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Introdu
tion

The need for 
erti�ed programs

Today, it is obvious to say that software o

upies a dominating pla
e in our modern

so
ieties, in
luding in 
riti
al roles. The list of these missions of 
on�den
e now �lled by

programs lengthens un
easingly. It 
an be a matter of 
ontrolling high-risk equipments like

planes or nu
lear thermal power stations, but it 
an also be more prosai
 operations like

the management of ele
troni
 payments. In any 
ase, whether human lives or money are in

questions, the stakes are huge.

Unfortunately, it is also a banality to note the perfe
tibility of these programs whi
h

surround us. Without yielding to 
atastrophism, we 
annot but note that software failures

regularly �ll news headlines. The example the more frequently mentioned remains the ex-

plosion of the Ariane 5 ro
ket in 1996. More re
ently, one 
an quote the des
ription by S.

Humpi
h of a vulnerability in the 
redit 
ards system. More alarming, the software editor

that 
urrently dominates the PC market propose softwares that are repeatedly a�e
ted by

safety faults, whi
h open the door to all kinds of virus, worms or trojans. Finally, here is a

testimony read in a dis
ussion forum, answering an intervention opposing the low quality of

PC software with the great reliability of those intended for aeronauti
s:

I will bring however one small nuan
e 
on
erning your parallel with airliners.

Their 
omputer systems are not as solid as you say, I know something of it,

I am pilot on A320! In fa
t we regularly have one or more 
al
ulators whi
h

fail. This is even normal, the software is regularly modi�ed to answer the new

legal or operational requirements, and so is also the hardware, without taking in

a

ount that the whole must undergo the atta
k of tens of ele
tri
 transfers per

day! Fortunately, all systems are doubled, tripled and even quintupled in some


ertain 
ases, with the result that while one reboots quietly and 
arries out its

autotests, the other takes over, and safety is never 
ompromised ...

There either, the situation is thus not perfe
t

1

, sin
e the empiri
al solution of redundan
y

is not foolproof.

This unsatisfa
tory pra
ti
al situation 
ontrasts in a startling way with the point of view

of s
ientists. �Computer s
ien
e is an exa
t s
ien
e�, wrote C. A. R. Hoare [45℄ in 1969. He

and others like R. W. Floyd or E. W. Dijkstra have indeed build a pre
ise mathemati
al

framework for programming, spe
ifying in the 1970s a 
on
ept of proof of program, as

1

Even if in pra
ti
al the great majority of air 
rashes are due to human errors...
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rigorous as a proof of theorem. Alas, the programming is still too often approa
hed like an

experimental art: repetitions of tests, tests, errors and 
orre
tions. It is true that establishing

formally a program's 
orre
tness asks 
urrently very signi�
ant e�orts, whereas it is often

very easy to 
arry out tests. But these tests 
ould �nally prove to be quite expensive, and

they 
an only rarely be exhaustive...

In any 
ase, whether one wants to 
ertify a program or simply to test it, the �rst step

is to produ
e a spe
i�
ation, des
ribing the awaited behavior of this program. The mathe-

mati
al result to be proved in the 
ase of a formal 
erti�
ation is that the program satis�es

its spe
i�
ation. Obviously, this spe
i�
ation step is a key moment: if the spe
i�
ation is

in
omplete or in
orre
t, nothing will prevent a program that is 
erti�ed to be 
orre
t with

respe
t to this spe
i�
ation to behave badly at the time of its exe
ution.

The previously mentioned works of C. A. R. Hoare, R. W. Floyd and E. W. Dijkstra

are originally intended for imperative programs. For example, the Hoare logi
 is it made

of assertions relating the values of the program variables. And a spe
i�
ation of a portion

of 
ode C has the form {P}C{Q}: if the pre-
ondition P is valid before the exe
ution of the


ode C, then the post-
ondition Q will be valid after the a
tion of C on the 
ontents of the

variables. In the same way, most tools for formal 
erti�
ation that are widespread in industry,

like the B method [1℄, are fo
used on proof of imperative programs. This is undoubtedly

explained simply by the omnipresen
e of imperative paradigm in industry, to the detriment

of fun
tional languages. The main ex
eption to date is the 
reation and the use of Erlang

at Eri
sson. Nevertheless, we now will see that the fun
tional languages are parti
ularly well

suited for the 
reation of 
erti�ed programs.

The Curry-Howard isomorphism

All the fun
tional languages have a 
ommon theoreti
al 
ore, namely the λ-
al
ulus. This
is true of Lisp, S
heme, the members of the ML family like O
aml, or Haskell. However in

[26℄, H. Curry noti
ed in 1958 that in the simply typed λ-
al
ulus, any well-typed term has

ne
essarily a type that is a tautology in propositional intuitionisti
 logi


2

, as soon as one

assimilates fun
tional type A→B and impli
ation A⇒B.

In addition to this isomorphism between types and propositions, H. Curry also establishes

a 
orresponden
e between terms and demonstrations. In parti
ular, the 
onstru
tive proof

of an impli
ation A⇒B is a method whi
h allows to transform any demonstration a of the

property A into a proof b of the property B. Via the isomorphism, this proof of A⇒B 
an

thus be seen like a fun
tion whi
h for any obje
t a of type A asso
iates an obje
t b of type

B.

In 1969, W A. Howard proposed a λ-
al
ulus with dependent types that extends the

isomorphism to �rst-order intuitionisti
 logi
 [46℄. For example, a 
onstru
tive proof ∃x,P(x)
stipulating the existen
e of an obje
t satisfying the property P, gives via this isomorphism

a fun
tional program building indeed this obje
t. More pre
isely, this program will return a


ouple (x,p) in whi
h x is the sought obje
t, and p is a 
erti�
ate showing that we indeed

have P(x).

2

For more details on intuitionisti
 and 
onstru
tive logi
s, one may 
onsult [10℄ or [80℄.
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Thereafter, this isomorphism was extended to all kinds of intuitionisti
 logi
al systems

with in
reasing expressivity, like for example the types theory of Martin-Löf [58℄ or the

Cal
ulation of Indu
tive Constru
tions (Ci
) whi
h is used in the Coq proof assistant [78℄.

And extra
tion, that is the possibility of deriving a program from a proof, was used in

pra
ti
e in many systems, like PX [44℄, Nuprl [50℄, Coq, Minlog [30℄ or more re
ently Isabelle

[13, 14℄.

One 
an make here a 
omparison with the Hoare method. If we wish to build a program


erti�ed taking as input an obje
t x satisfying a pre-
ondition P(x) and then returning

another obje
t y satisfying a post-
ondition Q(x,y), we only have to prove in a intuitionis-

ti
 formalism the proposition ∀x,P(x)→∃y,Q(x,y). The Curry-Howard isomorphism then

allows us to automati
ally derive from our proof a fun
tional program that is 
orre
t by


onstru
tion.

In fa
t, the program obtained by a dire
t use of this isomorphism is not 
ompletely

the one expe
ted. Instead of a program taking a x and returning a y, one obtains rather a

program with two arguments x and p and with two results y and q. And p and q are then

two 
erti�
ates 
orresponding respe
tively to the proofs of P(x) and Q(x,y). The role of

the extra
tion is then to generate the natural program, i.e. without logi
al 
erti�
ates, and

to justify this deletion of 
erti�
ates. We �rst see how that is done in Coq, then we evoke

the 
ase of the other proof assistants.

The extra
tion in Coq

This thesis was thus devoted to the study of the extra
tion in Coq. In fa
t, it 
ould have

been entitled �Fifteen years of extra
tion in Coq�, sin
e it intervenes �fteen years after a

�rst thesis on this same subje
t by C. Paulin [66, 67, 69℄. We thus start by re
alling what

has been made at the time and then explaining why that has left the possibility of a new

work in this �eld.

