interaction.

It should also be noted that Coq provides to the user a large variety of tactics. Here for
example, for a statement that simple, the automatic research tactic auto would have been
able to build the proof directly. There again, we will not detail these tactics. Indeed, the
extraction does not depend on the way followed during the proof building, but only on the
final form of the proof. In fact, auto builds here the same internal proof that intro followed
by assumption.

Proofs as \-terms

What is this internal representation of the proof? The system uses in fact A-terms,
following the Curry-Howard isomorphism. The underlying logical system of Coq, the Cic,
is indeed a A-calculus with a powerful type system. And always in application of the Curry-
Howard isomorphism [46, 7, 38|, the statements that can be expressed in Coq are the CIic
types. Lastly, to check if t is indeed a valid proof of the statement T, we only have to
checking if the type T is a legal type of the A-term t.

Let us ask Coq which is the internal representation of the lemma easy:

Coq < Print easy.
easy = fun H : 4 = H
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]

4 — A

The syntax fun x:X = Tis the Coq notation for the typed A-abstraction Ax:X.t. This
abstraction is here the effect of the intro tactic. As for assumption, its effect is the use
of a variable in the context, here H. In a more general way, any tactic contributes to build
piece by piece the complete A-term of the proof. And finally, it is clear that fun H:A = H
is indeed of type A—A.

These proofs in the form of A-terms are usually handled only by the system. But nothing
prevents the user to provide whole or part of its proof in this form, for example via the
exact tactic.

Lemma easy : A — A.
Proof.

exact (fun a = a).
Qed.

One can notice here that Coq is able to infer the type of a, which is necessarily A. It is
hence optional to write this type. We will frequently use this possibility thereafter.

Finally, if the complete A-term is known in advance, we can write it directly in the form
of a Definition:

Definition easy : A — A := fun a = a.

Alternatively, one can also use a definition style where arguments are named during the
declaration of the type, making useless the writing of the head A-abstractions :

Definition easy (a:A) : A := a.

This style is certainly more concise, but not necessarily more readable. We will thus avoid
it, except in the case of the recursive functions where it is essential (cf. lower).

The higher order

Up to now, the only basic type A we met had been fixed as a parameter, and the statement
of the lemma easy related to this particular A. But one can also consider in Coq statements
(that is types) speaking of sets of types. For example VA:Prop, A—A is a statement (i.e. a
Coq type) that reads: “for any proposition A (that is object A belonging to the type Prop), A
implies A”. Such a universal typed quantification Vx:X, T is also named product in Coq. This
quantification not being restricted, the CIC is thus a higher order logic. One also speaks of
dependent types, since generally the body T of the product depends on the variable x in the
head of the product.

What can be the proof of the statement VA:Prop, A—A? The introduction of the “forall”
consists in picking an unspecified object in the domain, and then carrying out the rest of the
proof with this object. On the A-calculus level, this results in one A-abstraction: in response
to a statement VA:Prop, ..., the proof will thus begin with fun A:Prop =-.... The rest
of the proof is then the same one as the one of our easy lemma, which finally gives us the
complete A\-term fun A:Prop = fun a:A = a, or simply fun (A:Prop)(a:A) = a.
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It is noticeable that the A-abstractions are used at the same time for building the proof
of products and arrow types. This is no coincidence, one can indeed see a arrow type A—B as
a non-dependent product Vx:A, B for which x does not appear in B. In fact, in Coq, syntax
A—B is directly syntactic sugar for V_:A, B.

1.1.2 Coq as a programming language

One can also approach Coq via the other side of Curry-Howard isomorphism, and look at
the CIC not as a logical system, but more as a A-calculus, that is a programming language.
For example, with this vision, our easy lemma is the identity function on the type A.

Some standard inductive datatypes

For considering Coq as a programming language, it is necessary for us to be able to
define the datatypes that one usually meet in other programming languages. The definition
of these datatypes can be made easily in Coq via the use of inductive types. All inductive
types that we present in this chapter belong to the standard library of Coq.

The boolean type is obtained via the following declaration:

Inductive bool : Set := true : bool | false : bool.

This declaration creates a new type, named bool, with two constructors true and false of
type bool. The Set annotation indicates what should be the type of the bool type. We will
reconsider this point thereafter; meanwhile Set can be seen as the set of all datatypes. In
the same way, one defines the Peano integers this way:

Inductive nat : Set := 0 : nat | S : nat — nat.

The constructor 0 codes for zero, and S codes the successor function. A last usual example
is the one of parametric lists:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A — list A — list A.

Here, the syntax (A:Set) expresses the fact that 1ist depends on one parameter A. And
for each use of this data structure, the parameter will be provided as an argument, a list of
integers being for example 1ist nat.

It should be noted that the system refuses certain inductive types whose definition is
syntactically valid. These restrictions, which ensure the coherence of the system from the
logical point of view, consist mainly in a positivity condition. The interested reader may
consult the chapter 4 of [78] or even [68].

Pattern matching over inductive terms

To take advantage of these inductive types, the CIC is equipped with a primitive operator
allowing pattern matching, whose syntax is match... with. ... This allows for example to
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define the predecessor of an integer.

Definition pred : nat — nat :=
fun n =
match n with
| 0=0
| Sm = m
end.

The primitive matching of Coq is a simple, first level only matching:
e Each branch corresponds to a constructor and only one.

e In the branch corresponding to the constructor C, the pattern matched is inevitably
the application of C to variables.

In addition to this primitive matching, we can also in Coq define more complex matchings,
as in this double predecessor:

Definition predpred : nat — nat :=
fun n =
match n with
| S (Sm) =m
| - =0
end.

We will not detail these complex matchings, which are in fact translated at the internal Coq
level into a succession of primitive matchings. Our double predecessor is thus the combination
of two simple predecessors.

Lastly, let us mention to be complete that the syntax match... with accepts additional
annotations via the keywords as, in and return. These annotations are almost always
optional. But in certain situations Coq does not know how to infer automatically a type for
the whole matching, or does it badly. These additional annotations allow to provide explicitly
this type. We will encounter this situation later on, for example in the term Acc_inv (see
section 1.1.4).

The structural induction

The last primitive construction of the CIC is the possibility of to define a term by
structural induction on an inductive object. In its simplest version, this structural induction
corresponds to the Fixpoint syntax. Let us define for example the addition of two unary
integers:

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with

| 0 =m

| Sn’ = S (plus n’ m)
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]

end.

The complete type nat—nat—nat of plus is here divided between two named arguments n
and m on a side of the “:” and one result nat of the other. This makes it possible to specify
via struct on which inductive argument will be made the induction. One speaks then of
“guard” inductive argument, or “decreasing” inductive argument. Another possible choice of
presentation would have been to draw aside only the first argument, which is then implicitly

the “guard” argument, and to leave as result type nat—nat:

Fixpoint plus (n:nat) : nat — nat := fun m =
match n with

| 0 =m

| Sn’> = S (plus n’ m)
end.

A recursive definition is accepted only if any internal recursive call is done on a recursive
argument which is structurally smaller that the initial recursive argument. Here for example
n’ is indeed a subterm of n. One will find a more precise definition of this “structurally
smaller” in [78|. The reason for this constraint is, there again, the logical coherence. Without
this condition on recursive calls, it would be very easy to build terms of any type A:

Fixpoint loop (n:nat) : A := loop n.

Definition impossible : A := loop O.

The logical system would be then incoherent.

In fact, the syntax Fixpoint is not the most general one, because it declares the name
of the function immediately, and does not allow recursive anonymous function. In particular
one cannot imbricate one Fixpoint in another. Such a anonymous fixpoint can be defined
in Coq via the syntax fix. Here an alternative definition of plus using this syntax:

Definition plus :=
fix plusrec (n m:nat) {struct n} : nat :=
match n with
| 0 = m
| Sn’> = S (plusrec n’ m)
end.

On Coq internal level, these two definitions of plus are identical. In fact, Fixpoint is only
syntactic sugar for a Definition followed by a fix, as a Print plus can show. A typical
example of use for an anonymous fix is the merge of two sorted lists, that can be found for
example p.193 in one of the implementations of finite sets.

The term reduction

The principal interest of a programming language is to be able to execute the programs.
This is possible with Coq. Its logical system CIC is indeed equipped with reductions rules:
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(beta) CicC being basically a A-calculus, one obviously finds the [-reduction

(delta) As this system authorizes the addition of new constants (via Definition, Lemma, etc),
a rule of reduction named ¢ allows to replace a constant name by the body of this
constant.

(zeta) Coq now includes primitive “let-in”; that is local abbreviations let x:=t in U. A sys-
tem rule named ( allows to unfold these abbreviations, by replacing x by t everywhere
in u.

(tota) The system also includes two rules dedicated to inductive types, both named ¢. The
first rule allows to reduce a matching, if the matched term starts with a constructor.
By example, match S N with 0 = 0lS m = m end can be reduced to n. The other
rule related to inductive is the one can reduce a recursive function, as soon as its guard
recursive argument is present and that it starts with a constructor.

These reductions can be used in Coq at any time, for example via the command Eval
compute’:

Coq < Eval compute in pred (plus 2 2).
=3
: nat

These computations in Coq have very strong properties in comparison with executions
in more usual programming languages:

(i) First of all, the Coq reduction is a strong reduction, that is allowed at any place, even
under a lambda or in the body of a recursive function. For example:

Coq < Eval compute in fun n = plus 1 n.
=funn : nat = S n
: nat—nat

In comparison, the majority of usual languages freeze the body of functions, to reduce
them only when all waited arguments are present.

(ii) Then, any reduction Coq is finite. This property is named strong normalization. Star-
ting with a given term, any chain of reductions thus leads in a finite number of steps to
a normal form, that is a non-reducible term. This results from the multiple constraints
required before a term is accepted as valid in the Cic, as well as the former constraints
on (-reductions. On the contrary, in the immense majority of languages, it is very simple
to write a not-terminating program.

(iii) In addition, Coq also satisfies the confluence property: if one considers two reduced
of the same term, there exist two derivations of these two terms towards a common
reduced term. This, associated with (ii), allows to show that for each initial term there
exists in fact one and only one normal form. One is thus sure to obtain it in finite
time, in whatever order the computations are made. This property is for example not

!The syntax 2 is by default translated into S (S 0), and so on for the other numbers. The new Scope
mechanism [78] allows to change this translation according to needs (Z, R...).
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satisfied by languages with side effects, in which evaluation order can influence the
result.

The counterpart of these strong meta-theoretical properties is a certain lack of expres-
sivity of CIC considered as a programming language. It is indeed impossible to speak there
directly of partial functions, that is non everywhere defined. It is also impossible to define
directly a general, non-structural, recursive function. In fact we will see later how to cir-
cumvent these two limitations, respectively via the use of pre-conditions and well-founded
induction operators.

1.1.3 The universes of CicC

We now approach the mysteries of Coq that form the core of the extraction mechanism,
namely the wunivers or sorts of Coq. It should be known that there is no Coq syntactic
distinction between the basic terms (like 0) and the types (like nat). In both cases, they
are terms of the Cic. However any term of the CIC has a type, which is again a term of the
Cic. One can thus wonder how looks a type of a type, or a type of a type of a type. Let us
ask the system:

Coq < Check 0.
0
: nat

Coq < Check nat.
nat

: Set
Coq < Check Set.
Set

: Type
Coq < Check Type.
Type

: Type

Here appear Set and Type, which with Prop are three special objects of Coq named sorts.
And these sorts will have a close relationship with types of types in the system:

e First of all, it is clear that Set and Type are types of types (of 0 and nat respectively).
As for Prop, it is enough to define an inductive type in Prop, which can be done
similarly to definition (already seen) of inductive types in Set :

Inductive True : Prop := I : True.

Prop is then the type of the type of the constructor I.

e In addition, a property of the CicC states that all type of type can be reduced towards
Set, Prop or Type.

Lastly, to be complete, let us note that the type of Prop is Type.
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The Type universe

Let us first examine the Type sort. It is a strange object who seems to be his own type.
If a set-theoretic vision is taken, that corresponds to a set of sets containing itself, which
leads to Russel paradox. Even if this set-theoretic vision is here imperfect, it is nevertheless
true that Type:Type allows to prove the inconsistency of the system [20]. A remedy is then
to take an infinite hierarchy of sorts. In Coq, the Type sorts are implicitly subscripted by an
integer, and for any index ¢ one has: Type,: Type, ;. From the point of view the extraction,
we will not need to distinguish among this infinity of sorts, and we will thus remain on the
level of the approximation Type:Type.

Classification of universes
One can then ask for the reason of the presence of three sorts when only one, Type, could
have been enough. Two independent criteria allow in fact to distinguish these three sorts:
e the predicative or impredicative nature
e the logical or computational nature (we will also say informative).

We now detail these two criteria successively. But before that, here how the Coq sorts are
located with respect to these two criteria. Until version 7.4 of Coq, the situation could be
summarized by the following diagram:

| imprédicatif | predicative |

calculative Set Type
logic Prop

As from version 8.0, the Set sort is now by default predicative, which gives us the new
following diagram:

[ imprédicatif | predicative ]

calculative Set, Type
logic Prop

Impredicativity

Even if the (im)predicative nature does not influence directly the extraction, we never-
theless will try to illustrate this concept. For an impredicative sort like Prop, one authorizes
the creation of an element of Prop via an universal quantification on all elements of Prop
(and thus in particular on this new element currently being defined). For example, we have
already met the identity type on Prop :

Definition typeld : Prop := VA:Prop,A — A.

On the other hand, it is not possible to define the same term with predicative sort Type
instead of Prop. That apparently works, but this is only an appearance, since the implicit
indices of the two Type occurrences are in fact different:

Definition typeIld’ : Type;+; := VA:Type;, A — A.
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The problem is even more obvious with Set and Coq 8.0. The following definition:

Definition typelId’’ : Set := VA:Set, A — A.

generates an error explaining that typeId’’ is of type Type and not Set.

As mentioned previously, version 8.0 of Coq now has by default a predicative Set sort.
In fact, a command line option for Coq 8.0 allows to return to the previous situation. In
all the following, we use the default situation for Coq 8.0, namely with predicative Set,
except otherwise mentioned (see by example the study of Higman’s lemma in section 5.4).
Anyway, the theoretical study of extraction that follows is independent of this question of
impredicativity. We will thus keep on speaking of Cic for one or the other logical system
obtained with or without the impredicativity of Set, even if the official name for the system
without impredicativity is now PCIC (for “Predicative Calculus of Inductive Constructions”).

Logical and informative universes

The other distinction between sorts relates to their logical or computational nature.
First, we have initially a simple usage convention concerning Prop and Set :

e Set is intended to contain all the objects having computational contents, in particular
the previously considered examples of usual datatypes for the programmer.

e The role of Prop, on the contrary, is to contain everything related with pure logic,
such as for example the various justifications, pre- and post-conditions, in other words
everything that can be ignored during computations.

The user thus chooses at the time of the definition of an object whether to place it in Prop
or another sort. And this choice will be used by the extraction, which will ignore the logical
parts placed in Prop.

With respect to the logic/computational duality, Type plays an ambiguous role. In par-
ticular, CI1C contains a cumulativity principle, which allows to state that if t:Set, then one
also has t:Type, and similarly if t:Prop, then one also has t:Type. Let us consider the
identity on Type :

Definition id : VX:Type,X — X := fun (X:Type) (x:X) = x.

The cumulativity ensures that the following terms are well-typed: (id Set nat) or (id nat
0) or (id Prop True) or finally (id True I). By the cumulativity, certain terms of sort
Type are thus in fact logical because originally belonging to Prop, and others are computa-
tional. In doubt, we must then consider that the objects in Type can have computational
contents. This explains that on the extraction level, Set and Type will not be distinguished.

The logical inductive types

Concerning the logical operations, we have only presented yet the implication and the
universal quantification. Let us now see how to define the other usual logical operators via
inductive types in Prop. We have already met True, with its single constructor I. At the
logical level the statement True admits thus an immediate proof, which is simply I. On
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the contrary, False is an inductive type without constructor, and is thus not provable in a
empty context (the opposite would have as a consequence the inconsistency of the system).

Inductive False : Prop := .

The negation —A is then defined as A—False.
The logical connectors or and and are defined as follows:

Inductive or (A B:Prop) : Prop :=
| or_introl : A — or A B
| or_intror : B — or A B.

Inductive and (A B:Prop) : Prop := conj : A — B — and A B.

One will meet these two inductive with Coq syntaxes A and V.
Here is now the existential quantification:

Inductive ex (A:Type) (P:A—Prop) : Prop :=
ex_intro : Vx:A,P x — ex A P.

The Coq syntax for this existential is 3x:A, P (or 3x, P if A can be infered).
Finally the equality corresponds to inductive having only one constructor that simulates
the reflexivity:

Inductive eq (A:Type) (x:A) : A — Prop := refl_equal : eq A x x.

The equality will be noted =, and the difference (that is the negation of the equality) will
be noted # .

Thanks to pattern matching, one can prove the usual (intuitionistic) properties of all
these logical operators. Here is one example:

Definition projl : VA B:Prop, AAB — A :=
fun (A B:Prop)(ab:AAB) = match ab with (conj a b) = a end.

The elimination rules for inductive types

In fact, the dichotomy between Prop used as logical sort and Set used as computational
sort is more than just a matter of usage convention. Rules authorizing or not the elimination
of an inductive term (that is a matching on this term) differ indeed according to the sort
of this inductive term. If it is Prop, then this elimination can only be used to build a
term in Prop. On the other hand, one authorizes eliminations of inductive on Set and
Type to build terms of all sortes?. the idea is that a logical inductive, therefore without
computational contents, cannot influence a computation in Set or Type. And the CIC typing
system guarantees this property. Let us examine the following example:

2When Set is impredicative, there exists however a restriction on the elimination of certain inductive in
Set : they must be small before being authorized to build a term of sort Type (cf section 4.7 of [78])



26  Certified functional programming

Definition or_carac : VA B:Prop, AVB — nat :=
fun A B ab =
match ab with
| or_introl _ = 0
| or_intror _ = 1
end.

If this example were legal, to know if an application of or_carac is reduced into 0 or 1, the
contents of the logical proof AVB would have to be calculated, which one wants precisely to
avoid. The response of the system to this definition attempt is:

Error: Incorrect elimination of ab in the inductive type or.
The elimination predicate fun _:AVB = nat has type AVB — Set.
It should be one of : Prop.

Elimination of an inductive object of sort : Prop
2s not allowed on a predicate in sort :@ Set
because non-informative objects may not construct informative ones.

There are nevertheless two exceptions allowing the elimination of one inductive on Prop
in order to build an informative term. In these two cases, the form of inductive ensure that
its matching brings no computational information.

e The first case is the one of an empty logical inductive, that is without constructor, like
False. This elimination of False corresponds to the “ex-falso quodlibet” principle: if
we have one term of type False, this implies that we are in a contradictory context,
and we are then authorized to construct a term of any type.

Definition False_rect: VA:Type, False — A :=
fun (A:Type) (f:False) = match f with end.

e The second exception deals with the logical singleton inductive. They are logical in-
ductive with only one constructor, and this only constructor does not have informative
arguments. One can give as example and, and especially eq. Having a term in such
inductive types does not bring any computational content, since one knows inevitably
which is the constructor of this term, and the arguments of this constructor are again
without computational contents. Here follows for example the informative induction
principle associated with eq, which in fact describes how to get from (P y) to (P x)
when it is known that x=y:

Definition eq_rect: VA:Type, Vx:A,VP:A—Type,P x — Vy:A,x=y — P y
:= fun (A:Type) (x:A) (P:A—Type) (f:P x) (y:4) (e:x=y) =
match e with refl_equal = f end.

This principle and its logical sibling eq_ind are the basis of the rewrite tactic of
replacement of terms by equal terms. By the way, it should be noted that these in-
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duction principles ... _rect and ... _ind are generated automatically by Coq when
the corresponding inductive type is defined.

1.1.4 Prop/Set mixed terms

Until now, we have seen how to use the CiC as a programming language, and how to
calculate with terms written with this Cic. One may wonder then why we need an automatic
mechanism for extraction of programs starting from CIC terms, since we now that such a
term s already a program? It is indeed true that the extraction of purely calculative terms
is only one problem of translation® of a source language (CIC) towards target languages
(Ocaml or Haskell). But the things get more complex (and more intersting) when we consider
mixed terms, with logical and informative parts interlaced. The use of this style of terms,
allowed by the CIcC, is very convenient in many situations. One can in particular enrich a
informative term with pre- and post-conditions, or use a well-founded induction for justifying
the decrease of a measure at each recursive call of a fixpoint.

Pre-conditions

In addition to the natural need to express a specification of functions in the pre- and
post-conditions form, the logical pre-conditions also bring a solution to the problem of partial
functions definition. Let us consider, for example, an integer division function div of type
nat—nat—nat, which is not defined when its second argument is zero. There are then (at
least) three ways of proceeding:

(i) One can nonetheless define (div N 0), using one arbitrary value, for example 0. The
problem is that a integer division can return 0 either as a legitimate result, or as mark
of an abnormal situation. One cannot thus prove the following lemma any more:

Lemma div_gives_zero : Vn m:nat, (div n m)=0 — n<m.

(ii) the second solution is to simulate a exceptions mechanism. That can be done by exten-
ding the output domain nat into a nat,, as is domain theory. Rather than modifying
all the types used, there is one generic method, namely the use of an inductive option:

Inductive option (A:Set) : Set :=
| Some : A — option A
| None : option A.

Thus, div will turn over None if its second argument is 0, and (Some r) if not, r
being then the true result of the computation. The disadvantage of this method is the
heaviness of this encoding: for each use of a division, it will be necessary to carry out
one matching for either reaching the true result, or again to turn over None.

3We will see in fact that even this translation is not so simple, since the type system of CIc is much
more powerful than the ones of the functional target languages.
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(iii) the last possibility is to express the fact that the second argument must be non-null
via a logical pre-condition. The type of div then becomes nat—Vn:nat, n#0—nat.
The type of the second argument is not given any more via an arrow type, that is an
anonymous product, but by a named product (by n) in order to be able to refer to
it in the logical assertion. It is the method which approaches the most the concept of
partial definition. Indeed the function div is not defined outside the validity domain
of the logical assertion. The counterpart is that one must now provide a logical proof
of non-nullity as third argument during each call to div.

Coq < Lemma two_non_zero : 2#0. auto. Qed.
two_non_zero s defined

Coq < Eval Compute in (div 3 2 two_non_zero).
=1
: nat

Post-conditions

In addition to pre-conditions, it is also possible to express logical post-conditions, and
hence combining both pre- and post-conditions allows to give the specification of a function
in a Hoare-like style [45]. Thus a function of type A — B, pre-condition P and of post-
condition () corresponds to a constructive proof of the formula:

Vx:A, (P x) — dy:B, (Q x y)

We will not transcribe this formula in Coq by using its already encountered existential
quantifier ex on Prop. Indeed, that would amount to regard the result of the function as
being not-informative. We rather use a informative existential quantification, named sig.

Inductive sig (A:Set) (P:A—Prop) : Set :=
exist : Vx:A,P x — sig A P.

It should be noted that sig A (fun x = P x), which expresses the existence of one
informative object x checking the logical property (P x), is also written {x:A| (P x)}. This
thus gives us the following general form for a function with pre- and post-conditions:

Vx:A, (P x) - {y:B|l Qxy}

For example a version with post-condition of our integer division function can be specified
as follows:

Definition div : Va b:nat,b#0 — { g:nat | g*b < a A a < (S @) *b }.

One can then find the calculative result of div via one matching?

4The syntax let...:=... in... of this example is a shortcut for a matching on an inductive type
with only one constructor. In the same way a syntax if... then... else... exists as a shortcut for any
matching on inductive types with two constructors.
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Coq < Eval compute in let (q,_) := div 3 2 two_non_zero in q.
=1
: nat

This inductive sig can be also used to solve the partial function problem in a fourth way,
via a restriction of the starting domain. One can indeed express the type of the non-null
integers by { n:nat | n##0 }. This approach is equivalent to the one via by pre-conditions,
and as it is slightly less natural in Coq, we will not use it.

Informative disjunction

Beside sig, another type is frequently used that combines informative and logical parts.
This is sumbool, which is a counterpart of the logical disjunction or, except that it is placed
in the Set universe:

Inductive sumbool (A B: Prop) : Set :=
| left : A — sumbool A B
| right : B — sumbool A B.

The type (sumbool A B) is also noted {A}+{B}. The consequence of the use of Set in the
definition of sumbool is that one can test if an object of type sumbool starts with left or
right, even if one is in an informative part. In comparison, that would be illegal with an
object of type or. On the contrary, the arguments of left and right remain logical, which
prevent to analyze it for constructive ends. From a computational point of view, sumbool
is thus a type that is really similar to bool, it simply contains in addition some logical
annotations. This type is primarily used to express results of decidability, and can be read
“there exists an algorithm to determine if A or B”. For example:

Theorem eq_nat_dec : Vn m, {n = m} + {n # m}.

Or:

Lemma le_lt_dec : Vnm, {n < m} + {m < n}.

Well-founded induction

The definitions by well-founded induction constitute a last example of use of logical
parts in a computational function. First, we need to formalize the fact for a relation of being
well-founded.

Section Well_Founded.
Variable A : Set.
Variable R : A—A—Prop.
Inductive Acc : A—Prop :=
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]
Acc_intro : Vx:A, (Vy:A,R y x — Acc y) — Acc x.

Definition Well_founded := Va:A, Acc a.

The use of a Section and Variable allows to factorize the common dependencies, here
over a type A and over a logical relation R on this type. An element is known as accessible
(Acc x) with respect to A and R iff all predecessors of x by R are themselves accessible.
This inductive definition may seem strange, because of the lack of basic case. In fact, the
universal quantification ensures that an initial element (without predecessor by R) is directly
accessible. The finiteness of the inductive objects implies that one can interpret Acc as
follows: we have (Acc x) if all the sequences of successive predecessors by R starting from x
are finite. Finally the relation R is said to be well-founded if all the points in A are accessible
by R.

We then need an inversion of the Acc inductive: if one point x is accessible, then all its
predecessors are accessible. This is obtained by pattern matching on (Acc x):

Definition Acc_inv : Vx:A, Acc x — Vy:A,Ry x — Acc y :=
fun x a =
match a in Acc x return Vy,R y x — Acc y with
| Acc_intro x’ f = f end.

The two annotations “in Acc x” and “return Vy,R y x — Acc y” can be ignored during
first reading. They are needed to specify which must be the type of the match ... with...
subterm. These annotations are optional in the many simple situations where the system
can infer a suitable type. It is thus the case of all matchings encountered until now, since
they produce objects of obvious types like nat. But here, the type of the second argument f
of Acc_intro depends on the first argument x’, which is not visible outside of the term. In
fact, x’ is necessarily x, but the system currently does not know how to discover that, hence
the need for a manual annotation. For a more general discussion on the need for annotations,
see page 84 of [68|.

We now show that if an informative predicate P is propagated by R, then P is valid in
any accessible point.

Section Acc_iter.
Variable P : A—Type.
Variable F : Vx, (Vy,Ry x — P y) — P x.
Fixpoint Acc_iter (x:A)(a:Acc x) {struct a} : P x :=
F x (fun y h = Acc_iter y (Acc_inv x a y h)).
End Acc_iter.
End Well_founded.

There are two astonishing things in this Acc_iter definition:

e First of all we build an informative term (since its sort is Type) by induction over a,
which is a logical inductive object. This is legal in Coq, but can seem to be a violation
of the principle of the Prop/Set duality, according to which a logical part should not
influence a informative computation. In fact this influence is limited to just provide
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the insurance that this recursion will terminate. True computation is in fact carried
out in the function F, which cannot use the contents of a because of the restrictions
on sorts in pattern matchings.

e the second shocking point is that the recursive call in (Acc_iter X a) is done on the
recursive argument (Acc_inv x a y H), which does not seem structurally smaller
than the initial recursive argument a. But if a is of form (Acc_intro _ F), then
(Acc_inv x a y H) can be reduced in (f y H). As f is the function contained in a,
this definition satisfies indeed the structurally decreasing criterion of Coq.

Let us mention a last function related to well-foundedness:

Coq < Check well_founded_induction.
well_founded_induction
: Y(4:Set) (R:A—A—Prop),
well_founded R —
VP:4—Set,
(Vz:4, Vy:A,R y z — Py) — P z) —
Va:4, P a

This is an alternative to Acc_iter, in with the relation R is supposed well-founded, and that
allows us to obtain (P x) for all x without any restriction.

As an application, this well-founded induction allow us to define functions. Let us consi-
der for example A = nat and R = 1t, that is the strict order on nat. The standard library of
Coq contains a proof named 1t_wf stating that this order is well-founded. We can then define
our integer division div by successive subtractions rather than by structural induction:

Definition div : Va b:nat,b#0 — { q:nat | g*b < a A a < (S @)*b }.
Proof.

intro a; pattern a; apply (well_founded_induction 1lt_wf); clear a.
intros a Hrec b Hb.

elim (le_1t_dec b a); intros Hab.

assert (H : a-b < a). omega.
elim (Hrec (a-b) H b Hb); simpl; intros q (Hq,Hq’).
exists (S q); simpl; omega.

exists 0; omega.
Qed.

1.1.5 Coq extensions

A certain number of Coq extensions were voluntarily not presented here. They will be
the subject of specific studies in chapter 4. This concerns in particular:

e the new system of modules of Coq (section 4.1)

e the co-inductive types (section 4.2)
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1.2 A formal presentation of the Cic

We now will give a more formal presentation of the Cic. This formalism will be used in
the theoretical chapter which comes next. The notations used here correspond as much as
possible to those of chapter 4 of the Reference Manual [78]. The principal exception concerns
the environments and the contexts. For simplicity reasons, we will merge these two concepts.
First, let us specify the terms syntax of the Cic.

1.2.1 Syntax

Definition 1 (terms) Terms of the CIC are given by the following grammar:

T = s
JalelC|I
| Ve:t,t | Ae:t,t | letx:=tint | (1)
| case(t,t,t ... t)
| fix x; {:cl/kl t—t . Tpfky =t}
where:

— s indicates a sort, among Set, Prop or Type,;. We will omit the index of Type, as long
as it does not intervene explicitly.

—x,c,C, I are identifiers, that respectively refer to variables, constants, inductive cons-
tructors and inductive types.

— for the fizpoint, the k; are integers that correspond to the number of arguments awaited
by the x; components.

To lighten syntactic expressions, we sometimes use vectorial notations:
o (f7)for (f oy ... x,)
—
o Vx: X, T forVa,: Xy, ... Vo, : X,,, T
—
e \x: X, tfor Az : X, ... v, : X, t

And we use the notation | 7’| to specify the size of vector Z', when this size is significant
and non-obvious.
It should be noticed that the syntax chosen here differs somewhat from the concrete
syntax Coq :
e the )\ is more concise than the keyword fun.
e the match... with syntax, even if it is a improvement with respect to usage comfort,
is hardly adapted to theoretical reasoning, especially in the presence of additional
H
annotations as, in and return. We use instead a case(P, e, f) syntax in which e is
—

the matched object, P is the elimination predicate and the f functions correspond to
the branches put in fonctional form®: the equation (C x y z) = t becomes the function
Az, Ay, Az, t. By the way, let us mention that a pattern matching can perfectly have

5In fact, this syntax is similar to the one used in versions 5.x of Coq. It was still usable in versions 7.x
via the keyword Case... of.
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zero branch, in which case we will note it case(e, P, @). Concerning the predicate P,
if e is an inductive object of type (I ¢ ), then the typing rules that follow force P
to be of the form A\, Az : (I ¢ W), Py. The equivalent in Coq concrete syntax is
then:

match E have X in (I _ %) return P, with ... end
e The Coq concrete syntax allows the definition of a block of mutually recursive anony-

mous functions via:

fix f1:T;:=t; with ... with f,:7T,:=t, in f;
We will use following shortened syntax here:

fix f; {fifkr:Th:=t1 ... fofkn:T:=t,}
where for each f; component, the integer k; indicates the rank of the inductive ar-
gument on which induction is performed. This integer corresponds to the struct
annotation of Coq concrete syntax. We will name this inductive argument the “guard”,

because it will be used to control the fixpoint reduction (see reductions below). This
is then called guarded induction.

Definition 2 (contexts) A context T is a list that can contain the following elements:
— assumptions (z : t)
— definitions (c .=t : 1)

— inductive declarations Ind,(I'; := T'c), where n is the number of parameters, and
I'; and T'c are two contexts respectively containing some inductive types and theirs
constructors.

Compared to the notations of the Reference Manual, we have chosen not to place the
parameters in a specialized context, but to let them appear at the same time in I'; and I'c.
the n annotation allows to emphasize that the n first products in all the elements of I';
and I'c correspond to parameters. Besides, this is closer to the actual Coq implementation.
For example, let us write the declarations of unary integers and of polymorphic lists in this
syntax:

Indyp(nat : Set := 0 : nat; S:nat — nat)
Ind;(list:Set —Set :=
nil : VA:Set, list A; cons :VA:Set, A — list A — 1list A)

1.2.2 Reductions

Definition 3 (reductions) The reductions of the CIC are as follows:
(beta) ((Ax: X, t) u) -5 t{r—u}
(delta) ¢ —4 t if current context I' contains (c:=t:T).
(zeta) let x :=t in u —; u{x—t}
)

(iota) case(C; P U, P, fi ... fo) =, fi W
when C; is the i-th constructor of an inductive type having |P’| parameters.
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(iota) if F is the recursive block fi/ki:Ay:=ty ... fo/kn:An:=t,, then:
(le fz {F} uy ... ukl) — (tz{fj<—le fj {F}}VJ uy ... ukl)
if the “guard” argument uy, starts with a constructor.

These reductions are strong: they are authorized at any position inside a term, via the
usual compatibility rules. On the contrary, we will also have to consider later weak reductions,
that is reductions that can only happen at the top of the term, or either on the left or on
the right of an application or at the head of a Case. Said otherwise, reductions that can only
happen outside any binder. We will use —, to indicate a step of any of the strong reductions
—g, —§, —, OF —¢.

Starting from these reductions, one then defines the convertibility relation =gs,¢ and the
cumulativity order <gs, which are used below in the typing rule (Conv).

Definition 4 (convertibility) Two termsu and v are convertible (noted u =gs,c v) if they
have a common reduced form w, that is such as u —} w and v — w.

Definition 5 (cumulativity) The cumulativity order <gs, is recursively defined by:
= If u =gsc v then u <gs,c v
— Type,; <gsic Type; as soon as i < j
- Set <gs¢ Type
— Prop <gs.¢ Type
~ If T =p5c T and U <gsc U' thenVx : T, U <gge Vo : T', U’

It is noticeable that due to the d-reduction, these two concepts depend implicitly on a
context.

Definition 6 (arity) An arity is a term convertible to a sort or a product Vx : T, U with U
being again a arity. After reduction an arity can thus be written asVxy : Xy, ...V, : X,, S.
One then speaks of an arity of sort s.

1.2.3 Typing

We now give a condensed definition of the typing rules of the Cic. Once again, we refer
to the Reference Manual [78] for a detailed version of these rules and their explanations.

Definition 7 (typing rules) The typing judgement T -t : T, which means that T is one
valid type fort in the context ', is defined simultaneously with the property WF (') of context
good formation, via the rules of figure 1.1.

Let us now give the side conditions of the typing rules for inductive types:
1. In rule (Prod), the condition P(sy, sq, s3) on sorts is:
(s = s3 = Prop) V
(s9 = s3 = Set A s1 # Type) V
(51 = Type; A sy = Type,; A s3 = Type, Ni < K A j < k)
By the way, to let Set be impredicative (again), it is enough to remove the condition
s1 # Type on the second line.
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'eT:s x¢l 'et:T c¢l

F
Wr@) WE: (1)) WET: (c:=1: 7)) (WE)
WF(I) WF () WFI) i<j (Ax)
I' - Set : Type, I' = Prop : Type, I' = Type, : Type;
WFIT) (z:T)el WFT) (c:=t:T)eTl
'cx:T ke T (Var)(Cst)
FTET:s; Ti(x:T)FU:sy P(s1,89,83)
I'EVe:T, U : s3 (Prod)
PEYe:U,T:s Ti(x:U)Ft:T 'tt:Vx:UT TThHu:U (Lam)(App)
XU t:Vo: U T P (tu): T{zx—u} pp
Ft:T Ty(z=t:T)Fu:U
'Fletz :=tinu:U{z—u} (Tet)
I'rU:s T'Ht:T Tglg(;LcU
THt:U (Conv)
WF(I) Ind,(I;:=Tc)el (I:A)el;
THI:A (Type)
Wf(F) Indn(F[ ::FC)EF (CIT)GFC
TFC:T (I-Cons)
forall (:A)ely, THA:s
forall (C:T)eTle, I'ITET:se
Z,(I',T'c)
[-WF
Indn<F[ Irc) el ([Vp 2T, A) el o= {7%7}
Pl=n Tke:I ¢ W THP:B C(Iq:A;B)
for all constructor C; : Vp: T, Vo : X, I P ¥,
— — — —
'k fi:Ve:X,, Py, (C; ¢ ) (Case)
I'Fcase(e, P, fi...fm): P W e
—_— — — — —
Vi, T A sy Vi, Ts(f ARG A FOFLA K, ) (Fix)

' fix f] {fl/klAlztl fn/ nAn tn}A]

Fic. 1.1: Typing rules for Cic
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2. In rule (I-WF) of good formation for an inductive definition, Z,,(I';,T'¢) gathers all
the side conditions that must be fulfilled for this definition to be valid:

All the names contained in I'; and I'c must be new and distinct.

As we have not made explicit the parameters, but only their number n, it should

be checked that all the declarations of I'; and I'¢ start with the same n products
—

Vp : P, and that all occurrences of the inductive type [ in I'¢ is applied to at

least .

For all (I : A) € I';, A must be an arity of a sort s;.

For all (C': T) € I'c, T must be a type of constructor for one of the inductive
. . — = v = —

types I defined in I'y, 7.e. T"must be of the form Vp : P, Vx : X, [ p" y'. Moreover

the s¢ sort in the typing premise of T must be s;.

T must also check the positivity condition with respect to all the types of I';. This

condition is essential to guarantee strong normalization, but does not intervene

in the extraction. We will thus not detail it.

3. In rule (Case), the o substitution replaces the n formal parameters p by n concrete
parameters ¢ . And the condition C(I ¢ : A,; B) expresses the fact that the arrival
type of the case must be compatible with the inductive I which is matched:

One has C(I : (Vz : X, A); (Vx : X, B)) iff for all x, one has C(I x : A; B).
One has C(I : Prop; [ — Prop)

One has C(I : Prop; I — s) for a s # Prop sort iff [ is an empty or singleton
logical inductive type.

One has C(I : Set; I — s) for any s sort.
One has C(I : Type; I — s) for any s sort.

In the previous definition:

An empty logical inductive type is an inductive of sort Prop with zero constructor.

An singleton logical inductive type is an inductive of sort Prop with only one
constructor whose non-parametric arguments are all of sort Prop.

Let us note that if Set is taken impredicative, one should accept C(I : Set; [ — Type)
only when [ is a small inductive, that is one whose constructors cannot have not-
parametric argument of sort Type.

—

— = —
4. In rule (Fix), the condition F( f, A, k, t ) requires:

for all 4, A; must be of the form Vz : X, A, with at least k; products, and the
Xy, type of the k;-th product must be inductive.

moreover t; can only contain decreasing recursive calls: if f; appears in ¢;, then
it must have at least k; arguments, and its k;-th argument must be structurally
smaller than the initial inductive argument xj,. The exact definition of this “struc-
turally smaller” can be found in the Reference Manual. Informally, it is equivalent
to say that any subterm of an inductive term obtained by going through at least
one constructor is structurally smaller than the starting term.
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1.2.4 Properties

A first property of CiC states that if there is I' F ¢ : T, then there is a sort s €
{Prop, Set, Type} such as ' - T : s. Any t well-typed term thus admits at least a sort s.

In fact, one cannot speak rigorously of “the” type and of “the” sort of a ¢ term, because
there is no unicity of types in the CIiC. For example an object of type Prop also admits the
type Type via the rule (Conv) and cumulativity.

However, a term cannot admit at the same time Prop and Set as a sort. One can thus
speak about the smallest sort of a term, with respect to the cumulativity order (Prop < Type
and Set < Type). This smallest sort will also be named principal sort.

In the same way, all types of a term are comparable via the cumulativity order. One can
even show that there exists a type, unique modulo conversion, which is smaller than all the
other types with respect to the conversion order. It will be named principal type. In fact,
this concept has only interest for types which are arities. In the other cases, all the possible
types are equal modulo conversion. And we will then speak sometimes, by abuse, of “the”
type.

With respect to a context I', a term 7' is a type if it admits for type a sort s in this
context. In fact, rather than these Coq types, it is a superset of those which will play a
crucial role for the extraction:

Definition 8 (type scheme) A type scheme is a well-typed term which admits at least one
arity as type, that is has the form Vxi : X4, ...Va, : X,,, s with s being a sort.

In other words, a type scheme is a term which will become a type as soon as it is applied to
sufficiently many arguments. For example AX : Type, X — X is a type scheme: once applied
to a type, one obtains the corresponding arrow type. On the contrary, AX : Type, Az : X, x
is not a type scheme: it may happen that a type is obtained by applying it (for example
with Set and nat), but one can also not obtain a type (for example by the application to
nat and 0).

Lemma 1 (stability) the CiC admits the following results:

1. (Subject Reduction) Let t be a term that reduces to u. Then any type T of t is also a
type of u. And any s sort of t is also a sort of u.

2. During the substitution of a variable in a term, the type of this term can obviously
change. More precisely, if T is a type of t, then T{x—u} is a type of t{x«—u}. But
the following properties are nonetheless preserved:

— Ift has as a Prop sort, it is the same for t{x—u}
— Ift is a type scheme, it is the same for t{x—u}
— Ift has an inductive type, it is the same for t{x—u}
3. Lastly, concerning the applications, if t has Prop as sort, it is also true for (t u), and
if t is a type scheme, so is (t u).

PrROOF. We will admit these results here. Please refer to theoretical studies of the Cic, such
as for example [83]. O

It should be noted that for each stability property above, the reciprocal is false:
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1. Let us take an unspecified type in Prop, say True. Then ((AX : Type, X) True) can
be reduced to True. However this last term accepts Prop as type, and not the first
one. And in this example, Type, is a sort of True, but not of the initial term, which
has only Type, as principal sort.

2. e Let us use the context I' = (X : Type). Then (Az : X, 2){X « True} admits
Prop as sort whereas Ax : X, x has Type for principal sort.

e In this same context, (Azx : X, z){X «Set} is one type scheme whereas Az : X, x
was not one originally.

e Let us take now I' = (b : bool). If T' = case(b, Type, nat, bool), then the term
t = case(b, T, 0, true) does not admit an inductive type, whereas t{b+« true}
admits as a type T'{b«true} which is convertible to nat.

3. Let us take Id = AX : Type, Az : X, z. It is not a term of sort Prop, nor a type
scheme. Yet (Id True) has sort Prop, and (Id Set) is a type scheme.

In all the cases, the counterexamples make use of the sort Type, which thus illustrates
the precautions to be taken for in order to conceive an extraction able to manage Type. This
being said, it is nevertheless necessary to relativize the importance of the problems implied
by the possible change of the principal type during reduction:

Lemma 2 Let t be a well-typed term of CIC that reduces to w, and let T and U be respec-
tively principal types of t and wu.
(i) One has U <gs,¢c T
(ii) Ift is not a type scheme, T =ps5,c U.
(iii) t is a type scheme iff u is a type scheme.
)

(iv) t and u have the same principal sort (if we consider the various Type, sorts as only
one sort Type ).

PROOF.

i is enough to point out tha subject reduction”, T" is always a type of u. Conse-
i) It i gh to point out that by “subject reduction”, T is always a type of u. C
quently, the property of principality of U gives us the desired result.

(ii) If ¢ is not a type scheme, that means that 7" is not an arity. However, if we have
U <gsic T without U =gs,¢ T', it means that these two types are arities with final sorts
Sy < St.
(iii) U <gs¢ T implies that:
e ciher U and T are equal modulos 56:(, and in particular are jointly arities or not.

e cither U and T are distinct modulos 5., both of them being arities, with final
sorts sy < St.

(iv) There are two cases: if t and u are type schemes, then they have Type as principal
sort. If they are not, then they share exactly the same types (modulo 34:(), and thus
the same sorts.
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O

The conservation of the principal sorts during reduction (iv) seem to be invalidated by
the first of the preceding counterexamples. Is this conservation indeed true ? With Normandy
as native country, it is normal to answer yes and no. Yes, if one is interested just in the
distinction Set/Prop/Type, and forgets the indices of Type,;. And no, in the opposite case,
as shown by the counterexample. In fact the point of view of the extraction will be it first.

One thus finds again a border between the logical terms and the informative ones: a
logical term (i.e. of principal sort Prop) cannot become informative (i.e. of principal sort
Set or Type) during a reduction, and reciprocally.

We will also have to study the possible forms of the Cic terms that are closed and in
normal form.

Lemma 3 Let t be a well-typed term of Cic, closed and in normal form modulo 3.C.

1. If t has an inductive type (I 0'), it starts with a constructor of this I type.

2. If t has a product type, it is either:

a.
b.
c.

d.

a partially applied inductive constructor
an inductive type which can be alone or applied to arqguments, including partially.
an A-abstraction

a firpoint (fiz f; {...} ). And in this case, if the “quard” argument is the k;-th,
then || < k;.

3. If t has a sort s as type (i.e. t is a type), it is either:

a.
b.

C.

a sort
a totally applied inductive type

a product

PROOF. We proceed by induction on the typing of ¢, and by case on last rule:

e First of all, the rule (VAr) cannot produce closed term, and the rules (Cst) and (Let)
build not-normal terms.

The rule (Ax) corresponds to the case (3a).
The rule (Prod) corresponds to the case (3b).
(Lam): One cannot be in the parts (1) or (3) of the statement, and the part (2c) is

clearly checked.

(App): Let us take ¢ = (¢’ u). The induction hypothesis on I' - ¢ : Va : U, T leave us

four cases:

a.

t' = (C ). Then t = (C ¥ u). If C is still partially applied in ¢, then ¢ have a
product type, and we are in part (2a) of the statement. And when C'is completely
applied, ¢ has an inductive type: the case (1) of the statement is fulfilled.

. t' = (I 7). Then t is only an inductive type with more arguments. If this inductive

type is now completely applied, it has a sort as type, and one is in case (3b). If
not, its type is still a product, and one is in case (2b).
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c. t' cannot be an A-abstraction, otherwise (¢ u) would be reducible.

d. t’is then a fixpoint with missing arguments. Let us suppose that u is the “guard”
argument awaited by this fixpoint. This « is then an inductive term, and the
induction hypothesis corresponding to I' - u : U shows that it starts with one
constructor. The fixpoint is thus reducible, which is contradictory with the initial
assumptions. One is thus still in the situation of a fixpoint missing some argu-
ments. Lastly, this lack of arguments necessarily implies that this fixed point has
a product type. The parts (1) and (3) of the statement are thus excluded, and
the part (2) is correct via the case (2d).

e (Conv): We directly use the induction hypothesis.

e (I-Type): f T F I : A and arity A has at least one product, then the situation (2b) is
checked. And if A is directly a sort, we are in case (3b).

e (I-Cons): We are in the situation (1) if the constructor awaits no argument, and other-
wise in the situation (2a) .

e (Box): The induction hypothesis concerning the head of the case, which is an inductive
term, shows that this term starts by a constructor. The case is thus reducible, and
that contradicts the original assumption.

e (Fix): A fixpoint without argument always expects at least one (the guard argument).

One cannot thus be in parts (1) and (3) of the statement. On the other hand, the part
(2d) of the statement is clearly valid.

O

Curiously, the statement itself of this lemma shows that there are not other cases to
study for the type T of t. Indeed, T" can also be picked as closed and in normal form. The
part (3) of the statement then affirms that it is either a sort, a product or an inductive type.

Let us also notice that the proof of this result only requires the absence of redex at
precise places, namely at the top, on the left and right handside of an application and at
the head of a case. This result will then remain perfectly valid when we will study the weak
reduction of the Cic.

1.2.5 Cic,, : an CIC variant adapted to the semantic study

The presentation of the Cic given above is appropriate for the more syntactic part of
the theoretical study we will make concerning extraction. On the other hand, in the second
time, we will make a more semantic study of the extraction correctness in the section 2.4.
And for that, the Cic as formulated here will be slightly unsuited. Let us present here the
alternative Cic,, that we will then use.

The principal concern in this part 2.4 will be that Cic authorize the silent promotion of
a proposition to the rank of informative type. For example True, originally of Prop type, can
be also seen as having the type Type, via the typing rule (Conv). This will be awkward later
one, since one will wish to give a different semantics to a proposition and an informative
type, and this without having to look at principal type derivation to know in which case we
are.
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A solution is then to use a mark on the syntax level to announce the use of a cumulativity
Prop < Type. Thus True' will indicate the True object promoted to the Type level. This
marking technique dates back to our DEA work [54], itself reusing the idea of [28|. For
similar reasons, though less fundamental, it will be also interesting to mark the promotion
of a Set object to the Type level. Thus nat* will indicate the nat type seen at Type level.
On the syntax level of Coq, these marks would translate into explicit “casts”; True' and nat?
would be written (Prop_Type True) and (Set_Type nat), with:

Definition Prop_Type (t:Prop) : Type := t.
Definition Set_Type (t:Set) : Type := t.

Before continuing the presentation of this system Cic,, with marks, let us announce first
that we will somewhat restrict the power of cumulativity in this system, for simplifying the
presentation. For example, the initial (Conv) rule authorizes to write:

I'F¢:nat — Set (nat — Set) <, (nat — Type)
I' =t :nat — Type

(Conv)

From now on, we will authorize the use of the cumulativity only on types and not on
type schemes: Set < Type is accepted but not nat — Set < nat — Type any more.
This prohibits in particular the preceding example, but one can approximate it via one
n-expansion: n-expansion:
't :nat — Set
[;(x :nat) - (t x) : Set (App)
I';(x :nat) - (t x) : Type
' Az :nat, (f x) : nat — Type

(Conv)

(Lam)

For a more detailed study on the cumulativity in higher order type theories, one can look
at [57].

Let us now return to our marks T and *. They are annotations that can be applied to
any term of CiC. And we now replace the rule (Conv) by four new rules (Conv) (CumT)
(CumS) (CumP), in order to make compulsory the presence of marks after the use of the
cumulativity Prop < Type or Set < Type:

I'tU:s TkHt:T TIﬁL(gCU

I'—¢:Type;, 1<
THt:U (Conv) T'Fi:Type, (CumT)
I'Ft:Set I'Ft:Prop
[ t*: Type (CumS) [ th: Type (CumP)

The cumulativity of Type; towards Type;, with no consequence for the extraction, remains
implicit. It should also be noticed that a well-typed marked term cannot have two successive
marks: t' being of Type type, it is impossible to form i

Let us stress the fact that are ignored by typing rules when they appear on the right of
a judgement. We only care about the influence of marks inside the term being typed. For
example the following application is quite legal:

F't:Voe: U, T Fl—u:U(A )
F'tu:T{x—u} bp
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It would be possible to make formal this aspect of typing, by adding the following four rules:

'+¢t: T | AL '+¢t: T LHt:T%
LH¢t: Tt I'+¢t:T LHt:T% I'+¢t:T

In practice, these rules will remain implicit throughout our study.
We now specify the status of these marks (for example T) with respect to substitution:

e A substitution without effect does not change anything concerning the marks, for
example y{z+t'} =y

e Of course, a substitution without mark does not create any: x{x«—t} =t

A variable replaced by a marked term gives a marked term: z{z«t'} = ¢'

A marked variable gives a marked term after substitution: zf{x«t} = ¢f

Lastly, the case x7{z « t'} is prohibited by typing. Indeed, x' is necessarily of type
Type, and x has the type Prop. However the ¢/ that one wants to substitute for it is
also in Type, so the substitution is impossible.

Concerning the reductions, they will influence the marks only via substitutions. A priori,
one could need to specify what becomes a mark partially covering a redex, as in (Ax : U, t)* u.
But in fact, this case is excluded because a marked term is inevitably a type, which cannot
begin with one A-abstraction. In the same way, the head of a (-redex cannot be marked
because it has an inductive type. It is thus not a type.

We must now justify again a certain number of properties that our marking could have
modified. Let us start with the property of “subject reduction”, and before that by the
conservation of typing by substitution.

Lemma 4 Let t and u be two terms of CI1C,, admitting for respective types T and U. If x
is a free variable of t of type U, then t{x<—u} admits T{x—u} for type in the CIC,,.

PROOF. By induction on the typing derivation of ¢. O

Lemma 5 Let t be a term of CiC,, admitting T as type, and u a reduced form of t. Then
u also admits T as type.

PROOF. It is the same proof as for Cic, but with the previous lemma instead of the initial
subtitution lemma. O

Now, the principal effect of the marks presence is the unicity of types:

Lemma 6 Let t be a term of CIC,, admitting T and U as types. Then T =g U, as soon
as you aggregate all the the different sorts Type, into only one, and you ignore the marks
inside types T and U.

PROOF. In Cic, the non-unicity of the types comes from the possibility to use the cumulati-
vity part of rule (Conv) at any time. But with the presence of the marks, the rules (CumS)
and (CumP) are now rules whose use is controlled by the term syntax, like the majority of
other rules. And the rule (CumT) does not really modify the types, at least according to
the point of view that we choose here.
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Once this is said, one proceeds by induction on typing derivation ¢ : T', and then compares
this derivation with the one of ¢ : U. Except for 5d.(-conversions (Conv) that we can ignore
here, these two derivations have necessarily the same form. O

In particular the concept of principal type becomes now a commonplace. Let us look
again at the counterexample which shows that a principal type in CIC is not necessarily
preserved during reduction: ((AX : Type, X) True). It is now badly typed in Cic,,. To
make a valid term from it, a mark would have to be added: ((AX : Type, X) True'). But
then its reduced form True' admits only type Type, and not Prop any longer.

To finish this presentation of Cic,,, we will clarify the possible translations between CIC
and CIC,,. In the more simple direction, it is immediate to take a ¢t term of type 7" in Cic,,
and to obtain a corresponding well-typed term in CicC : it is enough to remove the marks.
And T (without its marks) then remains a valid type for it in C1C. In the opposite direction,
starting form a term ¢ in CiC having for principal type T, one can obtain a corresponding
well-typed term in Cic,, that differs from ¢ only by the presence of marks (and possibly of
n-expansion, cf. restriction on the cumulativity). Introducing these marks is easy: we just
look at a typing derivation of ¢ : T, and adapt all the uses of the rule (Conv) from top to
bottom. This way, the type of the Cic,, obtained term is still T' (or rather the version of T
with marks).
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Chapitre 2

The extraction of Coq terms

This chapter is devoted to the presentation of our extraction function £ over CIC terms.
For the moment, this function will return terms in an intermediate theoretical language
named CICo, untyped, which will play here a role similar to the one of F, in the old
extraction. The next chapter then deals with the translation into the final language, and in
particular with the problem of typing the code extracted in this language.

In addition to the presentation of this function &, this chapter also contains the correct-
ness proof of £, or rather the correctness proofs, since this theoretical study is divided into
two parts:

e a first rather syntactic study enables us to guarantee that any reduction of extracted
terms will succeed, regardless of the strict or lazy evaluation strategy used. This part
is a revised version of the results presented in [55], themselves inspired by [54].

e In a second time, we will establish in section 2.4 the correctness of these extracted
terms with respect to the original Coq specifications, by using a semantic approach
inspired by realizability.

Let us start first by detailing the limitations of the old function £ of C. Paulin, which led
us to build the current version of £.

2.1 The difficulties in the removal of logical parts

A potential danger induced by removal of logical parts is that this removal can modify the
evaluation order. Let us take for example a function of type Vx:A, (P x)— B, with A and B
being informative types, and P a logical property. Our function f thus awaits an informative
argument x and a proof that this argument satisfies the pre-condition P x. If one also has
a term t of type A and a proof p of type (P t), one can then form the two well-typed Coq
terms (f t) and (f t p). On the Coq level, these two terms have appreciably different
nature. For example, the evaluation of (f t) will probably be quickly blocked by the lack
of the second argument p, whereas (f t p) is a total application which can normally be
reduced towards a value of type B (when for example these terms £, t and p are closed).

Now let us examine the action of a extraction function £ that completely removes the
logical parts, like the old extraction does. The two preceding terms (f t) and (f t p) are
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then extracted into the same term (£(£f) £(t)), because p, logical, disappears. Since the
type of £(£) is then of form &£ (A) —& (B), the extracted term (£(£f) £(t)), being a total
application, behaves rather like (f t p), and thus can be reduced completely. Of course,
this behavior is quite different from the one of (f t).

This modification of the order of evaluation has, of course, an influence on the efficiency
when executing extracted terms. But it can even be fatal to the good progress of this
execution. The old extraction could in particular generate extracted terms whose evaluation
stopped prematurely on an uncaught exception, or on similar other execution error. And
conversely one could also meet terms whose evaluation did not finish.

The typical example of code that can raise an exception in case of naive extraction
involves the constant False_rec. This Coq term of type VP:Set, False—P is used to treat
the contradictory sub-cases of a proof. For example, the Coq tactic contradiction generates
proof terms that use this constant. When one defines a function f of the type Vx:nat,
(x#£0) —nat, it can thus be useful to use this constant when x=0. During the extraction,
this False_rec is translated into an exception, which means that the execution must never
reach this absurd sub-case. Now, let us consider again a partial application, (f 0), legal
in Coq, that will normally never receive its second argument of type 07£0. The extraction
(E(£) 0) can then be executed without waiting for the removed logical argument, and thus
raise the exception associated with False_rec. Our new extraction solves this problem by
giving back to the extraction of (£(f) 0) its status of closure. For that, we leave artificial
abstractions fun _ — ... each time that it is necessary.

We will see thereafter in part 2.3.2 that it is also possible to generate other types of
errors with the old execution, by combining extraction, partial application and some Coq
constants like eq_rec. There also exists examples of extracted code that were not terminating
with the old extraction. These examples are based on the constant Acc_rec, which offers
the possibility in Coq of defining an informative fixpoint justified by a decreasing logical
measure. [t is then possible, under an contradictory context, to provide one false logical
justification. The extracted fixpoint, without its logical justification, may then loop forever.

A family of limitations of the old extraction relates to the Coq universes. Indeed, distinc-
tion in Coq between the informative and logical parts is made fuzzy by the presence of the
Type universe. One can, indeed, form hybrid terms like if B then nat else True, where
b is a boolean. This term will be either informative or logical according to value of this boo-
lean b. This construction is allowed by the existence of rules known as cumulativity rules,
which express that Type contains at least Set and Prop. In our example, nat:Set thus imply
also nat:Type and similarly True:Prop imply True:Type. And finally, our hybrid term is
well-typed with the Type type. The preceding extraction simply refused to extract such a
type, and more generally any term using directly or indirectly the Type sort. This drastic
restriction allowed a complete elimination of logical parts (at least in a system prohibiting
False_rec, eq_rec and Acc_rec). On the contrary, the goal of our work is to be able to
treat any Coq term. We then have to use one ad-hoc constant (denoted O) to mark the sites
previously occupied by logical parts, like the True above. Our approach is thus similar to
the pruning methods [12, 15].
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2.2 The new extraction function &

This function £ of extraction will eliminate any subterm of sort Prop, because these
subterms correspond to logical parts, as explained in the previous chapter. But in addition
to that, we also eliminate the subterms corresponding to types, and more generally to type
schemes. Why remove these type schemes? This choice is less natural than the one leading
to the elimination of the Prop parts. In particular, there exists at least one Coq development
whose principal result is the construction of a type representing a particular lattice [62]. The
extraction of such a development will then produce only one arbitrary constant replacing
this type. But this situation is exceptional. In usual developments, the results concern only
datatypes, such as for example inductive types like bool, nat or Z. And in these cases, we will
show that the type schemes correspond to dead code from the point of view of computation.
Another justification of this choice of elimination is that unlike Coq, our target languages
(Ocaml and Haskell) make a clear distinction between the level of types and the level of
terms, and in particular do not allow the use of types like ordinary terms.

We define Cicg starting from the same language as Cic, with in addition one special
constant 0. On the other hand the terms of Cicg will not be typed. Indeed, we will not
adapt the typing relation of Cic to Cicp. Lastly, the reductions in CiCy are defined as
being exactly those of Cic, with O seen like a non-reducible constant.

Let us now define our extraction function of Cic towards CICg.

Definition 9 (function &) The extraction function £ is defined by structural induction on
any term t typable in a context T":

(O) Ift is a type scheme or admits Prop as sort in the context T, then Ep(t) = O
If not, one proceeds according to the structure of t:
(id) &r(a) = a if a is a variable x, a constant ¢ or a constructor C.
(lam) Er(Ax : T, t) = Az : O, Ex(t) where T =T (x: T)

(let) Er(let o := t in u) = let = := &p(t) in Ep(u) where " =T (z =1t :T)
and T is a type of t

(app) &r(u v) = (Er(u) Er(v))
(cases) Er(case(e, P, fi ... fn)) = case(&r(e), O, Er(f1) ... Er(fn))

(fiz) Er(fix f; {fifk1:Ar:=t1 ... fofkn:An:=t,}) =
fix f; {fik1:0:=E(t) ... fufkn:0:=Ep(tn)}
where IV =T (f1 - A1) 5 (fu 0 Ap)

And the extraction of a context is defined by:
(nil) £(@) =2

:Ind, ([ :=T¢)) = &(1); Ind, (E(T)) :=E(T¢))
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Clearly, £ is a “pruning’ function: its only task is to replace certain subterms by O.
In particular there is no modification of the structure. In the currently implemented Coq
extraction, a second phase is dedicated to some structural modifications. This phase will be
described in the chapter 4. This “pruning” is different from what the previous extractions
were doing, since they were in particular not withdrawing the types, and were removing
completely the logical A-abstractions, via a rule like:

(lam') E(A\x: P, t) = E(t) if P admits Prop for type.

In term of realizability, this last rule (lam’) corresponds to modified realizability, whereas
our new rule (lam) corresponds more to recursive realizability. But as we have explained in
the previous section, the rule (lam’) is not correct if one combines it with strict evaluation
a la Ocaml.

The reader may also have noticed the lack of an explicit rule dedicated to products. But
a product is always a type, and thus a fortiori a type scheme. The rule (O) thus applies.

2.3 Syntactic study of the reduction of extracted terms

Initially, we study the reduction of extracted terms, and we prove in particular that this
reduction necessarily terminates in a finite amount of time. This will be done by means of
a syntactic method: we will simulate the derivations of the extracted terms by those of the
Coq initial terms.

But this first approach, relatively simple, is not very suitable to establish more semantic
properties of correctness, in particular when functional values and/or unclosed terms are
concerned. The section 2.4 is then devoted to a complementary study, based on an extension
of the concept of realizability.

The syntactic study which follows now is split in two parts. The section 2.3.1 leads to
theorem 1 which establishes the strong normalization of the extracted terms, but only in a
slightly weaker version of Cic. Then the section 2.3.2 treats the complete Cic, which on
the other hand obliges to restricted oneself to weak reductions for the extracted terms. In
this situation, the main result of correctness is the theorem 5.

2.3.1 Strong reduction in a restriction of CiCq

We wish here to establish that the evaluation of an extracted term finishes, and that the
result of this evaluation has a correct meaning, for example true or false for an original
term in CIC of the bool type. And of course, we also wish this result to be coherent with
answer what would give the evaluation of the original term in Cic.

We will thus proceed by simulation in CIC of derivations possible in CICg, and vice
versa. The problem is that this simulation can lead to terms that still comprise CIC redex,
whereas their analogues in CiCg are not reducible any more. In fact, there are three potential
categories of CIC redex corresponding to non-redex zones of CiCp :

1. a f-redex (A\x : X, t) u corresponding to a non-redex O v’

2. a t-redex case(e, ..., ...) corresponding to a non-redex case(d, ...
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3. a tredex (fix f; {...} ui... u,) corresponding to a non-redex, which can be:

a. either (O u) ... u))

b. either (fix f; {...} uwy ... O) (the “guard” is now a O blocking the reduction)

In case 1, we would like to have (Az : X, t) u directly corresponding to O instead of
O u. Indeed the stability lemma claims that the application preserves the fact of being of
Prop sort or of being a type scheme. If Az : X, t could become O, then it should thus be
“morally” the same with (Az : X, t) u. This “lack of precision” of an extracted term can in
fact appears after some steps of reduction, as shown by the following example:

Example 1
t = (AX : Type, A\f :nat—X, A\g: X — nat, (¢ (f 0))) Prop (A_, True)
EM)=\X:0,Nf:0 N:0 (¢ (f0)) OO
—% Ag:0, (¢ (O D))
We will solve this problem of case 1 (and at the same time the case 3a) thanks to an ad-hoc
reduction:

Definition 10 (O-reduction) The O-reduction is defined by the rule (O u) —g O

The situation of case 2 is rather different. Unlike the the previous example where a
lambda became logical after a reduction, a pattern matching cannot change the inductive
type on which it is performed. And £ eliminates all pattern matchings that produce objects
of sort Prop. Since a matching on an inductive type in Prop can normally only build an
object in Prop, case 2 should normally not occur. But this restriction on logical matchings
has two exceptions, concerning logical empty inductive types and logical singleton inductive
types (see the previous chapter). For example CIC authorizes the following derivations:

p:False :Prop T':Set p:x=1y:Prop g¢q:P x:Set
case(p, T, @) : T case(p, P,q) : P y:Set

The first derivation corresponds to the Coq constant named False_rec, while the second
corresponds to eq_rec.

More generally, a logical elimination case can produce something informative if the
elimination is carried out on a term whose inductive type which:

1. has zero constructor (empty inductive, like False in Coq)

2. has only one constructor whose arguments are all logical, put aside possible parameters
(inductive singleton logical, like eq)

This is in fact a first exception to the slogan: “logical objects are never taken into consi-
deration during computations of informative objects”. The second distortion to this principle
is the case 3b: the “guard” of a fixpoint can be a logical inductive term whereas the complete
fixpoint is informative.

Let us suppose one moment that these characteristics of typing Coq are deactivated.
Until the end of this section 2.3.1, we will consider two systems Cic™ and Cicg which are
respectively Cic and Cicg with the following restrictions:

(i) The elimination of logical empty inductive terms cannot produce informative terms.
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(ii) Tt is the same for elimination the logical singleton inductive terms.

(iii) For any component f; of a fixpoint, its “guard” cannot be logical unless the type of f;
is also logical.

We now compare the respective results of reductions in Cicg and Cic™. To simplify this
comparison, we will speak here only about types without logical contents:

Definition 11 A T type of CIC is said to have no logical content if for any closed normal
form t of type T we have E(t) = t.

The usual datatypes, like bool or nat fulfill this condition. Of course, a object in a
non-reduced form in such a type can contain logical parts, but they will disappear during
reduction to finish on true or (S (S 0)) for example. We then have the following result
concerning the strong reduction of terms extracted in these types without logical contents:

Theorem 1 Lett be a closed term, well-typed in C1C™, whose T type has no logical contents.
Then any reduction of E(t) terminates on the normal form (in CI1C™) of t.

We will not prove this result, because it has less importance that the theorem 5 of the
following section, while the proofs of the two theorems are similar. Similarly, it is possible to
establish a more general version of this result, dealing also of types which are not without
logical contents. But as the normal form of £(¢) can then contain O, we need new tools to
compare it with the normal form of ¢. There again, this is not done here, but rather in the
following section.

Lastly, let us note that the use of O-reductions is not necessary in this particular result.
This is explained by the conjunction of the restrictions (i), (ii) and (iii) and the assumption
that T is not-logic. On the other hand the results of the following section will have to use
this O-reduction.

2.3.2 Weak reduction in the complete CiCcy

As our objective is a extraction mechanism accepting all the Coq terms, we must from
now on remove these restrictions (i), (ii) and (iii). The restriction (i) concerning empty
inductives is in fact easy to remove, since a (-reduction on one empty inductive in fact
cannot occur, for lack of constructor to start the reduction. We can thus just ignore these
case, and translate them later into exceptions (see the study of False_rec in section 2.1).
On the other hand deletion of the restrictions (ii) and (iii) will oblige us to adapt authorized
reductions on the extracted terms: we must give up strong reduction (i.e. reduction under
the lambdas) and restrain to weak reduction. In any event, our functional languages target
do not authorize strong reduction. To center our study on weak reduction is thus perfectly
legitimate.

Singleton elimination

If H is an equality (hence logical), case(H, nat, 0) can be reduced and give 0 even
without knowing the exact value of H, hidden behind a O. In a similar way, we can reduce
systematically all elimination of logical singleton inductive. But that is dangerous when
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combined with strong reduction, and can lead to execution errors. Let us consider for example
the following function cast that transforms an integer into a boolean on the condition of
being able to prove that boolean and integers are identical®:

Definition cast : (nat=bool) — nat — bool :=
fun (H:nat=bool) (n:nat) =
match H in (_=bool) return bool with
| refl_equal = n
end.

Let us take then the following example:

Definition example :=
fun (H:nat=bool) =
let b : bool := cast H 0 in
match b with
| true = 0
| false = 1
end.

If now one carries out the a priori reduction of the case in this example, the subterm (cast
H 0) would be reduced to integer 0, whereas the match which follows awaits a boolean, and
that will result in an execution error.

A similar example can also lead the integer 0 to be considered as being a function if one
has in assumption the equality nat = (nat—nat). And if one applies this “function” 0, we
can end with an execution error (0 0), in the event of strong reduction of the extracted
terms

Clearly, if one prohibits the reduction under lambdas, these problems disappear. Indeed,
an singleton inductive term out of the lambdas is inevitably closed, and can thus be always
reduced to a constructor, which legitimates our reduction of logical singleton eliminations
out of any lambda.

Fixpoint with logical “guards”

The problem is now to reduce informative fixpoint whose argument being used as “guard”
is logical. Of course, the immediate temptation is to remove this “guard” condition, at least
for this category of fixpoint. But this, combined with strong reduction, can lead to an
evaluation that does not terminate. The following function loop is built on the model of
Acc_iter (see the previous chapter). It expects an hypothetical proof of the false statement
claiming the accessibility of 0 by the relation gt (that is > on the natural numbers of Coq).
If this proof were provided, loop would then go into an infinity of recursive calls: F N would
call F (S N) and so on.

We will use here Coq syntax, more readable. The equivalent in our theoretical syntax of this match with
annotations is case(H, (At : Set, AH : (eq Set nat t), ¢), n)
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Definition loop :=
fun (Ax:Acc gt 0) =
(fix F (n:nat)(a:Acc gt n) {struct a} : nat :=
F (S n) (Acc_inv a (S n) (gt_Sn_n n)))
0 Ax.

The (Acc_inv a...) subterm is a proof of accessibility for (S N), using the constants
Acc_inv and gt_Sn_n provided by the standard library of Coq. The extraction £ gives then:

E(loop) = MNAzx: 0O,

fix F {F/2:0:=
An:nat, A\a: 0O, (F (Sn)0)}
00O

And if one withdraws here the “guard” condition, then this term can be strongly reduced
even without being applied, and then give AAx : O, fix F' {...} (S 0) O, and so on...

Modification of reduction

To manage these exceptional cases of ¢(-reduction on logical terms, we must first of all
add an additional annotation on the CIC terms. The match bearing on inductive types with
only one constructor are normally written this way in Coq :

match e with C 7 = t end

With the “functional syntax” used in this theoretical study, this becomes:

case(e, ..., (A7, 1))
The latter form presents the disadvantage of losing track of the number of the arguments
7 for the single constructor C of our inductive type. In particular, with this syntax, it is
not correct to count the number of lambdas, because t can contain additional ones. We will

cure this problem by marking this number of arguments in index for these case with single
branch:

casey(e, ..., (AT, 1))
And of course, the extraction function £ will keep these annotations. To avoid obscuring
(more) the notations, we will omit sometimes these annotations in situations where they are
not used.

Here now come the modifications to be made to the reductions CiCy in order to be able
to manage these O that may block (-reductions.

Definition 12 (new (-reduction) The t-reduction on CICq terms is from now on:
(iota) case(C; P W, P, fi ... fm) = fi U

(iota) case (O, P, f)—, f O ... O

(tota) Let F' be the recursive block fi/ki:Ar:=t1 ... fuo/kn:An:=t,. Then:
(Fix fi {F} ur o) =0 (G4 /fix f {F} vy ua oo uy)
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when uy, is O or starts with a constructor.

We also restrict the reductions and prohibit strong reduction: for each possible reduction,
one associates to it a weak reduction.

Definition 13 (weak reductions) The reductions —gz,, —.,., —6w, —¢o 0nd —pg, are
defined from the same basic rules as respectively —g, —,, —s, —¢, —no, but with restraining
the compatibility rules to only the following ones:

(wt) = (0 1) (t u) =2 (£ 0)

U —2 U

case(u, P, ...) —7 case(v, P, ...)
Lastly, as for —,, the complete weak reduction —,, is —g, U —,, U —s, U —¢ .

In fact, this reduction —,., can be seen as a common generalization of the strategies of
calls per value and call by name of Ocaml and Haskell. The last step towards the reductions
actually implemented in these languages is to fix an evaluation order. To reduce the argu-
ments initially will give us strict strategy of Ocaml. And on the contrary reducing first of
all the head of the term corresponds to the lazy strategy of Haskell.

A significant point to mention is that all this theoretical study is to be done in axiom-
free contexts. Indeed, to study reduction in the presence of axioms is equivalent to study
the strong reduction under the lambdas corresponding to these axioms, which we wish to
precisely avoid. In particular, we will use on several occasions the fundamental property
according to which an inductive term closed in a axiom-free context reduces inevitably
towards a term starting with a constructor. Clearly, the presence of an axiom can invalidate
this property. Of course, all axioms do not have this effect, but for reasons of simplicity, we
prohibit them all.

To study the evaluation of the extracted terms, we will compare it with the evaluation
of the initial terms. We hence need an invariant relating initial terms and extracted terms
that will be stable by reduction. Of course, one can try to directly use the function & for this
invariant. Unfortunately, that is not a good choice, because £ behaves badly with respect to
reduction: if ¢ —, u, one may not have £(t) —, £(u) in some cases®. Instead of £, we define
and use a non-deterministic relation —¢ which will have good invariance properties.

Definition 14 (relation —¢) The non-deterministic relation —¢ relating a CIC term and
a Cicg term, and depending implicitly on one context I', is defined by the following rules:

2The term t in example 1 is a counterexample to that. Indeed, £(t) can be reduced into one term
containing (O 0), whereas £ never produces such subterm, but directly O.



54  Certified functional programming

Ht:Vo: X CEt:T:P
PV AL, S o : T :Prop .
t%g O (8 Dl) tﬁg 0 (5 DQ)
a=xora=cora=C . t—get
a—ga (£-id) Ae Tt —g e : 0O, ¥ (E-lam)
f}—>gt, u —¢ u - tﬁg t/ U —¢ u -
let x ;= tinu —g let z := ¢ in o/ (E-let) (t u) —e (' o) (E—app)
e—e e Vi, fi—e fl Infole) .
case(e, P, fi ... fn) —gcase(e, O, f{ ... [;) (E—case)
fix fi{fifkr1: A=t . fofkn: Api=t,} —e fix fi { fifk:O:=t]. . . fo k. 0=t}

The condition Info(e) requires e to be of an informative inductive type (or empty logical or
singleton logical). One naturally extends —¢ to extract the contexts.

The non-determinism comes from the two rules (£—0;) and (£—0,). When these rules
can be applied, one can indeed use them, or instead use one of the other structural rules.
For example, if a variable x has sort Prop, one have both x —¢ O and = —¢ z. Obviously,
the function £ is just a way to make this relation deterministic, by always choosing to prune
as soon as possible:

Lemma 7 Ift is a CIiC term typable in a context T, then T —¢ E(t).

PROOF. One only have to choose the rules extracting towards O as soon as a type scheme
or a logical term is reached. One must only check the auxiliary condition Info(e) of the
rule (E—case): If a complete term case is not of sort Prop, then the matched e term is
necessarily of an informative inductive type (or logical empty or logical singleton). The
condition Info(e) is thus fulfilled. O

Lemma 8 Let t be a CIC term typable in a context I, and t' a CICq term such ast —g t'.
We have the following immediate properties:

1. t and t' differ only at positions where t' contains O.
2. any subterm of 't corresponding to a O in t is of sort Prop or is a type scheme.

3. all the case remaining in t' relate to inductive types that are informative or logical
singleton or logical empty types.

This relation —¢ has the advantage of being stable by substitution, contrary to the
function &:

Lemma 9 Lett, u, T, U be four terms of CiC and ' a context such that:
Ci(z:U)Ft:T
'Fu:U

Let also t',u" be CIiCy terms such that t —¢ t' and u —¢ u'. One then has:

t{rx—u} —¢ t'{r—u'}
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PROOF. By induction on the derivation of ¢ —¢ ¢/, and by case analysis according to the
last rule used in this derivation:

e (&) or (&0,): if t is a type scheme or has sort Prop, then it is the same for t{z «—u}
according to the stability lemma 1. We then have indeed t{zx«u} —¢ O by the same
rule.

e (E—id): the case where t is not the variable z is obvious, since there is then nothing to
substitute. On the opposite, if t =z = ¢/, then x{r—u} = u —¢ v/ = x{z—u'}.

o (E—lam): we have t = Ay : Y, ty and ¢’ = Ay : O, t;, with ty —¢ t;. The induction
hypothesis gives us to{z «— u} —¢ t({x <« u'}. However (\y : Y, to){z —u} = Ay :
Y{z —u}, to{zx—u} and (\y : O, t)){z —u'} = Ay : O, tg{z < u'}. These two last
terms are indeed related by —¢, thanks to the rule (E—lam).

o (&<case): as for the rule (&4am), one obtains as induction hypothesis the good behavior
of each sub-expression of the case term with respect to substitution. Before using rule
(E—case) on the whole substituted case, it is just necessary to make sure that the
condition Info (e) remains true after substitution of the term e matched in the case.
However this is obvious, because an inductive term does not change its inductive type
by substitution.

e the remaining structural rules are treated like (E—lam).
]

The following theorem expresses that one can simulate on the Coq level all weak reduction
of an extracted term.

Theorem 2 Let t be a CIC closed well-typed term and t',u' two CiCy terms such that
t =gt andt' —,  u'. There ezists then a CIC term u such as u —g¢ u' and t —, 4 u.

PROOF. One proceeds by case analysis according to the reduction employed between ¢ and
u’. We will start with the two difficult cases:

e the reduction carried out is a ¢,, singleton reduction like
case,(O, ..., f)—, (f O ... O).
The compatibility rules for the ¢,-reduction implies that this reduction occurs out
of any binder. Moreover axioms have been prohibited, so the a subterm of ¢ which

corresponds to the eliminated O is thus typable in a context without assumption. As

a is an inductive term, it can then be reduced to a term having a constructor at the
head: (C' P ).
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It is even possible to carry out this reduction to a constructor in a weak way. In fact, C'
is the single constructor of this singleton logical inductive type, and C' have exactly n
arguments apart from the parameters: | v’| = n. Thus in ¢ the subterm case,(a, ..., f)
can be reduced to (f vy ... v,) via at least one step of r,-reduction. So we can take
for u the term resulting from ¢ by these reductions. To check that u —¢ v/, we need
only check that (f vy ... v,) —¢ (f/ O ... O). And that is obvious, because all the
v; have sort Prop since they are arguments of the constructor of a logical singleton
inductive type.

e the reduction carried out is a ¢,-reduction of a fixpoint whose “guard” argument in ¢’
is 0. Then the “guard” argument ¢ corresponding to this O in ¢ has an inductive type.
Moreover, as in the previous case, ¢ is typable in one context without assumption, and
can thus be reduced to a term h beginning with a constructor. One can then reduce
the fixpoint in ¢. And finally the terms obtained this way in Cic and in CIiCg are still
related by —¢.

The other cases are much easier. Let us consider for example the case where the reduction
carried out is a [,-reduction. According to the definition of the extraction relation, the
(B-redex in ¢’ necessarily have a counterpart (-redex in ¢. We then just have to reduce this
redex t in order to obtain a suitable u. And one has indeed u —¢ v, using the previous
substitution lemma for —¢. Finally, all remaining cases (—;,, —¢, and the end of —, ) are
similar to this case —g, . a

Corollaire 1 Let t be a closed well-typed Cic term and t' a CiCq term such that t —g t'.
Then any sequence of derivations —,, starting from t' is finite.

w

PrROOF. Thanks to repeated applications of the previous theorem, one can in fact build a
corresponding succession of derivations in CIC starting from ¢, with at least as many steps.
However the strong normalization of CiC implies that this last sequence is finite. O

This termination is obviously a good property, but is not enough to ensure that the weak
reduction of an extracted term proceeds without problems. Indeed a reduction with a with a
premature, abnormal end is no more desirable that a reduction with no end. Could we finish
on a normal term which is not a value, such as (0 true) or match (funx=-x) with...?
For these two extreme examples, it is clear that the answer is no: otherwise the previous
theorem would show that these two terms could be related by —¢ with well-typed terms of
C1c, which is here impossible.

On the other hand a perfectly possible normal form is the application (O 0). For example,
we may start with a predicate P : Vn : nat, True. We then have (P 0) —¢ (O 0), the former
being normal with respect to r,,. Of course, we also have (P 0) —¢ O, and this is the choice
made by the function £. But we have already seen with the example 1 that this (O 0) can
appear as subterm during a reduction. And with a strategy a la Ocaml which requires to
first evaluate arguments, one then finds oneself to seek a value for (O 0). At the theoretical
level, the answer is the ad-hoc reduction — already evoked. We will see in sections 2.6.3
and 3.3.2 how to deal with this ad-hoc reduction in practice.

Lemma 10 In CiCq, any sequence of reductions —n,, s finite.
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PROOF. A reduction —p, strictly decreases the size of the term. O

Lemma 11 Let ¢t be well-typed Cic term and t',t" be CiCq terms such that t —¢ t' and
t' —g, t". Thent —¢t".

PROOF. It is enough to consider the redex (O v’) of ¢’ that one reduces to get t”. This redex
corresponds to a (u v) subterm of ¢. One knows that u is either a type scheme or has sort
Prop. (cf lemma 8). However this fact being stable by application, it is thus the same for
the subterm (v u). We can then conclude by applying (6—0;) or (6—0s) a level earlier in t.
O

Theorem 3 Let t be a closed well-typed CiC term and t' such that t —g t'. then any
sequence of derivations — ., |o,) starting from t' is finite.

PROOF. Let us call ...t ... this sequence in CICm. One can then build a sequence t,, in
C1c verifying at each ¢ that ¢, —¢ ¢/ :

o ift —pg, ., we take t,1 = ¢, and the invariant corresponds to the previous lemma.

o if t/, —, ¢ .., we use the theorem 2, and obtain ¢, 4, such that ¢, —, t,1.

Tw
First of all, in this CIC sequence, there can be only be a finite number of successive steps
equality, because they correspond to successive reductions —g, on the CiCg level. This Cic
sequence thus consists of reduction steps possibly mixed with a finite number of step of
equality at each time. However, because of the strong normalization, there must be only a
finite number of such reduction step. The sequence in CIC is thus finite, just as the initial
sequence. O

The integration of this reduction —p, does not affect termination during the evaluation
of an extracted term. One can now tackle the question of the shape of normal forms with
respect to the reduction —,,|o0,). To answer this question, we will need a result dual to the
theorem 2:

Theorem 4 Let t,u be CIC well-typed terms (not necessarily closed) and t' a CiCq term
such thatt —¢ t' andt —,, u. Then it exists a CiCq term u' such that u —¢ v’ and verifying

/ / / * /
1" =y, wort —g5 u.

PROOF.

e If the redex r reduced in t corresponds to a similar redex in ¢’ which is complete, then
we just have to reduce this redex of ¢’ to obtain a u’ which is appropriate.
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e If r is completely contained in a subterm of ¢ corresponding to a O of ¢/, it is enough
to take u' = t'.

e We now will consider the intermediate cases where r corresponds to a redex of ¢’ that
is incomplete because partly hidden by a O. These situations correspond to cases 1,
2, 3a and 3b of section 2.3.1.

— If r is a [-redex, the only situation to be considered is r = (Ax : X, a) b in ¢
corresponding to (O ') in ¢. One can then simulate the §-reduction of ¢ by one
O-reduction in ¢

— If r is a - or (-redex, there is no problematic situation to consider.
— If r is a t-redex for a case, the only remaining case is
case(e, P, ...)
in t corresponding in t' to
case(O, P/, ...).
The properties of —¢ (lemma 8) ensure that e is either of sort Prop or is a type
scheme. As e is an inductive term, which thus cannot be a type scheme, € is
necessarily of sort Prop. In addition, the condition Info states that this case in
t concerns one inductive type that is either informative, logical empty, or logical
singleton. Taking into account the sort of e, the informative case is impossible.
The empty inductive case is also impossible, since the lack of constructor prevents

any reduction to occur. So we are in presence of a logical singleton elimination,
which we can now to reduce at the Cicg level thanks to the new ¢-reduction.

— If r is a t-redex for a fix, there are two sub-cases. If the fix disappears in ¢/
but not all the arguments composing the initial redex (case 3a), then one can
simulate the -reduction of ¢ by some O-reductions in ¢'. And if the fix is present
in ¢/, it means that the “guard” argument has become O (case 3b). We can then
reduce it thanks to the news (-reduction for fix.

O

Theorem 5 Let t be a closed well-typed CiC term and t' a CiCg term such that t —g t'.
Then any normal form ty of ' modulo — ., |a,) corresponds via —¢ to a weak normal form
tg of t. More precisely, we are in one of the four following cases:

(i) t, =0

(ii) t, = C O where the arguments v are also in normal form modulo = (rw| D) -
(iii) t, starts with an \-abstraction.

)ty = fix f; {...} V. If the guard argument is k;-th, then || < k; and ¥ is also in
normal form modulo — ., |o,,)-

(iv

PROOF. As in the proof of theorem 3, we build a sequence of derivations starting from ¢
and corresponding on the CIC level to the derivation sequence leading from ¢’ to ;. This
gives us a CIC term ¢; such that ¢ —7 #;. If we now continue to apply weak reductions to
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t1, we end up with a CIC term ¢, in weak normal form. One can then reflect this derivation
v to on the Cicg level via the theorem 4, what gives us a sequence of derivations
— (roO.) Starting from tj. But this ¢ is in normal form with respect to these reductions,

therefore does not change. Finally, we have the following diagram:

t1—>

Tw* Tw*

to

ty

—¢ IHS —¢
/
to

t/
(rwDw)* = ’
The remainder of the statement comes directly from the study of the possible shape of

a closed weak normal form in CiC (cf lemma 3). Indeed ¢, can be:

e a sort, an applied inductive type or a product, which can only give O according to the
rules of —¢.

e a applied inductive constructor, that gives by —¢ either O or the same constructor
applied to extracted arguments.

e a \-abstraction, which gives by —¢ either O or another A\-abstraction.

e a fixpoint lacking some arguments, which gives by —¢ either O or a corresponding
fixpoint.

|

Even if it mentions only the general reduction —, , this theorem is also interesting from
the point of view of the particular evaluation strategies, strict (a la Ocaml) or lazy (a la
Haskell). Indeed, it was already mentioned previously that these two strategies can be seen
like restrictions of —,, with the additional condition that the right part (resp. left) of an
application should be in normal form before being able to reduce the other side. In all the
cases, the returned term at the end of a strict evaluation is clearly normal with respect to
—.., and in the same way for a lazy evaluation. To be able to use the previous theorem,
it is just needed that these strict or lazy evaluations also integrate the reduction —g . In
section 2.6, we will see how to reconcile our requirements in term of reduction rules with
the reduction mechanism implemented in Ocaml and Haskell.

It is also possible to give some more precise details concerning the four case of the
previous theorem. If ¢, = O then ¢; is a type scheme or has a Prop sort. The lemma 2 shows
that it in is then also the same for ¢. Said differently (by contraposition): if ¢ is informative
and is not a type scheme, then the reduction of its extraction cannot finish on O.

Reciprocally, we would like to have that ¢, = O as soon as t is logical or is a type
scheme. That is inaccurate, because of the non-determinism of —¢, as shown by the example
Az : True, x —¢ Az : O, O. But of course, we only have to specialize the previous theorem
with ¢’ = £(t) instead of T" —¢ ' to ensure this property. Anyway, —¢ has no interest except
as intermediate invariant.

Concerning the other cases of the result:
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e For (ii): if ¢}, starts with a constructor, then ¢ has an inductive type if the constructor
is completely applied, and otherwise a product type if not.

e Reciprocally: if t' = £(t), and if ¢ has an informative inductive type, then the reduction
will necessarily ends in in case (ii).

e If we are in case (iii) or (iv), this implies that ¢ had initially a product type.

e On the other hand if we just know that ¢ has a product type, we can end in any case
(i) (i) (iii) or (iv).

The main result of this study is that the reduction of extracted terms can be done without
problems. If the reduction mechanism must carry out an application, it well will find at the
head a value accepting one argument: closure, fixpoint or O (or an inductive constructor as
long as one keeps their curryfied notation). And if the reduction mechanism must carry out
a pattern matching, the matched object will be indeed reducible towards one constructor
totally applied to arguments, except in the special case of logical singleton matchings.

The question is now to know if the final result of the reduction of an extracted term is
indeed correct with respect to the initial term. Obviously, the work makes up to now will
allow to give a first answer, at least in simple cases, such as for example the particular case
of terms belonging to a datatype:

Definition 15 a datatype is an inductive type D whose constructors have as arquments
only objects of type D or of type another datatype.

For example, an inductive type I with a constructor of type (nat — I) — I (i.e.
encapsulating a function) is not a datatype. On the other hand usual types like bool, nat or
Z are datatypes in this sense. One can then specialize our previous result for this particular
case:

Theorem 6 Lett be a closed well-typed CiC term whose type T is a datatype without logical
contents. Then all derivations of E(t) via —) 5 ends on the normal form CIC of t.

PROOF. We just have to consider again the proof of the previous theorem, except that now
to is in normal form and not only in weak normal form. This comes from the fact that T is
a datatype: a closed weak normal form in this type, not being able to contain closures, is
thus also in normal form. And consequently, the definition of being without logical contents
shows that £(ty) = to. There is thus nothing to extract in ¢y, and we have ¢, = t,. O

For example, if we build in Coq an arbitrarily complex term answering true or false
to a particular question, one is sure that its extraction will reduce to the same answer as
in Coq. The same applies if our term returns the hundredth Fibonacci number or the list of
the first thousand = digits.

This result, although interesting, is in fact strongly limited. In particular, it says nothing
about the correctness of non-closed terms or functions (which is in fact the same, modulo
A-abstractions). To treat these cases, it is first of all necessary to specify what one means by
correct functions, and then establish this correctness. The simple idea is to show that if all
the arguments are correct in a certain way, then so is output computed by the function. The
formalization of this idea and its proof turned out to be much more difficult than initially
planned. This is the object of all the following section.
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2.4 Semantic study of extraction correctness

In the following study, we focus on clarifying what it mean for an extracted term to
be correct, and we do it by means of semantic considerations. Up to now we indeed used
a purely syntactic correctness property, namely the comparison between the structures of
an extracted term and of the initial term. But such an approach does not allow to treat
functions in a satisfactory way.

This study is intended in the long term to allow the generation in Coq of the correctness
proof of extracted objects. This aim influences largely this study, first in the choice of the
logical framework, then in the definitions and the proofs that follow, made in the most
detailed and mechanical possible manner.

We first of all will define a transformation [.], that will give us in particular, once applied
to a type T', the correctness predicate that must verified by any extracted term &(t) from
an object t of type 1. Then we will establish successively:

e the preservation of this transformation [.] by substitution;
e the preservation of [[.] via reduction;

the fact that the objects built by [.] are correctly typed,;

the fact that the extracted terms verify indeed the correctness predicates given by [.].

Warning: to try to simplify this study, we do not treat the cases of “let-in” or constants or
fixpoint with more than one component. Anyway, these cases are not the critical ones, and
taking them into account would be a tedious but a priori straightforward job. On the other
hand the principal change compared with the previous section is the use of the modified
system CI1C,, with explicit marking of cumulativities, introduced in section 1.2.5.

2.4.1 The logical framework

We use here a point of view as close as possible to a real formalization in Coq of the
extraction correctness. Even if this formalization has remained a paper one during this thesis,
it is possible that we try in the future to make a true development Coq of it. The logical
system in which we will express our correctness properties is here the Cic,,.

We already evoked in page 9 of introduction the fact that it is not not possible in general
to be able to type-check the extracted terms in CIcC,,. Amongst other reasons, we can
mention here the possible disappearance of logical decreasing certificates in fixpoints. It will
thus be necessary to embed these extracted terms into one datatype, like:

Inductive expr : Set :=

| Var : identifier — expr

| Lam : identifier — expr — expr
| App : expr — expr — expr

We suppose from now on that we have in CIc,, such a concrete type, that we will name A
thereafter, internalizing the syntax of untyped CIic,, terms (or pre-terms), plus one constant
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0. Generally, we will note t5 the object ¢ internalized in A. With a slight abuse of notation,
we will continue to use the CIc,, syntax for these internalized objects. Thus we will write
(Sa 04) rather than (App Sp 0,).

Just as two convertible objects of Cic,, have the same properties, and in particular are
equal via the standard equality eq, we require two convertible A objects to be equal. In
particular, we will use the fact that ((Ax:X, t) x) and t are the same object. We do not
specify more precisely, for the moment, which notion of convertibility is necessary on the A
level, leaving that to be clarified later on.

This logical framework being fixed, the function £ extraction seen at the beginning of
this chapter is now a meta-level function, transforming any Cic,, term into an object in the
concrete type A.