First of all, we should mentioned that Coq is built dire
tly on top of Curry-Howard

isomorphism: in parti
ular a proof is dire
tly represented internally by a λ-term. One is then

tempted to say that a Coq proof is pre
isely a fun
tional program, and that the extra
tion

has only a re
opy to make. But this approa
h, although 
orre
t, is too naive. Indeed, if

one takes again the example of an existential proposition ∃x,P(x), a intuitionisti
 proof of

this proposition 
ontains indeed the 
onstru
tion method for the witness x, but also logi
al

justi�
ations ensuring that x is appropriate, that is satis�es P(x). From the programming

point of view, the 
onstru
tive skeleton will give us the wanted program, whereas the logi
al

justi�
ations are in general non-desirable in a program. The role of extra
tion is then to

derive from one term t of type T a program p 
ontaining only the 
omputational 
ontents

of t. And usually, 
orre
tness of this program p is guaranteed by a realizability relation r


onne
ting p and the initial type T. This 
on
ept of realizability was initially introdu
ed by

S. C. Kleene in 1945 in [49℄. The extra
tion fun
tion, whi
h we will note E , will be then


orre
t if one 
an establish that a typing relation t:T implies the realizability relation E(t)
r T after extra
tion.

In her thesis, C. Paulin de�nes a realizability adapted to the Cal
ulation of Cons-
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tru
tions

3

, and an asso
iated extra
tion. A �rst version of this realizability is based on

the semanti
 
riterion of �pre-realized formulas�. Then in a se
ond step, C. Paulin proposes

to repla
e this semanti
 
riterion by one synta
ti
 
riterion, namely an obje
t annotation

by the user, to mark its 
omputational nature or 
onversely its logi
al nature. For that pur-

pose, instead of using only one Prop type of all propositions, one doubles this type with a

Set type of informative propositions

4

, whereas the propositions remaining in Prop are being


onsidered as purely logi
al.

This theoreti
al extra
tion presented and proved 
orre
t by C. Paulin outputs extra
ted

programs belonging to a restri
tion of the Cal
ulation of Constru
tions, namely Fω. This

work were implemented in the assistant Coq thereafter, initially by C. Paulin for the extra
-

tion part towards Fω, then by going B. Werner for the part going from Fω to ML

5

(see [69℄).

Later on, J.-C. Filliâtre maintained and improved this implementation.

The 
ontributions of this thesis

This initial work on the extra
tion Coq su�ers from several limitations, some of them

present at the 
reation of Coq extra
tion, others appeared during evolutions of the Coq

system. Our work has primarily 
onsisted in solving these limitations, whi
h led us, as we

will see, to an almost 
omplete redesign of this extra
tion me
hanism. At the same time, we

made an e�ort to maintain as mu
h as possible a 
ompatibility with the previous extra
tion.

And this new implementation of the extra
tion was gradually integrated in versions 7.0 and

following of Coq.

Complete support of the universes

A �rst limitation relates to the question of Coquniverse or sorts. We have already evoked

the division of Prop, the universe of propositions, in two universes, one named Set for the


omputational propositions, the other, Prop, for the logi
al propositions. But these two

universes Prop and Set are themselves parts of a higher level universe named Type. However

Coq treats these universes like all other terms of the system. One 
an thus form a universal

quanti�
ation on Type, whi
h will 
on
erns in parti
ular Set and Prop. The extra
tion C.

Paulin was not able to work with su
h terms that in
ludes reasoning on universes. Any

term where the higher universe Type was appearing was quite simply 
onsidered as not-

extra
table. And this was not an arti�
ial restri
tion, but indeed an intrinsi
 limitation of

this extra
tion method. A theoreti
al study as well as a pra
ti
al study of the Type level

extra
tion thus remained to be made, whi
h appeared to be not-obvious. This limitation

was be
oming quite awkward as the use of the universe Type tends now to to spread in

Coq developments. For example, this universe allows to write data types 
ompatible at the

same time with Set and with Prop. In addition, Type is also frequently used in asso
iation

with strong elimination in developments based on re�exion (or two levels approa
hes, see

3

These Constru
tions were not yet Indu
tive at this moment...

4

In the thesis of C. Paulin, Set was named Spe


5

The various languages �spoken� by the extra
tion were Caml (Lourd then Light), LazyML and now

O
aml, Haskell and S
heme.
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for example [16℄). These developments were thus at the origin out of �eld of appli
ation for

Coq extra
tion.

Solving the typing problems

A se
ond problem appears in the translation step from Fω to one of the 
on
rete ML-

like fun
tional languages. This step, present in the implementation, is not dealt with by

C. Paulin's thesis. However the Fω type system is mu
h ri
her than that ML's one. The

extra
tion 
an then produ
e a extra
ted term not typable in ML. In pra
ti
e, su
h a 
on�i
t

of typing seldom o

urs, but o

urs nonetheless. And the in
reasingly frequent use of the

Type universe tends to multiply these situations. Moreover, this low frequen
y of the typing


on�i
ts 
an be also explained by a form of user's self-
ensorship, not very in
lined to use

Type if he knows beforehand that this will leads to a not-extra
table development. We have

developed a method 
onsisting in identifying the lo
ations of these typing 
on�i
ts, then in

solving them via the use of low-level fun
tions in�uen
ing types. This way, the extra
ted


ode is always usable with standard 
ompiler for the target language. For the moment this

method was only implemented for the O
aml language.

Corre
tness of stri
t evaluation

The prin
ipal problem of the old extra
tion is its la
k of safety 
on
erning the exe
ution

of extra
ted terms via a stri
t strategy, as in O
aml. In fa
t, exe
ution of some extra
ted

terms in Coq version 5.x and 6.x 
an �nish abnormally on several fatal errors, or quite to the


ontrary loop and never �nish. For a good understanding of the problem, let's �rst 
ome ba
k

to the original extra
tion towards Fω. In her thesis, C. Paulin has proved that her extra
tion

produ
es well-typed terms in Fω. This system satisfying the strong normalization property,

the redu
tion of these extra
ted terms is thus ensured to pro
eed 
orre
tly, whatever strategy

is employed, either stri
t or lazy.

But let's now add an axiom A in Coq. When one extra
ts a proof that uses this axiom,

the extra
ted program will be in
omplete unless one provide manually a program p 
orres-

pondent with this axiom A, that is realizing it: p r A. When this program p is typable in

Fω, the pre
eding result of 
orre
tness still holds, and any redu
tion will pro
eed without

problem. Unfortunately, three axioms that are parti
ularly natural and signi�
ant for the

expressivity of the system do not have typable realizations in Fω. Any extra
ted program

using the realizations of these axioms 
an then theoreti
ally see its exe
ution fail, and that

o

urs indeed in some 
ases, at least when evaluation strategy is stri
t. Here are these three

axioms:

⊥
A

x = y P (x)
P (y)

WF(R) ∀X, (∀y, R(y, x)→ P (y))→ P (y)
∀X, P (x)

• the �rst axiom is the 
ontradi
tion elimination, whi
h allows to treat the impossible


ases of proofs and programs. This axiom 
orresponds naturally to a fun
tion raising an

ex
eption. But su
h a realization leads sometimes to evaluations �nishing abnormally

on an un
aught ex
eption.
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• the se
ond axiom is the equality elimination. With the most general version of this

axiom, an equality between types makes it possible to modify the apparent typing of a

term. That does not pose any problems in Coq, but on the other hand after extra
tion

one 
an have all kinds of exe
ution failures related to typing errors, for example (0

0).

• the third axiom allows to prove a property P by indu
tion over a well-founded predi
ate

R. This axiom is realized easily by an �xpoint operator like Y. But when this realization

is used, the old extra
tion 
an then generate terms whose stri
t evaluation will loop.

In fa
t, �nding Fω-typable realizations for these three axioms would have implied to


onsider as 
omputational the falsity, the equality, and the well-foundedness, ending �nally

with almost no logi
al parts left. Instead, these three 
ategories of problems, in
luding the

two already evoked in [69℄, were ignored or minimized via empiri
 means

6

After all, if one

wished to ensure the 
orre
tness of the O
aml-extra
ted terms, one 
ould always work in a

stripped-down version of the system, without these three axioms � whi
h however are part

the library initially loaded by the system.

To solve these problems of exe
ution, we had to alter the extra
tion fun
tion E signi�-


antly, and in parti
ular the elimination of logi
al λ-abstra
tions, in order to guarantee a


orre
t evaluation whatever strategy is employed.

Support of the system's evolutions

Sin
e the �rst work on extra
tion, Coq evolution has a

entuated the limitations of this

old extra
tion. We have already mentioned for example the in
reasingly frequent use of

the universe Type. In addition, the three axioms whi
h put in danger the 
orre
tness of

the exe
ution of the extra
ted terms are nevertheless essential for the expressivity of the

system. So, when it has been possible to modify Coq underlying logi
al system in order to

reinfor
e it and being able to prove these axioms, that has been done. And the extra
tion

was then fa
ing potentially in
orre
t situations even without the least addition of axioms.

It thus be
ame 
ru
ial to 
orre
t these problems, whi
h was made.

Among the other evolutions of Coq whi
h had an impa
t on the extra
tion, one 
an

quote of 
ourse the 
hange from the Cal
ulation of Constru
tions to Cal
ulation of Indu
tive

Constru
tions, that is the addition of the primitive indu
tive types, or mu
h more re
ently

the adoption of a system of modules and fun
tors. Among these evolutions, some are benign

for the extra
tion. For example, the addition of the re
ord types basi
ally has not 
hange

anything, sin
e they are visible only by the user and are translated internally into indu
tive

types. In the same way, extra
ting the 
o-indu
tive types does not ask any parti
ular work

if the target language is lazy like Haskell, and the old extra
tion was already supporting this


ase. On the other hand, some enri
hments required more substantial modi�
ations of the

implementation, but without impa
t on the extra
tion theory. This is the 
ase for example

of the support by B. Werner of the indu
tive types extra
tion or even of our adaptation of

the extra
tion for the new modules system.

6

The fun
tion False

_

re
, raising an ex
eption asso
iated with the 
ontradi
tion elimination, was in

parti
ular always unfolded, sin
e its de�nition itself was raising an ex
eption.
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Modules and interfa
es

Let's stop for a se
ond at this last extension of extra
tion in order to support the new Coq

modules, at least for O
aml extra
tion, as well as the generation of an interfa
e for any 
ode

extra
ted towards this language. These two new features may seem minors in 
omparison

with the solving of �aws that were endangering the 
orre
tness of extra
ted 
ode. But we


onsider as really essential that the extra
ted 
ode 
an be integrated easily in a broader

development. The generation of the interfa
es is in fa
t only one positive side-e�e
t of the

evoked solving of typing problems, but it now allows to predi
t the type of a extra
ted

fun
tion only by inspe
ting the Coq type of the initial obje
t.

Our 
ontribution in brief

Finally, our new extra
tion is thus 
hara
terized by the three following points:

1. It endeavors to manage any Coq term.

2. It ensures that the exe
ution of the extra
ted terms will be 
orre
t, both with a lazy

or stri
t strategy.

3. It guarantees the good typing of the extra
ted 
ode and provides an interfa
e with

this 
ode (in O
aml only for the moment).

In �fteen years, the Coq extra
tion has been transformed from a still experimental tool to

a mature framework for development of 
erti�ed 
ode. In parti
ular this tool is now able

to treat signi�
ant and realisti
 examples, like for example the library of �nite sets used in

pra
ti
al by O
aml developers, based on modules and fun
tors (see 
hapter 7).

Comparison with other extra
tion systems

We now will 
ompare the extra
tion Coq with the similar tools present in other systems.

This 
omparison will be 
entered on the two essential points of Coq extra
tion, namely

the deletion of the logi
al parts in proofs, and then the translation into a true fun
tional

programming language. For more details, one 
an 
onsider the 
hapter 6 of [66℄, whi
h

remains largely up-to-date.

Deletion of logi
al parts in proofs

First of all let us re
onsider the distin
tion between logi
al part and 
omputational part

in a Coq term. In the typi
al example of a term whose type is ∀x,P(x)→∃y,Q(x,y), we
have seen that the Curry-Howard isomorphism gives us a fun
tion with two arguments x

and p and with two results y and q. If one wants to obtain a �nal fun
tion produ
ing only y

from x, it is appropriate to make sure that the logi
al 
erti�
ates p and q do not intervene

during this 
onstru
tion of y. If it is indeed the 
ase, then p and q are simple de
orations

or dead 
ode from the point of view of the 
omputation of y. And normally, the deletion of

su
h a dead 
ode brings very signi�
ant pro�ts 
on
erning the size of the �nal program and

its speed of exe
ution.
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Mu
h work has been a

omplished 
on
erning the topi
 of automati
 
ontrol of dead


ode. In the beginning, S. Berardi studied this dead 
ode elimination in 
ontext of simply

typed λ-
al
ulus [12℄, then L. Boerio has extended these te
hniques to the se
ond order [15℄.

Then F. Prost generalized this work with Pure Type Systems [72℄.

We have however 
hosen to remain 
ompatible with the old extra
tion of Coq, whi
h

always relies on the annotation of the logi
al parts by the user. In pra
ti
e this is not so

mu
h a 
onstraint, sin
e it is enough to annotate only ea
h new de�nition of obje
t. One

has only to determine in advan
e, and on
e for all, the role of ea
h obje
t. By the way, these

annotations via the universes Prop, Set or Type also ful�ll a another role apart from helping

the extra
tion: see the question of the impredi
ativity in the following 
hapter.

Let us re
all that Prop is mainly a 
opy of Set, but with one logi
al meaning, whereas

any obje
t pla
ed in universe Set and Type will be 
onsidered informative. We will see later

that Coq typing system ensures that 
omputations on informative obje
ts do not depend

on the 
omputation results in logi
al parts. This prevents for example an unwanted use of

a auxiliary logi
al 
onstru
tion at a 
omputational lo
ation, and thus justi�es the deletion

during extra
tion of the obje
ts having Prop as universe.

In fa
t, this method and the automati
 dead 
ode analysis are relatively orthogonal:

although the extra
tion 
annot eliminate dead 
ode pla
ed in an informative universe, it


an on the 
ontrary simplifying subterms whi
h do not satisfy the dead 
ode 
riteria (see in

parti
ular the elimination of logi
al singleton indu
tive in se
tion 2.3.2). Besides, it would not

be absurd to 
ombine these two te
hniques, by applying for example a dead 
ode analysis to

extra
ted 
ode. The extra
tion, synta
ti
 pro
ess, would then remove at low 
ost the broad

logi
al parts while a more 
omplex and expensive dead 
ode analysis 
ould then work better

on the small extra
ted terms.