2.4.2 The simulation predicates

In similar works on extraction correctness, the usual method is to define the correctness
of the extracted terms with respect to the initial type of extracted object. Theses works
exhibit a realizability predicate p r T, which is read as follows: “the program p realize the
type 7”. And the goal is then to show that £(¢) r T when t : T'. The critical point is the
realization of functions. The natural rule to realize a functional type is as follows:

prA—B iff Va, ar A= (pa) r B

If one wants to generalize this to the dependent product type Vx : A, B, it is necessary
to take into account the possible appearance of z in B, that we underline by the notation
B(x). Let us try:

prVx:A,B(x) iff Va, ar A= (pa)r Bla)

In a system allowing an internal extraction, this may be appropriate, although a r A does
not necessarily imply that a : A, and hence B(a) may be badly typed. In any case, like the
extracted parts have here the type A, there is no chance that this rule is well typed. One
can then try to be rely on an element x of type A:

prVx:A B(x) iff Vz:A, Va, ar A= (p a) r B(z)

In this formulation, the annoying point is now that z and a are not correlated, although
they must morally correspond respectively to a Cic,, term and to a possible extraction of
this term. To express this correlation, we have chosen to introduce a simulation predicate
T ~ p relating a CiC,, term ¢ and an extracted term p. More precisely, we define a family
of predicates ~r indexed by Cic,, types 7"

~r: T — A — Prop
The realization rule for a product now becomes:

[ ~vaa By p iff VoA, Va, x~ya = (f 2) ~pa) (pa)
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In fact, we will center everything on these predicates ~7, and relegate to the background
the realizability predicate r, which will be in fact defined via the simulation predicates:

prT iff 3T, t~pp

And to achieve the initial goal, which was to establish £(¢) r T', one now need to prove that
t ~7 &(t), which is more precise.

At the technical level, these predicates ~p for T : s are not yet general enough to be
defined and handled directly. We indeed need to extend them for type schemes T : K. As
in general, these predicates will not be binary relations anymore, we will not keep the infix
notation ~, and will speak instead of predicates 7. When T'is a type, ¢t ~r p will then be
just an abbreviation for (7' ¢ p).

In practice, we will not be able to define directly these predicates f, but rather some
dependent pairs [T] which will have these predicates T as second components, and an
enriched alternative T for T as first components. We will thus use three types of dependent
pairs adapted to our needs:

Record Type®™ : Type := mk_Type
{ type_Type :> Type;
pred_Type : type_Type — A — Prop }.

Record Set™ : Type := mk_Set
{ type_Set :> Set;
pred_Set : type_Set — A — Prop }.

Record Prop™ : Type := mk_Prop
{ type_Prop :> Prop;
pred_Prop : type_Prop — A — Prop := fun = True }.

If s is one of the three sort Set, Prop or Type, the constructor of a dependent pair of type s*
is mk_s, and the two projections are type_s and pred_s. These two projections respectively
give again the type contained in s™ and the predicate of simulation associated with this
type. Let us look at the types of theses projections now. The type of the first is very simple:

type_s : st — s.

The one of the second presents a dependency:

pred_s : VT:s™, (type_s T) — A — Prop.

In addition, the first projection can be seen as a coercion of s* into s, which is announced
by the Coq syntax :> instead of the usual : syntax. In Coq, this coercion allow to avoid
writing the first projection explicitly. In the theoretical study that follows, we will continue
to clarify these projections. On the other hand, we will do it using a lighter syntax:

e T.1 for (type_s T)
o T2 for (pred_s T)
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These abbreviations are voluntarily ambiguous, because they do not specify the initial type
Type™, Set™ or Prop™. When needed, typing the expression T allows to solve this ambiguity.

It should be noted that the case of Prop* is a little particular. We have indeed definitively
fixed the contents of the field pred_Prop during the definition of the Prop™ type. Thus
the predicate associated with an object in Prop™ is necessarily the trivial predicate, always
equivalent to True. The idea is that the extraction of a logical part can be chosen arbitrarily,
without that having repercussion over the correctness of the extracted term. At the practical
level, the only difference between the Prop™type and the Type'types and Settis that it
constructor mk_Prop awaits one argument instead of two. On the other hand two projections
type_Prop and pred_Prop exist and operate as described previously.

The homogeneity between the st will allow us to plunge Set™ and Prop™ in Type™ in
order to mimic cumulativities Set < Type and Prop < Type. In CIC,,, these cumulativities
are announced by the marks * and T. These marks will here be mirrored by the two following
functions:

Definition Set™_Typet := fun T:Sett = let (t,p):=T in mk_Type t! p.
Definition Prop™_Typet := fun T:Propt = let (t,p):=T in mk_Type t' p.

2.4.3 The transformation [.]

We now define a transformation [.] for all object of C1c,,. In fact, only the transformation
of types really imports. But these types can be found on any positions, for example in the
arguments of an inductive constructor, and then re-appear during a pattern matching. And
a type can also be in fact the application of a type scheme to arguments. In short, [.] needs
to deal with any Cic,, term.

In the particular case of a type T : s, [T] will be a dependent pair whose second com-
ponent [T].2 is the expected simulation predicate. In this precise case, we will shorten
[T]-1in [T]1 and [7].2 in [T]2. To help the reading, it can be interesting to note that this
meta-theoretical transformation [.] preserve typing judgments: if ¢ : 7', then [t] : [T]1. Here
comes now the definition of [.] by structural induction:

— [z] ==
[t 7 =[] [¢]
— [Mx T, t] = Az : [T, [t]
— Vo :T,T] =
mk_s Va: [T]a, [T']r M, Ap, Vo : [T]1, Vo' : A, [T]z x 2’ — [T']2 (t x) (p o)
if the type® of Vo : T, T" is s # Prop. The type of the two shortened abstractions

are respectively Vz : [T]1, [T']s and A. And if s = Prop, one removes the second
argument of mk_s.

— [s] = mk_Type s A _, A, True
— [t*] = Set*_Type™ [¢]

3Notice: in CIC,,, we have uniqueness of types modulo conversion.
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~ [t'] = Prop* _Type* [¢]
— ] = Au: U]z, (mk_s (T @) (I W)

_

when the inductive type I admits Vu : U, s as arity, with s # Prop. See the context
transformation for the definition of I and I. And if s is Prop, we just remove the
second argument of mk_s.

— [C] = C for a constructor C' of the inductive type I. And C is then a constructor of

the inductive I. See the context transformation for the definition of I.
—

- [case(e, P, )] = case(le], P, [£])
Here, for P of form A\, Ax : (I ¢ ), T, one notes P = \u, A\v : (I ?]j ), [T]h.
— [fix z: T :=t] =fix x : [T]1 := [¢t]
Finally this transformation [.] extends to contexts as follows:
[N )] = [T (e [7)

— Each declaration of inducti_ve a IAof arity K =VYu : U, s and of constructors C; : T; is
replaced by two inductive I and I, the second being useful only if s # Prop.

- _ R —
L. I is simply the propagation of [.J1 to I. Its arity is K = Vu: [U]s, s and its
constructors C; has type [T;]1.
~ — ~ EEEE— -
2. I is used as simulation predicate for I. Its arity is K =Vu : [U]y, ({ @) = A —
Prop. And its constructors C; have type ([T;]» C; C%), with C% being the i-th
constructor of the inductive £(I) extracted from I and internalized in A.
Let us reconsider one moment the definitions of T and 1. It can to seem indeed surprising
that [T;]1 on the one hand and ([T;]» C; C%) on the other hand are valid types of construc-
e
tors. In fact if 7; is form Vo : V', (I W), one then has:
e S yp—
[Tl = Vo : [V]y, (I [w])
and also:
(I7i]2 Ci C}) =V[v: V], (I S(w) (C; T) (C} 7))

We used here two new notations:

% . é . . .
e Y[z :T], ... which denotes Vz : [T]y, ... plus one additional program variable x’ as-
sociated with each variable initial z, and the proof H, of correctness connecting x and
2’. More precisely:

Vi(x : T)(v; : Vi)], ... =Va: [T]s, Vo' : A, VH, : ([T]2 = o), ‘v’[[v,—VZ]],

e % is the extracted version of the variables: each variable z is replaced by its associated
extracted variable z’.

For a context T', one will need later to handle an even richer alternative for [I'], in which
a declaration (z : T') generates, in addition to (x : [T]1), the declaration of a associated
program variable (' : A) and a proof H, connecting x and ', of type ([T]> = z'). We will
note this extended context [I']..
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2.4.4 One example

It is now time to test all this pretty formalism on one example. We will seek to know
which correctness condition must satisfy a program extracted £(div) when the original term
div is an integer division:

div : Va b:nat,b#0 — { gq:nat | g¥b < a A a < (S @)*b }

First of all, as the arity of nat is directly Set, one has [nat] = mk_Set nat nat, and
thus [nat]; = nat. Types of new constructors 0 and S of nat are then respectively nat and
nat — nat, with the result that nat is exactly isomorphic with nat. We will thus identify
them. And concerning nat, one has:

Inductive nat : nat — A — Prop :=
| O : nat 0 0y
| S : Vn:nat,Vn’:A,nat n n’ — nat (S n) (Sp, n’).

This inductive predicate expresses simply the fact that n’:A is a correct extraction of (S
(S ... (80)...))iff n> = (Sp (SpA ... (Sp 0p)...)). Another inductive type used in
the type of div is sig :

Inductive sig (A:Set™)(P:A.1 — Prop') : Set :=
| exist : Vx:A.1, (P x).1 — sig A P.

This definition is not, in fact, so different from that of sig, in particular if one omits the
coercions .1 inferable by Coq. There is even the following relation:

sig A P < sig A1 Xz, (P z).1)

Here is now the definition of the inductive sig:

Inductive sig (A:Set')(P:A.1 — Prop™) : sig AP — A — Prop :=
| exist : Vx:Al,Vx’:A,A2 x x7 —
Vh: (P x).1,Vh’>:A, (P x).2 h h’ —
sig A P (exist x h) (existy x’ h’)).

Let us name Div the type of div and let P be (fun a b g = g*b < a A a < (S g)*b).
We obtain then that [Div]y is isomorphic with Div, and that [Div], has for type Div —
A — Prop and is:

[Div]p = fun (£:Div) (p:A) =

Va:nat, Va’:A, nat a a’ —

Vb:nat, Vb’:A, nat b b’ —

Vh:b#0, Vh’: A, [b#0]> h h’ —

(sig [nat] ([Pl a b) (f abh) (p a’ b’ h?)).

However, since b#0 is a logical proposition, the predicate [b#0], which is associated for
him is the trivial predicate. And similarly, for any triplet of integer a, b and q, the predicate
([P] @ b q).2 is also A_, A_, True. Finally, [Div] is equivalent to:
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fun (f:Div) (p:A) =

Va:nat, Va’:A, nat a a’ —

Vb:nat, Vb’:A,nat b b’ —

Vh:b#0, Vh?: A,

Jq,dq’, (f a b h) = (exist q _) A (p a’ b> h’) = (existy q’ _) A
nat qq’ NP abq.

Our extracted function div will thus be correct iff for two arguments corresponding to Coq
integers (the second being non-null) and a third unspecified argument, it returns a construc-
tor exist, whose first argument has a Coq counterpart that check the post-condition P.
Despite all the delays resulting of the formalism complexity, the informal meaning of pre-
and post-conditions is indeed there.

2.4.5 Substitution properties of the transformation [.]

The first step on the way to the correctness proof for the extraction is to establish the
substitution properties what verifies the transformation [[.]. This will concern here only the
substitution of the last variable of a context, which in particular does not influence inductive
types defined previously.

Lemma 12 The transformation [.] preserves substitutions: [t{z<—r}] = [t][{z—[r]}

PROOF. This proof is done by structural induction, and is purely syntactic. Because of the
important number of cases, we will not treat them all. Here a typical case:

[t ) {wer}] "= [Hoer} t{oer}]
LU e )] [ e 1]
W [{a =[]} [ [}
"= ([ D {z 1}
LY It e — D)

All the cases other than the basic cases follow this scheme:
1. propagation of substitution
2. use of [.] definition
3. repeated uses of the induction hypothesis
4. factorization of substitution
5. reversed use of [.] definition

There is nevertheless a delicate point: nothing guarantees a priori that the same definition
rule for [.] will apply before (point 5) and after (point 2) the propagation of substitution.
Fortunately a substitution does not upset the structure: a substituted application remains
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an application, a substituted matching remains a matching, etc. Of course, a substituted
variable can give anything else, but this case is correctly managed:

[a{e—r}] 2" [r]
T 2] {z [}

Lastly, even if the same definition rule for [.] is used before and after substitution, it is still
necessary that this rule produces similar objects. In particular, the transformation [/] of one
inductive type and the transformation [Vx : T, T"] of a product type use both a constructor
mk_s that depend on a sort s. This sort is respectively the sort at the end of the arity of I
and the type of the product. It is thus essential for the validity of the present lemma that a
substitution cannot modify this sort s. This is a commonplace in the inductive case: the sort
at the end of the arity of I cannot change via substitution. On the other hand this is much
less obvious in the product case. In the initial CIC system, they is even false: if x : Type,
then Vy : Y, = has type Type, whereas (Vy : Y, z){z «+ True} has type Prop. What about
C1c,, now? If one consider again this example, one obtain:

[Vy : Y, 2] = mk_Type Yy : [Y]1, [=]1 --.
To be legal, the substitution must now be {z+ True'}. One then has:

[Vy : Y, x{x True'}]

= [Vy : Y, True']
=mk_Type Vy : [Y]1, (Prop®_Type™ [True]).1 ...

On the other side, the substitution to be applied after transformation is {z + [Truel]} =
{z+—Prop™_Type* [True]}. And we finally have the same final term.

In a general way, our modified system CIcC,, always verifies the conservation of the type
of product by substitution. Indeed, if s is the initial type, then s{x < r} = s is clearly a
type of the substituted product according to the lemma 4. We can then conclude using the
uniqueness of types in CIC,,. O

2.4.6 Reduction properties of the transformation [.]

As we excluded from our study the constants and the “let-in”, we consider here only the
reductions 3 and .

Theorem 7 The transformation [.] preserves the reduction: t —g, t' = [t] —p, [t']
PROOF. Let us start first with the cases where the reduction is performed at the top:

e t = (A\u:U, a) b being reduced by § in ¢ = a{u<«>b}. Then [[t] is (Au : [U]1, [a]) [?]
and can be indeed reduced to [a]{u«[b]}. And the former is equal via the previous
lemma of substitution to Ja{u<0b}] = [t'].

e If a (-reduction occurs at the head of a type scheme, we proceed in the same way.
e t = case(C; p W, P, f;) being reduced by ¢ in ¢ = (f; @). Then [t] is in fact
s = —
case(C; [p] [ul, P, [f;]) which can be indeed reduced to ([f;] [u]) = [¢'].
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ot = (fix 2 : T := ty) u being reduced by ¢ in ¢ = to{x « (fix z : T = ty)} w.
—
Then [t] = (fix x : [T]1 := [to]) [u]. In particular the inductive guard argument,
which started with one inductive constructor, preserves his head structure. One can
—
thus reduce [t] in [to]{x < (fix x : [T]1 := [to])} [u]. The previous substitution
lemma shows that this term is indeed equal to [¢'].
e If a t-reduction occurs at the head of a type scheme, we proceeds in the same way.
When the reduction takes place deep inside a term, one proceeds by induction over the

structure of the initial object ¢t. As these cases bring no surprises, we will not detail them.
O

2.4.7 Validity of terms produced by the transformation [.]

Theorem 8 The transformation [.] preserves typing judgment: T' -t : T = [I'] F [¢] :
[T72

PROOF. By induction over the initial typing derivation, and at the same time over the good
formation of transformed contexts [I'].

(WF) WF(2) = WF([2])

[[F]] - [[U]] : [[3]]1 U ¢ [[F]]
'FU:s ugZF:> [T]F U]y : s
WEF(I; (u: U)) WEF(IIT; (u - [Uh))

Indeed [s]y = st and thus the first projection of [U] has type s.

(WF)

WZF(T') s € {Set,Prop, Type,} i <] N WZF([I']) s € {Set,Prop,Type,} i <
[k s: Type; [C] = [s] : [Type;]a

Indeed [s] = mk_Type s* A_, A_, True and [Type,]; = Type™.

(Ax)

WFIT) (u:U)eTl N WEF([T]) (u:[U]1) € [I]

(Var) TFU:U [T F o] : [0

First of all, the variables are invariant by [.], therefore [u] = u. And in addition, types
present in environment [['] have indeed the form [U]y (cf. rule (WF)).

FTET:s; Ti(x:T)FET :sy P(sq,S2,83)
BV :T,T : s3

(Prod)
=

[T IT7 : [s1]z IT]; (x: [T]o) F [T7] : [s2]x PROD(s1, s9, S3)

[T]F mk_ss Va:T, T A, Ap,Va:T,Va' : A, (Txa)— (T (tz) (pa') : [s3)s

With T = [T and T = [Tz and idem for 7"
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The derivation outlined here is the one for s3 # Prop. Instead of writing all the
details, we will just describe the general scheme. [s,]; = s and [sy]y = s5. Thus
T and T” have as respective types s; and s,, and T and T’ have as respective types
T — A — Prop and T — A — Prop. A use of the typing rule for the product allows
us then to affirm that Vo : T, T admits s3 for type. It is then easy to see that the
predicate part of the dependent pair is indeed of type Yz : T, T — A — Prop. It is
then quite legal to form this dependent pair, which has thus type [s3]1 = s5.

The case s3 = Prop is a simplified version of what precedes, since mk_ss only has one
argument.

(Lam) FEYu:U, Vs Ty(u:U)kFov:V
N 'FXu:Uv:Vu:UV

[[P]]F[[VU:U’V]]:[[SHI (w vl :
I Ve [0T5, Vs s L0 [0l F [ [V

[T+ Aw: [U]q, [v] : [Vu: U, V]q

Using the induction hypothesis for [Vu : U, V], one deduces via the first projection that
[Vu : U, V]1 = Yu : [U]1, [V]1 has type s. This plus the other induction hypothesis
for [v] allows us to apply the rule (Lam) and to conclude.

FFov:Vu:U,V ThFw:U [T+ o] : [Vu:U, V] [T]F [w] : [U]s

App =
) T ) Ve w) 7+ (T o)+ [VIs {u [}
As previously, one use the equality [Vu : U, V]y = Vu : [U]1, [V]1. Lastly, one has
indeed [V]i{u«[w]} = [V{u+w}]1 via the previous substitution lemma.
THU:s THt:T T=450U
(Conv) TFt:0
=
[C] F U] : [s]a
I = (¢ : [T T\ =5 U
[[F]]l—[[U]]]l:s [[]] [H] [[]]1 [[]]11 6[[]]1
(Ll e L
Note that 7" =g, U implies indeed [T]1 =g, [U]1, because of the previous theorem of
reduction preservation for [.].
(CumT) I'-¢:Type;, 1<

I't: Type;
=

[CT - [e - [Typesls @<
[T+ 1] - [Type;]a

This is immediate, since [Type;]1 = [Type;]1 = Type™.




2.4. Semantic study of extraction correctness 71

(CumP)

(CumS)

(I-Type)

(I-Cons)

(I-WF)

['Ft:Prop
LHe:T
= ype

[T] F [¢] : [Prop]s
[T+ [¢7] : [Typels

Here [t'] = Prop® _Type™ [t], which is then indeed of type [Type]: = Type™.

I'+1t:Set
CHt:T
= ype

[T] F ] : [Set]s
[T+ [#'] : [Type]x

Here [t'] = Set™ _Type* [t], which is then indeed of type [Type]y = Type™.

. é .
For an arity K = Vu : Us, with s # Prop, one has:

WEF(I) Ind,(I;:=T¢)el (I:K)eTl,
TFI:K

=
WEF([T]) Ind,(T;;:=Tza) €[] (T:K)el; (I:K)eT;

[T]+ Au: [U], (mkes (I @) (I @) : [K]x

- e ~ s —
with the abbreviations K = Vu : [U]1, s and K = VYu : [U]y, (I @) — A — Prop.
And one has [K]; = Vu : [U]q, s*. The dotted lines in the derivation tree correspond
to a double uses of the rule (I-Type), to deduce that I and T have respective type K
and IA(, and then of the typing of the lambdas and of the dependent pair.

Lastly, the case s = Prop is only one simplification of what precede, because mk_s has
then only one argument.

Wf(F) Indn<F[ = Fc) el (C : T) cele

N r-C:rT
WE(IT) 1nd,(Ty;=Tg) € [1] (€ [Th) € T
[C]+C : [T]y

Concerning the declaration of an inductive I, of arity K = Vu : U, s; and constructors
C;: T, ifwepose 'y = (I : K) and I'c = (C} : T1);...;(Cy : Tk), we then originally
have :

F'-K:s ;T ETisp L, To)
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(Case)

. . . - . . %
Let us first examine the definition of I. Its arity is Vu : [U]1, s;. However one has :

[T F [Vu: U, s/] : [s]1 induction hypothesis for K
_—

[C] = Vu: [U]s, st :s via the first projection, since [s]; = s™
_

[T] FVYu:[Uly, sr:s since s; has a larger type than s;.

And concerning the new types [T;]1 of the constructors C;, we have:

IT]; [T F [73] : [sr]1  induction hypothesis for T;
ICL; 00, F [Ti]a - sr via the first projection

> o
In fact, [[';] = (I : Yu: [U]q, sf) and not (I : Vu : [U]y, s;). But I will appear in
[T;]1 only behind the first projection, in a form like (I w).1. One can then change
these occurrences into (I w) and replace [I';] by (I : Vu: [U]g, sr1).
Finally the side conditions Z, are indeed satisfied for I. In particular the [T;]; are
always types of constructors for sorts s;. As for the condition of positivity, without
going into to much details, the intuition is that [.]; preserve the structure of the T;,
and in particular positivity.

~ — —
Let us pass now to the definition of Q. Tts arity is Vu : [U]y, (I &) — A — Prop,
which is indeed typable of type Type. As for constructors 6, the chosen definition
ensures that they are types of constructors for I of sort Prop. And one more time, we
will not detail the positivity verification, but here again it does not seem to pose any
problem.

Let us now look at the case of a rnatchlng on an object of inductive type I, whose
arity is K = Vp P, K’ with K’ = Vu: U U, s and whose constructors are C; : T;. We

.,
note T; = Vp P,Yv:V, (I P W) the types of constructors C;. Let finally o be the
substitution of formal parameters p by concrete parameters q.

'e:I ¢ uw I'P:B C(I<¢:K);B) Vi,['F f;:Vv: Vo,Pwo(Cl-E)?)
['Fcase(e, P, fi...fu) : P W e

=
- lel:Tlgl [l [CD-[P]:[Bl: (T [q]:Vu: [Unls, s; B)
Vi, 0] F [£]: Vo : Vala. [P @ (C: 7 )l
[T] & case([e], P, [f1]---[fe]) : [[P ]y

The transformed version above is not directly a legal application of the rule (Case):
there are some adjustments to be made. First of all let us study the predicate P, which

form is Au: U, v : (I ¢ 7), T. Tts type B is of the form Yu: U, (I ¢ W) — sp.
_ _ — 5
Thus [B]y =Yu - [Uls. (T [q] [u]) — sp. And [P] = u [UDa, Az < (1 [g] [ud), IT]-
This implies that our new predlcate P=Xu: U]y, M\v: (I [[q]] W), [T]h is well typed,
—_

B
of type Vu : [U]y, (I [[q]] [[u]]) — sp. Let us note B this last type. Since Yu : [U,]1, s
and B are arities on the same sort than their original versions, the condition C is
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always checked afterward transformation. Finally the following equalities hold:
— . —

[P els = ([P] [u] [e])-1 = (P [u] [e])

and similarly:
e e

[P w; (C; 'q V)]a = (P [w,] (Ci [a [v]))
This now allows a legal application of the rule (Case), modulo some permutations
between substitution [.] and o.

F'ET:s Ty(x:T)Ht:T F(x, T, k,t)
L'k (fixx/k:T:=t) : T

(Fix)

O . .
e el O ICR e LG R s RN o TN G

[T+ (fix x/k: [T]1 :=[t]) : [T]x
Concerning side conditions F(z, [T]1, K, [t]):

~ the argument number awaited by [¢] is the same one as the one of ¢, and the k-th
argument of [¢t] still has an inductive type, which is now I instead of I.

. —_ . .
— For each recursive call (z ') in ¢ there exists a correspond one (or several)

recursive call(s) (« [u]) in [t]. The important point is that the “guard” argument
uy undergoes only the transformation [.] to become [ug], which does not change
the fact that it is structurally smaller than the initial inductive argument, since
[.] preserve the structure of t.

|

2.4.8 Correctness of £ with respect to the transformation [.]

Let us start with two auxiliary results, which confirm that the elimination cases of the
extraction are quite valid with respect to [.].

Lemma 13 For any CI1C,, arity K, well-typed in a context T', one can proveVz : [K]q, Va':
A, [K]2 x 2’ in the context [I'].

PROOF. This is shown by induction on the structure of K:
o If K = s, then [K]y is directly Az : [K]y, Ax’ : A, True. The term A_, A, [ is then
appropriate as proof of the required property.
e If now K is a product Vz : T, K’, we have:

[K]2 = At : [K]1, Ap: A, Vo : [T]g, Vo' - A, [T]z x 2/ — [K']2 (t z) (p 2)
However the induction hypothesis for K’ gives us a term H, whose type is Vy :
[K'N1, Yy : A, [K']2 y v in the context [I']; (x : [T]1). The following term is then
appropriate:

Az [Kg, A2 2 Ay A [T]a, Mo’ 2 A, N, Hf{x—z} (z x) (2 2)
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O

Lemma 14 For any CIC,, type T admitting Prop like sort in a context I', one can prove
Va : [T]1, Vo' : A, [T]2 © 2" in the context [I'].

PROOF. According to theorem 8, [T] has type Prop™. Considering the definition of Prop™,
the predicate [T, is thus A, A | True. O

We now will state and prove the principal result of this semantic study: the extraction
& is correct with respect to the simulation predicates obtained via the transformation [.] :

Theorem 9 For any well-typed CI1C,, object t, if U' bt : T, then ([T]2 [t] E(t)) is provable
in the context [I'] .

PROOF. First of all, the basic cases, which are arities and logical parts, are treated using
the two previous lemmas. The remainder of the proof is done by induction over the typing
derivation I' ¢ : T'.

(Ax) In this rule that allow the typing of sorts, T is a sort, and thus a fortiori an arity. We
thus use lemma 13.

(Prod) Here T is again a sort, hence the use of lemma 13.

WFIT) (x:T)el
I'kz:T

(Var)

If T admits Prop as type or is an arity, then £(x) = O and we use lemma 14 or lemma
13. If not, £(x) is the program variable associated with = in the context [I']., namely
2’. And this context also contains a proof H, of type ([T]» x 2’), which gives us the
claimed ([T]y [z] £(z)).

PEVe:T5, TS Ti(x:To) -t T
(Lam) DEMXe: Ty, t' Vo : Ty, TV

If T =Vx: Ty, T is an arity or has type Prop, we apply one of the previous lemmas.
If not, the induction hypothesis for ¢ states that:

ML (@ [Tl): (& A)i (< [Tl @ @') b Hee s [T [] E(F)
However we have:

[T]2 = Az : [T]1, A" : A, YV : [To]1, Vo' - A, VH, : [To]z « o, [T']2 (2 x) (2 o)
The desired property is then:

Vo : [To]r, Va' - A, VH, : [To]2 z 2/, [T']2 (Ax : [To]1, [t']) =) (A" - O, E(t)) ')
And this can be simplified using (Az : [To]1, [t']) © = [¢'] and (A2’ : O, E(t')) =’ =
E(t'). Finally, the following term is a correct proof of the wanted property:

e [To]1, A\’ « A, AH,, : [To]2 = o, H{x, o', Hy—x,2', H, }

'Et Vo : Ty, T" Thty: Ty
CHE(ttg): T{x—to}

(App)
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If T"{z—ty} is an arity or has type Prop, one applies one of the previous lemmas. If
not, one will use the two induction hypothesis:

[N = HE -V : [To]n, Vo' : A, [To]z o 2/ — [T']2 ([t'] =) (E(F) 2)
[T+ b H2 : [Tz [to] £(to)
However the desired property is:
[T{x—to}]2 [t" to] E(' to) = [T 2{z —[toln} ([t'] [t]) (E(F') E(to))
It is then enough to take as proof:
H; [to] E(to) H

'cT:S I'ET:T T =5T

(Conv) TFT-T

We have [T] =g, [T], and in particular the second projections are convertible. It is
thus enough to use exactly the proof term coming from the induction hypothesis for
t:T.

I'—¢:Type;, 1<

(CumT) ['=1¢: Type;

Type; is a sort thus a fortiori an arity. We use lemma 13.

['Ft:Prop

(CumP) [t Type

Prop is a sort thus a fortiori an arity. We use lemma 13.

I'=1t:Set
[t Type

(CumS)

Set is a sort thus a fortiori an arity. We use lemma 13.

(I-Type) An inductive type necessarily has an arity as type. We use lemma 13.

WFI) Ind,(I';:=T¢)el (C:T)eTl¢

r-cC:rT
If the constructor belongs to a logical inductive type, the lemma 14 is used. If not, an
unfolding of ([T]> [C] £(C)) show that it is exactly the type of the constructor C' of
the inductive I. It is then enough to take this C' as proof term.

(I-Cons)

(Case) Let us now look at the case of a pattern matching on an object of inductive type [
—_ —_
whose arity is K = Vp : P, K’ with K/ =Vu : U, s and whose constructors are C; : T;.
3 . 1F — —
We note T; = Vp : P, Yu; : V;, (I P w;) the types of the constructors C;. Let finally o
be the substitution of formal parameters p by concrete parameters g.
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I'te:I ¢ u I'P:B C(Iq:K);B) Vi,l' - f; :Yv; : Vi, Pws, (C; ¢ v;)
['Fcase(e, P, fi...fr): P U e

First of all, if T = (P W e) admits Prop as type, or is an arity, we use one of the
previous lemmas. Let us suppose now that this matching is informative. The induction
hypothesis give us:

[T]+ + H,. : [I]2 m m le] E(e)  with [[], = T if s # Prop or )\j, True
otherwise
[C]4 F HE : Vs : Vig, P s, (Ci @ 9)]2 [fi] E(fi) foralli
Said otherwise, with the notations of page 65:
i — Tt N T — — —A
[Tl = Hy o V[vi s Vigl, (IP] [wio] (€5 [all vi)).2 ([f:] ©') (E(f) i)

On the other hand, one wishes to prove:
— —

([P] [u] [e]).2 case([e], P, [fil) case(&(e), O, E(f))

The head e of this matching is then in one of the three following cases:

e [ts inductive type [ is an logical empty inductive. We are then in a situation
similar to a proof of False : we can just eliminate this proof e via a pattern
matching to be able to prove anything. And the post-transformation version [e]
has still an empty inductive type, which is now I. The proof will be thus of the
form case([e], ..., ) with the good head predicate.

e [ts type inductive [ is a logical singleton inductive. There is thus only one

constructor C'y for I, and all the non-parametric arguments of C are logical.

—
Let n be the number of such arguments. The expression case(E(e), O, £(f1)) is
in fact case, (O, O, £(f1)), which can be reduced to (£(f1) E))

We then define a new predicate P whose body is:

—

—_— — — N —
Au: [U], Ax - 1 [q] &, ([P] @ x).2 case(x, P, [fi]) (E(f;) O ... O)
The proof to be built then starts with a matching on [e] according to this predi-
cate P. This matching have then only one branch, whose type must be:

Vo 1 Vil P [wi]pe (Ch m v)) =
Vor - [Vigl, (IP] [wie] (Ch [a] w0))2 ([A] @) (E(f) O)

modulo a ¢-reduction and some permutations between [.] and o. Now, for each
variable vy, of the sequence v1, one knows that it is a logical variable. By using
repeatedly the lemma 14, one builds for each j a term H; of type ([Vijs]2 vi; O).
The required branch of the matching is then:

—_—
)\Ul . [[‘/10]], (H} V11 O H1 ... Ulp O Hn)

e [ts inductive type [ is informative. There again, we proceed by pattern matching
on [e], but we need to destruct H, during matching. One thus starts with a
generalization (Generalize in Coq) with respect to the type of H,.. On the level
of the final proof term, this corresponds to an application to H,.. And the head
of this application now will be a pattern matching on [e] according to following
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predicate P:
)\u:—[[U]]),)\:c:TM])ﬂ), fa])ﬂ)xé’(e)ﬁ
([P] @ 2).2 case(x, P, m) case(&(e), O, éTfl)))
The j-th branch of this matching must then have for type:
v, s Vil P [wilier (©; [l ) =
v, 1V, 1. T lal [w,] (@ Tal ) €(0) -
(IP] ;] (@ [dd )2 (1) (case(E(e), O, E(f)))

This matching branch is then built as follows:

1. We starts by introducing the variables v_;

2. We introduce the specialized version of H,., where [¢] has become (C} m v;).

3. It is then possible to inverse this new H, (Inversion in Coq). And according
to the form of its type, we then obtain the existence of variables U;k associated
to each variable vjj of v_;, as well as proof Hy, of type ([Vjko]2 vjk v;.k), and
finally we also obtain the fact that £(e) is equal to (C4 v;™).

4. We can then rewrite £(e) in the current goal, in which the part concerning
& becomes convertible then with (£(f;) v;4).

5. The only remaining step is to apply H7 to the good arguments vy, U;»k and
H.

CET:s T;(f:T)Ft:T F(f, T, k,t)
Lk (fix f/k:T:=t) : T

(Fix)

If T is of type Prop or is an arity, we use one of the previous lemmas. If not, we use
the induction hypothesis:

[Cl; (F = [Tws (F = M) (Hy = [T f F) = He = [T 2] £(2)

However one wishes to establish the following statement:

[T (gix £ [T]: = []) (fix f: 0= E(1))

Thereafter, we note fix and fix, the respective fixpoints (fix f : [T]; := [t]) and
(fix f': O:= &£(t)). The idea is then to make a proof by fixpoint, something like:

fix F: [T], fix fixy = H {f —fix}{f —fixy}{H;— F}

Unfortunately, this term is slightly inaccurate. The type of H, after substitution is
indeed ([T]2 [t]{f < £ix} E(t){f" « fixa}) instead of ([T]> fix fix,). However
unfolded versions of fixpoint fix and fix, are convertible with their initial versions
only when a guard argument is present and starts with a constructor. It is in fact
possible to correct these inaccuracies. To simplify the writing, we will proceed only
in the situation where the guard argument is in the first position. But of course,
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this method extends to the general case. We thus suppose that 7' can be written
Vo : 1w, T The type ([T]z [t] £(t)) of H, rewrites to:
Vo T m, Vo' i A, VH, : fm z ', [T ([t] =) (E(t) ')
However one can prove that:
Vo1 m, [t]{f<fix} 2 = fixx
To establish that, we can just reason by case over z, and in each case z is then

replaced by a constructor, which implies that the equality becomes trivial thanks to a
t-conversion. And we can also prove similarly that:

Vo1 m, Vo' A, VH, fm v, EQ{f —fixp} o’ = fixy 2/
There again one proceeds by matching on . Then, in order to deduce the form of 2/,
we “inverse” H, as in the previous sub-case for (case). This shows us that 2’ starts
with one constructor, and there again the required equality becomes trivial after a
t-conversion. The next step is to use these two equalities to rewrite the type of the
substituted version of H,., so that its type becomes indeed ([T, fix fixy).
Finally, it should be checked that this fixpoint proof that we have just built is indeed
legal: are its recursive calls structurally decreasing? It is a matter of locating the uses
of Hy in H,. However the occurrences of f in the ¢ term initial are applied to decreasing
arguments. And the construction of H, respects the structure of ¢: a case produces a
case, one application generates an application, etc. To each application (f y) in ¢ will
correspond an application (Hy [y] £(y) ...) in H,, which relies (f [y]) and (f' £(y)).
And if y was structurally smaller than the initial inductive argument, it is indeed the
same for [y].

O

2.5 Summary of the correctness results

At the end of this double study of correctness, it is time to make an assessment of the
properties of correctness which we have proved. In fact, the syntactic part (section 2.3) and
the semantic part (section 2.4) are quite complementary.

e the syntactic study allows to establish the termination without anomaly of any weak
reduction of a closed extracted term. On the other hand if the extracted term is a
function, this is not very instructing. This part is a relatively simple methodology,
obtained early during this thesis works.

e Such as we formulated it, our semantic analysis does not allow to prove by itself the
termination of our extracted programs. Perhaps that would be it possible by adding
termination conditions among the definitions of [], but we do not have pushed further
in this direction for lack of time. Indeed, this semantic analysis has required an impor-
tant quantity of efforts to be achieved. In particular, issues like cumulativity of CiC
have been quite hard to deal with, and that has only be done in the last months of this
thesis. In any case, this analysis allows to give a meaning to extracted functions, and
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affirms that they preserve the properties of the initial Coq functions. This analysis also
opens the door to one study of the extraction in the presence of axioms, something
excluded by our first study.

2.6 Toward a more realistic extraction

We have seen before that the reduction r,, studied in section 2.3.2 corresponded to the
respective reduction strategies of Haskell and Ocaml, depending on whether one reduced
initially the head or the argument of the applications.

There remain nevertheless four substantial differences between our theoretical model and
the reductions actually used by Haskell and Ocaml :

1. empty inductive types and their eliminations
2. the ad-hoc rule —; of elimination of logical singleton inductive types
3. the ad-hoc rule —g eliminating the arguments of constants O

4. the rule —; concerning the fixpoints and their concept of “guard”

2.6.1 The empty inductive types

Our target languages do not authorize the definition of empty inductive types, and a
fortiori the matching over such an inductive. But in fact, if one handles an object having an
empty inductive type, that means that we are in some impossible situation. A matching on
such an object is in particular a portion of code that will never be executed.

More precisely, let us suppose that the evaluation of an extracted object meet a term
of the form case(e, P, @). The theorem 2 enables us to obtain a corresponding well-typed
CiC term case(ey, Py, @). In particular ey is an object having an empty inductive has type.
We can then continue with a reasoning similar to the one used during the proof of theorem
2: since these reductions are done in a weak manner, ¢.e. in an empty context and outside
all lambdas, the inductive object eq is thus closed. It can then to be reduced to a term
having a constructor as head. This is obviously impossible, because an empty inductive has
by definition no constructor.

One can thus freely replace any pattern matching on an empty inductive object by
arbitrary code. In practice, a natural choice is to replace this matching by the raising of
an exception. This allows to underline the inaccessible character of this position of the
code, while giving the most general type to this portion of code. We thus use in Ocaml the
construction assert false, and error in Haskell.

One may note that this treatment of empty inductives is completely independent of the
logical or informative character of this inductive type. Whether we deal with the logical
inductive False or with its dual in Set named empty, their two eliminations False_rec and
empty_rec result in the raising of an exception.
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2.6.2 The elimination of logical singleton inductive types

In the study of section 2.3.2, we used one (-reduction rule adapted to treat the elimination
of logical singleton inductive types:

case, (0, P, f)—, f O ... O

n

The reason for such an ad-hoc rule is to allow the function £ to disturb as less as
possible the structure of the terms, which simplify its study. This reduction thus does not
have anything fundamental, so much so that it is perfectly possible to integrate it into the
extraction: rather than to encode this special rule in our languages targets, we can “pre-
compile” during the extraction all these eliminations of logical singleton inductive, without
losing correctness of extraction.

Justifying such an optimization of the extracted terms is not completely immediate.
Indeed this trick implies to reduce all the eliminations of logical singleton, including those
located under lambdas, whereas our correctness results of the section 2.3.2 are valid only
with the use of the weak version of this (-reduction.

It can seem paradoxical besides to want to carry out strong reductions after having war-
ned against the dangers of such reductions in the examples of the beginning of section 2.3.2.
But let us consider again the function cast of page 51, which translated into a matching on
a logical singleton inductive. It is not the (-reduction itself of the body of (cast H 0) to
0 that generate an error in the execution of the function example, but rather the following
matching where 0 is seen as a boolean. And this second non-singleton matching will remain
quite prohibited because it is done under a lambda.

We will note —,_ the strong version of this ad-hoc ¢-reduction, usable even under lambdas,
contrary to the weak version —, . From one extracted term ¢, we now justify the correctness
of one term ¢’ obtained via ¢t — t', using a simulation of ¢ by t.

Theorem 10 Lett, t' and u' be three terms of CiCq such that t —7 t' andt' —,  u'. There
exists a CICq term u such that v —; u' andt —, . .

PROOF. Taking into account the rule —, for logical singleton inductive, the terms ¢ and ¢’
have extremely close structures. It is enough then to compare the position of the redex r
which is reduced in ¢’ with the corresponding position in ¢.

e If this position is apart from any branch of pattern matching on a logical singleton
inductive, then the same reduction can be carried out in ¢, which gives us a suitable
term wu.
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e Suppose now that this position in ¢ is under one or more pattern matching(s) over
logical singleton inductives. First of all let us consider the case of a single matching
on the way to the redex corresponding to r in ¢. The reduction which one carries out
in ¢’ is weak. In ¢, that mean that our logical matching singleton is a fortiori located
outside any binder, these binder being lambdas or matchings. One can then start by
using —,, to reduce this matching over a logical singleton inductive, before reducing
the redex corresponding to 7. And in the case of multiple matchings, the argument is
the same: the most external matching can be reduced in a weak way, then the second,
and so on, before finishing by the redex corresponding to 7.

|

Theorem 11 Let t, t' and u be three terms of CiCn such that t —; t' and t —,, u. There
exists a CICq term u' such that u —7 v’ and verifying t' —, ' ort' =’

PROOF. First of all, if the reduction of ¢ to w is a t-reduction of a logical singleton term
already carried out between ¢ and t’, then taking v’ = t' is appropriate. If not, the weak
reduction between ¢ and wu is done outside of any matching, including matching on logical
singleton. There is thus one exactly identical redex in ¢, that one can reduce for getting a
suitable u’. O

In addition to the reductions —,, , the reductions —g can also be simulated between
the initial extracted term ¢ and its optimized version t'. Finally, any sequence of reductions
starting from ¢’ is finite, otherwise the theorem 10 would allow us to build an infinite sequence
reductions for the extracted term ¢. And by combining the two previous theorems it can be
shown that the weak normal forms of ¢ and ¢’ are related by —,_, and in particular equal if
they contain no more \-abstractions.

During the extraction, we are indeed in right to carry out all the (-reductions of logical
singleton inductive, even strongly, on the raw extracted term generated by £. Moreover the
head of a matching over a logical singleton is inevitably Prop as sort, and thus is extracted
by £ into O. This thus implies that all matchings over logical singletons case,, are indeed
reduced by —, and disappear completely.

S

2.6.3 The elimination of the possible arguments of O

Let us now consider the ad-hoc reduction (O x) —g. Unlike the previous ad-hoc reduction
on logical singleton inductive types, it will not be possible to avoid it completely after
extraction. Of course, the extraction £ never generates itself such (O x) terms, since the
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whole initial term (f x) is then identified as worth eliminating, and gives directly 0. On the
other hand, the example 1 of page 49 shows that such a subterms can appear after some
reductions inside an extracted term.

Ocaml

If one evaluates a la Ocaml the extracted terms, i.e. with a strict strategy, it is then
necessary to be sure that this (O x) application will not fail. In practice that can be done by
choosing carefully the concrete term which will implement O. Usually, one chooses the term
() of type unit to replace an arbitrary constant like our O, but that is thus not appropriate
here. One can then try try to rather use fun _ — (), or fun _ _ — () when it is known
that O can receive up to two arguments, and so on. Unfortunately, we have been unable to
simply determine the maximum number of arguments that can receive a particular O term.
We thus have chosen a more general though less elegant solution, namely one fixpoint that
absorbs its arguments. In Ocaml, that can be written as follows:

let rec f x = £

Of course, this definition is badly typed, and we will see in the next chapter how to cir-
cumvent this problem. In any case, from the point of view of the execution, a constant O
implemented this way can indeed receive an arbitrary number of arguments without failing.

Haskell

In the case of a lazy evaluation to the Haskell, one could perfectly reuse this idea of a
fixpoint absorbing its arguments. But that is in fact not necessary. If one studies again the
example 1, the extracted object is after reduction Ag : O, (g (O 0)). The (O 0) subterm do
not appear at the head, and the function g may completely not use its argument, in which
case the (O 0) application will never be computed. This situation is in fact quite common,
and one will in fact never need to use the rule —g with lazy strategy. This lazy strategy
implies that the head of terms will always be reduced first, according to the two following
compatibility rules (see definition 13):

U —2 v U —2 U

(ut) =2 (vt) case(u, P, ...) —9 case(v, P, ...)

Let us take a initial closed term ¢y, well-typed in the Cic, and ¢t = £(ty). Let also u be
one of the successive reduced forms of ¢ by the lazy strategy. If a reduction (O z) —g O
can intervene in u at a position permitted by these two compatibility rules, there are two
possible situations:

e the O can be at the top of u, which is then of the form (O @’). According to the
theorem 2, this term corresponds to a term uy = (fy ag) of CIc, which is a reduced
form of the initial term ¢y. And f; is then either of sort Prop sort or is a type scheme.
According to the stability lemma 1, it is the same for the whole term uy = (fo ag).
Then the lemma 2 shows that the initial term % is also of sort Prop or is a type scheme.
And thus £(tp) = O, which show that the case considered here is impossible.
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e the O can be at the beginning of the head of a matching, that is u contains a subterm of
the form case(O @, ..., ...). A similar reasoning to the one of the previous case shows
that the inductive term corresponding in CIC to (O @) is of sort Prop. But in the ex-
tracted term ¢t = E(ty), all case on logical inductive inevitably has O as head, whether
this logical inductive is empty or singleton. And that cannot change under reduction,
which contradicts the presence in u of the subterm of the form case(O @, ..., ...).

The rule —¢ is thus never used in a reduction with Haskell. O can thus always be imple-
mented by an arbitrary term.

In fact one can even go further and consider that O is an abnormal final result during
the evaluation of an extracted term. Indeed, the computation of an extracted term only
have interest when its result is ... informative, such as for example true, 3, or fun x=-x.
This result can of course contain residues O of logical parts or type schemes, for example
inside a function. But the whole result being O is abnormal. We thus made the choice to
implement O by the raising of an exception. And that does not disturb the computations
on informative parts of terms:

e We have just seen that O cannot be evaluated as the head of an application.

e O will never be evaluated either like head of a matching on a logical inductive term,
since we saw in the two previous sections how to make disappear these matchings over
the logical empty of singleton inductive.

2.6.4 Toward a usual reduction of fixpoints

The reduction of fixpoint is the last major difference between the reductions in our system
Cicp and those in the target languages. Indeed in these target languages there is obviously
no concept of “guard” argument, that should start with a constructor for the reduction to
be possible.

Ocaml

In the case of Ocaml, the difference is not so important. Indeed one fixpoint with two
arguments let rec f x y = t will only be reduced when it receives its two arguments.
And in the case of an inductive argument, Ocaml will evaluate completely this argument,
whose value will thus start indeed with one constructor, before continuing the evaluation of
the fixpoint. We can then just simply translate the fix f {f/2: 0 := Az, \y, t} example
into let rec f x y = t in f. And it is not abusive to suppose that the body of a fixpoint
starts with enough A-abstractions, here at least two. In fact, the concrete Coq syntax for
the Fixpoint and the fix obliges us to declare the arguments at least up to the guard
argument. Lastly, dealing with mutual fixpoints brings no more difficulties. There is no
additional concerns about logical guard argument, since the condition “being O” has been
substituted to the original condition “starting by one constructor” in our new ¢-reduction.
And the complete evaluation of a logical argument cannot indeed finish on anything else
than 0.
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Haskell

On the other hand, for Haskell, the situation is more delicate. Unfolding of a fixpoint f is
done when f comes to the head of the term to be evaluated, and this is done with no initial
reduction on the arguments. The constraint on the (at least partial) evaluation of the guard
argument, prior to any unfolding, has no particular reason to be fulfilled. It is thus not sure
that the order of the reductions in Haskell can be reflected on the CIC level in the spirit of
the theorem 2.