If we study now the PX system [44℄, we note that the elimination of the logi
al parts

relies in this system on a synta
ti
 
on
ept of formulas without 
omputational 
ontents

(known as of rank 0). One �nds in parti
ular among these formulas to eliminate the Harrop

formulas

7

, but also manual annotations ⋄A, whi
h are the formulas A whi
h 
omputational


ontents is deliberately hidden.

In Nuprl [50℄, one �rst �nds a 
ertain number of formulas preset as being of null 
ontents.

This 
on
erns in parti
ular equality and inequality, falsity and the relation a∈A whi
h express
that a is a proof of A. Beside that, in a type subset {x:A|B(x) }, the role of B is rather

similar to the one of a Coq obje
t in Prop : one 
an make use of it only for establishing a

formula of null 
ontents or another property on the right-hand side of a subset type.

Con
erning Minlog, one �nds in [30℄ distin
tion between Harrop formulas and other

formulas that are 
onsidered informative. Moreover, H. S
hwi
htenberg told us during a

private 
ommuni
ation its interest for the use of two kinds quanti�ers ∀ and ∀nc, the se
ond

one binding a variable without 
omputational 
ontents. By the way, let us mention here

many works around Minlog that aim at extra
ting programs from 
lassi
al proofs.

Lastly, in Isabelle, S. Berghofer also 
arries out an automati
 analysis of 
omputational


ontents for the terms being extra
ted, that amounts to eliminate the Harrop formulas. On

7

This is a well-known 
lass of formulas without 
omputational 
ontents, gathering the formulas without

disjun
tion or existential quanti�
ation in positive lo
ation.
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the other hand the status of predi
ate variables is not de
ided as long as these variables are

not instantiated. For a initial theorem with n predi
ate variables, it may be ne
essary to

generate at worst 2n
alternative extra
tions to manage all the situations during the later use

of this theorem (see p.64 [14℄). On another side, in the 
ase of Isabelle/HOL, the extra
tion

relies on a manual annotation 
on
erning the 
omputational 
ontents of indu
tive predi
ates

(see p.84 [14℄). It should be noted that Isabelle is based on a 
lassi
al logi
. In fa
t, unlike

Minlog, the extra
tion only identi�es the 
onstru
tive parts of the terms, without seeking to

work on the 
lassi
al parts.

Translation to a true fun
tional language

Sin
e the beginning, the su

essive versions of the extra
tion in Coq have all aimed at

produ
ing sour
e 
ode for widespread fun
tional languages, and not just outputting the raw

λ-terms. Currently, our implementation supports three target languages: O
aml [53℄, Haskell

[31℄ and S
heme [48℄. Among these three languages, the extra
tion towards O
aml is most


omplete and mature, whereas on the 
ontrary the one towards S
heme is still experimental.

There are three prin
ipal reasons for the use of su
h external target languages:

• First of all, the 
erti�ed 
ode produ
es 
an more easily be integrated in broader de-

velopments. This is made possible by the produ
tion of readable interfa
es

8

. One 
an

for example obtain one autonomous program by adding to extra
ted 
ode a manually-

written part for managing inputs and outputs (see examples of 
hapter 5). It is also

possible to develop a 
erti�ed extra
ted library, whi
h 
an be re-used thereafter in

multiple proje
ts. For example, the 
hapter 7 presents the formalization of a library of

�nite sets. This way, a broad 
ommunity of programmers 
an pro�t from the extra
-

tion, in
luding Coq non-users.

• Se
ondly, the use of su
h external languages allows substantial speed gains. As it

was previously said, one Coq proof 
an be dire
tly seen as a program. And its dire
t

exe
ution in Coq is possible via βδιζ-redu
tion (
f. for example the 
ommand Eval


ompute). But during this exe
ution, Coq behaves primarily like an interpreter. And it

is well known that this is mu
h less e�
ient than the use of a 
ompiler. A natural idea is

then to use already existing and widespread 
ompilers, like those for O
aml or Haskell.

It should be noted however that the internal redu
tion in Coq is 
urrently improving:

B. Grégoire worked at the implementation a 
ompiler for the Coq terms [39, 40℄. But

this 
ompiler 
annot ignore as mu
h logi
al parts as the extra
tion, be
ause it must

be able to to work with un
losed terms and to redu
e under lambdas. And this, mixed

with elimination with 
ertain logi
al parts, 
an lead to not-termination (see part 2.3.2).

• Lastly, a pragmati
 reason for this 
hoi
e in favor of external target languages is the

impossibility of writing ba
k some extra
ted terms in Coq. We saw that in the be-

ginning, the work of C. Paulin on Coq extra
tion was using a internal intermediary

step This idea is also found in internal extra
tion of P. Severi & N Szasz [76℄. But

the theoreti
al system 
urrently used in Coq di�ers appre
iably of those used in these

8

In pra
ti
e, we even try to also produ
e sour
e 
ode that is as readable as possible.
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studies. And the same enri
hments that we have seen 
alling into question the 
orre
t-

ness of the old extra
tion, also prevent from realizing hen
eforth a 
omplete internal

extra
tion. In parti
ular, Coq now a

epts the de�nition of informative �xpoints based

on a logi
al de
reasing measure. So is de�ned for example the the a

essibility relation

A

 and of its asso
iated �xpoints A



_

re
 and A



_

iter that we will study later.

An internal extra
tion of these terms would then lead to �xpoints without de
reasing

measure, and thus potentially to non-strongly normalizing terms (see an example in

se
tion 2.3.2). However su
h obje
ts with in�nite redu
tion are pros
ribed in Coq.

A 
ontrario, it is obvious that the use of a target internal language simpli�es greatly the

justi�
ation of the extra
tion 
orre
tness. Indeed, starting from a (not ne
essarily formal)

proof of 
orre
tness by realizability of an internal extra
tion, one 
an then easily implement

a pro
edure whi
h builds expli
itly, in addition to the extra
ted term, the proof that this

parti
ular extra
ted term realize indeed its spe
i�
ation. Su
h tools of automati
 generation

for parti
ular 
orre
tness proofs have been implemented in parti
ular in Minlog and Isabelle.

Of 
ourse, having a external extra
tion does not ex
lude the 
reation of a formal 
orre
tness

proof. But a stage should then be added to the pro
ess, namely a formalization of our target

language semanti
s, in order to be able to express the adequa
y between the extra
ted term,

this semanti
s and the initial spe
i�
ation. For la
k of time, this 
orre
tness proof have only

be made on paper during this work, and is the subje
t of 
hapter 2.

It should be noted that these two systems are not 
onfronted with the problems 
oming

from the ri
hness of Coq logi
. In parti
ular, the extra
ted fun
tions in Minlog are typable

in Gödel's system T, and one 
annot obtain by extra
tion any non-stru
tural (but well-

founded) indu
tions or any other obje
t that prevent an Coq internal extra
tion. One must


hoose between a ri
h logi
 and a 
omplex but expressive extra
tion on the one hand, and

a more minimal logi
 and a simple extra
tion on the other hand.

Moreover, S. Berghofer also mentions in [14℄ the possibility of generating true ML 
ode

starting from its internally extra
ted terms. This step, even if it may seem obvious be
ause

of the proximity between his internal terms and the ML syntax, must nevertheless be made

with the greatest 
aution. One 
an indeed make a parallel with the generation of Fω internal

terms in the old Coq extra
tion, and their later translation towards ML in an informal step.

We have indeed just seen that this 
ould end with extra
ted terms whose stri
t evaluation

fails, in spite of one result of 
orre
tness on the Fω level.

Finally, in Nuprl, the extra
tion also produ
ed an internal λ-term, that 
an be redu
ed

by using an internal redu
tion ma
hine inside Nuprl. But it does not seem 
urrently that the


orre
tness proof of an extra
ted λ-term 
an be obtained automati
ally.

Summary

This work begins with a progressive introdu
tion to the Coq proof assistant. The �rst

part of the 
hapter 1 presents via examples the prin
ipal features of this system, and in

parti
ular those whi
h in�uen
e the extra
tion. The se
ond part of this 
hapter exposes

more formally the Ci
, whi
h is Coq's underlying theoreti
al system.

After this brief review of Coq and Ci
, we start a �rst half of this manus
ript dedi
ated
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to the presentation of our new extra
tion. The 
hapter 2 �rst of all present our redesign of

the extra
tion fun
tion E for terms, and 
omplementary two proofs of its 
orre
tness. The

�rst proof is a synta
ti
 proof stating that redu
tion of extra
ted terms 
annot not fail, the

se
ond proof is a semanti
 proof ensuring the 
orre
tness of extra
ted terms with respe
t to

theirs spe
i�
ations.

The 
hapter 3 is then dedi
ated to the typing of the extra
ted terms. We start by studying

in detail whi
h kind of non-typability the extra
ted terms may presents in a ML-like typing

system, then we propose a solution for skirting these di�
ulties.

Lastly, the 
hapter 4 supplements the des
ription of our new extra
tion by presenting

the last aspe
ts of our work: extra
tion of modules, of 
o-indu
tive types, of re
ord types,

and lastly optimization of the extra
ted 
ode. Finally we brie�y present the implementation


arried out, from both developer's and user's point of view.

The 
hapter 5 starts the se
ond half of the manus
ript, devoted to 
ase studies. In this


hapter, we �rst review the users 
ontributions from the point of view of extra
tion, these

users 
ontributions forming an already 
onsequent library of examples of Coq developments.

Then we detail the 
ase of two of these 
ontributions, whi
h put at fault the old extra
tion:

the �rst on ex
eptions by 
ontinuations, due to J.-F. Monin, and the se
ond on Higman's

lemma, by H. Herbelin.

The 
hapter 6 gives a progress report on an ambitious proje
t 
onsisting in developing a

library of arithmeti
 real exa
t by extra
tion of a development of 
onstru
tive real analysis.

The development in question is the C-CoRN proje
t at the university of Nijmegen. We will

see that one is still far from the goal, but that at the same time enormous progress were

already a

omplished. In addition, we present a small alternative experimentation around


onstru
tive reals made in 
ollaboration with H. S
hwi
htenberg.

Lastly, the 
hapter 7 presents the 
erti�
ation of the O
aml library of �nite sets whi
h we


arried out in 
ollaboration with J.-C. Filliâtre. This development is one of �rst to 
ombine

modules, fun
tors and extra
tion.
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Synta
ti
 
onventions

Throughout this do
ument, fragments of sour
e 
ode given in example will be highlighted

as follows:

Definition zero := 0.

The 
ontents of these fragments 
ould be in Coq, O
aml or Haskell a

ording to the example.

The short examples will be mentioned with only font 
hange, su
h as (plus 0 0).

Some examples will also show user's intera
tions with Coq :

Coq < Eval 
ompute in 1+1.

= 2

: nat

We reuse here the syntax of the old 
oqtop text interfa
e: the lines pre
eded by the prompt

�Coq <� 
orrespond to user's inputs, whereas the other lines are Coq outputs. In the same

way, the examples of use of O
aml intera
tive loop will be presented as follows, with the


hara
ter �#� as prompt:

# 1+1;;

- : int = 2

The Coq examples are intended to be used with Coq version 8.0 or later [78℄. It should

be noted that this version inaugurates a new syntax, mu
h more pleasant. Beyond the use

of this new syntax, we also have improved the readability of examples using some re
ent

advan
ed features of the system:

• Some original ASCII keywords were repla
ed by theirs Uni
ode equivalents

9

:

forall exists -> <-> <> ~ /\ \/ <=

∀ ∃ → ↔ 6= ¬ ∧ ∨ ≤

• We used the most readable syntax for arithmeti
 expressions, for example 0+1 instead

of (plus O (S O)), as allowed by the S
ope me
hanism.

• When the type of a quanti�
ation 
an be dedu
ed from the 
ontext, Coq now authorizes

its omission. We sometimes use this possibility.

9

This 
an indeed be done in Coq, via the Notation 
ommand and the use of an Uni
ode-
ompatible

interfa
e, su
h as CoqIDE [78℄ for example.



14 Certi�ed fun
tional programming



Chapitre 1

A presentation of Coq

This 
hapter has a double goal:

• First of all, the reader dis
overing the Coq proof assistant will �nd here a qui
k des-


ription of this system, and more parti
ularly its underlying logi
al system, namely

the Cal
ulus of Indu
tive Constru
tions (Ci
 in summary). Ideally, the only require-

ment for reading this part is a basi
 knowledge in type theory and in λ-
al
ulus. Of

ourse, this 
hapter does not intend to repla
e the do
umentation 
oming with Coq.

The reader may thus 
onsult as well:

� the Tutorial [47℄ for a more gradual introdu
tion,

� the Referen
e Manual [78℄, and in parti
ular its 
hapter 4 on the Ci
, for an

exhaustive formal des
ription of Coq.

• At the same time, this presentation of Coq is of 
ourse 
entered on the extra
tion.

Even if this extra
tion is introdu
ed only in the following 
hapter, we will detail here

all the features the Ci
 logi
al system that will in�uen
e the extra
tion.

1.1 An introdu
tion via examples

1.1.1 Coq as a logi
al system

The obje
tive goal of Coq is to be an proof assistant, and thus to allow the formalization

of mathemati
al reasoning. Let us take an obvious statement: A → A, where A is one

unspe
i�ed proposition. Here is a proof in natural dedu
tion (
f [71℄):

A ⊢ A
(Ax)

⊢ A→ A
(→I)

This proof 
an be dire
tly trans
ribed in the Coq system. First, one is given a proposi-

tional variable.

Parameter A : Prop.

We will detail later this Prop, but here one 
an 
onsider it simply as the set of all logi
al

propositions.
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Lemma easy : A → A.

Proof.

intro.

assumption.

Qed.

This portion of Coq s
ript starts with the name and the statement of our lemma. Then

between the keywords Proof and Qed is the proof of this statement, made of dire
tives or

ta
ti
s. These ta
ti
s re�e
t here the stru
ture of the natural dedu
tion proof. The intro

ta
ti
 
orresponds to the use of introdu
tion rule for the arrow (→I). And the assumption

ta
ti
 
orresponds to the axiom rule (Ax).

The s
ript presented here is 
omplete, but the system Coq, by its intera
tive nature,

allows to build this proof step by step. Thus, if one stops after the order intro, the system

prints the 
urrent state of the goal(s) to prove:

1 subgoal

H : A

============================

A

Here we have to �nd a proof of A under the assumption A (this assumption being named H).

Many interfa
es exist to fa
ilitate this intera
tion with the Coq system, su
h as Proof-general

[4℄, P
oq [3℄, or more re
ently CoqIDE [78℄. Sin
e the extra
tion works on �nished proof, we

will not detail more this 
on
ept of intera
tion.

It should also be noted that Coq provides to the user a large variety of ta
ti
s. Here for

example, for a statement that simple, the automati
 resear
h ta
ti
 auto would have been

able to build the proof dire
tly. There again, we will not detail these ta
ti
s. Indeed, the

extra
tion does not depend on the way followed during the proof building, but only on the

�nal form of the proof. In fa
t, auto builds here the same internal proof that intro followed

by assumption.