Let us try to informally show that everything work correctly nonetheless. The decreasing
constraints that the Cic imposes imply that the following recursive call is done with a
“smaller” guard argument. And to obtain such a “smaller” argument, it is necessary to
destruct at least one level of the initial argument. The evaluation of the guard argument is
thus simply pushed back from one recursive call to the next one.

The previous justification is unsatisfactory. First, such a modification of the evaluation
order is not necessarily safe. Moreover our reasoning assumes that the analysis of the guard
argument, that produces the new recursive argument, is made at the head of term, and hence
that Haskell will carry out it without additional delay. Usually, it is true that the body of one
fixpoint starts immediately with a match. But that is not a general rule, as the example of
Acc_iter shows (see page 29). In this case, the analysis of the argument of guard is pushed
back in the term being used as following argument. Acc_iter is in fact a bad example,
because its guard argument is logical, and thus disappears with the extraction. But we can
imagine a similar example with an informative guard argument, and this argument could
indeed never be evaluated by Haskell.

We now will outline a rigorous justification of the simple translation of Cicy fixpoints
into Haskell fixpoints. For that, we show that the computation order during a reduction of
a fixpoint in Haskell can be simulated in CIC using a modified version of the initial fixpoint.
For that we will use a remark that C. Paulin made p. 103 of [68]: every structural fixpoint
on an inductive I can be transformed into a definition by well-founded induction over an
order <y, that is in a structural fixpoint over the inductive Acc having for parameter <j.
The interest of such a translation is to add an argument of logical accessibility which will
serve as new guard argument. This way, there is not need anymore in CIC to evaluate the
old guard argument even partially before an unfolding, since the constraints are now being
concentrated on the new logical argument.

We will not propose here a proof of C. Paulin’s remark, already justified in [68]. Instead,
we try to illustrate this mechanism on a simple example, that is the addition of Peano
integers. For I = nat, an appropriate order <; is the standard order 1t (or <) over integers.

We also use the large version le (or <) of this order. Here come a version of plus in
which the guard argument is not one of the two main arguments, but a third argument of
logical accessibility:
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Definition plus (n m:nat) : nat :=
(fix plusrec (n m:nat) (a:Acc 1t n) {struct a} : nat :=
match n as n0 return n0<n — nat with
| 0 = fun h = m
| (Sn’) = fun h = S (plusrec n’ m (Acc_inv a n’ h))
end (le_refl n))
nm (1t_wf n).

Let us compare with the last version of plus presented page 20:

e One added an additional accessibility argument a, that is used as decreasing argument.
And for each recursive call, its new accessibility argument is obtained via the function
Acc_inv already met page 29.

e the true fixpoint, plusrec, awaits now three arguments. The function plus is thus a
encapsulation of this plusrec in which one provides the proof (1t_wf n) stating that
n is indeed accessible as third argument.

e Lastly, the typing of the match is much more complex than in the initial plusrec, and
requires special annotations, as well as an artificial abstraction on a variable h of type
n<n. And a proof of this n<n is provided immediately after the match via the term
(le_refl N).

To be convinced that this new plus allows to simulate on the CicC level any reduction

made at the Haskell level with the extraction of the initial plus, it is enough to compare the
extractions of both plus. Here in particular is what £ gives for our new plus®:

Definition plus (n m:0) : O :=
(fix plusrec (n m:0) (_:0) : O :=
match n with

| 0= fun _ = m
| (Sn’) = fun _ = S (plusrec n’ m O)
end 0O)

nm .

One notes the presence of residues of logical parts, which differentiate this extraction from
that of the plus initial. But these residues do not have an influence on the order of com-
putations. For example, anonymous abstractions present in the branches of match receives
immediately their argument O located after the match. Any computation in Haskell with the
initial extraction thus corresponds to a computation with this news extraction, computation
that finally be simulated on the Cic level, which guarantees the correctness of the initial
extraction.

Finally let us note that in the extraction of new the plus, all these logical, constant
residues O and anonymous abstractions, are in practice detected and removed by extraction
optimizations that we describe in section 4.3. And finally the extracted term from this plus
is ezractly the same as that extracted from the old plus.

4We use here a syntax & la Coq, more readable, instead of our CiCy syntax.
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Chapitre 3

Typing the extracted terms

We have built in the previous chapter an extraction from Coq terms to raw, untyped,
A-terms. We have in particular shown that the execution of these extracted terms was
necessarily finite and without error. It now remains to study the final translation towards a
true functional language, and that is the subject of this chapter.

As we mentioned in introduction, we wish that extracted code can be integrated into
a broader development. It is thus necessary to be able at least to include/understand the
signature of the extracted objects. Two choices arise then: one can generate source code for
a particular language, or directly some byte-code or even assembly code associated with a
readable interface. But in addition to the difficulty of generating binary code, this would
lead to a “ black box” solution, without possibility of a posteriori control. We preferred to
produce source code, which leaves the user the possibility of reading this code, and which
also allows to profit from the optimizing compilers already existing. The “open source”
movement showed in particular that accessibility and readability of sources largely increase
the confidence in a program.

This first choice rises a new question: which language should we use as target of the
extraction? All we need is a A-calculus with inductive types. This explains the choice of
languages derived from ML, namely Ocaml and Haskell. But these languages are typed, and
their typing systems a la Hindley-Milner [59, 27| are appreciably different from that of Coq.
In particular one cannot express in these languages any dependent types nor universes. As
already mentioned previously, the old extraction made the pragmatic choice of refusing any
Coq term using the Type sort. But even this restriction was not sufficient to be certain to
obtain well-typed ML terms. For example, the concept of polymorphism differs between ML
and Cogq. It is thus clear that a simplistic translation of A\-terms Coq into ML, A-terms can
lead to non-typable terms.

We should thus adapt our terms if we want to use the standard compilers like the ones
of Ocaml or Haskell, not modified for the extraction. At the same time, we would wish to
remain as close as possible of a direct translation, and this for several reasons. First, within
the ordinary examples of Coq terms, a large majority have indeed a ML counterpart that is
correctly typed. Secondly, the need for an interface to the extracted code also militates in
favor of a simple and natural translation. Lastly, any effort aiming at circumventing these
typing problems by an ad-hoc encoding seems to lead to a stage of precompilation which
we precisely wish to avoid. An particular encoding was tested by L. Pottier [70], but this
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coding may still produce ML non-typable terms.

How then can we use compilers for typed languages when extracted terms are potentially
non-typable? Concerning Ocaml, we use now, just like L. Pottier, an undocumented features
of this language, called 0bj.magic. This function allows to give a generic type ’a to any
term. By using this function, one can thus locally circumvent the type checking done by
Ocaml compiler. We will see in a second time how the current extraction allows to auto-
matically generate Obj.magic in the extracted code. And concerning Haskell, some of the
implementations of this language propose a undocumented function unsafeCoerce which
seems equivalent to Obj.magic. It should then be possible in the future to extend to Haskell
this automatic generation of artificially well-typed terms.

Let us mention by the way the realization of an experimental extraction towards the
language Scheme. Like this functional language derived from Lisp is untyped, it seemed to
us one for a moment that it could be an promising target language for the extraction, since
it allow to avoid the problem of non-typable terms. Unfortunately, Scheme does not have
natively any inductive types nor pattern matching over such types. It is thus necessary to
encode them using macros, except in the particular case of the Bigloo implementation [75].
In addition to that, preliminary tests showed a significant difference in efficiency of extracted
code, clearly in favor of Haskell/Ocaml to the detriment of Scheme. The effort in favor of
this Scheme extraction thus have not been continued.

In addition, we should emphasize that it is not even sufficient to simply ensure the
existence of a correct type for each extracted term if we cannot determine this type in
advance. Indeed, as we want to allow an easy integration of the extracted code in broader
developments, we must be able to envisage which will be the types of the extracted terms,
and to produce files interfaces. Moreover, if one wants to be able to extract modules and
functors of Coq (cf section 4.1), it will be necessary to be able to do such type prediction.

This study of the typing of extracted terms is organized as follows. First of all, we
describe the typing errors that our extraction on the terms can produce. Then we present
an automatic method for bypassing these errors, via insertion in the code of type-changing
primitives, for making this code artificially typable. To guide this insertion, we first compute
a “reasonable” extracted type starting from the Coq initial type of the considered object.
We describe this extraction £ of types. Then, we force this desired extracted type to really
become the type of the extracted raw term, initially untyped :

~

t:T=&(t):ET)

This is done via an alternative of the algorithm M of type checking/inferring, modified so
that each detected typing error produces an insertion of a type-changing primitive.

3.1 Analysis of the typing problems

The problems start with types declarations, that is declarations of inductive types or of
type abbreviations. Coq includes indeed typing features without counterparts in Ocaml or
Haskell, and in particular the following ones:

e matchings on the type level (match)
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e fixpoint on the type level (fix)

e polymorphism by universal quantifications at non-prenexe positions or in the types of
inductive constructors.

The rest of this section details each of these situations. In versions 6.x and earlier of Coq,
these declarations of untranslatable types were refused by the extraction, with message of
the kind: Error: .... is not an ML type.

The situation of terms is different. The use of an untranslatable type in a Coq term does
not prevent, a priori, its typability in Haskell or Ocaml, since these languages do not include
type annotations on the lambdas and matchings: there is so no explicit references to the
untranslatable types. The old extraction then generated code without being concerned with
its typability. The type inference on this extracted term could then either find a simpler
type, acceptable in Haskell or Ocaml, or fail.

In fact, it should be said that the frequency of the typing errors in practical in the
extracted code is low. For example, there is not a single one in the extraction of Coq
standard library. And in all the contributions Coq studied from the extraction point of
view (see chapter 5), only 4 contributions present some errors: Lyon/Circuits, Lannion,
Rocqg/Higman, and Nijmegen/C-CoRN. We will examine the three last in more details in
chapters 5 and 6. This scarcity can be explained by the fact that, most of the time, the users
write theirs informative functions as they would have written them in Ocaml or Haskell. Thus
the dependent types are generally used only as a form of polymorphism, or to express logical
properties (pre/post-conditions for example). One can also see a form of self-censorship there:
the majority of these examples date back to before this renewal of the extraction, hence the
use of too advanced features gave at that time the insurance of not being able to extract
the development.

Let us see now more in detail several typical situations that generate typing errors during
extraction.

3.1.1 The type “integer or boolean”

Let us take for example a predicate P that depends on a boolean, whose value is either
nat or bool:

Definition P (b:bool) : Set := if b then nat else bool.

This predicate now allows to aggregate two values of different types:

Definition p (b:bool) : P b :=
match b return P b with

| true = 0O

| false = true
end.

The type of p hence depends on b, because (p true) has for type (P true) = nat, while
(p false) has for type (P false) = bool. The extraction of the previous chapter then
proposes for p an non-typable extracted term:
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let p = function
| True — O
| False — True

There is obviously no equivalent neither in Ocaml nor in Haskell of one such dependent type
over a boolean. A possibility is then to forget this dependence by using an approximation
of P as being a disjoint union of nat and bool:

type approx_P = Nat of nat | Bool of bool
let p = function

| True — Nat O

| False — Bool True

It would then be necessary to also allow the return to nat or bool as soon as the first
argument is known. That implies to locate each place in Coq where the conversion typing
rule (P true) — nat is used. One would insert there the following unwrapping during
extraction:

let nat_of P = function (Nat n) — n | _ — assert false

And idem with false and bool. Such a transformation presents several disadvantages.
First, it denatures the initial program by introducing wrappings/unwrappings which involve
computations without equivalents in the original term. And secondly addition, the automatic
generation of these unwrappings is far from being obvious. Indeed, the use of conversion (P
true) — nat is transparent for Coq, and is recorded nowhere. As it thereafter will be seen,
it is thus not this method which was selected to treat this example.

3.1.2 A more realistic version

It should be noted than even if the previous example is so simplified that it may look
useless and unrealistic, it is nonetheless inspired by real developments. For example, let us
try to formalize the semantics of an imperative mini-language a la Pascal, using a memory
model. If our language has only integers as basic type, the access function to a storage cell
will have a very simple type:

Parameter get_value : memory — address — nat.

with memory representing a state of the memory and address the address of a memory
location. Now let us add other basic types, and references. One can write for example:

Inductive types : Set :=
| Nat : types
| Bool : types
| Address : types — types. (* type of a reference to another type *)

Which type could now have our get_value function ? Of course, we can represent the values
with a sum type:
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Inductive values : Set :=

| Val_nat : nat — values

| Val_bool : bool — values

| Val_ref : address — values.

Parameter get_value : memory — address — values.

The problem of such a representation is that it implies to continuously reason by case on
this type values, even if it is already known that we are in one of the situations.

If we now use dependent types, much of these case reasoning will become simple com-
putation. For that, let us associate to a memory location the type of its content:

Parameter get_type : memory — address — types.

And let us use a function returning the domain associated with each type name:

Definition domain (t:types) : Set :=
match t with Nat = nat | Bool = bool | Address = address end.

One can then give the following signature to get_value:

Parameter get_value : Vm:memory, Va:address, domain (get_type m a).

This way, if one really implements the function get_type in a computable way, then the
type (domain (get_type m a)) can be reduced to nat, bool or address according to the
case via a simple conversion.

During its extraction, an implementation of this get_value will then present exactly the
same kind of typing difficulty that our simplistic example p.

3.1.3 The type of integer functions with arity n

The situation is even worse when the dependent type may be reduced to an infinity of
different types, depending of the input value. For example the following predicate F associates
to the integer n the type of the integer functions with n arguments:

Fixpoint F (n:nat) : Set :=
match n with

| 0 = nat

| Sn = nat —» Fn
end.

One can then build a function whose arity depends on its first argument:

Fixpoint f (n:nat) : F n :=
match n return F n with
| 0 =0
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| Sn = fun _ = f n
end.

There again, the raw extraction of f is untypable:

let rec £ = function
| 0 — 0
| Sn —» (fun x — f n)

One can still propose a typable version via the use of an union type designed to simulate
the structure of F, but that becomes really difficult to describe this workaround in the most
generic case of a Fixpoint on types. Moreover, it is possible to hide this fixpoint behind a
constant. Indeed, F can be also written as:

Definition F := nat_rect (fun _ = Set) nat (fun _ t = nat — t).

3.1.4 Untranslatable inductive types

The inductive types also raise problems, because Coq allows to write types without
equivalent in Ocaml or Haskell. For example, we can write in Coq an inductive type being
able to contain objects of any type:

Inductive any : Type := Any : VA:Type, A — any.

A naive typed extraction type ’a any = Any of ’a would be unsatisfactory. One would
indeed propagate a type variable >a with no counterpart in Coq. An initial version of our ex-
traction implementation was proceeding of the kind, and was sometimes producing inductive
types with hundredths of type variables, because of this propagation of variables.

In the same spirit, one can obtain a non-homogeneous list:

Inductive anyList : Type :=
| AnyNil : anyList
| AnyCons : VA:Type, A — anylList — anyList.

Definition my_anyList := AnyCons bool true (AnyCons nat 0 AnyNil).

Here, a naive translation (which would here give in fact the usual polymorphic lists) would
be not only unsatisfactory, but even worse, completely incorrect from the point of view of
types. This example does not seem to be adaptable into Ocaml code that would be typable
and equivalent. The only solution here is then the one presented in the following section.

To show that these lists are perfectly usable in Coq, here comes for example the function
returning the head of a non-empty list, or an object of type unit in the case of an empty
list. The type of this function uses a predicate that depends on the list:

Definition getHeadType (l:anyList) : Type :=
match 1 with /
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]

| AnyNil = unit
| AnyCons A _ _ = A
end.

Definition getHead (1l:anyList) : getHeadType 1 :=
match 1 return getHeadType 1 with

| AnyNil = tt

| AnyCons _ a _ = a
end.

The extraction of getHead presents typing problems close to those of the initial example p.

3.1.5 Dependent types and polymorphism

Even when dependent types are used to express simple polymorphism, one can have
nasty surprises. The classical example is a derived form of the distr_pair property:

Definition distr_pair : (VX:Set,X — X) — natxbool :=
fun £ = (f nat 0, f bool true).

It is known that fun £ — (f 0, f true) is untypable in ML. And there again, no simple
adaptation into an equivalent typable code.

3.1.6 Contradictory case and typing

A last example, particularly awkward, is the use of an contradictory assumption for
changing types. Let us suppose for example that an axiom makes the assumption that nat
= bool

Section Strange.
Variable absurd : nat = bool.

We can then use this false equality to show that 0 is a boolean.

Definition 0_as_bool : bool.
rewrite <- absurd; exact O.
Defined.

And consequently, nothing prohibits to define a term by case on 0 being either true or
false!

Definition strange := if 0O_as_bool then 0 else (S 0).
End Strange.

It should be noted that internally, 0_as_bool is a simple call to eq_rec, the induction
principle for the equality.
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Coq < Print O_as_bool.

0_as_bool =

fun absurd : nat = bool = eq_rec nat (fun P : Set = P) 0 bool absurd
: nat = bool — bool

As explained in the previous chapter, eq is the emblematic example of logical singleton
inductive types, it thus disappears during extraction, leaving for eq_rec only the identity.
Moreover, the logical argument nat=bool is ignored and becomes a _. the extraction of
0_as_bool is then:

let 0_as_bool _ =0

Concerning strange, it gives (as soon as we replace 0_as_bool by its definition'):

let strange _ =
match 0 with
| True — O

| False — S O

It should be noted that even if a term extracted from a Coq proof can contain a call
to strange, this call will never be fully evaluated, because of the lack of the argument
that would start the evaluation of the matching. The body of strange is here in fact dead
code. But even if the extraction of strange is safe from the point of view of execution, it is
undeniable that this extracted term leads to typing problems.

3.2 An artificial correction of typing errors

3.2.1 Obj.magic and unsafeCoerce

We have seen that some of these typing errors could be solve if required by rewriting
the produced code. But some other situations cannot be treated this way, which is anyway
quite difficult to automatize and moreover undesirable. This is why we followed a uniform
approach consisting in the use of low-level and not-documented primitives which allow to
artificially change the type of an expression. For example, in Ocaml, we use 0bj.magic : ’a
— ’b. Such a primitive, implemented internally as the identity, is obviously not normally
definable in Ocaml, and its use voids the vast majority of theoretical results concerning
Ocaml : in particular, an Ocaml well-typed term with Obj.magic is not anymore guaranteed
to be executable without error.

Some implementations of Haskell contain a primitive named unsafeCoerce, which should
be usable exactly in the same way that 0bj.magic. Because of lack of time, we did not
implemented the automatic generation of unsafeCoerce in the Haskell extracted code. But
this generation is a priori no more difficult than the generation of Obj.magic. The rest of
this chapter is thus devoted to Ocaml.

1See later in section 4.3.3 the study of such replacements.
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Let us make for example transform a boolean into an integer via Obj.magic.

# (Obj.magic true) + 1;;
- oant = 2

The fact that this computation succeeds is here a consequence of the internal representation
of objects in Ocaml : true being coded by 1, one obtains 2 as final result. On the other
hand, if the chimera created by the use of Obj.magic is not compatible with the internal
representation of objects, the sanction is immediate:

# (Obj.magic 1) 2;;
Segmentation fault

Indeed, one tries here to use 1 as pointer to the code of a function, which generates a memory
error.

The use of Obj.magic by the programmer, without being prohibited, is thus in any case
strongly not recommended, and must be done with great caution. But one should not either
disregard these Obj.magic, that are quite practical in some situations. For example there
are some in the current implementation of the Queue module of the Ocaml standard library,
or in the Dyn module of dynamic typing in the sources of Coq.

Within the extraction framework, fortunately, we already know that an execution error
is not possible. We then have the freedom to place as many place Obj.magic as necessary
in order to ensure typing. A corrected extraction of the example p of section 3.1.1 can for
example be:

let p = function
| True — Obj.magic O
| False — 0bj.magic True

How to place these Obj.magic ? A possibility is obviously to put some at each node of
the program. But that presents two disadvantages:

e the code becomes completely unreadable, which contradicts one of our objectives.

e more serious, the performances are decreased, as showed by L. Pottier [70]. This is
explained (at least partly) by the fact that the Ocaml compiler skips a certain number
of optimizations around the Obj.magic.

Since we have seen that the typing errors generally remain very marginal in extracted
code, it is thus really interesting to finely locate these error locations in order to insert as
less Obj.magic as possible.

3.2.2 A first attempt at correcting the types

We thus have embedded in our extraction an type-checker that also behaves as a type-
corrector: for each detected error, it inserts a Obj.magic that solves it. First, we present a
relatively simple way of doing that. Since this first manner is also little satisfactory, we then
describe another method, more complex, used in practice in the extraction implementation.
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The algorithms W and W’

The simplest way to detect and correct the typing errors is to proceed in a lazy way. For
that we use one algorithm for inference/verification of types, such as the W algorithm of
Damas-Milner [27]. The type of this algorithm is the following:

W : env * expr — type * subst

And its correctness is expressed by W(I',t) = (T,0) = o(') - T : o(T).

This algorithm can fail to type a term only through a failure of the type unification
subprocess mgu. All that remains to be done is to catch these unification errors and transform
them into success thanks to new 0bj.magic. For that we adapt W so that it also returns
modifications made under the terms. Its type is now:

W?’ : env * expr — type * subst * expr

And the desired property is now W/(I',t) = (T, 0,7") = o)t :o(T) and t' ~ ¢.

The W algorithm being now more than famous, we just give here a presentation of W’
centered on our modifications. A more formal presentation of W can be found in [51]. The
presentation given here has been inspired by a course of X. Leroy.

First of all, let us point out the mechanisms of instantiation and of generalization, that
allow to go from a type scheme to an Ocaml type and reciprocally:

— —
Inst(Va;.7) = 7[a; /3], with 3; fresh variable.
Gen(7,T') = Va;.7, with @; being the variables of 7 free in T
The figure 3.1 contains the definition of a minimalist version of W', parameterized by
an environment F of declarations of constants provided with their types. This presentation

does voluntarily include no recursivity: on the typing level, we can present recursivity via
an fixpoint operator fix having for signature Vo, (o — o) — a.

The encoding of inductive types

The inductive types will also be represented by encoding via constants, in order to leave
the central algorithm as simple as possible. Consider an inductive type Ocaml ¢ defined by:

type (o, ...,0) t=Crof 71 ... xTyp|...| Cpof Tpix. . % Tpn,
We represent the constructors of ¢ by constants C ...C), having for types:
Ci t You,...,0nTig — oo = Tip, — (1, ... 0p) t
And we represent pattern matching on t by an operator I} with the following type:

F, @ Yoaq,...,qn,0.(cq,...,¢,) t —
(g —= o= Ty, = B) = .. = (Tp1— .. = Ty, — B) = B
A simplification to be avoided

At first sight, it may seem that our algorithm )V’ includes an overly complex generation
mechanism for Obj.magic. Indeed, for an application (a; as), we distinguish two cases:
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W', x) = (Inst(I'(z)), id, z) for a variable x
W/, ¢) = (Inst(E(x)), id, ¢) for a constant ¢
W(T, funz — a) =
let (11, ¢1, a) =W/ (I'+{x: 5}, a) in with 3 fresh variable
(01(8) = 71, ¢1, funz — a)
W/(P, aq 0,2) =

let (Tl, (bl, d1> = W’(F, al) in
let (12, ¢2, d2) = W(¢u(l), ag) in

let 0 = mgu(ps(7y), o — () in with o and [ fresh
if 0 = error then

(7, ¢2- ¢1, (Obj.magic dy) dz) with ~ fresh
else

let = mgu(rz, o)) in
if y = error then
(o(B), ¢-¢o-¢1, dy (Obj.magic dy))

else

((B), p-o-¢2-¢1, aidy)

W/(T, let z = ap in ap) =
let (Tl, (bl, d1> = W’(F, al) in
let (73, ¢, d2) = W (01() + {x : Gen(my, ¢1(T))}, az) in

(7—27 ¢2 . ¢1, let z = (il in dQ)

FiG. 3.1: Definition of W’

e if the head a; does not have an arrow type, we surround it by an 0bj.magic.

e if the argument ay does not have a type compatible with the beginning of the arrow
type, then we place an Obj.magic around this argument.

If an Obj.magic is necessary, an simpler solution, also correct, is to always place the
Obj.magic around the head of the application. The problem is that the constants C; and
F; that encode inductive terms can then be surrounded by 0bj.magic, and this forbids
their transformation back to Ocaml syntax. Our solution with two unifications avoids this
problem.

Correctness of W’

This W’ algorithm satisfies the property W'(I',t) = (T,0,t') = o) F t' : o(T).
The proof is similar to the one of the unmodified W algorithm. It is just necessary to
check in addition the two cases that generate Obj.magic. However we have by induction
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hypothesis ¢1(I') + d; : 7 and ¢9(¢1(I")) F do : 7. From the first relation we obtain
$2(¢1 (1)) b= di = da(71).
e The first case generating 0bj.magic is the simplest: the type scheme Vag.a — [

allows to give any type to (Obj.magic ), and in particular 75, — . The application
((Obj.magic ay) az) thus accepts -y as type in the environment ¢o(¢1(I"))

e In the second case, we have o(do(41(I")) F a1 : o(¢2(m)). Taking into account the
definition of o, this rewrites into o(¢po(phii(I'))) F @1 : o(a) — o(f). It is now
(Obj.magic dy) that can accept any type and in particular o(«), and finally the term
(a1 (Obj.magic ds) thus accepts o(f) as type in the environment o(po(¢1(I))).

Behavior of 1V’ on an example

Let us now test our ¥’ algorithm on the extraction of the example p. In our encoding,
the body of p is written: fun b — Fp,p b 0 True. The successive calls to ¥V’ are then, from
the more internal to the most external:

W ({b: a}, Fyoo) = (bool — 5 — 3 — (3, id, Fyoe)

W ({b: a}, Fyoa b) = (8 — B — 3, {a < bool}, Fiou b)

W' ({b: a}, Fyoor b 0) = (nat — nat, {a < bool; 3 < nat}, Fy,y b 0)

W ({b: a}, Fyoor b 0 True) = (nat, {«a < bool; 3 < nat}, Fy,, b0 (Obj.magic True))
W' (&, fun b — Fyeo b 0 True) = (bool — nat,...,fun b — Fy,y b 0 (Obj.magic True))

On the fourth line, True cannot have the type nat that would be necessary for a correct
application. It is then surrounded by an Obj.magic. Finally, the corrected term is thus (in
Ocaml syntax):

let p = function
| True — O
| False — 0bj.magic True

The limitations of W’

If this method works indeed and produce typable terms, it is nevertheless not very
satisfactory. In fact, the inferred Ocaml types are sometimes strange and asymmetrical, the
order of unification playing a significant role in the final result. In our example p the typing
problem is in particular discovered only on the second branch of match, and it is thus only
this second branch that carries an 0bj.magic. This implies that the type of p is bool—
nat, and that the occurrences of (p false) will be surrounded by Obj.magic, whereas the
occurrences of (p true) will not.

This asymmetry forbids to guess a priori what type will be inferred for a given extracted
term. The only way of calculating this type is to apply the W’ algorithm. In particular two
Coq terms with the same type will not necessarily have the same Ocaml type once extracted.
To illustrate that point, it is enough to consider p and its following alternative, where one
filters in the other direction by using the opposite boolean:
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Definition p’ :=

fun b: bool =

match negb b as b’ return P (negb b’) with
| true = true
| false = 0

end.

The extraction of p’> via W’ gives then:

let p’ b =
match negb b with
| True — Obj.magic True
| False — O

And this term extracts has as a type bool—bool instead of bool—nat of p. A slight abuse
should be noted here: the Coq type of p’ is Vb:bool, P (negb (negb b)), and that is not
exactly the type of p, which is Vb:bool, P b. To correct this abuse, we can for example
consider (p true) and (p’ true) instead of p and p’. In this case the two terms have both
the type nat since (P true) = (P (negb (negb true))) = nat. And after extraction (p
true) and (p’ true) will have for respective Ocaml types nat and bool?.

This impossibility of knowing in advance the types of the extracted terms has forced us
to stop using this method. Indeed, this lack of determinism in types is really annoying when
interfacing with extracted code in broader developments. And even without speaking of
integration with external code, the extraction of Coq modules to Ocaml modules (cf. section
4.1) is strongly complicated by such a property.

3.2.3 The algorithm M

To solve these difficulties, we proceed in two stages.

e the first stage is to compute a type Ocaml g(T) awaited for the extracted term starting
from ¢ : T This computation is done independently of the body of the Coq term ¢,
and uses only its type 7', in order to remain modular. This extraction stage £ will be
detailed later on.

e once we known this awaited type, we use it as goal, and force the extraction of ¢ to

~

accept indeed £(T") as Ocaml type, always thanks to Obj.magic.

We start now by detailing this second stage, which is done once again by adapting an
typing algorithm. But now the stress is more laid on the checking of types that on the
inference. And to this change of approach corresponds a change of algorithm: we replace

2 Another way of obtaining two adequate terms is to wrap p’ into a term p’* having the same type as p.
Indeed, since the types of p and p’ are provably equal instead of being convertible, one can pass from the
one to the other via the lemma negb_elim: Vb:bool, negb (negb b)=b. This gives us:

Definition p’’ : Vb:bool,P b. intro b; rewrite <- negb_elim; exact (p’ b). Defined.
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W by the M algorithm. This algorithm, described in 1998 by O. Lee and K. Yi in [51], is
itself an alternative of YW. But unlike the latter, M proceeds via top-down analysis instead of
bottom-up, hence its reversed name compared with V. For the record, this M algorithm has
been used until 1993 in Caml Light prior to version 0.7. And even if we will take advantage
of this property, we nevertheless note that M detects the typing errors in a finer way than
W. The interested reader can find more details on this subject in [51].

The difference between M and W is already visible on the level of their types:

W : env x expr — type * subst
M : env * expr * type — subst

Instead of infer a result type, M asks rather for a type as input and checks that this type
is be appropriate, modulo possible substitution. Its correctness is expressed by:

MIt,T)=0 = o) Ft:0(T).

In practice, the difference between the two algorithms is not not so large. We can always,
indeed, use M with an initial type ’x in order to retrieve an inference algorithm, and the
inferred type obtained at the end is o(’x). And anyway, even an algorithm centered on
type-checking like M must make steps of inference, for example when it meets a let-in.

To use M within the framework of the extraction, we adapt it the same way we adapted
W in W

M? : env * expr * type — subst * expr

And one wishes now that M'(I',t,T) = (0,t') = o(I') -t : o(T). The figure 3.2 gives the
definition of M’ which uses the same notations as the definition of W’. We also reuse the
same even encoding of recursivity and inductive types.

If we compare M’ and W’, we notices that the let-in case is similar in the two algo-
rithms. This is explained by the need for inferring the type of the local definition. For the
other cases, the roles are reversed concerning the use of the mgu unifier. The application does
not require any unification, whereas on the opposite the last cases (functions, constants and
variables) now contain some.

The correctness of M’ will not be developed. Just as for YW and W’ this correctness relies
on the correctness of M, which is proved in [51], and on the study of the cases generating
Obj .magic.

But we still cannot use M’ directly for extraction. Indeed we wish, for a given type 7,
to force a term a to accept exactly T as type. However M’ returns a substitution o to be
applied on the variables of 7 before getting the final appropriate type of a. Hence the final
type o(7) of a can be strictly less general than 7. To solve this problem, we have used two
types of variables:

e the substitutable variables, which are those used until now, but which will not be used
any more except internally inside M’, during creations of fresh variables.

e non-substitutable variables, only authorized in extracted types that are used as initial
arguments from M. If the unifier mgu must solve an equation of the form a =7 7 with
« non-substitutable variable and 7 a type different from «, a unification error is raised
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MT, z, )=
let 0 = mgu(7, Inst(['(z))) in
if 0 = error then (id, Obj.magic ) else (o, x)

M, ¢, 1) =
let 0 = mgu(7, Inst(E(c))) in
if o = error then (id, Obj.magic c) else (o, ¢)

M, funx —a, 7) =
let 0 =mgu(r, @« — () in with a and [ fresh
if 0 = error then
let (¢, a) = M'(T' +{z:a}, a, §) in
(¢, Obj.magic (fun x — a))
else
let (¢, a) = M'(T'+ {z:0(a)}, a, 0(B)) in

(¢-0, fun x — a)

M'(T, ay ag) =
let (¢1, a1) = M'(I', a1, a — 7) in with « fresh
let (¢2, az2) = M'(¢1(I'), az, ¢1(r)) in
(2 - ¢1, dy d2)

M' (T, let x = a; in ay) =
let (¢1, a1) = M'(I', a1, a) in with « fresh
let (¢g, az) = M'(¢1(T) + {x : Gen(¢r(a), ¢1(I))}, az, ¢1(7)) in

(gbz . gbl, let z = (171 in dg)

F1a. 3.2: Definition of M’

instead of returning the substitution {o < 7}. And this unification error will make
M’ generate an Obj.magic which will allow to keep the most general type, here a.

From now on, by ensuring that the 7 type provided to M’ only contains non-substitutable
variables, we thus guarantee that the substitution result o leaves 7 invariant. We could then
ignore this substitution. Finally, starting from a Coq term ¢ : T, the extracted typable term
tou and its type T, are obtained by: T, = E(T") and t,,; = snd(M'(2,£(¢),E(T))). And
whatever is the choice of & (T'), we are sure that t,, has indeed T,,; as type and differs from
E(t) only by possible insertion of Obj.magic.
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3.3 The extraction of Coq types

We now present the extraction £ of Coq types into Ocaml types. This extraction of
types, as we have seen, is used by our M’ algorithm. But it is anyway made necessary by
the presence of inductive types in Coq : starting from the Coq types of inductive constructors,
we must deduce the Ocaml types that are the most faithful for the extracted constructors.
As long as execution is concerned, the only constraint concerning the inductive types is to
preserve the number of their constructors and the argument numbers of these constructors.
But ensuring only this constraint would oblige to put far too many Obj.magic, and would
produce unreadable extracted terms and types. Moreover, this extraction of types will enable
us to produce a interface file .mli for each produced file .m1, and that in a foreseeable way:
only the Coq types will influence this interface, and not the contents of the terms to be
extracted.

3.3.1 A approximation of Coq types

The previous examples showed that the richness of the Coq types could not always be
translated in Ocaml in an faithful way. We then proceed by approximation. For that, we use
a most general Ocaml type (or most unknown), that we will note T. We have implemented?
this T type thanks to the internal Ocaml type of all the objects, Obj.t. And conversions
between 0bj.t and the other types are carried out via Obj.magic.

This T type allow to give a satisfactory response to the previous examples. For example,
the function p which returns an integer or a boolean will have the type bool — T. And
concerning the inductive type any containing any object, it becomes:

type any = Any of T

It must then be clear that the extraction of types which we propose is necessarily ar-
bitrary at certain places, even if it gives good results in practice. This “efficiency” of the
extraction of types is measured:

e by the precision of the approximation carried out. One extraction of types that would
always answer T, although possible, is of course not interesting.

e by the low number of 0bj.magic necessary to force the correspondence between ex-
tracted terms and extracted types.

In fact, the following definition of 3 proceeds only by replacement of subterms by T, if
one puts aside the syntax questions. It would be then possible to give to the set of all types
with T a structure of semi-lattice upward, whose maximal element would be T. And we
would then have for any type Coq U that U < £(U) < T. This order would then constitute
a measure of the degree of approximation made during the extraction of types.

3In the extracted code, the ASCII notation for this T type is __. Note the absence of conflict with the
notation of the term O which is also __: in Ocaml names of types and terms do not interfere
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3.3.2 The type of logical residues

We saw in the previous chapter that the extraction of the terms was not able to comple-
tely remove logical parts from terms, and that it could remain some the residual constants
0. Which type could we then give to these residues 07 Ideally any constant type with at
least a value could be appropriate, such as for example unit. Unfortunately, it can happen
during a reduction in Ocaml that a residue is found applied (see example 1 in the previous
chapter). The rule of reduction to be used is then:

(0X)—0O

Implementing O by () is thus incorrect from the point of view of the execution. We can
nevertheless get the good behavior in Ocaml, provided we cheat with the typing®:

# let rec __ x = Obj.magic __;;
val __ : ’a — ’b = <fun>

# __ 1 true [1;;
- 7_a = <poly>

The only difficulty is that the type >a—’b given for O is harmful for the readability of
signatures, because it multiply the useless type variables. We then decided to “cast” this
type into Obj.t. This can be done by using instead of Obj.magic its alternative Obj.repr:
’a — 0bj.t. We have finally chosen the following implementation of O:

# let = let rec £ _ = Obj.repr f in Obj.repr f

val __ : 0bj.t = <fun>

In the following definition of the extraction £ of types, we will use the symbol O to indicate
the type of the constant 0. This symbol of the type is defined as an alias to T. In fact, one
syntactically separates these two symbols only during the extraction, during which they will
play distinct roles:

e If the extraction of a type gives nat—0O, one knows that all the type is logical, and it
is desirable to produce the extraction O for the whole.

e Conversely if a type is extracted in nat—T, one knows that it acts as the type of a
function with an integer argument and unknown result. And there, an approximation
of the whole type with T is not desirable because any information would then been
lost.

3.3.3 The border between types and terms

Let us recall that Coq does not make syntactic distinction between terms and types,
unlike Ocaml. The extraction need then to decide to place an Coq object in the world of
extracted terms or in the world of extracted types. In the previous chapter concerning the

4The ASCII notation of O is __.
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extraction of terms, we pruned all type schemes® into the constant 0. The reason of this
pruning was that a type scheme, which will become a type once applied to sufficiently many
arguments, does not have real calculative content.

For extraction of types, in a coherent way with the extraction of terms, type schemes are
once again used as border between types and terms. In fact, the extraction of types accept
any Coq term, but immediately returns the unknown type T if the input term is not a type
scheme, in the same way that the extraction of terms returns O in the degenerated cases.

3.3.4 The Coq types, from simple to complex

Before entering the definition itself for extraction of types, we try here to give an intui-
tion of its behavior. For that, we first present a certain number of examples of Coq types
sufficiently simple to have a faithful equivalent in Ocaml. Then we continue with increasingly
complex Coq types.

The inductive types

First of all, One can obviously mention the inductive types whose constructors are
constant, such as bool.

Inductive bool : Set := true : bool | false : bool.

4

type bool = True | False.

More generally inductive types without parameter and whose constructors have simply trans-
latable types are themselves simply translatable. For example:

Inductive nat : Set := 0 : nat | S : nat — nat.

4

type nat = 0 | S of nat.

When we consider parameters of type Set (or Type), the situation remains natural. One
can indeed see Set as the set of all types. The Coq parameter then becomes an Ocaml type
variable. For example:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A — list A — list A.

4

type ’a list = Nil | Cons of ’a * ’a list

5As a reminder, one type scheme is a term admitting a type of the form: Vz, : X1, ..Vx, : X, s
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Note the transformation of the constructor type, from a curryfied functional form in Coq
to a sequence of products in Ocaml. Of course, the application of such an inductive type is
obviously translated into an Ocaml application of types: a (1ist nat) of Coq becomes a
(nat 1list) in Ocaml.

There is no reason to limit ourself to parameters, the products present in the signature
of inductive types playing a similar role:

Inductive list2 : VA:Set, Type :=
| nil2 : VA:Set, list2 A
| cons2 : VA:Set, A — 1list2 (A*A) — 1list2 A.

4

type ’a list2 = Nil2 | Cons2 of ’a * (’a * ’a) list2

But we enter here a dangerous zone. Changing slightly the previous definition leads to a
problem.

Inductive 1list3 : VA:Set, Type :=
| nil3 : VA:Set, 1ist3 A
| cons3 : VA:Set, A — 1list3 A — 1list3 (Ax*A).

This definition is the dual of the previous one, in which the pairs will accumulate on the right
of lists. But in Ocaml, for an inductive 1ist3 with one type variable ’a, the constructors are
used to build a ’a 1ist3 and no other type. There is thus no way of translating accurately
this inductive, and we need to choose an approximation, for example

type ’a list3 = Nil3 | Cons3 of T * T 1list3

With these parameters or variables in the type Set, we have already reached the whole
of definable inductive types in Ocaml. Any inductive type Coq more complex will thus bring
issues. For example, if a parameter is a type scheme, to represent it by a type variable is
imperfect: this variable, instead of representing a whole potential family of types, represents
only one of them. We take nevertheless this representation, because one cannot do better in
Ocaml. For example:

Inductive poly (X:nat—Set) : Set := Poly : Vn:nat,X n — poly X.

4

type ’x poly = Poly of nat * ’x

Finally, last case, if a parameter or a variable is on the terms level, it will not be translatable
in Ocaml. The classical example is the lists of size n.

Inductive listn (A:Set) : nat — Set :=
| niln : listn A O y
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]

| consn : Vn:nat,A — listn A n — listn A (S n).

A solution is then to replace each untranslatable argument by T.

type (’a,’n) listn = Niln | Consn of nat * ’a * (’a,T) listn

But we will see later than one can always locate such dependencies with respect to terms
and completely remove them.

The type schemes

The type schemes correspond rather naturally to Ocaml types with type variables. Let
us take for example the case of a type scheme having a dependency with respect to a type:

Definition Schl : Set — Set := fun X:Set = X — X.
I

type ’x schl = ’x — ’x

And if one applies this type scheme in Coq, one also obtains an application in Ocaml : (Schi
nat) gives (nat schi) in Ocaml syntax.

As for the inductive types, as long as the dependency is with respect to a type, everything
remains simple. Let us consider now the case of a dependency with respect to a term. It is
enough to take again the constant P of section 3.1:

Definition P (b:bool) : Set := if b then nat else bool.
Definition Sch2 (b:bool) : Set := P b.

There is obviously no such possible dependency in Ocaml. To remain uniform, a solution is
to produce nonetheless a type variable which is in fact never used:

type b p =T
type ’b sch2 =T p

We will see later that it is in fact possible to locate such dependencies with respect to terms
and remove them completely, in order to obtain:

type p = T
type sch2 = p

Lastly, let us now consider the last case, the one of a dependency with respect to a new
type scheme:

Definition Sch3 : (bool — Set) — Set :=
fun (X:bool—Set) = X true — X false.

A priori, an Ocaml type variable is insufficient to represent the type scheme X. We must thus
approximate, which can be made in several manners.
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e The most cautious answer is to consider (X true) and (X false) as unknown. Indeed,
if one instantiate X with the constant P as defined above, one obtains for example:

Sch3 P = nat — bool

This leads us to a first possibility for extraction: all variable which is not a type is
seen as unknown, with its arguments. Here:

type ’x sch3 =T — T

e But this answer is in practice too fuzzy to be interesting. Indeed, in a situation not
really dependent like (Sch3 (fun _ = nat)), one obtains as final type T — T
instead of nat — nat. And this occurs frequently in practice. On the other hand, one
obtains nat — nat if one takes for extraction:

type ’x sch3 = ’x — ’x

And concerning the dependent situations like (Sch3 P), this new extraction behaves
correctly. Here for example, P will be regarded as an unknown type T. And one thus
still obtains T — T .

Between the first version, more systematic, and the second, sharper, we have chosen the
second.

The types themselves

The type construction which is immediately translatable in Ocaml is the functional arrow,
i.e. the non-dependent product. Clearly, nat — nat is directly expressible both in Coq and
in Ocaml.

On the opposite, the dependent product is in general not expressible in Ocaml. In parti-
cular, it induces a local binding of a variable inside a type. Let us look at the type of our
distr_pair example of the section 3.1:

((X:Set) X — X) — natx*bool

If one tries at all costs to generate a type variable for X, then this variable will be visible in
the whole type. In addition to distorting the semantics of the Coq type, that has harmful
consequences: each declaration containing products will see its parameter number explode.
The only reasonable translation is in fact to be unaware of the dependency induced by the
internal product, and to replace each occurrence of the variable by T. One obtains here:

(T — T — T) — nat*bool

Only the products at the head of the type can be translated slightly more faithfully (cf.
section 3.5).

To study the other cases, it should be noted that we are allowed to reduce in the types
during their extraction, in order to limit the number of situations that are unsupported by
Ocaml types. This is new compared to the extraction of terms, during which any reduction



108  Certified functional programming

is obviously out of question. In the rest of the chapter, all is thus done modulo 3¢(, in order
to be as precise as possible. The situation of the d-reduction, more complex, will be evoked
together with the extraction of type constants. All these reductions are obviously dangerous
for the efficiency of the extraction function, but fortunately, in practical, extraction times
remain reasonable, even on consequent examples.

One will thus consider any type in its head normal form, which has the following shape:
Va; : X;, (t @j). It was already seen how to treat the head products. The extraction of what
remains is done according to the structure of the head ¢, which can be:

a s sort (which is then without argument)

a constant c¢

an inductive type 1

a variable X

a non-reducible match

a non-reducible fix

If this head t is a sort, any term of type t is a type scheme, and its extraction gives O.
In order to remain coherent with this extraction of terms, the ¢ type must be extracted to
the type O.

Let now us consider the case of an applied constant c¢. One easy solution is then to
0-reduce this constant. But this is not satisfactory because that leads to larger and less
readable types. And in addition, this is not always feasible, since all the constants do not
necessarily have a usable body. Consider for example the abstract constants in a module
signature, or type axioms® We then distinguish three situations for constants:

1. The most favorable case is when this constant is a type scheme. We then want, as for
(Sch1l nat), to translate the arguments and to return the application of the Ocaml
types. But nothing forces the arguments to be types:

e If an argument is a term, the approximation by T is mandatory.

e Si now an argument a is a type scheme waiting n arguments, one can try to see
it as a true type gathering all the possible evolutions of a. For that we apply
n times T to this type scheme, except that in practice, instead of leave these T
arguments, we reduce: this is equivalent to removing the n head lambdas” of a,
and replace with T the variables created by these lambdas.

2. If now we are in the unusual situation where a type includes at the head a constant
which is not a type scheme, there is little chance to translate this constant into a type
constant. The best approach is then to reduce the constant, if possible, and then to
extract the reduced version. The usual example (though not very realistic) illustrating
this situation is the identity.

6In practice the current extraction allows realization of informative axioms by manually provided code.
But this provided code is not analyzed by the extraction (cf section 4.4.2).
"If there are less than n lambdas at the head of a, we adds some via n-expansion
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Definition id := fun (X:Type) (x:X) = x.

It is clear that to translate (id Set nat) into T only because the head constant is
not a type scheme is too coarse, since a step of d-reduction leads to nat.

3. Finally for the constants not type schemes and non-reducible, the last solution is the
approximation by T.

The case of an applied inductive type is similar to the one of a applied constant, just
simpler since an inductive I has by construction a type of the form Va : A, ...Vz: Z, s. We
thus leave always the inductive type at the head, and we just need to extract the arguments
as previously.

Concerning variables, everything has already been said, depending of the origin of this
variable. If this variable comes from a dependent product, the variable and its arguments
become T since the dependency disappears in Ocaml. If this variable comes from the pa-
rameters of a type scheme or an inductive type, it then gives an Ocaml type variable, its
arguments being ignored.

Concerning the last cases not yet evoked for a type, namely the non-reducible types built
with match or fix, they are too much complex for Ocaml, and are thus translated into T.

3.3.5 The function £ of extraction of types
We now describe again, in a formal way, the different situations mentioned up to now.

Definition 16 The function g of extraction of types, from CI1C to Ocaml types, is defined
in a mutually recursive way. It uses a set v of type variables to be translated, noted in index
and initially empty.