Proofs as λ-terms

What is this internal representation of the proof? The system uses in fa
t λ-terms,

following the Curry-Howard isomorphism. The underlying logi
al system of Coq, the Ci
,

is indeed a λ-
al
ulus with a powerful type system. And always in appli
ation of the Curry-

Howard isomorphism [46, 7, 38℄, the statements that 
an be expressed in Coq are the Ci


types. Lastly, to 
he
k if t is indeed a valid proof of the statement T, we only have to


he
king if the type T is a legal type of the λ-term t.

Let us ask Coq whi
h is the internal representation of the lemma easy:

Coq < Print easy.

easy = fun H : A ⇒ H

...

/

...
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...

/

...

: A → A

The syntax fun x:X ⇒ T is the Coq notation for the typed λ-abstra
tion λx:X.t. This
abstra
tion is here the e�e
t of the intro ta
ti
. As for assumption, its e�e
t is the use

of a variable in the 
ontext, here H. In a more general way, any ta
ti
 
ontributes to build

pie
e by pie
e the 
omplete λ-term of the proof. And �nally, it is 
lear that fun H:A ⇒ H

is indeed of type A→A.

These proofs in the form of λ-terms are usually handled only by the system. But nothing

prevents the user to provide whole or part of its proof in this form, for example via the

exa
t ta
ti
.

Lemma easy : A → A.

Proof.

exa
t (fun a ⇒ a).

Qed.

One 
an noti
e here that Coq is able to infer the type of a, whi
h is ne
essarily A. It is
hen
e optional to write this type. We will frequently use this possibility thereafter.

Finally, if the 
omplete λ-term is known in advan
e, we 
an write it dire
tly in the form

of a Definition:

Definition easy : A → A := fun a ⇒ a.

Alternatively, one 
an also use a de�nition style where arguments are named during the

de
laration of the type, making useless the writing of the head λ-abstra
tions :

Definition easy (a:A) : A := a.

This style is 
ertainly more 
on
ise, but not ne
essarily more readable. We will thus avoid

it, ex
ept in the 
ase of the re
ursive fun
tions where it is essential (
f. lower).

The higher order

Up to now, the only basi
 type A we met had been �xed as a parameter, and the statement

of the lemma easy related to this parti
ular A. But one 
an also 
onsider in Coq statements

(that is types) speaking of sets of types. For example ∀A:Prop, A→A is a statement (i.e. a

Coq type) that reads: �for any proposition A (that is obje
t A belonging to the type Prop), A

implies A�. Su
h a universal typed quanti�
ation ∀x:X, T is also named produ
t in Coq. This

quanti�
ation not being restri
ted, the Ci
 is thus a higher order logi
. One also speaks of

dependent types, sin
e generally the body T of the produ
t depends on the variable x in the

head of the produ
t.

What 
an be the proof of the statement ∀A:Prop, A→A? The introdu
tion of the �forall�


onsists in pi
king an unspe
i�ed obje
t in the domain, and then 
arrying out the rest of the

proof with this obje
t. On the λ-
al
ulus level, this results in one λ-abstra
tion: in response

to a statement ∀A:Prop, ..., the proof will thus begin with fun A:Prop ⇒.... The rest

of the proof is then the same one as the one of our easy lemma, whi
h �nally gives us the


omplete λ-term fun A:Prop ⇒ fun a:A ⇒ a, or simply fun (A:Prop)(a:A) ⇒ a.
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It is noti
eable that the λ-abstra
tions are used at the same time for building the proof

of produ
ts and arrow types. This is no 
oin
iden
e, one 
an indeed see a arrow type A→B as

a non-dependent produ
t ∀x:A, B for whi
h x does not appear in B. In fa
t, in Coq, syntax

A→B is dire
tly synta
ti
 sugar for ∀_:A, B.

1.1.2 Coq as a programming language

One 
an also approa
h Coq via the other side of Curry-Howard isomorphism, and look at

the Ci
 not as a logi
al system, but more as a λ-
al
ulus, that is a programming language.

For example, with this vision, our easy lemma is the identity fun
tion on the type A.

Some standard indu
tive datatypes

For 
onsidering Coq as a programming language, it is ne
essary for us to be able to

de�ne the datatypes that one usually meet in other programming languages. The de�nition

of these datatypes 
an be made easily in Coq via the use of indu
tive types. All indu
tive

types that we present in this 
hapter belong to the standard library of Coq.

The boolean type is obtained via the following de
laration:

Indu
tive bool : Set := true : bool | false : bool.

This de
laration 
reates a new type, named bool, with two 
onstru
tors true and false of

type bool. The Set annotation indi
ates what should be the type of the bool type. We will

re
onsider this point thereafter; meanwhile Set 
an be seen as the set of all datatypes. In

the same way, one de�nes the Peano integers this way:

Indu
tive nat : Set := O : nat | S : nat → nat.

The 
onstru
tor O 
odes for zero, and S 
odes the su

essor fun
tion. A last usual example

is the one of parametri
 lists:

Indu
tive list (A:Set) : Set :=

| nil : list A

| 
ons : A → list A → list A.

Here, the syntax (A:Set) expresses the fa
t that list depends on one parameter A. And

for ea
h use of this data stru
ture, the parameter will be provided as an argument, a list of

integers being for example list nat.

It should be noted that the system refuses 
ertain indu
tive types whose de�nition is

synta
ti
ally valid. These restri
tions, whi
h ensure the 
oheren
e of the system from the

logi
al point of view, 
onsist mainly in a positivity 
ondition. The interested reader may


onsult the 
hapter 4 of [78℄ or even [68℄.

Pattern mat
hing over indu
tive terms

To take advantage of these indu
tive types, the Ci
 is equipped with a primitive operator

allowing pattern mat
hing, whose syntax is mat
h... with.... This allows for example to
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de�ne the prede
essor of an integer.

Definition pred : nat → nat :=

fun n ⇒
mat
h n with

| O ⇒ O

| S m ⇒ m

end.

The primitive mat
hing of Coq is a simple, �rst level only mat
hing:

• Ea
h bran
h 
orresponds to a 
onstru
tor and only one.

• In the bran
h 
orresponding to the 
onstru
tor C, the pattern mat
hed is inevitably

the appli
ation of C to variables.

In addition to this primitive mat
hing, we 
an also in Coq de�ne more 
omplex mat
hings,

as in this double prede
essor:

Definition predpred : nat → nat :=

fun n ⇒
mat
h n with

| S (S m) ⇒ m

| _ ⇒ O

end.

We will not detail these 
omplex mat
hings, whi
h are in fa
t translated at the internal Coq

level into a su

ession of primitive mat
hings. Our double prede
essor is thus the 
ombination

of two simple prede
essors.

Lastly, let us mention to be 
omplete that the syntax mat
h... with a

epts additional

annotations via the keywords as, in and return. These annotations are almost always

optional. But in 
ertain situations Coq does not know how to infer automati
ally a type for

the whole mat
hing, or does it badly. These additional annotations allow to provide expli
itly

this type. We will en
ounter this situation later on, for example in the term A



_

inv (see

se
tion 1.1.4).

The stru
tural indu
tion

The last primitive 
onstru
tion of the Ci
 is the possibility of to de�ne a term by

stru
tural indu
tion on an indu
tive obje
t. In its simplest version, this stru
tural indu
tion


orresponds to the Fixpoint syntax. Let us de�ne for example the addition of two unary

integers:

Fixpoint plus (n m:nat) {stru
t n} : nat :=

mat
h n with

| O ⇒ m

| S n' ⇒ S (plus n' m)

...

/

...
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...

/

...

end.