Let us start with the types themselves, i.e. the Coq terms accepting a sort as type. The
first case relates to the logical parts.

(prop) if U is of type Prop, then é\'v(U) = 0.
The other cases are done by case on the head of the type after Bi(-reduction:

(sort) E,(s) =0
(prodl) if £,(B) = O, then E,(Vz : A, B) = O
(prod2) if E£,(B) # O, then E,(Va : A, B) = E,(A) — &,(B)

(case) E(case(...,...,..) @) =T

(fir) &(£ix ..) @) =T

(varl) if X € v, then E,(X @) ='X

(var2) if X € v, then E,(X @) =T

(ind1) if I is an inductive type, we pose®: E,(I ay ... ap) = (Ey(ar), ..., Elan)) I

8we use as output the postfix syntax of Ocaml for the type applications
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(cstl) if the constant ¢ is a type scheme, then:
Efcar ... an)=(Elar),...,Ean)) c

(cst2) Otherwise, and if the/\constant can be reduced, we do it:
if (c @) —s U then E,(c a;) = &,(U)

(cst8) Finally in the case of a non—reduciblaconstant that is not a type scheme,
one uses an ultimate approzimation: £,(c a;) = T

The recursive calls ofg on the arguments of inductive or constant type do not necessarily
apply only to Coq types. We then extend & in the following way:

(sch) If U is a type scheme, one can thus write it modulo n-expansion in the form:
Aa: A, Az Z,V, with Vobeing a type. We then pose:
E(U) = E,(V), by thus ignoring the variables.

(term) If U is not a type scheme, then E,(U) = T.

Finally, the extraction of an environment of Coq declarations is done as follows:

(nil) E([)) =
(def1l) For the declaration of a type scheme ¢ whose body can be written
t=pXa: A . Xz:Z U, weposev=A{a,...,z} and
EMs(c:=t:T))=E(); (type (a,...,'2) c = &,(U))
(def2) For the declaration of a constant ¢ that is not a type scheme, we do not
produce anything: E(I'; (c:=t:T)) =&E(I)
(ax1) For an azxiom whose type T is of the form Va : A, ..Nz: Z, s we produce a

declaration of abstract type:

~ ~

E(M;(ax :T)) =E); (type (a,...,'2) ax)
(ax2) For the other azioms we do not produce anything: g(T; (ax :T)) = g(l")

(ind2) For an inductive type I having n parameters p; and whose constructors are

—
C;, we pose:
g(l"; Ind,(({ : Vp;: B, Vo, Xi, ) == (C;: T)))
=E(D); (type ('pi,'z;) I = Cy of w(E,(TY)) | ... | Cn of w(E,(TY)))
with v ={p1,...,pn}
77(7-1—>,,,—>7'n—>7‘):7'1>l<...*7'n

This algorithm terminates even if it uses the Coq reductions, thanks to the strong nor-
malization of CIcC. It should also be noted that it produces well-formed Ocaml types. In
particular each application of inductive or constant type is done with the good number of
arguments. Let us take for example the case of a constant type c : ‘v’x:—)X, s. When we
extract a Coq type having c at its head, we knows that ¢ has exactly n arguments, since it
is the only way to satisfy the condition that (c @;) should have a sort as type. And each
argument a; will give an extracted argument 3 (a;) in Ocaml. In addition, the number of type
variables in the declaration of ¢ in Ocaml is indeed n. The case of inductive type is similar.
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3.4 Extraction, typing and correctness

As explained previously, the typing of extracted terms we ensure by the action of our
algorithm M’ does not brings by itself any correctness property for the execution of these
terms, because of the presence of the Obj.magic. On the other hand a “raw” extracted term
E(t) is modified during the typing stage only via this insertion of Obj.magic. However these
Obj.magic do not have any influence on the execution of a term: from the point of view
of untyped A-calculus, they are only identity functions. The results of correctness of the
previous chapter thus still apply to the final well-typed extracted term.

3.5 Differences with the implemented extraction of types

For reasons of simplicity and concision, the & definition is incomplete. The mutual induc-
tive types, for example, although not evoked here, are treated without more problems. And
concerning co-inductive type, the section 4.2 is dedicated to their study. A certain number
of particular cases are also distinguished in the implementation, like the empty inductive
types, the singleton inductive types and the records. These cases will be evoked in section
4.3 about optimizations.

3.5.1 Dealing with type parameters

One difference between the actual implementation and the previous description of g
concerns the type parameters and type arguments We have seen that the arguments which
are not type schemes are translated in T. One can in fact remove completely those arguments,
because they can always be identified, and only thanks to their typing. That corresponds
to the rules (ind1) and (cst1l). Obviously, in order to remain coherent, one must then also
filter the variables from the types we generate, according to whether they correspond or not
to type schemes. The rules (defl) (ax1) and (ind2) should then be re-examined. It is this
optimized version which has been implemented. The previous example of lists of size n is
thus extracted to:

type ’a listn = Niln | Consn of nat * ’a * ’a listn

This corresponds to the usual lists, put besides this nat argument witness of the size of the
list, which must be preserved.

3.5.2 Dealing with the nonparametric arguments of inductive types

Then, it should be noted that for simplicity reasons, the function g manages correctly
only the parameters of the inductive types. Let us take again our example, the inductive
type list2 previously defined:

Inductive list2 : VA:Set, Type := y
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]

| nil2 : VA:Set, list2 A
| cons2 : VA:Set, A — 1list2 (A*A) — 1list2 A.

If € is followed scrupulously, the extraction of 1ist2 is the one desired, but rather:

type ’a list2 = Nil2 of T | Cons2 of T * T * (T * T) 1list2

In fact, £ does not establish a link between the product VA : Set, ... in the type of the
inductive and the products VA : Set, ... in the constructors types. The first gives a ’a
whereas the others give T. In practice, the extraction of types currently implemented tries
as much as possible to locate these “pseudo-parameters”, and on this example 1ist2 give:

type ’a list2 = Nil2 | Cons2 of ’a * (’a * ’a) list2

3.5.3 Reduction of some types constants

Another difference between & described above and the implementation relates to the
type constants. The rule (cstl) above always translates an applied type scheme constant
into the same applied constant. We have seen in the example Sch3 that (Sch3 P) gave in
Ocaml the type p sch3, which is in fact T — T when reduced. But if we d-reduces (Sch3 P)
at the Coq level, we obtains nat — bool, which is extracted to itself, and a more precise
extraction than before is thus obtained The currently implemented strategy is to test the
two. Let us consider a Coq type t which d-reduces to u:

o if the d-reduced form of é\(t) in Ocaml is equal to &(u), owe keep the most compact
version, namely £(t).
e if not, the most precise version is kept, even if it is not the most compact, namely

E(u).

3.5.4 Special treatment of head products

Finally, a last optimization of implementation deals with the head products. Indeed, the
approximation of all variables of products by T is sometimes too extreme. For example, the
type of the polymorphic identity id is not the expected one:

E(WX:Set,X - X) =T - T — T

instead of T— ’x — ’x. This is partly corrected in the implementation:

~

e In the case of an extraction of type £(T), in order to determine the type of a extracted
term t : T, we authorizes the head products of T" to generate type variables. This
allows to obtain finer types for the extracted terms In particular, the type of id is
indeed as expected.

~

e The other situation is that of an extraction of type £(7) performed in order to trans-
form a Coq type declaration into a Ocaml type declaration. In this case, we generates no
variable, to respect the following principle of the type schemes: as many type variables
as head lambdas.



Chapitre 4

Extraction in practice: refinements and
implementation

In this chapter, we describe the current state of the extraction such as it is implemented
in version 8.0 of Coq. This description consists of two parts.

First of all, we present a certain number of features implemented in the extraction tool,
but not yet evoked up to now. These features are presented only in an informal way, because
their theoretical study is for the moment not also complete that the one of the £ function
of chapter 2. These refinements are:

e the support of the new modules system of Coq,
e the support of co-inductive types,

e the addition of several optimizations intended to improve the efficiency of the extracted
code.

In a second time, we present the implementation which was done during this thesis and
describe briefly its internal behavior and then detail its usage from the point of view of the
user.

4.1 Extraction of the new Coq modules

During this thesis, a significant innovation appeared in Coq, and we adapted the extrac-
tion to it. This new Coq feature is the new module system, that allows to structure the
developments in a dramatically more flexible way, as well as do some abstract reasoning and
re-use codes and/or proofs. From the point of view of extraction, this module system opens
new prospects in term of proof of programs, by facilitating the design of autonomous certi-
fied elements. Whether they are modules or functors, these certified parts can then be easily
assembled via theirs interfaces with other parts, certified or not, in order to constitute one
application of greater scale. The extraction of modules extends in fact the effort described
in the previous chapter aiming at obtaining a interface .mli for any extracted file .m1. From
now on, all structures extracted, modules and functors, will have their interfaces.

The development that we present later in chapter 7 constitutes indeed a first stone to-
wards the construction of a library of certified modules, usable by any programmer, whether
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he wishes to build an completely certified application, or quite simply to re-use building
blocks of good quality. In this development about the structures of finite sets, we certify
several implementations of functors having the same interface, which allows any application
built on this interface to make its choice among various implementations, several being cer-
tified. In addition, we implemented many derived properties starting from the Coq interface
of finite sets. These properties are thus automatically shared by all the implementations of
this interface, allowing, let us hope, to easily certify programs using this library of finite
sets.

Before presenting these new Coq modules and their extraction, we start first with a rapid
overview of the module system of Ocaml, which inspired deeply the one of Coq.

4.1.1 The Ocaml modules

The module system of Ocaml [52] is itself derived from the original system of SML [42].
The latter has also evolved /changed in return, and the two systems are now very close and
known under the name of Harper-Lillibridge-Leroy module system. One can find a complete
presentation of this system in the Ocaml reference manual [53]. To be short, one can say
that this module system adds three kinds of structures above the basic declarations of the
language for types and constants:

e A first additional structure is named module. It allows to group several declarations
which can correspond to values, types or possibly new modular substructures.

module OneModule struct

type ’a oneType = OneConstructor of ’a

let oneFunction = function OneConstructor x — x
end

The significant point is that the internal declarations inside the module share the same
name scope, distinct from the external name scope. We then access the internal objects
via the qualified notation, for example here OneModule.oneType.

e The signatures or interfaces form a second kind of structures. They also consist of
a group of declarations, but these declarations relate only to types. These signatures
allow to type the preceding modules. For example, if we enter in Ocaml the declaration
of the module OneModule, the system returns us a corresponding signature:

# module OneModule
type ’a oneType
let oneFunction
end; ;

module OneModule :

s19
type ’a oneType

struct
OneConstructor of ’a
function OneConstructor x — X

OneConstructor of ’a
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val oneFunction : ’a onelype — ’a
end

As previously the module bodies were delimited by the keywords struct. . .end, here
a signature is introduced by sig...end. In the particular case of the preceding signa-
ture, inferred by Ocaml, we see that each type declaration has been left unchanged,
whereas any value declaration is translated into a val construct specifying its type.
This signature is thus the most precise specification possible. But other signatures are
also acceptable for typing our module:

— Compared to the most precise signature, one can remove certain declarations.
This way, one obtains local objects inside the module, inaccessible from outside.

— One can also hide the contents of certain types, in order to get abstract types,
whose objects can only be handled via the primitives provided in the module.
Here:

module type OneRestrictedSignature = sig
type ’a oneType

val oneFunction : ’a oneType — ’a

end

e Lastly, the functors are generalizations of modules. Roughly speaking, a functor is a
function taking module(s) as argument(s) and manufacturing a new module:

module OneFunctor = functor (M:OneRestrictedSignature) — struct
type ’a oneOtherType = (’a M.oneType) list

let oneOtherFunction 1 = List.map M.oneFunction 1

end

The body of this functor is thus parameterized with respect to a module variable M.
And any module admitting the signature OneRestrictedSignature as type can then
be applied to OneFunctor, be substituted for this module variable M and then give a
new module:

# module OneNewModule = OneFunctor (OneModule);;
module OneNewModule :
s1g
type ’a oneltherType = ’a OneModule.onelype list
val onelOtherFunction : ’a OneModule.onelype list — ’a list
end

To conclude this short presentation of Ocaml modules, we obviously need to mention
that these Ocaml modules present several other subtleties that we do not describe here,
such as for example the with construct in the types of modules. Lastly, for more advanced
examples of module usage, one can consult the chapter 7 about a formalization of finite sets
by the means of modules.
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4.1.2 The Coq modules

A proper module system for Coq has long been a desired but missing feature. Previously,
some existing tools were intended to organize a development in a modular way, such as for
example the splitting into several files, the mechanism of Section within a file or the use of
axioms. But these methods were quickly reaching theirs limits. For example, starting from
a development parameterized by an axiom, the only way of re-using this development in a
concrete case was to duplicate its code and to replace the axiom by the concrete definition.
One finds this process for example in the C-CoRN project (see chapter 6) for the real number
structure.

The first study of a module system for Coq was made by J. Courant in its thesis [22].
But his system, more ambitious than the one of Ocaml, seemed to be too complex for
being implemented over the existing Coq code. Instead, a system a la Ocaml was finally
implemented by J. Chrzaszcz [18, 19|, taking as a starting point the the modular module
system of X. Leroy [52].

In Coq, we can now find modules, signatures and functors. For example, an equivalent
of our preceding toy module can be written this way in Coq :

Module OneModule.
Inductive oneType (A:Set) : Set := OneConstructor : A — oneType A.
Definition oneFunction (A:Set) (a:oneType A) : A :=
match a with OneConstructor x = x end.
End OneModule.

Unlike Ocaml, the Coq modules are interactive. Whereas in Ocaml, a module must be
provided in one whole declaration, Coq allows to build it step by step, by successive de-
clarations between the starting command (Module OneModule) and the ending one (End
OneModule). This need for interactivity rises from the possible presence of theorems, and
thus of proof, among the declarations present in one module. Except for the lucky ones
whose native language is A-calculus, it is then illusory to try to directly give a not-trivial
proof. This difference, even if significant from the user’s point of view, does not influence
the extraction, which always proceeds after the end of the module declarations.

The signatures and the functors are defined in the same manner:

Module Type OneSignature.

Parameter oneType : Set — Set.

Parameter oneFunction : VA:Set, (oneType A) — A.
End OneSignature.

Module OneFunctor (M:OneSignature).

Definition oneOtherType := fun A = list (M.oneType A).

Definition oneOtherFunction := fun A 1 = List.map (M.oneFunction A) 1.
End OneFunctor.

Concerning the contents of a signature, one moves away somewhat from the parallel with
Ocaml signatures, because of the differences between the two systems, and in particular the
lack of distinction between terms and types in Coq. Let us recall that in Ocaml a term
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is necessarily abstract because of the declaration val, whereas a type declaration can be
abstract or not.

e For an abstract declarations in a Coq interface, the generic keyword! is Parameter,
and can be used for a function like oneFunction or a type oneType.

e Writing a concrete type in a interface Coq leads no surprise: we can still declare a new
inductive type via Inductive, or define an alias via Definition.

e the principal innovation is the possibility of placing one concrete term in an interface.
Thus, Definition x:=0 in a interface will oblige any implementation of this interface
to contain a constant x being worth 0.

The use of Coq interfaces are made delicate by two practical details. First of all, only
a type oneType defined as a constant (via Definition for example) is accepted for rea-
lization of the parameter oneType, and not a type defined by Inductive. Thus, for Coq,
OneSignature is not a valid signature of OneModule. The solution is then to place an alias
on the level of the module OneModule: we rename oneType in oneType’ in the inductive
definition, then the following declaration is added:

Definition oneType := oneType’.

In addition, it should be noted that if a signature is imposed to our module (for example
via Module OneModule : OneSignature), and if this signature contains abstract declara-
tions Parameter, then the body of our function oneFunction is hidden: one can never again
make use of it out of the module, for example during a computation. That semantics dif-
fers from Ocaml : the values of the constants are actually hidden in the interfaces by the
construction val, but we obviously use these values during the execution of program! The
Coq typing relation “:” between modules and interface is then very constraining, and we
often prefer to use instead the weaker form “<:”, that only checks if the interface could be a
valid signature for this module, but without setting up the associated restrictions.

Just as for the presentation of the Ocaml modules, much remains to be said concerning
the advanced possibilities of the Coq modules. And once again, the chapter 7 presents some
more realistic examples using these modules and functors.

4.1.3 The extraction of modules

Let us now see what becomes the extraction in presence of these Coq modules. First of
all, let us announce that only the extraction to Ocaml can currently treat the Coq modules.
Indeed, there is no direct equivalent in Haskell of such a module system, but rather a system
of classes, a rather different concept. Perhaps it is possible to use these classes to express
the extracted Coq modules, but the feasibility of this translation was not explored.

We now consider the extraction of the Coq modules towards Ocaml. At first glance,
everything works simply: a Coq signature becomes a Ocaml signature, a Coq module becomes
a Ocaml module and similarly for functors.

'In fact, Axiom is also appropriate, it is even a synonym here.
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When we want to go further than these obvious points, the delicate point is the transla-
tion of the internal declarations inside these modular structures. Indeed one wish to preserve
during the extraction the typing relations between modules and signatures. To translate a
Coq declaration in a corresponding Ocaml declaration, we use the extraction functions £
and & of chapters 2 and 3, which respectively produces terms and types.

We now detail the various possible situations. In fact, there are only four types of possible
declarations in Coq :

e the declaration of inductive via Inductive.

e the declaration of a constant, for example via Definition. All the declarations Lemma,
Theorem, Fixpoint are indeed only variants of Definition allowing an easier build
for the body of the constant being defined.

e the specification of an object in a signature via Parameter.

e the declaration of an axiom in a module, via Axiom. We ignore this case for the moment,
see section 4.4.2 for the treatment of axioms by the extraction.

The first two cases can occur both inside a module (or functor) or inside a signature.

First, all declarations of objects of sort Prop, both inductive types and constants, will
be purely and simply removed by the extraction. Indeed no extracted declaration can later
depend on such a logical declaration. If we take for example the declaration of a constant
logical ¢ of sort Prop, any following occurrence of ¢ will be placed by function £ under a
constant 0. And if ¢ appears in a term which is a type and is thus treated by the function
&, then any reference to c also disappears, because ¢ is not a type. As for a logical inductive
type I, the function £& make it disappear like all types, and the function £ transforms it into
a degenerated type O.

Then, a simple case is the declaration of an informative inductive type. Indeed, we then
quite simply output the associated declaration generated by the function £. And this is valid
both in a signature or in a module.

Let us now consider an informative declaration Parameter x:T in a signature, which
thus claims the existence of an object x of type T in any module fulfilling this signature.
Ocaml, unlike Coq, distinguishes types and values. This declaration can thus correspond in
Ocaml either to the declaration of a value val x:£(T), or either to the declaration of an
abstract type type X. And this choice is done according to the shape of T: if T is a type
like nat, this leads to declaration of a constant val x:nat. On the contrary, if T is a sort,
or more generally an arity, x is a type (resp. a type scheme), and its natural translation is
a type declaration in Ocaml.

The last case concerns the declaration of a constant, typically via Parameter x:T:=t.
We then re-use the distinction between type schemes and other terms. For the former, we
generate a type declaration by using the function £, and return type X = £(t). For the
latter, we generate a declaration of an Ocaml term. And this declaration is either a concrete
form if we are inside a module or a functor, namely let x = £(t), or either an abstract
form val x : E(T) if we are in a signature.

We can summarize all these possible situations in the following table:
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[ Prop sort | type scheme | standard case |
Inductive i := C:T 1%} 1117111171717 type i = C of E(T)
Definiti oot o . X = £t Module: let x = £(t)
n n x:T:= = =
etinition x ype Signature: val x : £(T)
Parameter x:T 1%} type x val x : £(T)

Even if this summary table does not show it in order to remain simple, all Ocaml type
declarations, both those coming from inductive types and type schemes, can contain type
variables ’a, as we have seen in chapter 3.

Once described this “shunting” of the Coq objects towards either Ocaml terms or types,
one must then check that this shunting is quite coherent. In fact, for any Coq object named
¢ who finds himself placed on the term level by the extraction, all the uses of ¢ in the
objects extracted later on must also be on the term level. And the same for an object placed
at the type level. This property is not completely immediate. Let us take for example the
polymorphic identity:

Definition id := fun (X:Type) (x:X) = x.

As it is not a type scheme, our extraction chooses to transform it into an Ocaml function:

let id _ x = x

But id can certainly be also used in a Coq type:

Definition nat_bis := id Set nat.

A possible extraction of this type nat_bis would be then the application nat id, with id
referring here to a type constant id which could be defined by:

type ’x id = ’x

However our extraction does not define this type constant, but only the constant id at
the term level. In fact everything works correctly here, thanks to the rules chosen for the
extraction & of types in section 3.3.5. Indeed, the extraction £ (nat_bis) is not nat id, but
nat, because id is not a type scheme. This constant id is thus reduced before extracting,
according to the rule (cst2) defining &.

More generally, our “shunting” is coherent with both functions £ and £ because these
three operations divide with respect to the same stratification criterion, namely the fact of
being or not a type scheme. Thus a type constant ¢ cannot appear in a extracted term:
since it is a type scheme, it ends under a 0. On the opposite, a term constant as id cannot
remain in an extracted type according to the rules (cstl) (cst2) and (cst3) of E.

4.1.4 Current limitations of the extraction of modules

This extraction of the modules Coq is still to be considered as experimental. First of all,
a thorough theoretical study has not been done yet for lack of time. This would suppose in
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particular the integration in our theoretical system (chapters 1 and 2) of the typing rules
specific to Coq modules. However these rules currently occupy 6 pages in the Reference
Manual [78] (chapter 5).

The implementation, which is thus more advanced than the theory concerning these
modules, gives in practice satisfactory results on the first real developments using these
modules. One can for example refer to the chapter 7 for a case study about finite sets. But
we have in same time identified two extreme situations which can put the current code at
fault.

A first typing problem

As we mentioned previously, an essential property of the extraction of modules is the
conservation of the typing relations between a module and a signature during the extraction.
This is for example critical in order for a functor application to remain legal after extraction.
At first sight, this property seem to be a simple consequence of the following result connecting
the functions £ and &:

t:T = E): ET)
Unfortunately, this result speaks only about concrete types, and the presence of abstract
types in a signature can disturb this situation. In fact, it is currently possible to build
a module Mod and a signature Sig contradicting our expected conservation property for
module typing. For that, it is enough to combine abstract types and type schemes whose
extraction will be an approximation:

Module Type Sig.

Parameter t : nat — Set.
Parameter x : t O.

End Sig.

Module Mod : Sig.
Definition t
Definition x :

End Mod.

nn
o ™

The type scheme F comes from page 91: (F N) is the type of the integer functions of arity n,
and thus (F 0) is the type of the integer functions with 0 arguments, that is nat. However
the extraction of Mod and Sig gives:

module type Sig =
sig
type t
val x : t
end

module Mod =
struct
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).

type t = T
let x = 0
end

Indeed, the type scheme F defined by fixpoint gives the most general extracted type T,
and at the abstract level t 0 is approximated in t since one cannot reduce the abstract type
t. It is then visible that after extraction, Sig is not any more a valid signature for Mod.

To correct this problem, one could imagine to make T really become an universal type
for Ocaml, and require that t:T for any term Ocaml t, and in particular 0:T. But this
would suppose a modification of the type system of Ocaml. Otherwise, one solution is here
to insert a Obj.magic around the 0 in Mod. The problem with this insertion of Obj.magic
is that it is no longer done according to a local analysis (the type of x inside the module),
but according to a global analysis, for example knowing if Mod is used later on with the
signature Sig in an functor application. One could also use a encapsulation at the time of
the functor application, like:

module Mod_bis =
include Mod
let x = Obj.magic x
end

None of these solutions have been implemented for the moment. Anyway, it is time to mode-
rate the importance of this problem. It is certainly one exception in our goal of the “100% of
Coq constructions extractable in a well-typed way”. But until now, no realistic development
has felt into this precise case, namely the combination of abstract types and type schemes
in a signature. And even if the currently low number of such modular developments makes
an extrapolation difficult, it is really far from probable that the problem will occur one day
in practice.

A second typing problem

In fact it is also possible to induce typing problems between modules and signature by
using the cumulativity :

Module Type Sig2.
Parameter t:Type.
Parameter x:t.

End.

Module Mod2 : Sig2.
Definition t:Prop:=True.
Definition x:True:=I.

End.

The signature is naturally translated into:
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module type Sig2 =
sig
type t
val x : t
end

On the other hand the extracted module Mod2 is empty, because Mod2.t and Mod2.x are
respectively a type and a logical value. And we made previously the choice of removing such
declarations that are never useful in later declarations. However, here, the typing of Mod2
by Sig2 requires the presence of fields t and x in Mod2. But this typing problem is less
awkward than it first appears. After all, nothing prevents us from reconsidering our choice
and stopping the complete elimination of logical declarations, for getting here:

module Mod2 =
struct
type t = T
let x = T
end

But the extraction would then leave quantity of parasite logical declarations, never useful
except in the event of a cumulativity use between a module and its signature. It is then
better to continue to purge modules and signatures from the logical declarations and to cure
the highly exceptional situations of cumulativity via a encapsulation similar to solution of
the previous problem. Moreover, the correctness of these two situations with problems will
be studied without doubt in a joint way.

In fact, our preoccupations about module typing present large similarity with the typing
problems on the term level. In the same way that we need untyped coercion functions
Obj.magic, it would be necessary to have coercion functions at the module level, for example
at the time of a functor application to a module. But unlike for terms, such functions do
not exist at the module level.

Let us finish nonetheless this discussion about typing of extracted modules by two posi-
tive remarks:

e The current extraction fulfills at least a weak form of conservation for the module
typing: if a module M admits S as its most general signature (the one inferred by the
system), then the extraction of M still admits the extraction of S as its most general
signature. And more generally, in the absence of abstract types and of cumulativity
between module and signature, then everything works well.

e Pragmatically, if the Ocaml type-checker is satisfied by the result of an extraction
containing modular structures, then all is for best. In particular the preceding cor-
rectness results for the execution or the semantics of an extracted term are still valid.
After all, modules and functors are only a way of re-using code. And since the func-
tors applications are known statically, one can obtain equivalent code with no functors
thanks to a process named defunctorization. And this process has been in particular
implemented for Ocaml by J. Signoles [77].
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A naming problem

Another problem, syntactic this time, can also lead to extracted modules being refused
by Ocaml. Coq, with its interactive modules, is more tolerant than Ocaml concerning the
possibilities of object naming. In particular one can refer to a module even during its built,
whereas this is illegal in Ocaml. The following example is valid in Coq :

Module M.

Definition t := O.
Module N.
Definition t := 1.
Definition u :
End N.

End M.

Il
=
ct

On the other hand in Ocaml one cannot use the qualified name M. t inside M, and the simple
name t is incorrect due to the presence in the local name space of the t corresponding to N. t.
Since renaming can be difficult because of the possible signatures to respect, a reasonable
solution, proposed by J. Signoles, is then to add a local renaming module:

module M =
struct
let £t =0
module AdHoc = struct let t = t end
module N =
struct
let t
let u
end
end

SO
AdHoc .t

Detecting the need for such modules and adding them properly in all the possible cases
(terms and types) is very complex and is not implemented yet. But as for the preceding pro-
blems, it is a priori far from probable to fall into such a situation in a realistic development.

4.2 Co-inductive types and extraction

4.2.1 From inductive types to co-inductive types

The inductive types that we handled up to now are designed to only deal with finite
objects. More precisely these objects cannot contain more than a finite number of construc-
tors of this type?. This finiteness, or good foundation, implies the existence of induction

2By the way, one can note that an Ocaml inductive type like 1ist do not fulfill the same property of
finiteness as the type list of Coq. Indeed, Ocaml authorizes infinite cyclic objects like let rec 1 = 0::1.
And obviously, if one applies this list to a extracted function like map, computation will never end. This
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principles associated with each of these inductive types. These induction principles are in
fact generated automatically by Coq, such as for example nat_rec for nat. Now, thanks to
the works of E. Giménez, there also exist in Coq some types similar to the inductive types,
but for which there is no finiteness constraint. These are the co-inductive types (see for
example [37]). The typical example of such a type is the stream type:

CoInductive Stream (A:Set) : Set := Cons : A — Stream A — Stream A.

When an co-inductive type is defined, the first difference with declaration of an inductive
type is that Coq cannot generate any associated induction principle, since these principles
are not valid for infinite objects.

On an co-inductive object, the case analysis works as for an inductive object. Here is for
example the way to reach the head of a stream:

Definition hd (A:Set) (x:Stream A) :=
match x with
| Cons a
end.

= a

On the other hand the induction is quite different in the co-inductive world. First of all,
one speaks rather of co-induction, and the Coq keyword is CoFixpoint instead of Fixpoint3.
Then there is no concept of decreasing argument as for the Fixpoint. One can thus write:

CoFixpoint from (n:nat) : Stream nat := Cons n (from (S n)).

Or, without any argument:

CoFixpoint zero_stream : Stream nat := Cons 0 zero_stream.

But any definition is necessarily authorized, because it is at the very least delicate to give a
meaning to a definition such as:

CoFixpoint dummy : Stream nat := dummy.

The rule is to authorize only co-inductions which indeed build a new co-inductive object.
More precisely, any co-recursive call must be located under at least a co-inductive construc-
tor, and that is not the case for our dummy example.

Concerning the reduction of co-fixpoints, it also follows a particular rule, in order not to
break the strong normalization property of the system. This reduction is lazy: one co-fixpoint
can be unfolded and replaced by its body only if this co-fixpoint and its possible arguments
appear in head position of a pattern matching. For example (from 0) is in normal form,
whereas in (hd (from 0)) it is not, since hd contains a pattern matching. In the latter case,
the from can unfold, which gives after simplification 0 for normal form.

does not invalidate the theoretical results of the chapter 2, since 1 cannot be put in correspondence via Tist
with a list 1’ of Coq.
3There exists also a cofix anonymous construct similar to the fix.
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4.2.2 The extraction of co-inductive types

The case of Haskell

The co-inductive types form the first and only feature of Coq which was initially taken
into account by the extraction towards Haskell before being integrated into the Ocaml extrac-
tion. The reason is of course the laziness of the Haskell evaluation, which makes obvious the
extraction of co-inductive types towards this language. Thus, there is no differences between
the extraction of the finite lists and that of the streams except the presence or not of the
base case Nil.

data List a = Nil
| Cons a (List a)

data Stream a = Cons a (Stream a)

Then the extraction of a co-fixpoint gives naturally a recursive function:

from n =
Cons n (from (S n))

zero_stream =
Cons 0 zero_stream

As long as zero_stream is not necessary to a later computation, this constant will never be
unfolded. And even then, there will never be superfluous unfolding. Thus, if one asks the
printing of (hd (t1 (t1 zero_stream))), there will be only three unfoldings, leading to a
result of 0.

Historically, the extraction of co-inductive types towards Haskell was already usable in
the old extraction. We only maintained this possibility. As an example, one can refer to the
user’s contribution named Rocq/MUTUAL-EXCLUSION. E. Giménez studies in this development
the mutual exclusion of two processes via the Petersson’s algorithm. A small graphical
interface using the Fudgets library of Haskell allows to visualize the run of the algorithm in
an interactive way.

The case of Ocaml

During the implementation of our new extraction, we have added the possibility of ex-
tracting from co-inductive type towards Ocaml. This is done via an encoding, because a
direct and naive translation of our preceding examples would be incorrect, due to the strict
evaluation of Ocaml. If one takes:

type ’a stream = Cons of ’a * ’a stream

let rec from n = Cons n (from (S n))

Then the computation of (hd (from 0)) starts an infinite loop of calls to from.
Fortunately, there exists in Ocaml a mechanism to introduce lazy objects. First, (lazy
x) is a stopped version of the computation of the object x. And if this x has a type a, then
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(lazy x) has type a Lazy.t. Finally the function Lazy.force: ’a Lazy.t — ’a makes
it possible to force the resumption of a computation.

We thus use this mechanism to encode the co-inductive types extracted from Coq. Each
type t is in fact extracted into two types t and __t, mutually defined, the first being the
type of objects on standby, and the second the type of freed objects. In the case of streams,
that gives us:

type ’a stream = ’a __stream Lazy.t

and ’a __stream = Cons of ’a * ’a stream

Then we simulate the Coq reduction in the following way. A co-inductive constructor
produces a frozen object, and is thus surrounded by the keyword lazy. On the other hand,
a pattern matching on a co-inductive object needs to reach the head structure of this object.
We thus force a level of computation by inserting a Lazy.force around the matched object.

This gives us the following Ocaml extraction for our examples:

let hd x = match Lazy.force x with
| Cons (a,s) = a

let rec from n =
lazy (Cons (n, (from (S n))))

let rec zero_stream =
lazy (Cons (0, zero_stream))

This encoding is inspired by the style “even, with difficulty” presented in [81]. The naming
“even” refers to the fact that any co-inductive constructor is associated to a lazy, thus
doubling the number of syntactic constructions. And the “with difficulty” announces that this
style is opposed to another style, simpler but being able to carry out superfluous evaluations
of elements in a stream. But even this chosen style for extraction can pose problems of
superfluous evaluation and thus of effectiveness, as we will see now.

co-inductive types, Ocaml and efficiency

The use of 1lazy and Lazy.force constructions by the extraction does nothing but delay
the evaluation of co-inductive constructions. But this is not enough for transforming Ocaml
into a completely lazy language. In particular, strict aspects of Ocaml can re-appear, in
particular during the evaluation of function arguments, and lead to significant differences
with the Haskell evaluation of our examples containing co-inductive types.

Let us consider for example a function iter which, starting from a function f and an
initial point a, calculates the stream made up of a, (f a), (f? a), etc.

CoFixpoint iter (A:Set)(f:A—A)(a:A): Stream A :=Cons a (iter A £ (f a)).

Its extraction is then:

let rec iter f a = lazy (Cons (a, (iter f (f a))))
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But then asking for the evaluation of (hd (iter f a)) leads to the superfluous evaluation
of (£ a), even if the recursive call (iter £ (f a)) is indeed blocked by the lazy at the
head of iter. This superfluous evaluation, not very natural, can be annoying if f leads to
long computations.

At the same time, these superfluous evaluations cannot be considered as correctness
problem for the extraction. Indeed, if the reduction done in Ocaml starts from (hd (iter f
a)), one can simulate this reduction by a similar reduction at the Coq level, in a same way
that for the theoretical results of the chapter 2. That means that Coq could also choose to
normalize (f a) when reducing (hd (iter f a)). In practice Coq does not do it, since its
strategy is rather lazy by default.

We thus enter, with this example, in the field of the efficiency questions for the extracted
code. We detail this field in the following section, but we can already announce that very
often this field has only imperfect solutions.

Here, in the current example, one can choose to move the lazy construct in order to
block the evaluation of the arguments for the recursive call:

let rec iter f a = Cons (a, lazy (iter f (f a)))

The function iter does not build any more a stream but a __stream. But in addition to
the small types adjustments that it implies, this solution corresponds to the “odd” style of
the article [81]. And this style also suffers from problems of superfluous evaluation. One can
also try to block the evaluation of iter at two places :

let rec iter f a = lazy (Cons (a, lazy (Lazy.force (iter f (f a)))))

In a more general way, it seems to be sometimes interesting to insert additional blocking
points lazy (Lazy.force (...)) in the extracted code around the sub-expressions of co-
inductive types. This is not made automatically yet, but adding such blocking points ma-
nually can be made without risk, because this does not modify the correctness of the code.

A situation close to that of the preceding iter was met during the test of the Ocaml
extraction upon the contribution Rocq/MUTUAL-EXCLUSION. A blocking point has been added
via one diverted use of the command Extract Constant, which will be presented at the
end of this chapter. The reader interested by more details can consult directly the files of
this contribution.

Lastly, let us remark that for supporting co-fixpoint without arguments that does not
start with a constructor, it would be necessary to insert a lazy (Lazy.force (...)) around
the body of this co-fixpoint. It’s true that Ocaml accepts our fixpoint without argument
zero_stream. But it will refuse more complex bodies, starting for example with one if.
Hiding these overly complex bodies under a lazy would allow to circumvent the difficulty.

4.3 Extraction and code optimizations

We now describe a certain number of transformations that the extraction carries out
on the extracted code in order to try to improve its efficiency, or sometimes simply its
readability.
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4.3.1 Removal of some logical arguments

The first of these transformations is intended to make disappear as much as possible the
logical residues left by the extraction function £ of chapter 2. These residues® take the form
of anonymous abstractions fun _ — ... and constants O. We have already seen that in
Haskell, O can be implemented by an error (see page 81). On the other hand, in Ocaml, the
possibility of having to reduce O x into O forces us to use a complex definition (see page
103):

let = let rec f _ = Obj.repr f in Obj.repr f

It is then obviously desirable to remove as much as possible these constants O, for both a
better efficiency and readability of the extracted code.

Let us take the example of a division div with pre-condition, but without post-condition,
whose Coq type is Va b:nat, b#0 — nat. The extraction seen until now produces a func-
tion div of type nat — nat — O — nat . And any later use of this function to compute
a division will have the form (div a b 0O).

Now, if we must keep such a logical residue, this comes from the evaluation in Ocaml
of the partial applications that could otherwise lead to abnormal situations (see 2.1). The
logical residual argument of div allows here to ensure that (div a b) is a closure, blocked
until it finds its third argument.

But the large majority of the applications met by the extraction are in fact total. It
is thus preferable to treat these total applications of function as simply and naturally as
possible, even if it means to weigh down the writing of partial applications.

Let us try then to return to our extracted function div its natural type nat — nat —
nat. Concerning the definition of div, this does not pose any problem. Modulo n-expansion,
one can indeed to suppose that this definition of div starts with fun a b _ —.... It is
then enough to remove the third abstraction. Once this definition of div is simplified, it is
obviously necessary to also adapt the later calls to this function:

e Let us first consider a total application (div a b O). To adapt to our new purified
function div, it is enough to to throw the third argument 0. In this case, we find back
the code produced by the old extraction: only informative arguments remain whereas
the logical arguments disappear completely. And this is not done to the detriment of
safety: if we unfolds div in this application before and after the transformation, it is
seen that one goes from:

(fun ab_ — ...) ab O

to the new form:

(fun ab — ...) ab

These two forms are clearly equivalent from the point of view of evaluation.

4In fact, these residues can also come from type schemes and not only from logical parts, but we will
merge here these two situations by simply speaking of “residues”.
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e now Let us now take in Coq a partial application (div ag bg), and thus an extraction
producing originally a partial application like (div a b). For using our new improved
version of div, we must imperatively maintain the “blocked” aspect of this partial ap-
plication. For that, we just adapt it in (fun _ — (div a b)). Once again, unfolding
div shows that we have not modified the semantics of the application:

(fun ab_ — ...) ab

becomes

(fun — ((fun a b — ...) a b))

The only consequence is to delay the evaluation of a and b. One could imagine an
even more faithful adaptation, namely:

let x =aand y = b in fun _ — (div x y)

But in practice using this version has not seemed necessary.

e In the case of applications that are even more partial, like (div a) and finally div
without any argument, we proceeds in the same way: (div a) becomes (fun b _ —
(div b)) and div only becomes (fun a b _ — (div a b)).

Of course, the method described here for div can be generalized to the transformation of
any function declaration having an arbitrary number of arguments, and logical arguments

also at arbitrary positions. Thus the declaration of a function f of typet; —... — t, —
t will be transform into the declaration of a function of type t;, —... — t;, — t where
the t;, are the t; different from 0.

The only exception to this method relate to the functions having only logical argu-
ments, such as for example False_rec (see 2.1). Removing all the arguments and hence
transforming the extraction of False_rec into a constant would not be correct, since here
False_rec corresponds to an abnormal situation, and thus induces the raising of an excep-
tion via assert false in Ocaml. The following declaration:

let false_rec = assert false

would then stop the final program as soon as its launch. This problem is corrected by keeping
always at least one argument to our functions, which gives us here:

let false_rec _ = assert false

The transformation presented here does not obviously allow to remove all logical residues.
For example a pattern matching having some of its branches as informative and soon as
logical will continue to produce O during the extraction. In addition, this method only acts
at the first level: we remove or not some arguments of the treated functions, but we do not
modify at all type of these arguments. Thus a function of type nat — O — nat will have
as new type nat — nat, but a function of type (nat — O — nat) — nat will remain
unchanged.
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Extending this transformation to allow the simplification of the type interior has been
considered for one moment, then abandoned: this would indeed imply the use of increasingly
complex term manipulations for each additional treated nesting level.

In practice, the currently implemented transformation, although limited, allows already
to eliminate most of the logical residues. This new extraction is then very frequently com-
patible with the old extraction, even on quite complex examples, whilst still keeping its
correctness property, even on the most pathological examples.

Let us finally announce that in Haskell this elimination could be much more advanced,
because this language has no need for logical residues in order to block reductions. For
the moment, this was not done, the Haskell and Ocaml extraction currently share a broad
common base for simplicity reasons.

4.3.2 Optimizations of inductive types

We show now how the elimination of the logical arguments presented previously for the
functions also apply to the constructors of inductive types. Then in a second time we present
two two particular cases of inductive types that are subject to particular treatments by the
extraction, that is the singleton types and the records.

Constructors and elimination of logical arguments

Just as the arguments of type O for functions, the arguments of type O for inductive
constructors can also be removed, because they are superfluous. Let us take for example the
informative inductive type sig initially presented page 28. As a reminder, the type (sig
A P) expresses the existence of an object x of type A fulfilling the predicate P, a fact that
we also notes with the syntax {x:A|P x}. And the single constructor of sig admits four
arguments: (exist A P x p) has type (sig A P) when x is the required witness and p is
a proof of (P x). The raw version of the extraction of sig is then®:

type ’a sig0 = Exist of O x U x ’a x [

In fact, the first two arguments A and P of exist are parameters of the inductive
type sig. The typing rules of CIC ensure that these parameters cannot vary during the the
definition of sig constructors. These parameters thus cannot bring new calculative contents,
and are systematically removed from inductive definitions by the extraction. Here, in fact,
that does not change anything, because these parameters are types, which would thus have
been removed by the mechanism we are about to see. But even one informative parameter,
for example of type nat, would have been removed by the extraction.

Since the third argument is to be kept, it only remains to study fourth argument, which
is a logical term. But it is in fact immediate to free the extracted definition from this useless
O

type ’a sig0 = Exist of ’a

®sig is renamed into sig0 by the extraction since sig is an Ocaml keyword.
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One must then adapt the uses of this type:

e On the level of an application to the constructor Exist, one must suppose the presence
of the four arguments. Indeed, the uncurryfied syntax of Ocaml requires it, with the
result that the extraction builds when needed the missing arguments by n-expansion.
The last step is then to filter the arguments, and here only keep the third one.

e On the level of a matching like match e with Exists(a, p, x, q) — t, the pro-
perties of the extraction ensure that a, p and q, who have all O as type, will not appear
in t. We thus replaces this matching by match e with Exists(x) — t.

And what was presented here for sig is generalized to all inductive types, whatever are
its number of constructors, parameters and arguments. One can notice that there is no need
here for a particular treatment when all the arguments of a constructor are removed during
the process: this constructor is simply a constant one afterward.

Simplification of informative singleton types

In the particular case of the extraction of the inductive type sig, one can go one step
further in the simplifications. Indeed, it is noticeable that there remains only one argument to
Exist after the previous transformation. Since sig has one argument, its extracted version
is now a simple encapsulation. It is then preferable to remove this layer of encapsulation.
So we simply convert the type (a sig0) into a, and the term Exists(t) into t. Finally
we need to represent a pattern matching on an object of type sig: the term match e with
Exists(x) — t corresponds now to let x = e in t.

This simplification extends to the types known as informative singletons, that is having
one constructor, and whose single constructor has only one argument after extraction®.

This treatment of informative singleton types allows to gain in memory occupation, in
computation times and also in readability. In addition to that, we then obtain the awaited
behavior for the extraction with respect to the informative existential quantification: starting
with a Coq proof whose statement has the form Vx:t, P x — dy:u, Q y, we now obtain
a function of type t — u, and not of type t — U sig0.

Records

The other category of inductive types that receives a particular treatment during extrac-
tion are the inductive types defined via the declaration Record of Coq. For example:

Record paire (A B:Set) : Set := { gauche : A ; droite : B }.

At the internal level, these Coq records are not primitive, but translated into inductive types.
Our example is thus stored by Coq under the form:

Inductive paire (A B:Set) : Set := Build_paire : A — B — paire A B.

6To be completely accurate, one should also check that the type of this unique remaining argument does
not mention the original inductive type, otherwise this simplification is erroneous.
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The advantage of the Record declaration is that Coq generates automatically” from this
declaration two projection functions gauche: (pair A B) — B and droite: (pair A B)
— B.

During the extraction, it is absolutely possible to stay unaware of the fact that the type
paire has been defined as a record. This type would then be extracted like a standard
inductive type:

let (’a,’b) paire = Build_paire of ’a *’b

And the associated projections would then be matchings, for example:

let gauche = function
| Build_paire (x,y) — x

At the same time, it is preferable to benefit from the possibilities of Ocaml &, by using
its primitive syntax for the records. This allows in particular to reach directly a record field
via the “dotted notation”, here for example p.gauche, which is slightly more effective than
a projection by matching. Moreover, the readability of the extracted code is also improved.
Let us illustrate the change for the primitive records of Ocaml| with our small example:

e The extracted type is now:

type (’a,’b) paire = { gauche : ’a; droite: ’b }

e The projection functions are then provided only for compatibility, in case they are
used without argument:

let gauche x = x.gauche

e And for each projection coming with its argument, rather than using the functional
form (gauche p), we now produce p.gauche.

e Each use of the constructor Build_paire, as in (Build_paire G d), becomes a record
{gauche=g; droite=d }. Note that during the preceding transformations of inductive
ones, any partial application of this constructor has already been initially n-expanded.

e Lastly, any pattern matching on a type that becomes a record is adapted as follows:

match p with Build_paire (x,y) — ...

becomes:

match p with {gauche=x; droite=y} — ...

"It is necessary to note that the generation of some projection functions is sometimes impossible for
typing reasons.
8There also exists in Haskell some primitive records, but the extraction does not use them yet.
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Originally, the need of an improved extraction of the records was felt during the first
extraction tests of the C-CoRN project (see chapter 6 for more details). Indeed, this deve-
lopment uses abundantly algebraic structures defined via records. And these structures are
connected by coercions which are in fact some projections. At the level of the Coq develop-
ment, these coercions remain implicit, thus invisible. But on the level of the extracted code,
the least addition of two reals in this formalism makes then intervene 7 projections. Any
profit of effectiveness and readability at this level is then appreciable.

4.3.3 Unfolding the body of some functions

The transformations presented up to now could modify the types of the extracted ob-
jects. We now go on a second category of transformations, that preserve the type of the
extracted objects. The first of these transformations consists in replacing some names of
functions by their bodies. In other words, during the extraction time, we anticipate the
o-reduction of these functions. Obviously, such unfoldings are not to be performed systema-
tically, otherwise the returned code would become gigantic. But we will see that in certain
precise cases, these unfoldings are crucial for the efficiency of the extracted code in Ocaml.
In fact there was already such a mechanism of unfolding in the old extraction. We used this
previous mechanism as inspiration whereas modifying some of its criteria. Moreover this
former mechanism has never been documented, up to our knowledge.