The 
omplete type nat→nat→nat of plus is here divided between two named arguments n

and m on a side of the �:� and one result nat of the other. This makes it possible to spe
ify

via stru
t on whi
h indu
tive argument will be made the indu
tion. One speaks then of

�guard� indu
tive argument, or �de
reasing� indu
tive argument. Another possible 
hoi
e of

presentation would have been to draw aside only the �rst argument, whi
h is then impli
itly

the �guard� argument, and to leave as result type nat→nat:

Fixpoint plus (n:nat) : nat → nat := fun m ⇒
mat
h n with

| O ⇒ m

| S n' ⇒ S (plus n' m)

end.

A re
ursive de�nition is a

epted only if any internal re
ursive 
all is done on a re
ursive

argument whi
h is stru
turally smaller that the initial re
ursive argument. Here for example

n' is indeed a subterm of n. One will �nd a more pre
ise de�nition of this �stru
turally

smaller� in [78℄. The reason for this 
onstraint is, there again, the logi
al 
oheren
e. Without

this 
ondition on re
ursive 
alls, it would be very easy to build terms of any type A:

Fixpoint loop (n:nat) : A := loop n.

Definition impossible : A := loop 0.

The logi
al system would be then in
oherent.

In fa
t, the syntax Fixpoint is not the most general one, be
ause it de
lares the name

of the fun
tion immediately, and does not allow re
ursive anonymous fun
tion. In parti
ular

one 
annot imbri
ate one Fixpoint in another. Su
h a anonymous �xpoint 
an be de�ned

in Coq via the syntax fix. Here an alternative de�nition of plus using this syntax:

Definition plus :=

fix plusre
 (n m:nat) {stru
t n} : nat :=

mat
h n with

| O ⇒ m

| S n' ⇒ S (plusre
 n' m)

end.

On Coq internal level, these two de�nitions of plus are identi
al. In fa
t, Fixpoint is only

synta
ti
 sugar for a Definition followed by a fix, as a Print plus 
an show. A typi
al

example of use for an anonymous fix is the merge of two sorted lists, that 
an be found for

example p.193 in one of the implementations of �nite sets.

The term redu
tion

The prin
ipal interest of a programming language is to be able to exe
ute the programs.

This is possible with Coq. Its logi
al system Ci
 is indeed equipped with redu
tions rules:
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(beta) Ci
 being basi
ally a λ-
al
ulus, one obviously �nds the β-redu
tion

(delta) As this system authorizes the addition of new 
onstants (via Definition, Lemma, et
),

a rule of redu
tion named δ allows to repla
e a 
onstant name by the body of this


onstant.

(zeta) Coq now in
ludes primitive �let-in�, that is lo
al abbreviations let x:=t in U. A sys-

tem rule named ζ allows to unfold these abbreviations, by repla
ing x by t everywhere

in u.

(iota) The system also in
ludes two rules dedi
ated to indu
tive types, both named ι. The
�rst rule allows to redu
e a mat
hing, if the mat
hed term starts with a 
onstru
tor.

By example, mat
h S N with O ⇒ O|S m ⇒ m end 
an be redu
ed to n. The other

rule related to indu
tive is the one 
an redu
e a re
ursive fun
tion, as soon as its guard

re
ursive argument is present and that it starts with a 
onstru
tor.

These redu
tions 
an be used in Coq at any time, for example via the 
ommand Eval


ompute

1

:

Coq < Eval 
ompute in pred (plus 2 2).

= 3

: nat

These 
omputations in Coq have very strong properties in 
omparison with exe
utions

in more usual programming languages:

(i) First of all, the Coq redu
tion is a strong redu
tion, that is allowed at any pla
e, even

under a lambda or in the body of a re
ursive fun
tion. For example:

Coq < Eval 
ompute in fun n ⇒ plus 1 n.

= fun n : nat ⇒ S n

: nat→nat

In 
omparison, the majority of usual languages freeze the body of fun
tions, to redu
e

them only when all waited arguments are present.

(ii) Then, any redu
tion Coq is �nite. This property is named strong normalization. Star-

ting with a given term, any 
hain of redu
tions thus leads in a �nite number of steps to

a normal form, that is a non-redu
ible term. This results from the multiple 
onstraints

required before a term is a

epted as valid in the Ci
, as well as the former 
onstraints

on ι-redu
tions. On the 
ontrary, in the immense majority of languages, it is very simple

to write a not-terminating program.

(iii) In addition, Coq also satis�es the 
on�uen
e property: if one 
onsiders two redu
ed

of the same term, there exist two derivations of these two terms towards a 
ommon

redu
ed term. This, asso
iated with (ii), allows to show that for ea
h initial term there

exists in fa
t one and only one normal form. One is thus sure to obtain it in �nite

time, in whatever order the 
omputations are made. This property is for example not

1

The syntax 2 is by default translated into S (S O), and so on for the other numbers. The new S
ope

me
hanism [78℄ allows to 
hange this translation a

ording to needs (Z, R...).
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satis�ed by languages with side e�e
ts, in whi
h evaluation order 
an in�uen
e the

result.

The 
ounterpart of these strong meta-theoreti
al properties is a 
ertain la
k of expres-

sivity of Ci
 
onsidered as a programming language. It is indeed impossible to speak there

dire
tly of partial fun
tions, that is non everywhere de�ned. It is also impossible to de�ne

dire
tly a general, non-stru
tural, re
ursive fun
tion. In fa
t we will see later how to 
ir-


umvent these two limitations, respe
tively via the use of pre-
onditions and well-founded

indu
tion operators.

1.1.3 The universes of Ci


We now approa
h the mysteries of Coq that form the 
ore of the extra
tion me
hanism,

namely the univers or sorts of Coq. It should be known that there is no Coq synta
ti


distin
tion between the basi
 terms (like 0) and the types (like nat). In both 
ases, they

are terms of the Ci
. However any term of the Ci
 has a type, whi
h is again a term of the

Ci
. One 
an thus wonder how looks a type of a type, or a type of a type of a type. Let us

ask the system:

Coq < Che
k 0.

0

: nat

Coq < Che
k nat.

nat

: Set

Coq < Che
k Set.

Set

: Type

Coq < Che
k Type.

Type

: Type

Here appear Set and Type, whi
h with Prop are three spe
ial obje
ts of Coq named sorts.

And these sorts will have a 
lose relationship with types of types in the system:

• First of all, it is 
lear that Set and Type are types of types (of 0 and nat respe
tively).

As for Prop, it is enough to de�ne an indu
tive type in Prop, whi
h 
an be done

similarly to de�nition (already seen) of indu
tive types in Set :

Indu
tive True : Prop := I : True.

Prop is then the type of the type of the 
onstru
tor I.

• In addition, a property of the Ci
 states that all type of type 
an be redu
ed towards

Set, Prop or Type.

Lastly, to be 
omplete, let us note that the type of Prop is Type.
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The Type universe

Let us �rst examine the Type sort. It is a strange obje
t who seems to be his own type.

If a set-theoreti
 vision is taken, that 
orresponds to a set of sets 
ontaining itself, whi
h

leads to Russel paradox. Even if this set-theoreti
 vision is here imperfe
t, it is nevertheless

true that Type:Type allows to prove the in
onsisten
y of the system [20℄. A remedy is then

to take an in�nite hierar
hy of sorts. In Coq, the Type sorts are impli
itly subs
ripted by an

integer, and for any index i one has: Typei :Typei+1. From the point of view the extra
tion,

we will not need to distinguish among this in�nity of sorts, and we will thus remain on the

level of the approximation Type:Type.