Let us first study the induction principle? bool_rect associated to the boolean type.
This function is automatically generated by Coq at the time of the definition of the type
bool. Its type is:

VP:bool—Type, P true — P false — Vb:bool,P b

And its extraction is:

let bool_rect f fO = function
| True — £
| False — fO

In this definition, f corresponds to the proof of (P true) and £0 to the proof of (P false).
One can naturally note that according to the value of the third boolean argument applied
to this function, only one of the terms £ or £0 will really be used. However any application
(bool_rect a a’ b) leads in Ocaml to the evaluation of a and a’, because of the strict
evaluation strategy of the arguments in this language. Of course, that can be trivial if a and
a ’ are simple values like 0, or functional closures whose evaluation stops immediately. But
if a and a’ carry out expensive computations, that can be annoying.

A solution to avoid these superfluous evaluations is then to replace bool_rect by its
definition, and then evaluate symbolically its arguments. This then will have for effect of to
push the arguments a and a’ under a matching, in branches that are mutually excluded:

91n fact, there are normally three such principles, one for each sort of Coq. But we will consider only the
one over Type, named bool_rect. The two others, bool_rec and bool_ind, are in fact only alias.
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bool_rect a a’ b

becomes:

(fun £ fO b = match b with True — f | False — f0) a a’ b

that we immediately simplify into:

match b with True — a | False — a’

In induction principles with more than two constructors, there always exists such argu-
ments that will be reduced by Ocaml even if some of them are in fact useless. But one can
also meet this situation in several other locations. The strategy of the extraction towards
Ocaml is then the following one:

e All the principles of induction are unfolded, even for inductive with less than two
constructors. Indeed, in addition to the interest in term of efficiency, this leads experi-
mentally to an extracted code which is closer to what an human would have written,
and thus more readable. In particular, the tactics elim and induction use systema-
tically the induction principles and never the underlying fixpoint and matchings.

e For the other functions, one carries out an unfolding when the two following conditions
are met:

— the body of the function is not too large, i.e. in practice of size lower than a
arbitrary limit fixed at ten syntactic constructions.

— certain arguments are detected as potentially useless, for example present under
only one branch of a matching.

Of course, this is an heuristic trade-off between opposed requirements, which can certainly
be still improved. Until more complete investigation of this subject, we have at least given
to the user the possibility of controlling these unfoldings more finely:

e With the command Set (resp. Unset) Extraction AutoInline, the user can activate
(resp. deactivate) our automatic mechanism of unfolding.

e It is also possible to force the unfolding or the non-unfolding of a particular object t
with Extraction Inline t or Extraction NoInline t.

To illustrate the critical aspect of these unfoldings for the efficiency, we now study a
concrete problem appeared one day where an unfortunate modification in the extraction
source code has completely deactivated the automatic unfolding. An extracted example!®,
which normally runs for a few seconds, was still running this particular day even after ten
hours. The faulty function was a function comparing two Peano integers, 1t_eq_lt_dec.
At that time, this function was built by a double induction on its two arguments''. This

10Tn fact the contribution Rocq/COC.

Tn fact, the second induction is useless here and has since been replaced by a simple case analysis. And
this change in the proof solves almost completely the problem of efficiency of the non-unfolded extracted
version. But who is concerned by such details when the first goal is to finish a proof?
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leads after extraction to a term containing two levels of nat_rect, which is the induction
principle associated with the type nat:

let 1t_eq_lt_dec n m =
nat_rect
(fun m0 — nat_rect (Inleft Right) (fun ml iHm — Inleft Left) mO)
(fun n0 iHn m0 — nat_rect Inright (fun ml iHm — iHn m1) mO)
n m

The details of this code are not so relevant, only this double level of nat_rect. Here is the
same function after the automatic unfolding of functions:

let rec 1lt_eq_lt_dec n m =
match n with
| 0 — (match m with
| 0 — Inleft Right
| S n0 — Inleft Left)
| S n0 —
(match m with
| 0 — Inright
| S nl — 1t_eq_lt_dec n0 nl)

If we study this unfolded version, it is clear that the comparison between two integers of
Peano n and m will involve a number of recursive calls that ismin(n, m). On the other hand,
the not-unfolded previous version has a quite different behavior. That can seem strange,
because even if nat_rect evaluates its arguments, they are only functions here. But if one
looks in detail the sequence of the function calls (with #trace by example), one realizes that
these unnecessarily evaluated functions will nevertheless meet some arguments, be reduced,
and finally make the complexity explode.

The recursivity being hidden behind the function nat_rect, we count here the number of
calls to this function. Here is the table recapitulating the number of these calls with respect
to the value of the input integers n and m:

mn|O0 1 2 3 4 5 6 7 8 9 10
0 2 2 2 2 2 2 2 2 2 2 2
1 23 4 5 6 7 8 9 10 11 12
2 2 3 5 8 12 17 23 30 38 47 o7
3 2 3 5 9 16 27 43 65 94 131 177
4 2 3 5 9 17 32 58 100 164 257 387
5 2 3 5 9 17 33 64 121 220 383 639
6 2 3 5 9 17 33 65 128 248 467 849
7 2 3 5 9 17 33 65 129 256 503 969
8 2 3 5 9 17 33 65 129 257 512 1014
9 2 3 5 9 17 33 65 129 257 513 1024
10 |2 3 5 9 17 33 65 129 257 513 1025

One notes in particular that to comparing an integer n with itself involve 2* + 1 calls to
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nat_rect. In fact, if we name A/® these call numbers, one can note that N® — N = C™,
The columns of this table are thus partial sums of C} starting from 2, and one hence finds
again the particular case of the diagonal. We do not justify more these formulas giving N,
but it is not (too much) difficult to establish for example N* = 2" 4+ 1 starting from the
code of 1t_eq_1t_dec.

In any case, comparing this way 30 and 32 generates more than one billion calls of
nat_rect! The unfolding of nat_rect transforms here an exponential function into a linear
one.

4.3.4 Code improvements: optimization or deceleration?

The conclusion of the preceding example is that it is very delicate to predict which will
be the form of the extracted code when one looks at the original proof script made of long
sequences of tactics like induction or auto. And very often the raw extracted code does
not correspond at all to what an human would have written. In addition to the readability
problem, this can implies efficiency problems, as we have just seen. And this is particularly
obvious with a strict language like Ocaml.

In addition to its problem with nat_rect, the preceding function 1t_eq_1t_dec also
illustrates a case of stupid extracted code. Without one of the extraction optimizations,
the extraction of this function would contain instead of the recursive call (1t_eq_1lt_dec
n0 nl1) a subterm being worth:

match 1t_eq_lt_dec n0O nl with
| Inleft x —
(match x with
| Left — Inleft Left
| Right — Inleft Right)
| Inright — Inright

Obviously, deconstructing an object to rebuild it identically has no interest, even if it is
hardly expensive here. And no programmer will ever write such a code spontaneously. The
reason of these surprising matchings is to be sought in the logical parts, erased during
the extraction. Indeed, the constructors left, right and inright of the inductive types
sumbool and sumor carry at first a logical argument each. And the initial matchings in Coq
are in fact useful to modify these logical arguments. The extraction then tries to simplify
such matchings.

More generally, the extraction applies a certain number of transformations aimed at
giving the produced code a more usual aspect. Here the detail of these transformations:

0. (code=1) Elimination of internal logical residues.

1. (code=2) Improvement of the printing for functions defined by fixpoint.

2. (code=4) When a matching is at the head of another matching, one permutes the
order of these two matchings if some simplifications occur in all new branches.

3. (code=8) A matching on bool, sumbool or sumor building again what it just has
deconstructed is removed
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4. (code=16) This optimization extends the previous one to all types of matchings.

5. (code=32) A matching in which all branches produce the same result is replaced by
this result.

6. (code=64) If all the branches of matchings begin with one abstraction, one moves this
abstraction in front of the matching.

7. (code=128) One propagates the arguments of one matching inside its branches.
8. (code=256) One permutes the applications and let-in.

code=512) An abbreviation let x=u in t is unfolded if x appears at most once in
t.

10. (code=1024) a f-redex ((fun x — t) u) is reduced if x appears at most once in u.

If one wishes to deactivate all these transformations, it is enough to use the command
Unset Extraction Optimize. If one wishes on the contrary to return to the default si-
tuation where (almost) all transformations are activated, one can use the command Set
Extraction Optimize. Between these two extremes, version 8.0 of Coq makes it possible
to refine the preferences via the command Set Extraction Flag N, where n is an integer
between 0 and 2047, corresponding to the sum of the binary codes of the transformations
the user wants to activate. For example, if one wish all to be activated except the transfor-
mation n° 4, of code 16, one use n = 2047 — 16 = 2031. By the way, this value correspond in
fact to the default situation enforced by Set Extraction Optimize, and we will see why
in a moment.

One can wonder why such a mechanism “a la carte” for controlling the behavior of
the extraction. The problem is that these transformations are not always optimizations,
since they rely on some heuristics which were not yet the subject of deep studies, and can
perfectly appear harmful in certain situations. Worse, a transformation recently turned out
to be perilous for the good typing of the extracted terms.

Let us see now in detail which benefit and concern one can wait from each transformation.

0. These internal eliminations of logical residues are a priori always beneficial.

1. This embellishment of fixpoint can sometimes alter the arguments of the internal
recursive calls, making these calls less effective.

2. This permutation of two matchings can increase the size of the code, or decrease it,
depending of further simplifications that can be applied on each new branch.

3&4. We delete here the previously mentioned “stupid” matchings. This is a priori benign,
but let us take the following example:

type ’a t =T

let f a = match a with T — T

It is then very tempting to change f into let £ a = a, but its type would be then
’a t —’a t and not any more ’a t —’b t. A fast remedy for this problem was to
split this transformation in two, with on one side a sure part acting only on known
types like sumbool, and on the other side a not-sure part deactivated by default. In
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10.

practice the optimization n° 3 is enough for simplifying the usual situations of “stupid”
matchings. In addition, optimization n° 4 is not so dangerous: an user activating this
option will likely obtain correctly typed code, which is then completely correct.

. This optimization is normally without disadvantage.

Moving up A-abstraction in front of a matching can lead to multiple evaluations of
the head of this matching, but can also improve the deletion of the logical residues by
other transformations.

This option duplicates code, but can also help to propagate simplifications.

A term as ((let x = t in u) v) is little natural, and hides the fact that v is morally
an argument of u, which prevents from possibly applying others simplifications. It
seems benign to permute the application and the let-in, in order to obtain let x
= t in (u v). Unfortunately, we have met once a situation where this permutation,
combined with n-expansions intended to overcome some limitations of Ocaml, produced
in fact a permutation between a function and a let-in, which corresponds to the next
case, and is not always desirable.

This unfolding of a let-in, even linear, is debatable, considering that a computation
initially factorized can then be found in one function, and thus been carried out several
times. But this computation can also be moved in a branch which is never evaluated.
In addition, functions generated by tactics contain very often partial applications like
let g = f x in g y. This can lead to the computation of many useless intermediate

closures, and prevents the Ocaml compiler from optimizing the total call £ x y as it
should.

The problems are the same as in the previous case.

These transformations are then to be used with great precautions. All the difficulty is that
the Coq code to be extracted can as well come from proof by tactics or from functions written
directly in the functional language of Coq. In the first case, the difficulty in controlling the
precise underlying proof term implies that one has to expect many transformation before
obtaining some reasonable extracted code. But in the second case, the best thing to be done
is to leave the term intact to respect the choices of the user. In any event, it is illusory to
always hope to find the most effective code, hence the interest in allowing the user to make
his choices among the suggested transformations.

The extraction currently makes the choice to privilege the improvement of code coming
from proofs, to the possible detriment of the directly written code. All possible optimizations
are thus activated, except the one endangering the typing, that is the n° 4.

This current situation of optimizations is finally far from satisfactory:

e No correctness guarantee other than a visual inspection of the transformation rules.

e Improvement of the efficiency and readability on average, but presence of harmful

particular situations.

e Possibility of a manual adjustment, but which remains rather coarse, and on the level

of a entire file.
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This part would thus deserve a thorough study. Finally, the extraction is here only a auto-
matic generator of code. Perhaps it is necessary to move the problem of optimization to the
level of the compiler or or to the level of a generic tool for preprocessing source code. At
the same time, the extracted code has a certain number particular features that a generic
tool would perhaps neglect, like the absence of imperative parts, or the importance of the
partial applications. Moreover, it would undoubtedly be interesting to apply a search for
dead-code in the extracted code since the informative parts not pruned by the extraction
can still contain some.

4.4 Current state of the actual implementation

4.4.1 Description of the code

The implementation of the new extraction of Coq made during this thesis began in
2001 with the initial assistance of J.-C. Filliatre. This implementation has been improved
gradually, from version 7.0 of Coq until the current 8.0. It is currently in a reasonable state of
stability and of functionality, even if for example the preceding section shows that a certain
number of optimizations are to be re-examined.

This implementation is located in the sub-directory contrib/extraction of the sources
of Coq, and is currently composed of 3700 lines of Ocaml. The figure 4.1 presents the
dependency graph of the files contained in this implementation. More precisely:

<D,
@;

F1G. 4.1: Dependency graph of the implementation

e The interface Miniml defines the abstract syntax trees for terms and types of a MiniML
language which is used as common target by the extraction.

e The module Table is the “memory” of the extraction, it allows for example to find the
extraction of inductive type already met.

e The module Mlutil is a toolbox for handling terms and types of MiniML. There
is defined for example the substitution over terms, or the unification over types, or
various optimizations over terms.

e As for Modutil, it contains auxiliary functions to handle the module structures of
MiniML

e The module Extraction is the heart of the extraction. It is there that a Coq term is
translated into a MiniML term or type.
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e The three modules Ocaml, Haskell and Scheme are used to translate the MiniML
objects into concrete syntax of one target languages.

e The module Common factorizes some functions of renaming common to the three target-
languages.

e Lastly, Extact_env allows to determine which minimal environment of Coq objects
will have to be extracted to satisfy the request of a user.

4.4.2 Small user’s manual

Naturally, this small handbook will be less detailed than the entire chapter present in the
Coq Reference Manual [78|. But since the present manuscript is meant to be a self-contained
and complete review of the extraction in Coq, here comes a brief outline of Coq commands
related with extraction.

The extraction itself

Coq < Extraction plus.
Coq < Recursive Extraction plus minus.
Coq < Extraction "myfile" plus minus.

The first order is the simplest, it only prints on the screen the extraction of an object, here
plus. The second, on the other hand, prints in addition every dependency of the required
object(s). In our example, one will also see the extraction of the type nat. Finally the third
order behaves exactly as the second, except that it writes to a file and not on the screen.
Normally, since this file contains all the needed dependencies, it is directly compilable. Let
us note that when the selected target-language is Ocaml, one obtains at the same time a file
*.ml and an interface *.mli. Lastly, these orders also accept one module M in the place of an
object like plus.

Coq < Extraction Library Peano.
Coq < Recursive Extraction Library Peano.

These two somewhat obsolete orders are intended to extract in one pass the complete
contents of a Coq library, i.e. a file *.v compiled and charged via a Require. In the case of
the library Peano.v, one obtains then peano.ml and peano.mli. In the second alternative,
the extraction produces also the *.ml and *.mli files for all the libraries on which Peano.v
depends.

How to control the extraction

One can first modify the target language:

Coq < Extraction Language Ocaml.
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]

Coq < Extraction Language Haskell.
Coq < Extraction Language Scheme.

We also encounter again the commands controlling the “optimizations”, already met in
previous section 4.3:

Coq < Set Extraction Flag n.
Coq < Set Extraction Optimize.
Coq < Unset Extraction Optimize.

Taking into account the current state of these optimizations, it is sometimes preferable to
use for the moment the Unset version.

Here finally come the commands controlling the unfolding of functions, also described
already in section 4.3:

Coq < Unset Extraction Autolnline.
Coq < Set Extraction AutoInline.
Coq < Extraction Inline f g.

Coq < Extraction NoInline h k.
Coq < Reset Extraction Inline.

The axioms

It is in fact possible to use the extraction in conjunction of axioms in a development.
If a logical axiom is used, the extraction only prints a warning message recalling that the
correctness of the extracted code rely on the validity of this logical axiom. And when a
development uses an informative axiom f, the extracted code which depends on it then
contains an exception announcing that some missing code have to be filled:

let f = failwith "AXIOM TO BE REALIZED"

The user must then provide code indeed realizing this axiom. This can be done manually in
the extracted file, or in Coq via a special command:

Coq < Extract Constant f = "my_realizing_code".

This command is only some syntactic convenience, it does not check the contents of the
character string provided in realization of the axiom, but only generates:

let £ = my_realizing_code

It may be happens that an axiom is a type scheme. By example, for t : Set — Set —
Set , the following realization:

Coq < Extract Constant t "’a" "’b" = "’a * ’b".

generates the type declaration:
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type (’a,’b) t = ’a * ’b

Even if it does not concerns axioms, a related feature is the possibility of replacing an in-
ductive type by another at the the extraction time. For example, the Coq type sumbool with
its two constructors left and right, presented p.29, is isomorph to bool after extraction.
One can then identify these two types as follows:

Coq < Extract Constant sumbool = "bool" [ "true" "false" ].

4.5 A first complete example

We now give as illustration the complete extraction of the function div of page 31. This
function, with pre- and post-conditions, is defined by using the well-foundedness of the usual
order over the Peano integers. If we extract the function named well_founded_induction
used in the definition by tactics for our function div, one obtains a fixpoint combinator a
la Y, without trace of logical parts put aside an anonymous lambda:

let rec well_founded_induction f a =
f a (fun y _ — well_founded_induction f y)

And this constant well_founded_induction will be automatically unfolded in div, leaving
finally the desired non-structural fixpoint.

In addition, div uses an auxiliary function le_lt_dec used to compare two integers.
This function, close to the function 1t_eq_1t_dec already met, works with objects of type
sumbool. As announced right before, it is convenient to replace sumbool by bool:

Coq < Extract Inductive sumbool = bool [ true false ].

The final step is of course the extraction itself:

Coq < Extraction "div.ml" div.

The obtained interface div.mli is then:

type nat =
| O
| S of nat

type ’a sigl0 = ’a
(* singleton inductive, whose constructor was exist *)

val minus : nat — nat — nat

val le_1lt_dec : nat — nat — bool

)
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]

val div : nat — nat — nat sig0

In this signature, the sig0 is nothing more that an alias recalling that the type of div
was previously finishing by one existential type. That put aside, one obtains the type

nat—nat—nat expected for div.

Here comes finally the file div.m1:

type nat =
| O
| S of nat

type ’a sigl0 = ’a
(* singleton inductive, whose constructor was exist *)

(** val minus : nat — nat — nat *%)

let rec minus n m =
match n with
| 0 — 0
| Sk — (match m with
| 0 - Sk
| S1 — minus k 1)

(** val le_lt_dec : nat — nat — bool *x)

let rec le_lt_dec n m =
match n with
| 0 — true
| S n0 — (match m with
| 0 — false
| S nl — le_lt_dec n0 ni)

(*x val div : nat — nat — nat sig0 *x)

let rec div x b =
match le_lt_dec b x with
| true — S (div (minus x b) b)
| false — O
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Chapitre 5

Examples of extraction

Since the beginning of the works by C. Paulin on the extraction in Coq, we must admit
that no application of industrial scale has been completely certified via this method. Despite
this fact, several examples of significant size have been carried out. We try here to draw up
a brief panorama of these examples. Among these examples, we have selected four of them
who have benefited from our new extraction or could not exist without it. These practical
cases that we have chosen to illustrate are:

e the contribution Lannion of J.-F. Monin,

e the contribution Rocq/HIGMAN of H. Herbelin,

e the contribution Nijmegen/C-CoRN by the team of H. Barendregt,
e the contribution Rocq/FSets by J.-F. Filliatre and the author.

The first two contributions are detailed in this chapter. The third is covered by the following
chapter, dedicated to the extraction of a constructive formalization of real numbers. Lastly,
the fourth contribution is described in the chapter 7.

5.1 The standard library of Coq

If one search Coq developments for proofs to extract, the first accessible source is the
standard library of Coq, which is directly provided with the system. A good number of
functions given as illustration up to now come from there or are derived from functions
available there. We have set up a test consisting in extracting systematically all contents of
this standard library. This test came be found in the directory contrib/extraction/test
of Coq sources. Once in this directory, the command make tree; make allows to launch the
test.

When we look in detail at the functions extracted from this standard library, the inter-
esting objects are sparse. First of all, the majority of the results in this library are logical
properties, and thus do not appear after extraction. Then, the more significant component
of this library, namely the Reals, are out of the field of the extraction. This is due to the
axiomatic approach followed during this formalization of the real numbers, starting with:
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Parameter R : Set.

Parameter RO : R. (* one %)
Parameter R1 : R. (* zero *)
Parameter Rplus : R — R — R.

This is not inevitably crippling for the extraction, which can work with axioms as we have
just seen in the previous chapter. But some of these axioms correspond to a non-constructive
vision but rather classical of the reals, and thus cannot be realized accurately. For example,
this is the case for:

Axiom total_order_T : Vrl r2:R, {rl < r2} + {r1 = r2} + {r1 > r2}.

It is well known indeed that no exact real arithmetic can have a decidable equality. Even
more awkward, the last of the axioms, completeness, requests the constructive existence
of a smaller upper bound for any non-empty upper-bounded set of reals. However a set is
here a logical object of type R—Prop. This axiom is thus non-realizable.

Finally, it remains after extraction only elementary functions dealing with data structures
like Peano natural numbers, binary lists or binary integers. The latter constitute the most
interesting part of these examples, with divisions functions, square roots, etc. One can also
find a sorting algorithm for lists in the directory theories/Sorting. Finally the directory
theories/IntMap contains a formalization of finite sets indexed by integers. Amongst all
these informative functions, one finally find relatively little functions defined by tactics, the
only ones really interesting from the extraction point of view. And the extraction behaves
reasonably well on these functions, which all are sufficiently standard not to need Obj.magic
to type-check.

5.2 The user contributions

The main examples base for extraction is today the developments proposed the users
of Coq. These user contributions are gathered and classified by Coq development team (by
geographical origin and topic). They are also maintained up to date with respect to each
modification of Coq and published for each new version of Coq. It is possible to consult the
list of the 88 current contributions on the site http://coq.inria.fr/contribs-eng.html.

Obviously, this data base of Coq developments is certainly not exhaustive, since it relies
on a declaration on behalf of the users. And some extremely interesting Coq developments
with respect to the extraction are currently not part of these contributions proposed by the
users. Among such developments, one can quote for example a decision procedure dedicated
to propositional intuitionistic logic, by K. Weich [82], and also a static programs analyzer
by abstract interpretation, by D. Cachera, T. Jensen, D. Pichardie and V. Rusu [17]. And
there exists doubtless other works which would deserve to be quoted here except that we
are not aware of them.

Let us return now to these user contributions. First, several do not concern the extraction,
because they only establish results in Prop. Nevertheless, about thirty of them are relevant
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for the extraction. The complete list of these extractable contributions can be found in
Appendix A.

If we try to somewhat classify these multiple examples, we can first distinguish a certain
number of decision procedures. Several of them concern the boolean formulas: Dyade/BDDS,
Suresnes/BDD and Sophia-Antipolis/Stalmarck [56]. As for Rocq/GRAPHS, it treats of
linear (in)equalities over Z. Nancy/FOUnify and Lannion solve the problem of first order
term unification. And Rocq/COC proposes an type-checker for the calculus of constructions.

In addition, several contributions are centered on data structures, and can thus be used as
basic library for other work. We can in particular find some definitions of rational numbers,
Nijmegen/QArith and Orsay/QArith, of constructive real numbers in Nijmegen/C-CoRN,
of tree structures in Bordeaux/SearchTrees, Bordeaux/dictionnaries and Orsay/FSets.
Lastly, formalizations of already quoted BDDs can also to included in this category.

On the other hand, the large variety of the contributions prevents from pushing much
further such a classification. And the subjects of study are not the only variable aspect in
these contributions. First, the size of these contributions can go from a simple file of 300
lines, as for Bordeaux/Exceptions, up to more than one hundred files and 75 000 lines for
Nijmegen/C-CoRN.

The age is also very variable. Among the oldest contributions, one finds Rocq/Higman
made around 1992 with Coq version 5.x. On the opposite, some contributions benefit from
recent features of Coq, like the new module system for Bordeaux/dictionnaries and
Orsay/FSets.

The authors’ attitude with respect to extraction differs also from contributions to contri-
butions. In certain cases, the authors have planned from the beginning to extract their re-
sults. For example, B. Barras has integrated in the Makefile of Rocq/COC an extraction
followed by the compilation of the extracted file and the launch of a test for this extracted
program. On the opposite, the initial developers of Nijmegen/C-CoRN, although conscious
of the theoretical possibility of extracting their work, have not considered it as feasible. In
several contributions, we have emphasized the informative aspects by adding extractions,
compilations and automatic tests in the spirit of Rocq/COC. This has been done during a
manual inventory of the contributions. Perhaps it still remains some extractable examples
not yet located in these contributions.

Lastly, the difficulty of extraction varies largely. For example, in Lyon/Firing-Squad, the
main extracted object is a purely informative transition function, written via a Fixpoint.
The extraction consists then of a simple translation into the syntax of the target language.
The program finally obtained is nonetheless interesting because it allows to visualize the
evolution of the states under the action of this transition function, thanks to a small graphical
interface. But the interest is very limited from the pure extraction point of view. By the way,
let us note that this case corresponds to an indirect possible use of the extraction, namely
for simulating and illustrating Coq functions. Concerning the task of the extraction, we note
that there is few extractions of functions defined by tactics. In addition, the majority of the
situations were working or could have worked with the old extraction.

All the preceding points explain why there remain little contributions allowing to study
the contributions of our new extraction. in particular, there exist only four contributions
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which are extracted into untyped code, requiring the usage of some 0bj.magic : these four
contributions are Lyon/Circuits, Lannion, Nijmegen/C-CoRN and Rocq/Higman. And we
have already announced that only two contributions use the new module system. Lastly, we
have only tested our extraction of co-inductive types towards Ocaml in the situation of the
contribution named Rocq/Mutual-Exclusion. We now study more in detail some of these
contributions benefiting from our new extraction.

5.3 Exceptions by continuations in Coq

We start by studying the works by J.-F. Monin concerning the certification of functional
programs with exceptions. These works [60, 61| were carried out between 1995 and 1997.
Historically, this is one of the two concrete situations where the old extraction of Coq was
generating non-typable code. The second of these concrete situations corresponds to the
contribution Rocq/Higman which we study just afterward.

5.3.1 Formalization of the exceptions in Coq

To model exceptions in Coq, J.-F. Monin uses a translation by continuation (CPS, for
“continuation passing style”). We enter directly in the core of this method, the reader eager
to find an more gradual introduction to these works can refer to [61]. Here comes, first of all,
the type scheme used to express the result type of a function that can raise an exception:

Definition Mx (C:Prop) (A:Set) :=
V(X:Set) (P:Prop), (P—X) — (C — P) — (A — X) — X.

Here, the informative type A is the “usual” return type for the function that we consi-
der, whereas C is a logical condition implying the raising of an exception. The presence of
the quantification on X corresponds to the translation by continuation®. Lastly, P and the
following argument e of type P—X represents the manner of building the result X of the
continuation in case of an exception. Finally, the type (Mx C A) can be seen as a sum type
AVC, representing the two possible exits, standard or exceptional, of our function.

Let us now see how to manufacture values in this type:

Definition Mx_unit (C:Prop)(A:Set)(a:A) : Mx C A :=
fun X Pe 1 k = k a.

Definition Mx_raise (C:Prop)(A:Set)(c:C) : Mx C A :=
fun X Pe ik = e (i c).

The first function corresponds to the normal result: if one succeeds in building an object a of
type A, it is enough to apply it to the current continuation k of type A—X. On the contrary,
the second function deals with the raising of an exception: if one obtains a proof c¢ stating
that one is in the exceptional situation C, one uses the mechanism of exception generation,
namely the functions i then e of the respective types C—P and P—X.

'Without the exceptions, this translation would have consisted in changing A into VX, (A—X)—X.
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Here come now two functions allowing to treat the exceptions. The first corresponds to
an case analysis:

Definition Mx_try (C:Prop) (A:Set)(m:Mx C A) (X:Set) (k:A—X)(e:C—X): X :=
mXCe (fun p = p) k.

In other words, if one can always generate a result of type X starting as well from a normal
value of type A or from an exception of type C, then one can always build a result in X
starting from an object m in the sum type (Mx C A). In addition, one can pass from a type
with exceptions to another type with exceptions by the means of the following function:

Definition Mx_bind
(A A’:Set)(C C’:Prop)(m:Mx C A)(f:A—Mx C’> A’)(j:C—C’) : Mx C’> A’ :=
fun X Peik =>=mXPe (func =1 (jc)) (funa = f aXPeik).

This operator allows in practice to compose two functions being both able to raise exceptions.

5.3.2 Impredicativity and typing of the extracted functions

The contribution Lannion uses the impredicativity of Set (cf page 23) for the type Mx.
Indeed, this type, which contains a universal quantification on X:Set, should a priori be
in Type. But if we activate the impredicativity of Set, Mx can then be of type Set. As
a consequence, this allows to take X=(Mx C A) inside (Mx C A). This situation occurs for
example when one builds a result of type Mx C A via a Mx_try. Such an impredicative
situation is a strong indicator of the presence of typing errors in the raw extracted code.
J.-F. Monin notices moreover p.48 of [61] that problems occur for fixpoint (translated into
continuations) of the shape:

let rec f x= ... try ... £y ... with ...

We will see thereafter that the impredicativity alone does not involve necessarily the need
for Obj.magic in the extracted code, and also that Obj.magic can appear without any
impredicative objects. Historically anyway, the need for Obj.magic in the extracted code
was felt initially in Lannion and Rocq/Higman, two contributions using the impredicativity,
and that is not by chance.

5.3.3 The extraction of this development

If we stick to the extraction of types exposed in chapter 3, the type Mx is translated in a
very approximate way, because of its two universal quantifications, the second being logical
in addition:

type ’amx = __ — __ — (L. — _) - __ — (Pa — __) — __

On the other hand, in the type of Mx_unit and Mx_raise, this type scheme Mx is used in
head position, and its universal quantifications ends on the first level of types. Improvement
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of types described in section 3.5.4 gives then a type much more standard to these two
functions:

(** val mx_unit : ’al — (__ — ’a2) — (Pal — ’a2) — ’a2 *x)
let mx_unit a e k = k a
(**x val mx_raise : (__ — ’a2) — (al — ’a2) — a2 *x)

let mx_raise e k = e

We can see in particular that the extraction of these two functions do not require the use
of Obj.magic, even if their later use can need some. On the other hand, the situation gets
worse for Mx_try, since Mx is then found in the type of one of the arguments of this function,
and not any more in head position.

(*x val mx_try : ’al mx — (Pal — ’a2) — (__ — ’a2) — ’a2 *x*)

let mx_try m k e = Obj.magic m e k

We see that an 0bj.magic appears. For example, the argument e of Mx_try has a type C—X
on the Coq level, which becomes __—’ a2 on the Ocaml level since C is logical and since we
try to transform X into a type variable according to the improvement 3.5.4. But the object
m of type (Mx C A) expects on the Ocaml level a third argument, of type __—__. The use
of an Obj.magic is thus necessary if one wishes to keep the type of e as generic as possible.
In fact, if we would not have applied the improvement 3.5.4, the type of mx_try would
have been made up primarily of __, and this function would have been typable without
Obj.magic. But proceeding this way would do nothing but delay the problem, here at the
time of the use of mx_try.
Lastly, for Mx_bind, the situation is similar to that of Mx_try:

(** val mx_bind :
’al mx — (’al — a2 mx) — (__ — ’a3) — (a2 — ’a3) — ’a3 *xx)

let mx_bind m f e k =
Obj.magic m e __ (fun a — 0Obj.magic f a e __ k)

5.3.4 Usage of these exceptions

The contribution Lannion contains a certain number of applications of these exceptions
to practical cases. We now describe the extraction of these various cases.

Unification of first order terms

In directory Lannion/continuations/FO0Unify_cps, J.-F. Monin extends the study by
J. Rouyer of a decision procedure for the unification of first order terms (cf Nancy/FOUnify).
Simply, in the event of an unification failure for two subterms, an exception is now raised
instead of finishing to treat all remaining computations.
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In this simple case (only one exception, without contents), J.-F. Monin use in fact a
simplified version of the exceptions presented previously, without polymorphism related to
the VX. Instead of Mx, the type of the exceptions is:

Definition Nx (X:Set) (P:Prop) (e:P—X) (C:Prop) (A:Set) :=
(C—P) —- (A —- X)) — X.

And the fact of having X, P and e in parameters rather than in universally quantified variables
largely improves the accuracy of the extracted type:

type (°’x,’a) nx = __ — (Pa — ’x) — ’x

And the last remaining __ corresponds to the logical argument of type C—P. Finally, the
extracted unification program is directly typable without Obj.magic, a fact that J.-F. Monin
has already noted in [61]:

This example only includes one try... with which is outside the call to a re-
cursive function. The impredicativity of Mx is thus not put at contribution, the
extracted program is typable in ML.

And our extraction does not generate here any superfluous 0Obj.magic.

Traversal of trees with exceptions

Here comes the examples of the directory Lannion/continuations/weight. The goal
is now to compute the “weight” of a binary tree, namely the sum of all integers present at
its leafs. And the use of exception is gradually introduced in order to answer the following
(arbitrary) constraints:

e One stops the traversal if the current partial sum exceeds a certain preset quantity.
e One also stops the traversal if one meets a zero in one of the leafs.

In practice, these examples use exceptions of the same kind as the preceding example of
unification, i.e. with a parameter X fixed in advance instead of an universal quantification on
X. During extraction, one can note that these examples are more complex that the previous
unification: some 0bj.magic appear indeed. But these Obj.magic are used here just to
ensure the conformity of the type of each subterm with the choices of our extraction of
types. And in fact the extracted code remains typable here if these Obj.magic are removed.

Huffman’s algorithm

The directory Lannion/polycont contains the first true example using the impredicative
situation identified by J.-F. Monin, namely the use of exceptions in a recursive loop. As
reminder, the Huffman’s encoding algorithm associates a path? in a tree t to an object a
that we wish to encode. Here is a manually coded version:

2that is a list of directions L or R
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let encode a t =
let rec lookup = function
| Leaf — raise Not_found
| Node(tl,b,t2) —
if a=b then []
else try L::lookup tl1 with Not_found — R::lookup t2
in lookup t

And here comes the version finally extracted from the Coq proof of J.-F. Monin:

(x* val lookup : ’al — ’al tree — (__ — ’a2) —
(direction list sigl0 — ’a2) — ’a2 *x*)

let lookup a t e x =
let rec lookupO = function
| Leaf — (fun _ _ x0 _ x1 — x0 __)
| Node (t1,Db,t2) —
(match eg a b with
| true — (fun _ _ x0 _ x1 — x1 Nil)
| false —
mx_try (Obj.magic lookupO t1) (fun h _ _ x0 _ x1 —
x1 (Cons (L,h))) (fun _ _ _ x0 _ x1 —
mx_bind (Obj.magic lookupO t2) (fun 12 _ _ x2 _ x3 —
x3 (Cons (R, 12))) x0 x1))
in lookupO t e X

(*x val encode : ’al — ’al tree — direction list sig0 **)

let encode a t =

mx_try (fun _ _ x _ x0 — lookup a t x x0) (fun x — x) (fun _ — Nil)

It is thus noticeable that this version is very complex, and contains two 0bj.magic (plus
three hidden behind mx_try and mx_bind). In fact, as already remarked by J.-F. Monin,
only one Obj.magic in front of mx_try is sufficient.

In addition, the presence of the 0bj.magic seems to interact badly with the optimizations
normally carried out by the extraction, which usually allows to remove the majority of the
logical residues _ and __. We intend to improve that in the future.

In any case, the generated code, without being elegant, has the advantage of being
generated automatically, including the 0bj.magic, and of being directly compilable.

Maximal sharing of common subterms

We will not develop the last example of this contribution, namely a tree transformation
with maximum sharing of subtrees. Indeed the behavior of this example with respect to the
extraction is similar to the one of Huffman.
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5.4 Higman’s lemma

We now study the extraction of another contribution taking advantage of the impredica-
tivity, namely Rocq/Higman. This contribution is a constructive proof of Higman’s lemma
in the case of words on an two letter alphabet, implemented in Coq by H. Herbelin around
1992.

Higman’s lemma is a combinatorial result which stipulates that for any sequence w,, of
words on a finite alphabet, there exists two indices ¢ < j such that w; is a sub-word of wj,
in the sense that it is enough to remove some letters of w; to obtain w;. We note w; <w; the
latter relation on words. This lemma also has a formulation in term of well quasi-orders, this
time on alphabets that are not necessarily finite any more. Since the alphabet considered
here has only two letters, we do not use this generalized formulation.

This result gave place to a lot of works in the intuitionistic community, aiming at building
a constructive proof of which the algorithm derived by extraction is the most effective
possible. Instead of recalling here the complete history of these works, we prefer to refer the
interested reader to the very good manuscript of M. Seisenberger [74], and in particular to
the synoptic table p.47. For replacing the formalization of H. Herbelin in its context, let us
just mention that an elegant classical proof of Higman’s lemma has been found by Nash-
Williams in the sixties, i.e. ten years after the work of Higman. This proof is based on an
reasoning known as of “minimal bad sequence”. Then several years later, in 1990, C. Murthy
has formalized this classical proof in Nuprl in order to obtain from it a constructive version
by using the A-translation of Friedman. Independently, H. Herbelin formalized around 1992
an A-translation “when required” in Coq, introducing a minimum of double-negations.

But it quickly appeared that the algorithm corresponding to this initial constructive
proof had very bad computational properties, as we will see thereafter. This is why many
other constructive proofs of this lemma has been proposed later on, such as for example [63]
or [21]. According to H. Herbelin:

The motivation of T. Coquand was not so much the extraction, but the unders-
tanding of the share of impredicativity needed in the proof, in fact induction on
trees with infinite branching, as well as the symmetrization of the proof, that is
abstracting oneself to the need of ordering the alphabet. I should also add his very
strong quest for elegance, and his concern of accessing the very core of mathe-
matical theorems.

The proof of [21] is in fact a reformulation of the one by Nash-Williams, in which the
reasoning by contradiction has been made positive via the use of some ad hoc inductive
types. This proof suggested by T. Coquand and D. Fridlender has since been formalized in
Minlog by M. Seisenberger [74| and in Isabelle by S. Berghofer [13, 14]. Lastly, S. Berghofer has
recently adapted his Isabelle proof into Coq. This new Coq formalization of Higman’s lemma,
which forms now a user contribution named Muenchen/Higman, is particularly concise while
providing at the same time an extracted code excessively more effective than the code
extracted from Rocq/Higman.
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5.4.1 Higman and the impredicativity

We first illustrate the mechanism of the proof formalized by H. Herbelin, which is origi-
nally due to Nash-Williams for its classical part, then transformed of constructive proof by
A-translation. In particular we now detail how this formalization relies strongly on impre-
dicativity, and how this fact implies the presence after extraction of type non expressible in
ML.

The proof is done by reasoning on an hypothetical “minimal bad sequence”. In this
context, a “bad sequence” is a succession of words which would invalidate Higman’s lemma.
Here sequences are formalized via informative relations® (i.e. on Set) connecting integers
and words:

Definition seq := nat — word — Set.
Section Bad_sequence.

Variable f : seq.

Definition exi_im := Vn, (Vx, fnx — A) — A.

Definition unig_im :=Vnxy, fnx - fny — (x=y — A) — A.
Definition cex := Vi jxy, fix —-fjy—-1<j—xJy — A.
Inductive bad : Set := bad_intro : exi_im — uniq_im — cex — bad.

End Bad_sequence.

The properties exi_im and uniq_im stipulate that our relation f is in fact functional, by
requiring respectively the existence and the uniqueness of the image of an integer n by f£. On
the way, one can note the effects of the A-translation. Intuitively, A plays the role of False,
but will be finally used to contain the result of the constructive algorithm. For example,
(Vx, £ n x — A)—A is to be read informally as = (Vx, —(f n %)), which is classically
equivalent to dx, f n x. Then, the property cex express the fact that f invalids indeed
Higman’s lemma. And finally, a sequence f is “bad” if we have (bad F), that is the three
preceding conditions are met.

Once specified what is a “bad sequence”, let us pass now to the definition of a “minimal
bad sequence”:

(¥ To be equal on the n-1 first terms *)

Definition eqgn (n : nat) (h h’ : seq) :=
Vi, i<n—-Vst, his —h’>it— (s=t— A) — A.

(* To be minimal on the nth term *)

Definition Minbad (n : nat) (h : seq/) (y : word) :=

3H. Herbelin told us that this use of relations, and as a consequence the use of impredicativity, allows to
avoid the use of the description axiom necessary to the proof via functions.
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]
Vh’ : seq, bad h> — eqgn n hh’ — Vz, W nz — z <y — A.

(* To be minimal on the first n-1 terms *)

Definition Minbadns (n : nat) (h : seq) :=
Vp, p<n — (Vy,hpy — Minbad p hy — A) — A.

(* The minimal (bad) counter-example *)

Definition Mincex (n : nat) (x : word) :=
VC : Set,
(Vh : seq, bad h — Minbadns n h — h n x — Minbad n h x — C) — C.

Let us detail mostly the last definition. One recognizes there in fact the impredicative
encoding of an universal quantification, hence Mincex means informally:

Definition Mincex (n : nat) (x : word) :=
Jh:seq,bad h A Minbadns n h A h n x A Minbad n h x.

One can also interpret Mincex as an infinite union over all sequences. And the impredicative
character of this encoding comes of course from the quantification over all the types C:Type,
while at the same time we wish Mincex to be a sequence, and thus has a result in Set.

After having built this smaller bad sequence in an abstract way, the proof then establishes
that, if there is a bad sequence (not necessarily minimal), then Mincex is also a bad sequence
(i.e. we have bad Mincex). The next step is to derive from any bad sequence another smaller
bad sequence. By examining the sequence thus derived starting from Mincex, we finally
obtain a contradiction (that is a proof of A) by taking into account the minimality properties
of Mincex. Choosing A carefully allows to conclude, here to get that i j, i<j — f i <
£ .

5.4.2 The extraction of Higman

Historically, this formalization was extracted by H. Herbelin around 1992, by using a
version 5.x of Coq. This was one of the first versions of the Coq extraction, implemented
then by C. Paulin and B. Werner. The target languages for extraction during these first
experiments were Caml Lourd and also LazyML, a lazy version of ML, which one still finds
today as base for the hbc compiler for Haskell.

In addition to the interest of lazyness, close to the reduction strategy of Coq, LazyML pre-
sented as other interest at that time to have an compilation option deactivating completely
the type-checking.

In fact, we have observed that there is only one location in all the extracted code which
requires a workaround for getting ML typability. This is rather surprising compared to the
central role of Mincex in the formalization and its ML-incompatible type. The current extrac-
tion retrieve indeed automatically this problematic point, and inserts there an Obj.magic :
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let snake badf fO f_0_f0O a h n hO hl =
xa_elim a n hl (fun y h3 —
Obj.magic h3 __ (fun _ h5 h6 h7 h8 —
h8 __ (badfx (badMin badf fO f_0_f0) a h n (Leastp_intro (hl,h0)))
(fun x _ x0 x2 x3 x4 x5 —
eggn_fxMin_h badf fO f_0_fO a n h5 h6 x x0 x2 x3 x4 x5) y (Fxtl
(n, (Leastp_intro (h1,h0)),h3)) __))

On the other hand, just as for Lannion, some other “superfluous” Obj.magic are also added.
They are used to make coincide the approximate type chosen for Mincex and the types of
the functions handling such Mincex objects. If the goal is only to compile the file higman.ml
created by the extraction, then these 14 additional Obj.magic can be removed. But then
the obtained file is not any more compatible with the interface higman.mli automatically
generated.

Let us return now to the study of the obtained program. The extracted code is relatively
short (435 lines) but incomprehensible even with a good preliminary knowledge of the initial
proof, as shown by the previous excerpt. Concerning the execution of this program, it is
possible, at least for small examples:

./higman 101 0110 01010
f£(0)=101

£(1)=0110

£(2)=01010

£f(3)=...

==> f£(0) is included in f(2)

This display has been printed by the standalone program obtained by combining the extrac-
ted code with a small manual interface allowing a simple input of a word sequence prefix to
test (see the contents of contribution Rocq/Higman). This interface also allows to randomly
choose words to test the behavior of the algorithm when it must explore longer sequences
and /or larger words. But these tests quickly encountered an ineffective behavior of the pro-
gram. Indeed, as soon as the prefix to manipulate contains more than a dozen elements, it
becomes frequent to obtain a fast but disappointing answer:

./higman --random
Fatal error: exception Stack_overflow

We have also tested an extraction to Haskell *. As the extraction does not generate yet
any unsafeCoerce (the functions equivalent to Obj.magic in Haskell), we have inserted one
manually in the function snake. We then obtain a program with a different behavior: no
more stack overflows, but really slow computation times. For example, we easily exceed
one minute of computation on a recent machine for a sequence for which the prefix to be

4Unlike the extraction to Ocaml, the corresponding files of this experimentation are not yet part of
Rocq/Higman. The interested reader can still contact the author.
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considered is made of less than ten elements. And these computation times grow very quickly
when the length of the prefixes increases, in an apparently exponential way.

Our experiments thus join the former analysis announcing disastrous effectiveness for the
algorithm obtained by (partial) A-translation. Moreover, taking into account the complexity
of the produced code, it seems difficult to analyze a posteriori this code for understanding
how to improve it.

5.4.3 The new proof of Higman

We now evoke a new proof of Higman’s lemma in Coq, still in the version restricted to
an alphabet of two letters. This new version, that dates back to 2003, is due to S. Berghofer,
and is now named Muenchen/Higman as a contribution.

This section is intended for to illustrate the progresses carried out since 1993 in the
search of an effective constructive proof of Higman’s lemma. On the other hand, contrary
to all the others examples detailed starting from this chapter, the extraction of this new
formalization is not of great interest from the strict point of view of the Coq extraction.
Indeed, the types handled here are very simple, without recourse to the impredicativity or
to quantifications of an higher nature. Finally, one obtains some extracted code perfectly
typable in ML, free from any Obj.magic, and that the old extraction could have managed.

A new approach in the proof

As mentioned in our introduction to Higman’s lemma, the concept of this new forma-
lization is due to T. Coquand and D. Fridlender [21]. This is a use of a principle named
“bar induction”, which is a form of induction on trees with infinite branching. This induction
principle allows to turn in a positive way the reasoning by contradiction of Nash-Williams.
In fact, the current implementation in Coq is only an adapted version of the implementation
in Isabelle made by S. Berghofer. In addition, a similar proof was also implemented in Alf
by D. Fridlender and in Minlog by M. Seisenberger [74]. We do not describe here in detail
the proof, very well described in [14], p. 104. Let us simply announce that instead of relying
on an hypothetical smaller counterexample Mincex, one now defines a predicate bar on the
finite sequences of words:

Inductive L (v : word) : list word — Set :=
| LO : Vwws, w <v — L v (w::ws)
| L1 : Vwws, L vws — L v (w::ws).

Inductive good : list word — Set :=
| good0 : Vws w, L w ws — good (w::ws)
| goodl : Vws w, good ws — good (w::ws).

Inductive bar : list word — Set :=
| barl : Vws, good ws — bar ws
| bar2 : Vws, (Vw,bar (w::ws)) — bar ws.
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This predicate bar thus expresses either that one already found the two overlapping words
w < v in the current finite prefix, that is to say that all prolongation of this prefix leads
later to the validation of the lemma. This is in in fact a constructive formulation of the good
foundation of <. The key point of the demonstration is then to establish (bar nil). For
that we use two other inductive predicates:

Inductive R (a : letter) : list word — 1list word — Set :=
| RO : R a nil nil
| R1 : Vvs ws w, Ravs ws — R a (w::vs) ((a::w)::ws).

Inductive T (a : letter) : list word — list word — Set :=
| TO : Vb wws zs, a # b - Rbws zs — T a (w::zs) ((a::w)::zs)
| T1 : Vw ws z8, Taws z8s — T a (w::ws) ((a::w)::zs)
| T2 : Vb wws zs, a#b - Taws zs — Tauws ((b::w)::zs).

And with these five predicates (plus <), we have finished the tour of all the structures
used by this formalization! The remainder is only a succession of small lemmas aiming at
establishing (bar nil) in a first time, then at extracting from that the two expected indices
i and j. On the whole, this gives us a proof of 220 lines of Coq, which is remarkably short®
compared to the 1085 lines of the proof obtained by A-translation from Nash-Williams’s
proof.

The extraction

After extraction, one obtains 165 lines of code, which hence gives us an extremely low
ratio (Coq script)/(extracted code), ratio which is usually nearer to 10 (see for example
Orsay/FSets in chapter 7). In addition, this extracted code is extremely simple. Here is for
example the largest and most complex extracted function:

let rec prop2 a b xs h ys x zs x0 x1 =
match h with
| Barl (ws, g) — Barl (zs, (lemma3 ws zs a x0 g))
| Bar2 (ws, b0) —
let rec £ 10 bl zs0O h2 h3 =
match bl with
| Barl (wsO, g) — Barl (zsO, (lemma3 wsO zsO b h3 g))
| Bar2 (ws0, b2) — Bar2 (zsO, (fun w —
match w with
| Nil — propl zsO
| Cons (11,12) —
(match letteri?q_dec 11 a with

5In fact, we have re-worked the proof of S. Berghofer in order to use as much as possible the automatic
tactics of Coq, which reduces appreciably the size of this contribution, whereas this have not been done in
the case of Rocq/Higman.
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| Left —
prop2 a b (Cons (12, ws))
(b0 12) wsO (Bar2 (wsO, b2)) (Cons ((Cons
(a, 12)), zs0)) (T1 (12, ws, zs0, h2)) (T2
(a, 12, ws0, zs0, h3))
| Right —
f (Cons (12, ws0)) (b2 12) (Cons ((Cons (b,
12)), zs0)) (T2 (b, 12, ws, zs0, h2)) (T1
(12, ws0, zs0, h3)))))
in f ys x zs x0 x1

Even if the two internal branches are not very readable due to an imperfect pretty-printing,
one recognizes at least the algorithmic structure of this function, which was very difficult
with Rocq/Higman.

But the major progress with respect to Rocq/Higman is the gain in execution speed. The
program obtained can now handle prefixes of more than one thousand of words in a few tens
of seconds, each word having a random length ranging between 20 and 80.
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Chapitre 6

Constructive reals and extraction

In this chapter, we present some works that we carried out in collaboration with several
others European researchers. The goal of these works is obtaining a certified library of exact
real arithmetic, and this by extraction from constructive formalizations of real analysis in
Coq.

The first of these works relates to the C-CoRN project (previously known as FTA) from
the university of Nijmegen in the Netherlands. The study of the extraction for certain parts
of this project was started by two members of the Nijmegen team, namely L. Cruz-Filipe
and B. Spitters. In particular, they have presented this first study in a publication, whose
reference is [25]. We see in the first part of this chapter that a lot of progresses have been
accomplished since the idea of extracting FTA was first launched, but also that a great
number of difficulties remain, in particular concerning the effectiveness of the extracted
code. This first part of the chapter is very close to chapter 6 to [24], since they both report
the same work, simply approached under slightly different angles.

More recently, we had the opportunity to have long discussions with H. Schwichtenberg
concerning the extraction of constructive real numbers during the summer school 2003 in
Marktoberdorf. And these discussions were prolonged by a visit of one week in Munich in
September 2003. We then realized together the outline of a formalization of constructive
reals in Coq. This mini-formalization is obviously without common scale with C-CoRN from
the point of view of the size, but its interest is to be right from the beginning thought in
term of extraction. And this study has brought new insights to the difficulties encountered
with the extraction of C-CoRN.

6.1 The extraction of the C-CoRN project

6.1.1 Description of the FTA/C-CoRN project

FTA is the abbreviation of the Fundamental Theorem of Algebra. This theorem stipulates
that any not-constant polynomial with complex coefficients has at least a root in C. In
1999 and 2000, the group directed by H. Barendregt at the university of Nijmegen has
formalized in Coq a constructive proof, due to Kneser, of this result [35]. This formalization
is really impressive, the final version of FTA being made of 40000 lines of Coq scripts (see
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http://www.cs.kun.nl/gi/projects/fta/).

The algebraic structures of FTA

The principal reason of such a width is the construction from scratch of a whole stack
of constructive algebraic structures, since the standard library of Coq do not comprise such
algebraic structures adapted to the need for this formalization. These structures consist in
particular of:

e CSetoids

e CSemiGroups
e CMonoids

e CGroups

e CRings

e CPolynomials
e CFields

e COrdFields

e CReals

e CComplex

It should be noted that the CSetoids are based on a calculative relation of difference, or
“apartness”, rather than on a relation of equality, which could not be constructive for fields
like real numbers.

In addition, these structures are nested the ones in the others via the use of Coq coercions.
For example, here is the definition of semigroups:

Definition is_CSemi_grp (A:CSetoid) (unit:A) (op:CSetoid_bin_op A) :=
Associative op.

Record CSemi_grp : Type :=

{ csg_crr  :> CSetoid;
csg_unit : csg_crr; (* non-empty *)
csg_op : CSetoid_bin_op csg_crr;
csg_proof : 1is_CSemi_grp csg_crr csg_unit csg_op

T

A CSemi_grp is thus composed of a CSetoid which is additionally required to be non-
empty (since it is equipped at least of an element), and must also contain an associative
operation on the other hand. Without going more into the details, let us just note that the
coercion :>ensure that any CSemi_grp is also visible as a CSetoid. And similarly for the
other algebraic structures: each one is based on a preceding structure, and adds new objects
and/or properties. One thus obtains a linear chain of coercions going from a CComplex down
to a CSetoid. The polynomials form the only structure that deviates from this continuous
chain.
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The definition of these structures and their basic properties deserve between one third
and one half of the 40000 lines previously mentioned, including a big part devoted to the
basic properties of polynomials. In fact, once proved the intermediate value theorem® and
the existence of n-th roots? in R and C, there only remain approximately 3 000 lines devoted
to Kneser’s lemma and FTA itselfs.

Some axiomatized reals, later realized

Let us mention another crucial point of the FTA architecture. The real numbers have
been used in an “axiomatic way” [36]. Indeed, after defining in CReals.v the Coq type of
the algebraic structures that are isomorph to the real numbers, all the remainder of the FTA
proof is done with respect to such a particular structure. In fact, for technical convenience
4 this structure is posed as an axiom:

Axiom IR : CReals.

This way, any particular representation of the constructive real numbers can replace this
axiom IR. And such a particular representation Concrete_R was developed later on by M.
Niqui, based on the Cauchy sequences. The transformation of the previous axiom in the
following definition should normally not modify the validity of the remainder of FTA :

Definition IR : CReals := Concrete_R.

From FTA to C-CoRN

Since the completion of the FTA proof itself, this formalization was gradually reorganized
in a more ambitious project. The proof of the fundamental theorem of the algebra is now
just one of the the facets of this new C-CoRN project (for Constructive Coq Repository At
Nijmegen). This project is aimed at becoming a wide library of constructive mathematical
results based on the hierarchy of algebraic structures described previously. C-CoRN contains
already, in addition to FTA, some extended results concerning series, usual transcendent
functions, and especially a part named FTC (for Fundamental Theorem of Calculus). L.
Cruz-Filipe has proved there that integration and derivation are two reciprocal processes

23],

6.1.2 The first extraction attempts

Our first contact with FTA dates back to October 2001. In a mail, M. Niqui reported
his first attempt at extracting FTA : “after 2/ hours my machine ran out of memory’, the
mentioned machine being quite reasonable.

1See the file IVT.v.

2See the files NRootIR.v and NRootCC.v.

3See the files KeyLemma.v, MainLemma.v, KneserLemma.v, FTAreg.v and FTA.v.
4At that time, the modules and functors did not exist in Coq.
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It should be said that FTA have not been initially conceived with the extraction in mind.
Of course, as this development is constructive, its authors were conscious of the theoretical
possibility of extracting a program from it. But this possibility, considered to be unrealistic
at the time, has not influenced the initial design choices. In particular, all the development
has been placed initially in the sort Prop of the objects precisely ignored by the extraction.
For his first extraction attempts, M. Niqui then simply replaced all the occurrences of Prop
by Set. Instead of ignoring everything, the extraction now keeps and translates everything.
Since this development of 40000 lines of Coq script generates complex and bulky proof
terms, it is understandable that this extraction is excessively more demanding than the one
of other examples met up to that point, hence the problems of computing time and memory
occupation of M. Niqui.

In fact, it appeared thereafter that the extraction of this version of FTA using Set
as universe was not so unfeasible after all, provided that one uses slightly more recent
hardware and in addition corrects the extraction by removing one heuristic “optimization”
more than hazardous, which as a consequence the replacement of too many constants by
their definitions. In the particular case of FTA, that was leading to an amazing increase in
the code size. Here what L. Cruz-Filipe reported in February 2003:

You might find it interesting to know that we actually managed to extract the
*original* FTA version (e.g. the one currently in the Coq library, with all the
logic in Set) after you fixed the inlining bug in the extraction routine. We still
almost ran out of resources (on a 2GHz machine with 1Gb RAM memory and
2Gb swap), but the extracted code is "only" around 13 Mb.

This figure of 13 Mo of source code seems really aberrant for a program which, let us
recall, is just supposed to compute approximations of roots for complex polynomials. One
can nevertheless relativize somewhat these 13 Mo. They are indeed due in great part to two
unpleasant, but simple phenomena:

e the first problem is due to the attempts made by the extraction to embellish the
display (or “pretty-print”). This printing is done by means of display boxes, vertical
or horizontal, provided by the Ocaml language. However this mechanism works with a
fixed width of line, which is 80 columns by default. In the case of the disproportionate
functions of FTA, respecting at the same time the indentation and this width limit
implies to frequently use only the last quarter of the lines, sometimes even less. Finally
more than half of the extracted file is made up of white spaces at the beginning of
lines.

e Looking quickly at this enormous extracted file, the other point immediately noticeable
is the omnipresence of projections resulting from coercions. For example, for a structure
like that the real numbers, the addition is done by considering R as a semi-group
CSemi_grp, thanks to a succession of coercions, then by using the operator inside the
field csg_op of this CSemi_grp structure. In fact, the Coq user does not have to be
concerned by these coercions, since they are implicit. If IR is the structure of real
numbers, one can form IR.csg_op directly. But these coercions are stored explicitly in
the proof term, and are thus found also in the final extracted term. Thus the extraction
of the addition over reals is:
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iR.crl_crr.cof_crr.cf_crr.cr_crr.cg_crr.cm_crr.csg_op

One can recognize here the successive projections into the substructures of ordered
field, then field, then ring, then group, then monoid, and finally semi-group, before
the final projection into the field containing the addition operator. Finally, one needs
almost a line to write this addition, who appears several hundreds of times in the
extracted file. And the same applies to other elementary objects like 0, 1 and the
remaining operations.

It is of course possible to factorize the produced code in order to avoid, at least
partially, such chains of projections. It would thus be enough to define once and for all
a constant iR_plus equal to the previous object. But what could be easily done for a
fixed structure like iR, is much more complicated and less effective to do it in first half
of the extracted file, where one reasons on unknown structures, given as argument of
functions.

In fact, even after manually factorizing these spaces and these coercions chains, the
source code still weight several megabytes. It thus seems obvious that a substantial part of
this code has in fact no interest at the algorithmic level.

6.1.3 Distinction between logical parts and informative parts

To allow the extraction to at least partially eliminate the dead code from these extracted
terms, L. Cruz-Filipe and B. Spitters have then modified again the initial development, and
tried to identify the parts that could remain in Prop. This work is described in detail in [25]
and in the beginning of chapter 6 of [24].

It should be well understood that FTA is an atypical development with respect to the
distinction between informative and logical parts. Usually, it is rather easy to see the dis-
tinction between informative operations like 1+2 and logical assertions like n=0V0<n. But
in FTA, it is crucial for the relation < over reals to be informative: behind x<y is in fact
hidden a strictly positive rational below y-x. And this rational is indeed used in practice in
operations, for example when computing the inverse of a non-null real (see for example p.
148 of [24]). In the same way, difference between two real has some computational contents.

On the opposite, the equality and the relation < are not decidable over reals and can
thus remain logical. In fact, these two relations are defined as the respective negations of the
apartness and strict order < relations. This gives them a logical status, since False, used in
negations, always remains in Prop.

These decisions for basic relations then influence the status of operators like disjunctions
or conjunctions. For example, one will not be able to use the usual logical disjunction or in
the example n=0V0<n, since the right part is informative. In particular, this expression is
not equivalent constructively to 0<n, which is completely logical.

One sees that using the Prop/Set distinction in the case of FTA is not obvious, which
explains the initial choice of “everything logical”, and then the switch to the converse in a
second time. L. Cruz-Filipe and B. Spitters have in particular had to alter certain portions
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of the initial development, similarly to the previous or replaced by an ad hoc disjunction.
But this task was worth it, since one obtains a gain of a factor 10 on the size of the extracted
code.

In addition to this distribution between Prop and Set for all constructions of FTA, L.
Cruz-Filipe and B. Spitters also noted that it was possible to decrease even more the size
of the extracted terms thanks to some clever modifications of the proofs relating < and <.
First of all, they have exploited the fact that the two following formulations of the Cauchy
property are equivalent:

Ve >0 IN :nat Vm,n>N |z, —x,| <¢

and
Ve >0 dIN :nat Vm,n> N |z, —x,| <¢

Using the second alternative then results in making disappear from the extracted terms the
major part of these Cauchy properties, and only keeping the essential part, namely the part
building indeed the bound N starting from a given e.

Another example of optimization concerns the proofs of properties of the form a < b.
Initially, these proofs were frequently done by successive reasoning asin a < r; < xo < 3 <
b. In fact, only one of these stages really requires a strict order: it is enough for example to
establish a < 1 < 29 < x3 < b, and only this first stage of reasoning will remain in the
extraction.

Finally, thanks to such transformations of the FTA proof, and in particular the redesign of
the division part, L. Cruz-Filipe and B. Spitters have reduced the size of the extracted code
down to a little more than 200 KB, that is to say almost 100 times less than during the first
successful extraction. Moreover, this extraction is now carried out in a few seconds, even if the
speed of extraction has never been yet a major design goal for our implementation . Lastly,
this size of 200 KB still includes multiple redundancies related to coercions/projections,
which are not solved yet in a satisfactory way. On the other hand, reducing the size of the
extracted code largely attenuates the problems of indentation for this extracted code.

6.1.4 Compilation of the extracted code

After bringing the extracted code from FTA on a more reasonable scale of a few thousands
of lines, the following challenge consists in trying to build a program which can be run
and return some useful result. In fact, during the first successful extractions of FTA, we
encountered immediately an important obstacle, namely the non-typability of this extracted
code. And we were far from the situation of contributions like Lannion and Higman as in
the previous chapter, where it was still possible to insert manually one or two om. Here, the
typing conflicts amount to hundreds, which almost impose the use of an automatic method.
Fortunately, we have in the meantime implemented an automatic insertion of Obj.magic
at the locations of these typing conflicts (see chapter 3). Here, approximately 400 of these
Obj.magic are inserted in the extracted code. And this code is indeed accepted by the
compiler Ocaml without any additional modification.
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If we look more closely at these typing conflicts, we find some of the situations evoked in
chapter 3. For example, the first problem that appears is related to the CSetoid structure:

Record CSetoid : Type :=
{ cs_crr :> Set;
cs_eq :  (Relation cs_crr);
cs_ap :  (Crelation cs_crr);
cs_proof : (is_CSetoid cs_crr cs_eq cs_ap)
.

A CSetoid is thus an unspecified type provided with two equality and apartness relations.
In fact, this example is similar to the inductive type any of page 92. In both cases, one
embed a type in a structure, and subsequent fields of this record depend over this type. This
structure does not have counterparts® in ML, and the extraction produces the following
approximation, in which cs_crr was replaced by the unknown type T (or __):

type cSetoid = { cs_ap : __ crelation; cs_proof : (__,__) is_CSetoid }

The use of the fields cs_ap or cs_proof then leads frequently to untypable situations, which
force the use of Obj.magic.

6.1.5 The execution of the extracted program

Once settled the question of compilation, we then designed a small input-output interface
in order to be able to use this code and to test its efficiency. As FTA handles real numbers
as Cauchy sequence, our interface just asks for an rank n and a predefined real x to approxi-
mate, and then returns the rational number z,, constituting the n-th element of the Cauchy
sequence x. More exactly, this interface tries to return x,. Very quickly, it has appeared
that this extracted program suffers from huge efficiency problems. In particular, in the case
of the “canonic” example of the computation of v/2 seen as a root of the polynomial 2% — 2,
the program seems to need a few centuries, except in the case of the first approximation

. which is worth zero. As L. Cruz-Filipe has said once, “the only good news was that this
program required very little memory to run”.

In fact, to obtaining an efficient extracted program is a challenge at least as difficult as
the first task of giving it a reasonable size. And the resolution of this new challenge is still in
progress today even if much has already be done. The remaining of this section reports the
various transformations and optimizations that we tried on FTA, and the progresses thus
realized. It should be noted that this part corresponds to a phase of very active collaboration
with the Nijmegen team and in particular with L. Cruz-Filipe, whereas our personal contri-
bution to this study of FTA had been previously limited to only correct the dysfunction of
the extraction leading to too many unfoldings of constants.

5In fact, Ocaml 3.07 allows in records a certain form of abstraction over types. We can write type setoid
= {eq : ’a.’a—’a—bool}. But this is not really appropriate for our needs here, because one particular
equality eq_int: int—int—bool cannot to be used to build such a setoid.



168  Certified functional programming

Improving the datatypes

Our first try for improving the extracted program has been to hunt and remove ineffective
datatypes. Indeed, in other development, this sole stage had sometimes allowed to produce
reasonable programs starting from developments not initially planned to be extracted, such
as for example the contribution Bordeaux/Additions of P. Castéran. In the case of FTA, a
first modification has been related to the rational numbers used by M. Niqui to model real
numbers via Cauchy series. These rational numbers were indeed at first records where the
first field was an integer representing the numerator of the fraction, and the second field was
a natural number coding the denominator. But as much the integers are effective since coded
in a binary way in the Coq type Z, as much the natural numbers used at first were nat, coded
in a unary way. Our first contribution to FTA has thus been to replace in the denominator
the type nat by the type positive of strictly positive integers, encoded in binary notation.
Not only has this largely accelerated the operations on the rational numbers, but it has even
simplified the formalization: there is no need any more to be concerned with the case of a
null denominator.

A redesign of the real number model

In fact, the previous modification was rather disappointing. Of course, this improvement
of the rational numbers deserved to be made, but it did not induce a visible effect on the
first tests: computations which were diverging continued to do it. Worse, the extracted code
persisted, in spite of this change, to contain hundredths of values in nat, including several
constants up to 48. In fact, this kind of constants was useful primarily during the construction
of a model of reals by the means of Cauchy sequences. And L. Cruz-Filipe finally understood
how to alter completely this part, so that a gigantic proof like Rmult_is_extensional®, long
of 1800 lines of Coq script, is now obtained in ten lines. And the size of the extracted code
still decrease, the majority of these bulky constants of type nat disappear ... but however
the effectiveness is still not improved concerning the computation of v/2 via FTA.

Some less ambitious tests

In front of such difficulties, we then tried to better identify the causes of inefficiencies
via more progressive tests. It then appeared that all arithmetical computations on numbers
rational are almost instantaneous, even when these rationals are seen as reals” or when these
computations are done via the use of polynomials. On the other hand, the computation of v/2
as reciprocal of 2 by the function A\z.2? diverges, while at the same time this way of obtaining
v/2 is normally much simpler than the use of FTA on the polynomial 2> — 2. By seeking
examples of simple real numbers that have nevertheless non-constant Cauchy sequence, L.

Cruz-Filipe then suggested to consider limits of series, and in particular e = >~ % and

oo (=)™
n=0 2n+1°

to a lesser extent 7 =45 For the first time, we then obtained finishing not-trivial

6This result stipulates that for all reals such as a*b#a’*b’, then a#a’ or b#b *. This is the dual of
the usual statement on the equality, which states that two multiplications of equal numbers produce equal
numbers

"We then considers constant Cauchy sequence.
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computations. Here come for example the fractions returned as first terms of the Cauchy
sequence representing the constant e. Without surprise, they are partial sums of the previous

series.

rank fraction value
0 0/1 0.000000000
1 1/1 1.000000000
2 2/1 2.000000000
3 5/2 2.500000000
4 32/12 2.666666666
5 780/288 2.708333333
6 93888/34560 2.716666666
7 67633920/24883200 2.718055555
8 340899840000/125411328000 2.718253968
9 13745206960128000/5056584744960000 2.718278769
10 4987865758275993600000/1834933472251084800000 2.718281525
11 | 18099969098565397826764800000/6658606584104736522240000000 | 2.718281801

In fact, we were unable of obtaining all these fractions during the first tests, since com-
puting the approximation of rank 7 took already more than one hour, for experimentally
giving only three correct digits. The reason of such a limited effectiveness lies in the manner
of computing the terms % of the series. Indeed the real number n! was initially calculated in
type nat via the factorial fac : nat—nat, then only in a second time injected into reals via
the function nring : VR:CRing, nat—R plus some more coercions. And this last function
just transforms a unary integer in a succession of additions 1 + ...+ 1 in the considered
ring R, here the one of reals. This method thus implies a huge number of computations
on the factorial numbers with a unary coding of numbers. We then proposed to place the
computation of factorial in the type positive, followed by the use of a function pring :
VR:CRing, positive—R, which injects integers into a ring by now transferring their binary
codings.

Unfortunately, this improvement did not have the expected effect. After some investiga-
tions, it appeared that the next bottleneck was the inversion of n! in % In fact, in FTA, the
division is not a binary operator a/b but an ternary operator a/b//h, where h is a non-nullity
proof for b. And as we have already mentioned previously, the computational content of h
is indeed used for constructing the division. In the case which interests us, the non-nullity
proof of n! was given by a term (fac_ap_zero n), and the structure of this term was ini-
tially isomorph to n! coded in unary. But these proofs were of the form 0 < 1 < ... < nl.
The utilization of the previously mentioned techniques allows us to pass to a proof of the
form 0 <1 < ... <nl The new estimated complexity of the computation of % is then close
to the size of the writing in base two of n!, that is to say In(n!) ~,, n In(n). And indeed,
this version allows to obtain in a few hours all the fractions presented above, which was
impossible beforehand.

During these experiments, we noted that the computation of the approximation of rank
k + 1 requests approximately ten times longer than the computation for the rank k. In the
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same time, the accuracy is also increased by a ten factor: on average, a new correct decimal
digit is obtained at each step. This shows that the extraction is able to handle fractions of
consequent size, but that the speed is still not perfect: at that pace, one should be ready for
a computation of several month in order to obtain ten correct digits.

The issue of the computation duplications

In order to more finely understand these computations, we have then used some “profi-
ling” techniques on the executions. And we noted a few curious things. For example, the com-
putation for the approximation of rank 7 generated 14 calls to a function named e_series,
which computes for a given n the value of % As the required approximation was only suppo-
sed to use the first 7 terms of the series, we deduce that the computations of these terms were
duplicated. At first, we suspected that this computation redundancy was coming from the
use of e_series in the function e_series_conv: (convergent e_series), which proves
the convergence of the series whose terms are given by e_series. But this was a false track,
since e_series_conv only appears in a record field that is never used. In fact, we finally
identified the duplication origin, located in the following definition:

Definition LimR_CauchySeq (a:CauchySeq R_COrdField’) :=
Build_CauchySeq F
(fun m = CS_seq F (CS_seq _ a m) (T (CS_seq _ a m) m))
(CS_seq_diagonal a).

The type R_COrdField’ is the set of Cauchy sequence built on an archimedian ordered
field. And the construction LimR_CauchySeq allows to build the limit of a Cauchy sequence
of such sequences, by means of an diagonal argument. The problem here is the repetition
of (CS_seq _ a m). If one wants to avoid a double computation when the sequence a is
instantiated by e_series, it is necessary to perform a factorization:

Definition LimR_CauchySeq (a:CauchySeq R_COrdField’) :=
Build_CauchySeq F
(fun m = let b := CS_seq a m in CS_seq F b (T b m))
(CS_seq_diagonal a).

Here, the two occurrences of this duplicated subterm were in the same context. One can
thus imagine an automatic tool able to identify this redundancy and to factorize it. But in
addition to its cost, such a factorization stage will have to take difficult decisions in more
complex situations. For example, when these multiple occurrences can perfectly not been
evaluated, must one then risk to cause additional computations by creating a “let-in”?.

In FTA, one also meets very frequent duplications due to the dependent types. For
example, to build the fraction é in a field F, one uses the ternary division One/(pring R
5)// (pring_ap_zero F 5). However the proof part of non-nullity, (pring_ap_zero F 5),
of type (pring F 5)#Zero almost undoubtedly contains the term (pring F 5), which is
thus at least computed twice during this division. Similarly, our new proof of fac_ap_zero
in the previous section still contains an occurrence of n!, even if this proof is now of the form
0<1<...<nl
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This situation is really common in FTA, whereas in a more standard development the
proof part would be purely logical, and would disappear without causing redundant compu-
tations. Sometimes, fortunately, the duplication is potentially present in FTA, but skipped,
as for e_series above. But these duplications can also change dramatically the complexity,
as soon as they intervene within recursive functions. This probably explains to a large extend
the inefficiency of the program extracted from FTA. And correcting automatically this kind of
redundancies during the the extraction would be really delicate, because the problem can be
distributed between several functions, as with the division, pring and pring_ap_zero. Cur-
rently, the only answer to these duplications is a manual analysis a posteriori, by profiling,
which is long and painful, and only allows to locate the most obvious problems.

A too constraining axiomatization of reals

When we think of it, it is really disconcerting to have to devote so many efforts in order
to obtain an effective solution for computing a real number like %, which is after all only a
rational. Why not make directly this computation in the structure of rational numbers, and
inject it into the reals only in a second time ?

Unfortunately for the extraction, it is not possible to directly do so. The problem is
located at the distinction in FTA between the abstract structure of the real numbers and
its concrete counterpart. In fact, all the parts using real numbers, such as for example the
proof of FTA itself, use an abstract real structure, axiomatized:

Axiom IR : CReals.

And this type CReals is only specified as being an archimedian ordered field where all
Cauchy sequence admit a limit. In this framework, one has only access to a minimal number
of primitive objects and basic properties, resulting from the underlying structures.

In particular, the only known primitive reals are 0 and 1, which are respectively the
elements csg_unit and cr_one of the semi-group and ring structures IR. Instead of injecting
directly rational numbers in IR, one must rebuild them by using 0, 1 and the operations
+, % and /, this last operation requiring moreover a proof of non-nullity as third argument.
Such proofs often involve in fact some proofs of strict positivity or negativity, which one
must also build from a restricted core of basic properties. Here come for example the only
properties known initially concerning the order < over IR:

e the antisymmetry

e the transitivity

e the compatibility with respect to the addition: x < y implies x + 2z <y + 2

e the conservation of positivity by multiplication: 0 < x and 0 < y imply 0 < z x y
e the dichotomy: x # y implies x <y or y < x

e the archimedian property, stipulating that any real number can be bounded by the
injection in IR of an adequate integer.

A property as basic as 0 < 1 is hence not primitive, but derived from the preceding proper-
ties. And it is obviously the same for more complex proofs as 0 < n!.
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On the other hand, FTA also provides a concrete model named Concrete_R of the real
numbers, built on the Cauchy sequences of rational numbers. And in this model, it is imme-
diate to inject a rational q into Concrete_R via a function inject_Q : Q—Concrete_R. It
is indeed enough to take the Cauchy sequence where all the terms are worth q. In the same
way, a proof of the form a<b can be much more direct in Concrete_R, since we can access
now the definition of <, that claims the existence of a strictly positive rational A and a rank
N such that all terms of rank greater than N in the two Cauchy sequences being compared are
always apart by more than A. In particular, for two rational gq<q’, we immediately obtain
(inject_Q g)<(inject_Q q’) in Concrete_R, by taking A=q’-q and N=0.

This separation between abstract reals and concrete reals is without doubt beneficial
at the mathematical level, because it ensures that a proof made at the abstract level is
independent of the particular representation selected at the concrete level. One can later on
change this concrete model with no risk for the abstract proofs. On the other hand, from
the programming point of view, we are here in the presence of two modules interacting via
an interface way too minimalist, which obliges the upper level module to frequently reinvent
the wheel, and moreover in an ineffective way. What would be said of an integer arithmetic
module whose interface would not export the multiplication, under the justification that one
can simulate it by repeated additions?

To confirm that this distinction between the concrete and abstract levels constituted
indeed a bottleneck for program extraction, we have added to the abstract level a few
axioms, which we then realized at the concrete level. Then we ordered the extraction to
replace the axioms by their concrete realizations. This experiment had a spectacular effect
on the test computing the approximations of Euler’s constant. Instead of painfully obtaining
the approximation of rank 11 in more than one hour, we can now compute that of rank 100
in 77 seconds. The fraction obtained fills two screens, and gives 157 correct digits. As for
complexity, it seems only to double every ten ranks, instead of being multiplied by ten for
each additional rank. Here come some details on the code allowing that. First of all, we add
a certain number of definitions at the concrete level:

(* Direct injection of factorial in Concrete_R via inject_Q *)
Definition concrete_fact (n:nat) : Concrete_R :=
inject_Q Q_as_COrdField (inject_Z (pos_fact n)).

Lemma concrete_fact_ap_zero : Vn:nat, (concrete_fact n) [#]Zero.
intros; red; simpl; unfold R_ap. (* back to the definition of # *)
right; unfold R_1t. (* back to the definition of < *)
exists 0. (* the rank N x)
exists (inject_Z 1). (* a str. positive rational between 0 and n! *)

(* the rest is in Prop *)

(* The link between the old factorial and the new one *)
Lemma concrete_fact_pos_fact
Vn:nat, (pring Concrete_R (pos_fact n))[=] (concrete_fact n).

Then, we add some axioms at the abstract level, the one of IR:
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Axiom concrete_fact’ : nat — IR.
Axiom concrete_fact_ap_zero’ : Vn:nat, (concrete_fact’ n) [#]Zero.
Axiom concrete_fact_pos_fact’

Vn:nat, (pring IR (pos_fact n)) [=] (concrete_fact’ n).

Definition concrete_e_series :=
fun n = One[/]17[//](concrete_fact_ap_zero’ n).

Lemma concrete_e_series_conv : convergent concrete_e_series.

(* The proof is done as before, by using the equality
concrete_fact_pos_fact’ for going back to the previous case. *)

Definition concrete_E := series_sum ? concrete_e_series_conv.

Lastly, it is necessary to announce to the extraction what it should do with these axioms:

Extract Constant concrete_fact’ = concrete_fact.
Extract Constant concrete_fact_ap_zero’ = concrete_fact_ap_zero.

And there is no need to declare the third axiom, since it is logical.

It is interesting to note by the way that our formalization of Q as Z*positive pairs
works correctly, at least for our current needs. Of course, one can to still find better, since
Maple or Mathematica is able to return even the big fraction of rank 100 in a few tenths of
a second. But these rational computations are certainly not a bottleneck for FTA.

Let us announce finally a last experimentation, which tried to find a third way between
doing everything in IR and doing everything in Concrete_R. Indeed, as we have already
mentioned, this distinction between IR and Concrete_R has its own interests, and anyway
switching completely to Concrete_R would quickly become painful. We thus tried to replace
only certain critical proof of IR by an equivalent in Concrete_R. But our attempts on
fac_ap_zero brought only tiny gains compared to the initial (lack of) speeds, without
common measurement with the gains brought by concrete_E.

6.2 Some alternative reals dedicated to the extraction

Our last attempt at improving the extraction of FTA has consisted in analyzing the
computational behavior of v/2 seen as reciprocal of 2 via the square function. But due to
lack of time, we have only determine that inefficiency comes from certain sub-functions
dealing with polynomials. We will detail that later, but first let us present how a small
formalization of constructive reals, independent of FTA, has enabled us to identify some
critical points explaining the efficiency or inefficiency of such a computation of v/2.

This small formalization of constructive reals was realized in collaboration with H.
Schwichtenberg, after some long discussions we had during the summer school of Mark-
toberdorf 2003, about his lecture of constructive analysis [73] and about Coq extraction.
This study was then prolonged by a visit of week in Munich in September 2003.
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Without being made to compete with FTA/C-CoRN, this study aims at considering
constructive reals immediately from the point of view of the extraction, unlike FTA where
this idea of extraction came a posteriori. To justify this new study, here comes immediately
its main result:

185073852193103815370647998607276856607447488995292267341249508862803707849
82122579258920081860060842211719751859243538935296074829527 / 1308669759060
604982435085250362633629384375727808179217478381261103282433564486174203616
9574998713491171057585998608659296292858913867

This long fraction is an approximation of v/2 with more than 140 correct binary digits,
or 42 correct decimal digits. And we obtained this result in approximately 3 minutes, by
using the same principle than during our unfruitful tests with FTA, namely the seek of a
reciprocal value of 2 via the square function.

It should be specified immediately that this small development does not establish any
general results like FTA, but on the contrary is specialized on the computation of v/2.
Moreover, as we will see, some parts remains unfinished and posed as axioms. This is thus
not a complete formalization, but rather a proof of concept This being said, these few
hundreds of lines are quite full of lessons for the extraction of reals.

6.2.1 The development method

The goal was clearly to be able to test as fast as possible the the extracted code. We thus
formalized the first pages of the course notes of H. Schwichtenberg [73|, or more precisely
the exact concepts needed to the definition of v/2. Here for example the definition of the
real numbers:

(* First, the Cauchy property. *)

Definition Is_Cauchy (f : nat — Q) (mo : nat — nat) :=
Vk mn, mo k <m —mo k <n — let e:=(f m - £ n)*2°k in -1<e<1.

(* A real is given by a Cauchy sequence, a modulus sequence *)
(* and a proof of the Cauchy property of these sequences. *)

Record R : Set := {
cauchy : nat — Q;
modulus : nat — nat;
is_cauchy : Is_Cauchy cauchy modulus }.

In fact, even by limiting ourself to the “useful” concepts, this would have needed more
than one week or two of work. We have then chosen to focus only on the informative portions
of the terms being defined. And the required logical parts were then systematically posed as
axioms, waiting for a later completion. Actually, rather than posing multiple axioms, which
is tiresome, we have in fact “cheated”, by posing only one:

Axiom Falsum: False.

)
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]

Ltac fed_up := elim Falsum.

And the use of the tactic fed_up then allows us to get rid of any “boring” end of proof. Here
is for example the initial definition of the addition for two real numbers:

Definition Rplus : R — R — R.
intros x y.
apply (Build_R (fun n = cauchy x n + cauchy y n)
(fun k = max (modulus x (S k)) (modulus y (S k)))).
fed_up.
Defined.

In this case, the use of the fed_up allows to avoid the complete proof that our new sequence
representing x+y is indeed a Cauchy sequence. In this particular case, this fed_up have been
later on replaced by a Coq script of about thirty lines.

Of course, as long as there remain some fed_up in our development, we cannot affirm
for sure that the big fraction above is indeed an approximation of v/2 with the previously
mentioned accuracy. On the other hand, the extraction of a proof containing fed_up is
exactly identical to the extraction of the same complete proof, as long as these fed_up are
used in portions of sort Prop. We must nevertheless be very careful with this “magic” tactic:

e If we use it in an informative part, then an exception is placed in the program (see
the extraction of False_rec page 79).

e If we use it to force the proof of an erroneous logical proposition, this can lead the
extracted program to a false result but also possibly to execution errors or to not-
termination (see the examples of chapter 2).

6.2.2 The rational numbers

As we were already knowing quite well the rational numbers defined in FTA, we reused
again these rationals. But we added two improvements. The first of these improvements
relates to the proofs concerning these rationals. When we started with to replace the several
fed_up by true proofs, we have indeed noted that the proofs of rational arithmetic are ex-
tremely painful. The problem comes from the chosen representation, which is not canonical:
the fraction % is not equal to the fraction % when using the usual equality of Coq. One must
then define an ad hoc equality for this datatype, and this forbids us a priori to use a certain
number of tools that work only with the equality of Coq, such as for example of the tactics
rewrite or ring®. Fortunately Coq has recently been extended by a mechanism due to C.
Renard, that allows to work more easily on such structures, known as “setoids” (see [78]).
We have thus equipped our type Q with such a structure of setoid, which gives us access
to tactics like setoid_rewrite. And in addition, we have helped to finalize the extension
of the tactic ring to support these setoids. This way, the rational numbers start to be of

8This automatic tactic is able to solve in a ring the equalities deducible from associativity, commutation
and distributivity of + and *.
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a reasonably practical use in proofs, even if a certain number of automatic tools are still
missing, such as for example the tactics field and fourier.

The second improvement relates more directly to the extraction. We have indeed noticed
that the operations on Q were never reducing the fractions in canonical forms. Consequently,
during our computations of Euler’s constant in FTA, the fractions obtained were growing
very quickly, while for example finishing by a certain number of zeros in the numerator and
in the denominator. And the approximation of rank 100, which fills out initially two screens,
can in fact be reduced to an irreducible fraction of only four lines. We were at first quite
reluctant to the idea of frequently simplifying the fractions, because this has also a cost.
But placing some simplifications in this experimental development showed without possible
ambiguity the enormous computation speed-up induced by these simplifications: instead of
three quickly accessible decimal digits, we can know reach several hundreds. In details, this
addition of simplification was done via a function Qred: Q—Q, which computes the ged of
the numerator and denominator, before dividing them by this gcd. We have also proved
that any fraction returned by Qred is indeed equivalent to the input fraction. We have then
inserted a Qred in the principal loop of computation for v/2. Perhaps would it be better
to place some at each elementary operation, or on the contrary less frequently? Only more
complete tests can answer that question. In any case, it seems obvious that the computation
of FTA would also gain to integrate such simplifications. Finally, this improved library of
rational numbers was gathered in a new contribution Orsay/Qarith.

6.2.3 The Cauchy sequences

Let us return one moment to the definition of R given previously. This definition follows
the formulation of H. Schwichtenberg 73], which differs slightly from the formulation used
in FTA. The latter, more usual, is Yk, 3N, Va>N, Vn>N, [f(n)-f(m) |< 27% whereas in [73]
the bound N is given explicitly as a function over k, this last function being named modulus
of the Cauchy sequence. These two formulations are in fact equivalent from the constructive
point of view, since one can find the modulus N(k) starting from the proof of Vk, dN,...
Nevertheless, the more explicit formulation of the modulus encourages to choose it carefully,
and we endeavored to choose it as accurately as possible. As a consequence, during the
computation of an approximation of v/2 by the extracted program, one directly obtains
an upper error margin for the result: it is enough to ask (sqrt2.cauchy (sqrt2.modulus
140)) to be sure to obtain a result within 2740 of the limit which is v/2 or, said otherwise, to
get 140 correct binary digits. In practice, we even get some additional correct digits because
of approximations in the computation of the modulus for the sequence, but the order of
magnitude is the correct. In comparison, during the computations of the e approximations
in FTA, it is experimentally clear that the approximation of rank k, that is the k-th term
of the Cauchy sequence, will provide us n correct decimal digit, but the relation between k
and n is not explicit. And even if it would be made explicit, it is not sure that this relation
would be very accurate, due to the choices sometimes naive in the bounds N in FTA. The
errors estimates for computations in FTA were thus carried out a posteriori with Maple.
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6.2.4 The continuous functions

The way of defining the continuous functions differ also appreciably between [73] and
FTA. In FTA, a continuous function is a function R — R plus some associated properties.
According to the definition of R as set of of Cauchy sequences, a continuous function in
FTA thus corresponds mainly to a function of type (N — Q) — N — Q. This function as
argument is in fact not desirable, because it makes the extracted code more complex, more
delicate to analyze and potentially less effective. The alternative is then to use a family of
rational functions which converge to the desired real function:

Record continuous [i:itvl] : Set := {

cont_h : Q — nat — Q;

cont_« : nat — nat;

cont_w : nat — nat;

cont_cauchy: Va:Q, Is_Cauchy (cont_h a) cont_a;

cont_unif : Va b n k,n<(cont_a k) — a€i — b€i —
-1 < (a-b)*2~((cont_w k)-1) < 1 —
-1 < (cont_h an - cont_h bn)*x2°k < 1 }.

In this definition, itvl is the type of the intervals delimited by two rationals. The true
function in this definition is cont_h, of type Q — N — Q. Then follow two modulus functions
and their properties:

e “pointwise” Cauchy property when the first argument of cont_h is fixed.
e “uniform” continuity when one fixes the second argument of cont_h.

In particular, for the function X +— X2 — 2 which interests us, we take the following values:

Definition sqr2_h := fun (x:Q) (_:nat) = x*x-2.
Definition sqr2_« := fun _:nat = 0.
Definition sqr2_w := fun k:nat = 2+k.

6.2.5 The intermediate value theorem

Finally, the last major difference between this development and FTA relates to the me-
thod used to find the reciprocal of a given value via a function. There are indeed two possible
versions for the intermediate value theorem (IVT):

e The first version is the theorem 3.12 of [73]. This is the most general version of the two,
the only condition on the considered function is to be continuous. But the ransom of
such a wide scope is an expensive algorithm which divides the current interval into a
multitude of sufficiently small subintervals, and which are inspected sequentially before
stopping in one of them. Incidentally, it is also noticeable that this version allows to
find reciprocal as finely approximate as one wants, but not exact.

e The second version is proposition 3.13 of [73|. This version requires an additional as-
sumption on our function, which must be locally not-constant: for any subinterval and
any value, one should be able to exhibit a point where the function differs from this
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value. Equipped with this additional information, one can then proceed by “tricho-
tomy”, an alternative of the dichotomy adapted to constructive logic. And an exact
reciprocal is obtained this time.

Taking into account the advantages of the second version in term of effectiveness and exac-
titude, both FTA and our development use it. On the other hand, a distinction is done
concerning the proof of local not-constancy. FTA shows in fact that any polynomial of non-
null degree is locally not-constant, via a general proof based on complex factorizations of
the polynomials. But for a particular case like ours, one can proceed way simpler: the strict
growth of X — X? — 2 on the interval which interests us is enough to imply that this
function is locally not-constant. And this algorithm using the strict monotony produces the
goods results which we have seen above.

On the opposite, L. Cruz-Filipe has identified later on that the bad computational beha-
vior of v/2 using the TVT in FTA was due to the phase of computation of local not-constancy
via polynomials. By also using strict monotony, he managed obtain a computation of v/2
that terminates. But the effectiveness of this computation is still far from the one of the small
experimentation presented here. This fact is certainly due to fractions not being factorized
and computations on terms of proof made in the abstract part of FTA reals.

6.3 Conclusion

Arrived at this point, it is quite difficult to be satisfied by the current state of the program
extracted from FTA. Truly, we have succeeded with L. Cruz-Filipe with to understand and
optimize some computations of series limits using the FTA formalism, but this study has
highlighted many limitations in the initial extracted program, and these limitations were
removed only by some manual interventions, sometimes very complex, in the initial Coq
code.

A mathematical development like FTA, not thought at the origin in term of extraction,
can thus induce a huge amount of rewriting work before being able to generate a reasonable
program. The extraction is thus not a magic button undoubtedly creating interesting pro-
grams starting from any proof. The situation is not so different from the more usual software
development methods: a program fulfilling its specification is not necessarily thought a good
program. There are just here two additional difficulties:

e An analysis a posteriori as the one done here for FTA is very delicate. In particular
the extraction induces an additional distance between the initial code to modify and
the program to to analyze, for example by profiling.

e The concept of “good proof” is less precise than the one of “good program”. From the
point of view of the extraction, a good proof is obviously a proof whose extraction is
effective. On the other hand, for the user, a good proof can be simply a completely
finished proof. And for the mathematician, a good proof can be an elegant or very
abstract proof as those done in IR. Conversely, a very specialized development, made
for the extraction as the one we have outlined, will undoubtedly be described as less
elegant.
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The use of the code extracted from the principal theorem of FTA is certainly a failure for
the moment. But first of all, it is not a final failure, since the understanding of this extracted
code has enormously progressed, and that many ideas of improvements exist, such as for
example the simplification of the fractions in FTA. Then, it is advisable to relativize this
failure, and in particular to not see that as the failure of the extraction as a methodology.
The example of FTA is indeed hardly generalizable:

e First, it is a premiere: no developments of comparable size have ever been extracted.
And as with a lot of premieres, it is hardly astonishing to have to endure initial
problems. FTA constitutes currently a kind of Mount Everest for the extraction.

e It is also an ezception: FTA is the only development met by the extraction that have
such an atypical use of the logic of Coq.

Finally, it is rather reassuring to see that one can obtain quickly effective extracted
programs in the same domain as FTA, even if that supposes to go back really far away, and
especially to work from the beginning with the extraction as ultimate goal.



180 Certified functional programming




Chapitre 7

A formalization of finite sets

The development presented in this chapter has been realized in collaboration with J.-C.
Fillidtre. All files of this development, both the the Coq sources and the extracted files, are
available on the site http://wuw.lri.fr/"filliatr/fsets. These files constitute now the
contribution named Orsay/FSets. This development is also described in the joint article
[84], with a slightly different point of view, less centered on the extraction.

When a programmer wishes to obtain certified non-trivial programs by using the metho-
dology of the program extraction, the first need is the existence of a certified basic library,
sufficiently rich not to have to reinvent the wheel at each program line. For that purpose,
we have chosen to inspect the standard library coming with Ocaml. Is it possible to develop
a certified version of it?

Unfortunately, this standard library of Ocaml contains only a few purely functional data
structures. And in our extraction paradigm, the study of the imperative modules like Array
is not feasible. To treat these imperative cases, one should rather turn to tools like Why [33]
developed by J.-C. Filliatre, which supersedes the old tactic Correctness [32]. Some other
modules, without being imperative, would be delicate to formalize such as for example those
using the hardware integers.

It thus only remains in our scope the modules List, Set, Map and to a lesser extent Sort
and Stream. Our study was finally limited to the module Set of the finite sets in Ocaml.
At the same time, this choice of Set is far from being an uninteresting choice. This module
presents indeed the following characteristics:

e The need for its use is felt very frequently, obviously by the programmer, but also
by mathematician. We will see for example how these sets can be used to establish a
result of graph theory.

e Its interface, relatively simple, allows to highlight the new capacities of Coq in term
of modular organization. (see section 4.1).

e The library Set thus allows to build modules fulfilling this interface, thanks to a functor
Make taking as input a module containing at least a type and a comparison function on
this type. However there exist numerous manners of coding this functor Make, ranging
from the most naive to the most advanced one. For example, the implementation
currently used by Ocaml is based on AVL trees [2]. During this formalization, we
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carried out a first implementation using of sorted lists, and J.-C. Filliatre has built
two others more effective implementation based on AVL trees and on Red-Black trees
[41].

The general outline of our development is as follows:

Coq | Caml I

interface OrderedType |- - _extraction _ interface OrderedType
[interface § for sets|--=-----==----- > [interface S for sets |
functor Make : OrderedType — S|---->|functor Make : OrderedType — S

A simple manner to obtain the Coq interfaces consists in taking the Ocaml interfaces
OrderedType and S, and adding in it only the specification part for the functions. Ideally,
the extraction of these Coq interfaces would then give again the initial Ocaml interfaces. We
have first followed this approach, in spite of one certain number of difficulties that we detail
in the following section:

e First of all, some incompatibilities between the Ocaml types and Coq one prevents
the interface produced by the extraction to be exactly equal to the initial interface of
Ocaml.

e Then, the specification of higher order functionals as fold appeared particularly deli-
cate, and several versions were necessary before coming to a satisfactory result.

e Finally this first approach in which specifications are separated from the signature
of the functions is not inevitably the the most natural style in Coq. Indeed Coq also
allows to incorporate the specification in the type, via the use of dependent types.
In fact, we propose our Coq interface under these two versions, as well as translation
functors between these versions.

In the same way, one can imagine to import! into Coq the current code of the functor
Make of Ocaml, and in a second time prove that these purely informative functions fulfill
indeed their separate specifications. We followed this approach for the certification of a
naive version of Make based on sorted lists. On the other hand J.-C. Filliatre preferred to
follow the interface based on dependent types, and directly defined the algorithms and their
justifications interleaved together. The same methodology was used to obtain an certified
implementation of Make based on Red-Black trees.

Finally, the programmer has now four Ocaml implementations compatible with the ex-
traction of our Coq interface for finite sets:

e the non-certified initial implementation using AVL, via a slight wrapping for precisely
corresponding to our interface;

'For lack of better mechanism, this importation is currently to be done manually.
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e a simple and certified but ineffective implementation based on sorted lists;

e two implementation certified and effective, via Red-Black trees and AVL trees.

7.1 The Coq interface

This interface corresponds to the file FSetInterface.v. Let us see now more in details
the points that Coq allows to import directly from Ocaml, and those that need an adaptation.

7.1.1 The ordered types

First of all, the Ocaml interface of Set starts by the definition of a signature representing

a type equipped with an order relation, this type being meant to become the support type
for the future sets.

module type OrderedType =
sig
type t
(* The type of the set elements. *)
val compare : t — t — int
(* A total ordering function over the set elements.
This is a two-argument function [f] such that
[f el e2] is zero if the elements [el] and [e2] are equal,
[f el e2] is strictly negative if [el] is smaller than [e2], and

[f el e2] is strictly positive if [el] is greater than [e2].
end

A first problem appears immediately: for efficiency reasons, the comparison of Ocaml returns
an hardware integer int. However these integers do not exist in Coq, and even though, would
not be convenient to perform logical reasoning. More in accordance with the use in Coq, our
interface is based on logical relations, i.e. on functions of type t—t—Prop. These logical
relations are the equality eq and the strict order 1t. They come together with five Axiom
that require that eq and 1t fulfill theirs usual elementary properties.

Inductive Compare (X : Set) (1t eq : X — X — Prop) (xy : X) : Set :=
| Lt : 1t x y — Compare 1t eq x y
| EQ : eq x y — Compare 1t eq x y
| Gt : 1t y x — Compare 1t eq x y.

Module Type OrderedType.
Parameter t : Set.

Parameter eq : t — t — Prop.
Parameter 1t : t — t — Prop.

Axiom eq_refl : Vx, eq x X.

)
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Axiom eq_sym : Vx y, eq x y — eq/y X.

Axiom eq_trans : Vx y z, e Xy — eqy z — eq X Z.
Axiom 1lt_trans : Vx y z, lt xy — 1t y z — 1t x z.
Axiom 1lt_not_eq : Vx y, 1t x y — - eq x ¥y.

Parameter compare : Vx y, Compare 1t eq x y.
End OrderedType.

In fact, the Ocaml and Coq versions are not so different, at least from an informative
point of view, the one of the extraction. Indeed, eq and 1t are ignored by the extraction since
placed in sort Prop, the one of logical propositions. In the same way, the five properties of eq
and 1t are also in Prop, thus ignored by the extraction. Thus the only remaining parts after
extraction are the informative parts placed in Set, here the type t and the function compare.
The latter function, similar to the compare of Ocaml, allows to discriminate according to the
respective positions of two elements of type t, and returns a result in the ternary inductive
type Compare. From the logical point of view, compare states the decidability of eq and 1t.
It should indeed be noticed that compare returns not only the desired position information
(via the used constructor Lt, Eq, or Gt), but also a logical proof certifying the current
situation. This logical part is also forgotten by the extraction, and that gives us for this
signature OrderedType the following extracted version:

type ’x compare =
| Lt
| Eq
| Gt

module type OrderedType =
sig
type t
val compare : t — t — t compare
end

It should be noted that we can easily write manually wrappers between this type compare
and the type int used in the initial Ocaml interface as a three-value type. One can thus
adapt the functor Make provided by Ocaml in order that it works with our interface.

7.1.2 The signature of the sets

Now, in Ocaml, an set structure is created via the following functor:

module Make (Ord : OrderedType) : S with type elt = Ord.t
(* Functor building an implementation of the set structure
given a totally ordered type. *)

And here comes now the beginning of this signature S of the set structure:
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module type S =
sig
type elt
(* The type of the set elements. *)

type t

(* The type of sets. *)
val empty: t

(¥ The empty set. *)

val is_empty: t — bool
(* Test whether a set is empty or not. *)

val mem: elt — t — bool
(* [mem x s] tests whether [x] belongs to the set [s]. *)

val add: elt — t — ¢t
(* [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)

[...]

end

One finds there, in addition to the types elt and t and the constant empty, 22 ele-
mentary functions over sets. It should be noted that each function comes with an informal
specification in comment. It is in fact starting from these informal specifications that we
have built our formalization. Our Coq signature thus begin in the same manner as the Ocaml
signature, namely by the type declaration for the set operators:

Module Type S.
Declare Module E : OrderedType.
Definition elt := E.t.

Parameter t : Set.

Parameter empty : t.

Parameter is_empty : t — bool.
Parameter mem : elt — t — bool.

Parameter add : elt — t — t.

[...]
End S.

Some function signatures are not adaptable so simply:

e compare : t — t — int
One finds again the same problem as with OrderedType: what to do with int? The
answer is similar. First, we add in the signature S two relations eq and 1t on sets, of



186 Certified functional programming

type t—t—Prop, without equivalents in Ocaml, and ignored by the extraction. And
beside that, S requires the presence of an informative function compare of type VsVs’,
(Compare eq 1t s s’). This way, we still have in Coq the following interesting pro-
perty of Ocaml : a module fulfilling S can also be seen as a OrderedType, which allows
to build sets of sets.

e iter: (elt — unit) — t — unit
This is the only occurrence of an imperative function in all the module, untranslatable
in a purely functional world, and thus omitted.

e cardinal: t — int

Once again, int is not directly usable in Coq. We have chosen to declare cardinal: t
— nat, where nat is the Coq type of Peano integers. This debatable choice has only
the interest of providing simple induction principles over the size of a set. But this is
done at the detriment of the efficiency. Among the other alternatives, one can also use
the binary integers Z of Coq, or an axiomatized abstract type, which one then extracts
manually to int (see section 4.4.2). In any case, the other versions of cardinal can
easily be written thanks to the generic function fold.

e min_elt, max_elt and choose: t — elt
All these three functions are supposed to raise the exception Not_found if their argu-
ment is empty. A natural manner of encoding this behavior in Coq is the use of the
type option.

At the head of the Coq interface, one can notice the presence of a declaration E:
OrderedType. This declaration, lacking in Ocaml, allows in particular to name E.t, E.1t
and E.eq in the specifications. The Coq type of the Make modules will then be:

Module Make (X:0rderedType) : S with Module E := X.

It is possible to avoid the use of this internal sub-module E by replacing it with two
Parameter eq and 1t in S, and by providing three “with Definition...” instead of only
one “with Module...”.

The specification part, with is the second half of the signature S of Coq, is centered
around a logical membership relation In : elt—t—Prop. This relation is abstract: each
module implementing our finite set interface should provide one. The only property required
for this In is the compatibility with respect to the equality of E:

Parameter In_1: E.eq x y — In x s — In y s.

This property must be understood with a implicit universal quantification over the variables
x, y and s, as authorizes by the mechanism of Section (see page 29). The same is true in
the following examples.

All the set function specifications are now expressed with respect to this predicate In.
One writes for example:

(xx Specification of [mem] *)

)
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Parameter mem_1: In x s — mem X S = true.
Parameter mem_2: mem x s = true — In x s.

(*x Specification of [add] *)

Parameter add_1: In x (add x s).

Parameter add_2: Iny s — In y (add x s).

Parameter add_3: "~ E.eq xy — Iny (add x s) — In y s.

7.1.3 The case of higher order functions

Among these set functions, those taking a function as argument require a little more
attention. This concerns fold, filter, for_all, exists and partition. For example the
abstract specification of fold is:

val fold: (elt — ’a — ’a) — t — ’a — ’a

(* [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)], where
[x1 ... xN] are the elements of [s]. The order in which elements
of [s] are presented to [f] is unspecified. *)

Our first attempts at specifying fold were based on the formalization of the two following
equations:
fold f empty i = 1

fold f (add x s) i = f x (fold f s i)

But this approach appeared to be extremely hard to finalize. Two problems have arisen in
particular:

e To take in account the unspecified character of the order of computations, while spea-
king of a meaningful final result, it was necessary to add assumptions on f, like the
commutativity: £ x (f y a) = f y (f x a).

e Moreover, what happens if f returns two distinct values for two elements x and y that
are equal modulo E.eq? In a preliminary version, we did not treat this case correctly,
which would have allowed to prove false = true starting from a hypothetical module
having for interface this version S.

({3}

e Finally the use of the usual equality of Coq in these equations is too restrictive
for certain uses. For example if one wishes to rebuild a set via a fold, one would
then write (fold add s empty). But the usual equality is not appropriate with our
sets parameterized by an equality E.eq. We can then accept this case by using an
additional equality eqA over the output type, but that becomes really heavy.

Finally, we have chosen a specification at the same time simpler and more expressive,
by relying on a previously defined datatype, namely the lists, and more precisely on the
function fold_right defined on these lists. The final specification is rather close to the
informal version given in comment above. Instead of saying “x1... xN is the elements of
the set s”, we affirm “1 is a list without redundancy containing all the elements of s and only
those”. Of course, the membership of our list and the not-redundancy are expressed modulo
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E.eq. For that we have defined two specialized predicates InList and Unique parameterized
by one equality. Here come this final specification of fold:

Parameter fold_1 : V(A : Set)(i : A)(f : elt — A — A), J1 : list elt,
Unique E.eq 1 A
(Vx, In x s < InList E.eq x 1) A
fold £ s i = fold_right £ i 1.

This formulation does in particular not assume any pre-condition on the function f. If
this function £ does not check the commutativity of computations, or is not invariant with
respect to E.eq, then several lists containing the elements of s will produce different results
by fold_right. But at least one of these lists ends in the same result as the fold. In fact,
if we adds these pre-conditions on f, one can replace 41 by V1 in the specification.

For specifying the other higher order functions, that is filter, for_all, exists and
partition, we could also have established a parallel with the versions of these functions
working on lists. In fact, these cases are appreciably simpler than the example of fold, since
there is no problem of computations order or equality on the output type. We have thus
used a direct specification, such as for example:

Parameter filter_1 : compat E.eq f — In x (filter f s) — In x s.
Parameter filter_2 : compat E.eq f — In x (filter f s) — f x = true.
Parameter filter_3 :

compat E.eq f — Inx s — f x

true — In x (filter f s).

The condition compat then requires the invariance of £ with respect to E.eq.

7.1.4 A alternate signature containing dependent types

Our signature is thus divided into two, with one one side the purely informative functions,
and on the other side the specifications in the form of purely logical axioms. This approach
is not the only possible one in Coq. Thanks to the dependent types, one can indeed gather
both parts in only one expression, whose general outline is, for a function with an argument,
Vx,P(x)—dy,Q(x,y) with P and Q logical predicates expressing respectively the pre- and
post-conditions.

We have then written a second version of the set signature, named Sdep, by using this
style of “dependent types”. Here comes an excerpt:

Module Type Sdep.
Declare Module E : OrderedType.
Definition elt := E.t.

Parameter t : Set.

Parameter In : elt — t — Prop.
Definition Empty s := Va, — In a s.
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Definition Add (x:elt)(s s’:t) :=Vy, Iny s’ < E.eqy x V In y s.
L...]

Parameter empty : {s : t | Empty s}.

Parameter is_empty : Vs, {Empty s}+{— Empty s}.
Parameter mem : Vx s, {In x s}+{— In x s}.

Parameter add : Vx s,{s’ : t | Add x s s’}.
[...]
End Sdep

The parameter In is now needed at the very beginning to express the specifications. Then
follow a certain number of shortcuts such as Empty and Add, expressing logical properties
based on In. The function add is now build on the pre- and post-condition model: the pre-
condition is here always true, and the post-condition (Add x s s’) expresses the fact that
the new set s’ contains the same elements as the old s, plus x. The case of the functions
is_empty and mem is slightly different: instead of saying “there exists a boolean such that...”,
we directly use an inductive type with two values, sort of enriched boolean type, allowing
to express what happens in both cases. This type is sumbool, presented p. 29.

Once again, the functions that are the most difficult to specify are the higher order
functions. Here is for example fold, which now contains the property fold_1 in post-
condition:

Parameter fold : V(A : Set)(f : elt — A — A)(s : t)(1 : A),
{r : A | J1 : 1list elt,
Unique E.eq 1 A
(Vx, In x s < InList E.eq x 1) A
r = fold_right f i 1}.

7.1.5 Two functors to choose the signature style

The new system of module of Coq then allows us to avoid a choice between the two
possible signatures. Indeed one can easily write a functor which transforms a module of
type S into a new module of type Sdep and another functor doing the converse work. This
is actually done in the file FSetBridge.v. This way, all new implementation of the sets
only needs to be done for one version, whichever one is chosen. According to the taste of
the programmer, the two implementations based on sorted lists and on red-black trees were
build over different signature, one in accordance to S, the other in accordance to Sdep. And
conversely, any user has the choice of the version which he prefers to use. He can even, and
it is really appreciable in practice, use the two interfaces simultaneously.

7.1.6 Extraction of the set signatures

What happen to the extracted versions from these two interfaces? They are in fact
extremely close, and can even be made equal.
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Concerning the interface S, the extraction is quite simple. Indeed, the pure signatures do
not contain any logical part, and there is no use of advanced Coq types like sorts, pattern
matchings or fixpoints. The extraction is then a simple translation to Ocaml. Concerning the
specifications, since they are completely logical, they are just forgotten. We just go back to
the initial Ocaml interface modulo the slight adaptations mentioned previously. Here comes
its beginning:

module type S =
sig
module E : OrderedType

type elt = E.t

type t

val empty : t

val is_empty : t — bool
val mem : elt — t — bool

val add : elt — t — t
[...]

end

Things get more complicated in the case of the interface Sdep. First of all, the possible
logical arguments corresponding to pre-conditions are eliminated. Then the inductive type
corresponding to the post-conditions of the form {y: Y| ... }, that is sig, is recognized
as being a “singleton informative” type (see p. 131), and is thus translated into the identity:
type ’a sig0 = ’a. The type extracted from the dependent version of add is thus elt
— t — t sig0, which is then convertible to the expected elt — t — t. In the other
possible situation, namely the use of sumbool as in is_empty or mem, the extraction of
sumbool consists in forgetting the logical decorations of this inductive, which gives:

type sumbool =
| Left
| Right

This extracted type sumbool is isomorph with the boolean type, but not equal. If one wishes
to force the equality, in order to really obtain the same signature in both cases, it is enough
to use the replacement mechanism for the extracted inductive (see p. 142):

Extract Inductive sumbool = bool [true false].

Here is the beginning of the interface extracted from Sdep, with no replacement of sumbool
by bool:

module type Sdep =
sig
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module E : OrderedType

type elt = E.t

type t

val empty : t sig0

val is_empty : t — sumbool
val mem : elt — t — sumbool

val add : elt — t — t sig0
[...]

end

At this point, we have a formal interface in Coq, as well as an extraction of this interface
in Ocaml. We can then right now provide a not-formal implementation of this extracted
interface thanks to the module Set of Ocaml, with the help of a manual encapsulation of
certain functions, in particular the comparisons.

(* c2i : ’t compare — int *)
let c2i = function Lt — -1 | Eq — 0 | Gt — 1

(* i2¢ : int — ’t compare x)
let i2c¢ 1 = if i<0 then Lt else if i=0 then Eq else Gt
(x* i2n : int — nat, tail recursive *)
let i2n =
let rec acc p = function 0 — p | n — acc (S p) (n-1)
in acc O

module Make (X:0rderedType) : S with module E = X and type elt = X.t =

struct
module E = X
module M = Set.Make(struct
type t = X.t
let compare x y = c2i (X.compare x y)
end)
include M
let compare s s’ = i2c (compare s s’)

let cardinal s = i2n (cardinal s)

let max_elt s = try Some (max_elt s) with Not_found — None
let min_elt s = try Some (min_elt s) with Not_found — None
let choose s = try Some (choose s) with Not_found — None
end

Please note that this only works if we have replaced beforehand certain extracted induc-
tive types by their primitive equivalent in Ocaml. This concerns the boolean, the pairs and
the lists. For boolean, that can be done via an Extract Inductive, but the two other cases
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require an external intervention, for example the use of a syntactic script of improvement
of the extracted code. This script, written in Camlp4, is available at the following address:
http://www.lri.fr/~letouzey/download/pp_extract.ml.

7.2 A implementation based on sorted lists

Before going further, one may wonder why do we really need to code in Coq an imple-
mentation of our set interfaces. After all, using a pragmatic attitude, one can indeed choose
to regard the module Set of Ocaml as being sufficiently tested to be correct with respect to
its informal specification written in comments. And concerning our small manual wrapping
functor Make in the previous paragraph, its small size and its simplicity leave little place to
errors. If we accept these two points, then we can perfectly carry out a certified development
in Coq using our sets only via their interface, and obtain nevertheless a complete program
thanks to this functor Make.

In fact, we will see later in the description of our implementation based on AVL trees
that the original implementation of Ocaml was not so correct after all, since we have found
there an error. The formalization of this implementation was thus not vain.

And from the point of view of a Coq user interested in our finite set library, stopping
this library with only the Coq interface presents two disadvantages. First of all, such an
abstract vision excludes any computation in Coq. In particular, one can build a proof that
(is_empty empty) is worth true, but not compute/execute/simplify (is_empty empty)
into true. This is only possible for a particular implementation of the sets. Maybe a future
introduction of primitive rewriting in Coq will one day change this fact. And providing an
effective Coq implementation in which we can compute can also lead to the use of these sets
in tactics based on reflexion (see for example [16]).

The other disadvantage is the risk of inconsistency of our interface, which is by itself only
an axiomatization. This risk is to be taken seriously. For example we have already mentioned
the fact that an earlier version of FSetInterface.v was allowing to deduce False from some
particular OrderedType, due to a bad specification of the higher order functions like fold.
This nasty surprise cannot happen any more, since at least an implementation allows, from
any OrderedType, to build a module fulfilling S, and this without using any axiom.

7.2.1 Description of the module FSetList

The goal of this module is to provide as quickly as possible an implementation to our
Coq interface for sets, mainly in order to to check its coherence. Efficiency was hence not a
preoccupation during its creation. As a consequence, the first idea was an implementation
using unspecified lists. But contrary to the common ideas, the set operations for unspecified
lists are not so obvious to write. In particular the function remove must parse all the list to
detect possible doubled items. Similarly, the function fold must deal with these duplicated
items. A solution is then to maintain an invariant of not-redundancy. Since an invariant is
to be maintained, it is hardly more difficult to require directly that the lists are sorted. And
this way the efficiency is much better.
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For this implementation, we have followed the not-dependent interface S. But it is not
that simple to work with lists associated with an invariant. In particular, for each operation
producing a list, it is immediately necessary to check that this invariant is preserved. We
have preferred to split the work in several phases.

A first functor Raw, taking a OrderedType as argument, defines set functions over the
datatype t = (list elt), implicitly assuming that these lists are sorted Thus the union
corresponds to the classical merge algorithm:

Fixpoint union (s : t) : t — t :=
match s with
| [1 = fun s’ = s’
| x :: 1 =
(fix union_aux (s’ : t) : t :=
match s’ with

| [ = s
| x> :: 17 =
match E.compare x x’ with
| Lt _ = x :: union 1 8’
| EQ - = x :: union 1 1’
| Gt _ = x’ :: union_aux 1’
end
end)

end.

Note here the usual trick consisting in using an anonymous internal fix for enabling the
call (union_aux 1), not structurally decreasing compared to the first argument.

In a second time, the functor Raw proves the properties expected by the signature S,
except that we add at the top of the lemmas the assumption that the input lists are initially
sorted.

Lemma union_1 : V(s s’ : t)(Hs : Sort s)(Hs’ : Sort s’)(x : elt),
In x (union s 8’) — Inx s V In x s’.

We also prove that our operations always produce sorted lists when their arguments are
sorted. For example:

Lemma union_sort
V(s s> : t) (Hs : Sort s) (Hs’ : Sort s’), Sort (union s s’).

Consequently, we then have all the pieces to define a second functor named Make, which this
time really produces a module of signature S. In this module, the datatype is now the well
sorted lists, defined by:

Record sorted_list : Set := { this :> Raw.t ; sorted : sort E.l1t this I}.
Definition t := sorted_list.

The remainder of the module is only a long sequence of wrapping/unwrapping, which thanks
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to the implicit arguments and to the coercion t :> Raw.t are done without problem. For
example:

Definition union (s s’ : t) :=
Build_sorted_list (Raw.union_sort (sorted s) (sorted s’)).
Definition union_1 (s s’ : t) := Raw.union_1 (sorted s) (sorted s’).

7.2.2 Extraction of FSetlList

The extraction of the whole cannot be simpler. Concerning the functor Raw, the pure
functions are extracted into themselves, and their properties are forgotten. Our example of
the union gives:

let rec union s x =
match s with
| Nil — x
| Cons (x0,1) —
let rec union_aux s’ = match s’ with
| Nil — s
| Cons (x°,1’) —
(match E.compare x0 x’ with
| Lt — Cons (x0, (union 1 s’))
| Eq — Cons (x0, (union 1 17))
| Gt — Cons (x’, (union_aux 1’)))
in union_aux X

And in the functor Make, the type sorted_list is recognized as being isomorph to (1ist
elt) as soon as the logical part sorted is removed (one more informative singleton inductive
type). All the remainder is thus only definitions of aliases. For example:

let this s = s
let union s s’ = Raw.union (this s) (this s?)

7.2.3 The tail recursivity

It should be noted that our functions on lists were written in a direct recursive style,
and are thus almost never tail recursive. This is a priori not a problem, because this module
has no claim of effectiveness. Except that...

It indeed appeared during the realization of the effective implementation based on Red-
Black trees, that a certain number of operations, such as for example the union and the
intersection, could be in fact advantageously “subcontracted” to the module FSetList:

e On the efficiency level, one can transform a Red-Black tree, which is a particular form
of binary search tree, into a sorted list via a simple linear traversal. And the reciprocal
transformation, even if less simple, can also be done in linear time. Finally, we obtain
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this way an union on trees whose complexity is in the worst case the sum of the sizes
of his arguments. This complexity is theoretically optimal, and quite far from being
obvious to obtain by direct analysis of the trees.

e On the level of the correctness proof for these “subcontracted” functions, there is an
obvious gain: we only need to prove once and for all the correctness of the two functions
of conversion between Red-Black trees and sorted lists, and then the correctness of the
tree functions done this way is obtained by direct translation of the results already
proved for the lists.

Consequently, it would be interesting to carry out an alternative of FSetList that
consume no stack. A simple way to reach that point would be undoubtedly to define the tail
recursive alternatives, and to prove immediately that they return the same result as their
simpler counterparts.

Concerning the implementation based on AVL tree, we made a point of being as faithful
as possible to the original Ocaml code of the library Set. We thus have not used this method
of flattening, merging, then rebuilding, but rather the method used in Set, more effective
in practice.

7.3 A implementation based on Red-Black trees

The corresponding file is FSetRBT.v. Let us remind that Red-Black trees (RBT) are
binary search trees for which one limits the maximum imbalance by associating two colors
to the nodes, and by controlling the locations of these colors. More precisely:

(i) all the paths from the root to a leaf should contain exactly the same number of black
nodes.

(ii) a red node cannot have red child.
(iii) the leaves are considered black.

Our implementation of sets based on RBT is thus effective. For example, the search
for an element has a logarithmic maximal cost. But this effectiveness is paid during the
correctness proofs, which are much more complex than in the preceding implementation.
For example, the correctness proof of the add consists of more than 350 lines. Fortunately,
only add, remove and of_list (the building of a RBT starting from a sorted list) have
presented real difficulties. The other functions were either simpler, or “subcontracted” to the
list functor as seen in the previous paragraph.

Our intention is here not to describe the details of this implementation. Moreover the
main functions like add and remove having been realized by J.-C. Filliatre. One can ne-
vertheless note that the interface used is Sdep, the one containing dependent types. The
functions are thus defined by tactics instead of directly providing terms, and these tactics
allow to build at the same time the structure of the underlying algorithm and the proofs of
the intermediate needed properties, invariants and post-conditions. This module thus consti-
tutes a good test bench for the extraction, which have to distinguish informative parts from
logical parts. In practical, the extracted functions are each time close to what one would
have manually written, except for syntactic details like the shape of pattern matchings.
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And as shows in a following section, the effectiveness of the extracted functions is indeed as
awaited.

Let us consider for example the function of _1ist that constructs a RBT from a sorted
list. It relies on a function of __list_aux with three informative arguments:

e the height k of the tree to be manufactured, initialized in of _1ist with N_digits,
that is a base two logarithm.

e the size n of the tree to be manufactured.

e the list of the elements, that can become larger than n during the internal recursive
calls. So this function of _list_aux function also returns the extra elements.

Here come shortened versions of of _list_aux and of_list. We have removed all the in-
variants propagated in these functions, and have only kept the treatment of the various
situations. But even this way, this Coq script remains highly indigestible, and is given only
as an illustration.

Definition of_list_aux :
Vk : Z, 0 < k —
Vn : Z, two_p k < n + 1 < two_p (Zsucc k) —
V1l : list elt, sort E.1t 1 — n < Zlength 1 —
{rl’ : tree * list elt | ... }.
Proof.
intros k Hk; pattern k; apply natlike_rec3; try assumption.
intro n; case (Z_eq_dec 0 n).
(* k=0 n=0 *)
intros Hnl Hn2 1 H11 H12; exists (Leaf,1); [...].
(* k=0 n>0 (in fact 1) *)
intros Hnl Hn2.
assert (n = 1). [...]
rewrite H.
intro 1; case 1.
(* 1 = [1, absurd case. *)
intros H11 H12; unfold Zlength, Z1t in H12; elim H12; trivial.
(x 1 =x::17 %)
intros x 1’ H11 H12; exists (Node red Leaf x Leaf,1’); [...]
(* k>0 *)
clear k Hk; intros k Hk Hrec n Hn 1 H11 H12.
rewrite <- Zsucc_pred in Hrec.
generalize (power_invariant n k Hk).
elim (Zeven.Zsplit2 (n - 1)); intros (n1,n2) (A,B) C.
elim (C Hn); clear C; intros Hnl Hn2.
(* 1st recursive call : (of_list_aux (Zpred k) nl 1) gives (1ft,1’) *)
elim (Hrec nl Hnl 1 HI11).
intro p; case p; clear p; intros 1ft 1’; case 1°.
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]

(x 1> = [], absurd case. *)

intros o; elimtype False. [...]

(* 17 = x :: 1% %)

intros x 1’ ol.

(* 2nd rec. call : (of_list_aux (Zpred k) n2 1°’) gives (rht,1’’’) *)
elim (Hrec n2 Hn2 1’’); clear Hrec.

intro p; case p; clear p; intros rht 1’’’ o2.
exists (Node black 1ft x rht,1’°’). [...]
Defined.

Definition of_list : V1 : list elt, sort E.1t 1 —
{s : t | Vx : elt,In x s « InList E.eq x 1}.
Proof.
intros.
set (n := Zlength 1) in x*.
set (k := N_digits n) in *.
assert (0 < n). [...]
assert (two_p k < n + 1 < two_p (Zsucc k)). [...]
elim (of_list_aux k (ZERO_le_N_digits n) n H1 1); auto.
intros (r,1’) o.
assert (dn : nat,rbtree nr). [...]
exists (t_intro r (olai_bst o) H2). [...]
Defined.

And here comes now the extraction of these two functions:

(xx val of_list_aux : z — z — elt list — (tree, elt list) prod sigQ *x*)

let rec of _list_aux x n 1 =
match x with
| ZERO —
(match z_eq_dec ZERO n with
| Left — Pair (Leaf, 1)
| Right —
(match 1 with
| Nil — assert false (* absurd case x)
| Cons (x0,1’) — Pair ((Node (Cog_red, Leaf, x0,
Leaf)), 1’)))
| POS p —
let Pair (n1,n2) = zsplit2 (zminus n (POS XH)) in
let Pair (1ft,11) = of_list_aux (zpred (POS p)) nl 1 in
(match 11 with
| Nil — assert false (* absurd case *)
| Cons (x0,12) —
let Pair (rht, 13) = 3f_list_aux (zpred (POS p)) n2 12 in
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] e
Pair ((Node (Cog_black, 1ft, x0, rht)), 13))

| NEG p — assert false (x absurd case *)

(xx val of_list : elt list — t sig0 *%*)

let of_list 1 =
let n = zlength 1 in
let Pair (r,1’) = of_list_aux (n_digits n) n 1 in
r

The proof structure of of_list_aux can be better understood by reading the extracted
code rather than the proof itself, even with the accompanying notes. This readability of the
extracted code does not come for free, and is the result of many optimizations (cf section
4.3). Here, one notices an induction on the integer k>0, thanks to an ad hoc induction
principle named natlike_rec2, whose type is:

Lemma natlike_rec2 : VP : Z — Type,
PO —
~Vz : ' Z, 0<z — Pz — P (Zsucc z)) —
Vz : Z, 0 <z — P z

In the case k=0, we have either n=0 and then we builds an empty tree or n=1 and then we
build a final node of red color. And when k>0, we divide n-1 into two halves, (n1 and n2),
and we call recursively twice the function to build the left and right parts of the tree.

7.4 A implementation based on AVL trees

We have also realized a third implementation of a functor Make taking an OrderedType
and returning a module of signature Sdep. After those based of sorted lists and on Red-
Black trees, this third implementation is based on AVL trees. It has been carried out by
J.-C. Filliatre by following as closely as possible the initial implementation of the functor
Set .Make available in the standard library of Ocaml. In fact, the code which we obtain by
extraction of this Coq implementation is sufficiently close to the original manual code to be
able to affirm reasonably that we have formalized and certified this Ocaml library.

Except for the printing details, the principal difference between two codes concerns the
arithmetic used. AVL Trees are indeed trees in which the depth difference between any
two sub-trees does not exceed a certain fixed?. quantity A. And it is essential to store the
depth of the tree in the chosen data structure, otherwise we would recompute this depth
unceasingly. However a depth is an hardware integer int in the initial Ocaml code, and we
have replaced this in Coq by an integer of type Z.

This difference in the integer representation has an important influence on the speed of
the two codes, the manual Ocaml version going approximately four times faster than the
extracted version, as shown by the figures presented in [34]. The Coq integers, encoded via

2In the literature, A is often 1, whereas 2 was chosen in the Ocaml implementation as trade-off between
the advantages of having very balanced trees and the costs related to re-balancing.
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inductive types, even in binary format, cannot compete with hardware integers. It would then
have been interesting to have a tool allowing to substitute a representation by another during
the extraction, generalizing the command Extract Inductive, too limited. In theory, this
replacement is not sure, because the type int is subject to overflow problems that cannot
happen with the type Z of Coq. But this danger is here quite hypothetical, since it would
be quite utopian to try to handle balanced binary trees with depth higher than 23° since
that would mean that that they would have about 22* elements! More generally, one can
imagine to replace Z by big_int, which gives arbitrary precision while doing a maximum of
computation via the hardware integers.

At the technical level, this implementation is finally quite similar to the one via Red-
Black trees, except for a great quantity of reasoning on the integers, and thus a strong
use of the automatic tactic omega. Instead of giving here too many details, we refer to [34]
for (a little) more information. The major surprise has been the discovery of an error in
the initial Ocaml code. Certain functions could indeed return trees which were not correctly
balanced any more. This problem was not critical since the trees were remaining correct (i.e.
still contained the good elements), but on the other hand the efficiency could be strongly
affected. For example the logarithmic complexity for the search for an element, advertised
in a comment, was not guaranteed any more. We informed X. Leroy of this problem, and he
immediately corrected the Ocaml source code.

7.5 An example of use in a mathematical context

The example which follows now is included in our contribution Orsay/FSets, in the
sub-directory PrecedenceGraph. This result was initially an exercise posed during some
practical sessions about theory of operating systems [9]. Since the official solution of this
exercise was incorrect, we have then searched a correct proof, and formalized this proof in
Coq to be convinced of its correctness once and for all. This formal proof has in fact been at
the origin of our interest in finite sets in Coq. We have modified it later so that it now uses
our sets a la Ocaml. It is now a good example of use of these sets within a mathematical
context.

The result deals with the precedence graphs. Such a graph is a representation without
redundancy of a strict order: more precisely, if < is a strict order, the associated graph is
defined by a — b iff a < b and Ve, ~(a < ¢ < b). In practice, we can also see a precedence
graph as an acyclic directed graph whose transitive edges have been removed (i.e. a — ... — b
implies =(a — b)). The result then states that:

N2
E< 1
with F being the edge number of a precedence graph, and N its node number.

The proof is done by induction over N, by removing at each step a carefully chosen node
and the edges which are associated to this node. This proof outline has made us choose to
the following representation for the graph®

3We have chosen to label our nodes with integers. In fact, any OrderedType could have worked.
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Record Graph : Set := {
nodes:> t;
to: nat — nat — bool }.

with t being a finite set of integers. This way, when we withdraw a node, we just have to
update nodes, whereas the transition function to can remain invariant. Indeed, the only
edges that are counted are those whose both ends are in nodes. The function filter then
allows to define the sets of successors and predecessors of a node, which in combination to
cardinal allows to define the number of edges.

The proof proceeds then in four stages:

Theorem edges_remove : VG:Graph, Vn:elt, Inn G — to G n n = false —
nb_edges G = (nb_edges (node_remove G n))+(arity G n).

Theorem get_init : VG:AcyclicGraph, O < nb_nodes G —
{p:nat| In p G A nb_pred G p = 0}.

Theorem low_arity: Vp:nat, VG:PrecGraph, O < nb_nodes G —
nb_nodes G < 2x(p+1) —
{k:nat| In k G A nb_linked G k < p}.

Theorem TheBound : VG:PrecGraph,
(nb_edges G)*4 < (nb_nodes G)*(nb_nodes G).

The first theorem establishes that the edges number of G \ {n} is the one of G less the
number of successors and predecessors of n. Then, for an acyclic graph, we show the existence
of an initial element. The third theorem is crucial: it affirms that in any precedence graph
whose size is strictly lower than 2(p + 1), we can find a node with less than p neighbors.
And finally this particular node is adequate for our purpose: we can remove it and finish
the induction reasoning, which enables us to establish the final theorem.

7.6 A final word

This case study shows that it is perfectly possible to specify and to implement functional
and efficient data structures in Coq, while remaining in connection with an interface and an
effective Ocaml implementation by the means of the extraction.

This method can obviously be reused for other structures, such as those presented by C.
Okasaki in [64]. In particular all the present work could normally allow us to obtain a module
Map at low cost. One can, indeed, see a Map structure as being a Set where the OrderedType
is a pair index * value and where the comparison only accesses the first component. The
only new function to write is then find, which is anyway only an alternative of mem.



Conclusion

Arrived at the end of this work, it is now time for taking stock, by asking at least the
two following questions:

e Is this new extraction better than the old one? We do think so.
e Now, is our is extraction still perfectible? Of that we are sure.

The realizations

First, the critical correctness issues that we have evoked in introduction have been solved.
A syntactic proof, enabling to compare the reduction of a extracted term with the reduction
of an initial Coq term, ensures indeed that potential execution errors, like those from which
the old extraction suffered, cannot occur any more at the present time, whether it is with
the strict evaluation a la Ocaml or with the lazy evaluation a la Haskell.

In addition we have finalized a second correctness proof, inspired by realizability, which
guarantees that the semantic properties of the initial Coq terms are indeed preserved during
extraction. This proof has been made in a system as close as possible to the CIC currently
employed in Coq, which has implied a very consequent increase in complexity for this seman-
tic proof when comparing to the original works by C. Paulin. This proof, although manual
and thus partly unsatisfactory, must be seen as a first stage towards a internal correctness
proof, formalized in Coq, that we will evoke among the prospects.

Another realization of this thesis is the solution of the typing problem for the extracted
terms. Our solution consists in the use of untyped coercion functions: this is certainly ad
hoc, but works very well in practice. This allows now to explore all the range of the Coq
terms with no more fear of ending on terms without extraction or with untyped extraction.

Lastly, a substantial effort has been made on the implementation level, in order to make
of extraction a real platform of certified code generation, and not any more an experimental
tool. In particular, this point, one can note the profits in readability for the extracted code,
and especially the progresses concerning the integration of extracted code with broader
developments, thanks to the generation of interfaces, and especially thanks to the extension
of the extraction to the new module system of Coq.

The prospects

First of all, it is obvious that one can still improve the safety of this mechanism of code
generation. Of course, as shown by K. Thompson in the article [79], our final program will
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be worthy of confidence only if each link in the production chain is, and in particular the
compiler Ocaml or Haskell used, the operating system, the processor, etc*. In practice such
a level of verification is never reached. But one of the weak spot in this safety chain seems
to be today the correctness of our extraction. It is indeed hardly satisfactory that all this
complex mechanism relies only on a proof in ITEX. There are then two possible approaches
to cure that:

e One can first add to the extraction mechanism an extension that, for each extracted
term, produces the Coq term proving the correctness of this extracted term. Conse-
quently, at each extraction, the acceptance by the type-checker of Coq of this Coq
proof term will guarantee the correctness of the given extracted term. This approach
corresponds to systems like Minlog or Isabelle. And the realization of such an extension
of the extraction seems within reach, thanks to our study of section 2.4.

e There also exists an much more ambitious alternative, but also less realistic in the
immediate future. It would be the complete formalization in Coq of our correctness
proof for the extraction. That would require much more work than the preceding
approach, since it would be a Coq formalization instead of an extension in Ocaml. At
the same time we would then obtain a total guarantee, instead of building a particular
proof at each extraction. With regard to this possible complete formalization, one can
imagine to start from the formalization of Coq in Coq by B. Barras [8], and also re-use
one of the works about the semantics of ML, as for example [29]. And why not then try
to extract this formalization in order to build an extraction made of extracted code,
at least for its central part? This would take naturally place into the utopian project
of “bootstrapping” the core of Coq defended by B. Barred.

Concerning the applications of the extraction, the work on the extraction of C-CoRN
deserves to be continued. Of course, many problems still persist about efficiency. These
problems can be located at several levels. First the algorithms employed are sometimes the
most general possible, at the detriment of the efficiency. In addition, the proof scripts are
still largely improvable, for example to avoid any redundant computation. Finally the code
generated by the extraction is certainly not without defect. All this explains that it appears
difficult to hope to compute approximations of roots of polynomials via the extraction of
FTA within the next months. At the same time, if one looks at the progress already achieved,
it would be a shame to stay there. Let us recall that some time ago, even the extraction
stage out of FTA seemed unrealistic...

It would be also interesting to try to extend the field of application of the extraction
methodology. Indeed, for the moment, the programs adapted as candidates to certification
by extraction are those for which only the result of the execution imports. On the other
hand, in the situations where it is of primary importance to terminate quickly or without
consuming more than a certain memory quantity, then the extraction is currently not a good
methodology. This immediately excludes any embedded program, whether real-time, or with
limited memory, or both. On the contrary, the current field of application for the extraction

4Since the writing of [79], the situation is even more complex, since the majority of the modern systems
use now dynamic libraries (.so or .d11). It is thus theoretically possible to pervert the behavior of a program
after its creation without ever touching it.
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is highlighted by the main examples: tautology checkers, type checkers [8|, program analyzers
[17]... Indeed the time and the resources does not matter much when you check a tautology
or search for a counterexample, when you typecheck or analyze a program, as long as the
result is correct. Currently begins around J.-P. Jouannaud some work on the topic of the
time complexity evaluation of the extracted programs, with as reference some work done in
Nuprl [11]. Let us hope that this work will allow to extend the applicability of the extraction.

Another possible extension of the field of application for the extraction would consist of
an internalization of the results of extracted programs inside Coq. After all, if the extraction
is sure, why Coq would not trust a decision procedure proved and then extracted? There
undoubtedly matter of interaction with the internal compiler of B. Grégoire [40].

A last domain currently out of reach by the Coq extraction is the extraction of programs
starting from classical proofs. This is an extremely active field of research, in particular
around Minlog. Tt should be said that Coq was not, until recently, a good platform for such
studies, because the addition of a classical axiom in Prop does not change anything for
the extraction, whereas the same addition in Set makes the system incoherent when Set
is impredicative. However Set is now predicative by default, which may allow a classical
extraction in Coq in the future.

Lastly, a last topic of possible improvement is to make this methodology more pleasant
to use. A current lack is, for example, the impossibility of importing in Coq some already
existing ML code. Of course, one can always translate it by hand, prove the expected proper-
ties, then extract, and finally check that the differences between the original ML code and
the extracted code are tiny. We have proceeded this way in our certification of the finite sets
of Ocaml (see chapter 7), the original manual code being in fact available with Ocaml. This
importation of ML code is related with the work by C. Parent around the tactic Program
[65]. Unfortunately, the implementation of this tactic have not been adapted to the versions
7.0 and following of Coq. It should be stressed that this importation of ML code is far from
obvious. For example the importation of a non-structural recursive function will immedia-
tely require the proof justifying its good foundation. This would undoubtedly be interesting
to combine this importation with the work of A. Balaa and Y. Bertot that facilitates the
definition of such recursive functions [6, 5|.

It is thus clear that the research possibilities still open at the end of this thesis are
multiple, even if much have been done since the beginnings of the extraction in Coq fifteen
years ago. Arrived at this point, let us wish that this methodology for program development
named extraction can continue its rise, in particular in direction of the industrial world.
May this thesis have contributed to that...
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Appendix

A User contributions using extraction

— Bordeaux/Additions

— Bordeaux/dictionaries

— Bordeaux/EXCEPTIONS
— Bordeaux/NewSearchTrees
— Bordeaux/SearchTrees

— Dyade/BDDS

— Lannion

— Lyon/CIRCUITS

— Lyon/FIRING-SQUAD

— Marseille/ CIRCUITS

— Muenchen/Higman

— Nancy/FOUnify

— Nijmegen/C-CoRN

— Nijmegen/QArith

— Orsay/FSets

— Orsay/QArith

— Rocq/ARITH/Chinese

— Rocq/ARITH/ZChinese

— Rocq/COC

— Rocq/GRAPHS

— Rocq/HIGMAN

— Rocq/MUTUAL-EXCLUSION
— Sophia-Antipolis/Buchberger
— Sophia-Antipolis/Bertrand
— Sophia-Antipolis/Huffman
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— Sophia-Antipolis/RecursiveDefinition
— Sophia-Antipolis/Stalmarck
— Suresnes/BDD
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Résumé

Nous nous intéressons ici a la génération de programmes certifiés corrects par construc-
tion. Ces programmes sont obtenus en extrayant I'information pertinente de preuves cons-
tructives réalisées dans ’assistant de preuves Coq.

A telle traduction, ou «extraction», des preuves constructives en programmes fonc-
tionnels n’est pas nouvelle, elle correspond a un isomorphisme bien connu sous le nom de
Curry-Howard. Et 'assistant Coq comporte depuis longtemps un tel outil d’extraction. Mais
I’outil précédent présentait d’importantes limitations. Certaines preuves Coq étaient ainsi
hors de son champ d’application, alors que d’autres engendraient des programmes incorrects.

Afin de résoudre ces limitations, nous avons effectué une refonte compléte de 'extraction
dans Coq, tant du point de vue de la théorie que de 'implantation. Au niveau théorique,
cette refonte a entrainé la réalisation de nouvelles preuves de correctness de ce mécanisme
d’extraction, preuves a la fois complexes et originales. Concernant 'implantation, nous nous
sommes efforcés d’engendrer du code extrait efficace et réaliste, pouvant en particulier étre
intégré dans des développement logiciels de plus grande échelle, par le biais de modules et
d’interfaces.

Enfin, nous présentons également plusieurs études de cas illustrant les possibilités de
notre nouvelle extraction. Nous décrivons ainsi la certification d’une bibliothéque modulaire
d’ensembles finis, et 'obtention de programmes d’arithmétique réelle exacte a partir d’une
formalisation d’analyse réelle constructive. Méme si des progrés restent encore a obtenir,
surtout dans ce dernier cas, ces exemples mettent en évidence le chemin déja parcouru.

Mots clés. Preuve de programmes. Programmation fonctionnelle. Extraction. Théorie des
types. Isomorphisme de Curry-Howard. Calcul des Constructions Inductives. Systéme Coq.

Abstract

This work concerns the generation of programs which are certified to be correct by
construction. These programs are obtained by extracting relevant information from construc-
tive proofs made with the Coq proof assistant.

Such a translation, named “extraction”; of constructive proofs into functional programs
is not new, and corresponds to an isomorphism known as Curry-Howard’s. An extraction
tool has been part of Coq assistant for a long time. But this old extraction tool suffered
from several limitations: in particular, some Coq proofs were refused by it, whereas some
others led to incorrect programs.

In order to overcome these limitations, we built a completely new extraction tool for Coq,
including both a new theory and a new implementation. Concerning theory, we developed
new correctness proofs for this extraction mechanism. These new proofs are both complex
and original. Concerning implementation, we focused on the generation of efficient and
realistic code, which can be integrated in large-scale software developments, using modules
and interfaces.

Finally, we also present several case studies illustrating the capabilities of our new extrac-
tion. For example, we describe the certification of a modular library of finite set structures,
and the production of programs about real exact arithmetic, starting from a formalization
of constructive real analysis. These examples show the progress already achieved, even if the
situation is not perfect yet, in particular in the last study.

Keywords. Proof of programs. Functional programming. Extraction. Type theory. Curry-
Howard isomorphism. Calculus of Inductive Constructions. Coq system.