Classi�
ation of universes

One 
an then ask for the reason of the presen
e of three sorts when only one, Type, 
ould

have been enough. Two independent 
riteria allow in fa
t to distinguish these three sorts:

• the predi
ative or impredi
ative nature

• the logi
al or 
omputational nature (we will also say informative).

We now detail these two 
riteria su

essively. But before that, here how the Coq sorts are

lo
ated with respe
t to these two 
riteria. Until version 7.4 of Coq, the situation 
ould be

summarized by the following diagram:

imprédi
atif predi
ative


al
ulative Set Type

logi
 Prop

As from version 8.0, the Set sort is now by default predi
ative, whi
h gives us the new

following diagram:

imprédi
atif predi
ative


al
ulative Set, Type

logi
 Prop

Impredi
ativity

Even if the (im)predi
ative nature does not in�uen
e dire
tly the extra
tion, we never-

theless will try to illustrate this 
on
ept. For an impredi
ative sort like Prop, one authorizes

the 
reation of an element of Prop via an universal quanti�
ation on all elements of Prop

(and thus in parti
ular on this new element 
urrently being de�ned). For example, we have

already met the identity type on Prop :

Definition typeId : Prop := ∀A:Prop, A → A.

On the other hand, it is not possible to de�ne the same term with predi
ative sort Type

instead of Prop. That apparently works, but this is only an appearan
e, sin
e the impli
it

indi
es of the two Type o

urren
es are in fa
t di�erent:

Definition typeId' : Typei+1 := ∀A:Typei, A → A.
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The problem is even more obvious with Set and Coq 8.0. The following de�nition:

Definition typeId'' : Set := ∀A:Set, A → A.

generates an error explaining that typeId'' is of type Type and not Set.

As mentioned previously, version 8.0 of Coq now has by default a predi
ative Set sort.

In fa
t, a 
ommand line option for Coq 8.0 allows to return to the previous situation. In

all the following, we use the default situation for Coq 8.0, namely with predi
ative Set,

ex
ept otherwise mentioned (see by example the study of Higman's lemma in se
tion 5.4).

Anyway, the theoreti
al study of extra
tion that follows is independent of this question of

impredi
ativity. We will thus keep on speaking of Ci
 for one or the other logi
al system

obtained with or without the impredi
ativity of Set, even if the o�
ial name for the system

without impredi
ativity is now pCi
 (for �Predi
ative Cal
ulus of Indu
tive Constru
tions�).

Logi
al and informative universes

The other distin
tion between sorts relates to their logi
al or 
omputational nature.

First, we have initially a simple usage 
onvention 
on
erning Prop and Set :

• Set is intended to 
ontain all the obje
ts having 
omputational 
ontents, in parti
ular

the previously 
onsidered examples of usual datatypes for the programmer.

• The role of Prop, on the 
ontrary, is to 
ontain everything related with pure logi
,

su
h as for example the various justi�
ations, pre- and post-
onditions, in other words

everything that 
an be ignored during 
omputations.

The user thus 
hooses at the time of the de�nition of an obje
t whether to pla
e it in Prop

or another sort. And this 
hoi
e will be used by the extra
tion, whi
h will ignore the logi
al

parts pla
ed in Prop.

With respe
t to the logi
/
omputational duality, Type plays an ambiguous role. In par-

ti
ular, Ci
 
ontains a 
umulativity prin
iple, whi
h allows to state that if t:Set, then one

also has t:Type, and similarly if t:Prop, then one also has t:Type. Let us 
onsider the

identity on Type :

Definition id : ∀X:Type, X → X := fun (X:Type) (x:X) ⇒ x.

The 
umulativity ensures that the following terms are well-typed: (id Set nat) or (id nat

O) or (id Prop True) or �nally (id True I). By the 
umulativity, 
ertain terms of sort

Type are thus in fa
t logi
al be
ause originally belonging to Prop, and others are 
omputa-

tional. In doubt, we must then 
onsider that the obje
ts in Type 
an have 
omputational


ontents. This explains that on the extra
tion level, Set and Type will not be distinguished.

The logi
al indu
tive types

Con
erning the logi
al operations, we have only presented yet the impli
ation and the

universal quanti�
ation. Let us now see how to de�ne the other usual logi
al operators via

indu
tive types in Prop. We have already met True, with its single 
onstru
tor I. At the

logi
al level the statement True admits thus an immediate proof, whi
h is simply I. On
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the 
ontrary, False is an indu
tive type without 
onstru
tor, and is thus not provable in a

empty 
ontext (the opposite would have as a 
onsequen
e the in
onsisten
y of the system).

Indu
tive False : Prop := .

The negation ¬A is then de�ned as A→False.

The logi
al 
onne
tors or and and are de�ned as follows:

Indu
tive or (A B:Prop) : Prop :=

| or_introl : A → or A B

| or_intror : B → or A B.

Indu
tive and (A B:Prop) : Prop := 
onj : A → B → and A B.

One will meet these two indu
tive with Coq syntaxes ∧ and ∨.
Here is now the existential quanti�
ation:

Indu
tive ex (A:Type)(P:A→Prop) : Prop :=

ex_intro : ∀x:A, P x → ex A P.

The Coq syntax for this existential is ∃x:A, P (or ∃x, P if A 
an be infered).

Finally the equality 
orresponds to indu
tive having only one 
onstru
tor that simulates

the re�exivity:

Indu
tive eq (A:Type)(x:A) : A → Prop := refl_equal : eq A x x.

The equality will be noted =, and the di�eren
e (that is the negation of the equality) will

be noted 6= .

Thanks to pattern mat
hing, one 
an prove the usual (intuitionisti
) properties of all

these logi
al operators. Here is one example:

Definition proj1 : ∀A B:Prop, A∧B → A :=

fun (A B:Prop)(ab:A∧B) ⇒ mat
h ab with (
onj a b) ⇒ a end.

The elimination rules for indu
tive types

In fa
t, the di
hotomy between Prop used as logi
al sort and Set used as 
omputational

sort is more than just a matter of usage 
onvention. Rules authorizing or not the elimination

of an indu
tive term (that is a mat
hing on this term) di�er indeed a

ording to the sort

of this indu
tive term. If it is Prop, then this elimination 
an only be used to build a

term in Prop. On the other hand, one authorizes eliminations of indu
tive on Set and

Type to build terms of all sortes

2

. the idea is that a logi
al indu
tive, therefore without


omputational 
ontents, 
annot in�uen
e a 
omputation in Set or Type. And the Ci
 typing

system guarantees this property. Let us examine the following example:

2

When Set is impredi
ative, there exists however a restri
tion on the elimination of 
ertain indu
tive in

Set : they must be small before being authorized to build a term of sort Type (
f se
tion 4.7 of [78℄)
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Definition or_
ara
 : ∀A B:Prop, A∨B → nat :=

fun A B ab ⇒
mat
h ab with

| or_introl _ ⇒ 0

| or_intror _ ⇒ 1

end.

If this example were legal, to know if an appli
ation of or

_


ara
 is redu
ed into 0 or 1, the


ontents of the logi
al proof A∨B would have to be 
al
ulated, whi
h one wants pre
isely to

avoid. The response of the system to this de�nition attempt is:

Error: In
orre
t elimination of ab in the indu
tive type or.

The elimination predi
ate fun _:A∨B ⇒ nat has type A∨B → Set.

It should be one of : Prop.

Elimination of an indu
tive obje
t of sort : Prop

is not allowed on a predi
ate in sort : Set

be
ause non-informative obje
ts may not 
onstru
t informative ones.

There are nevertheless two ex
eptions allowing the elimination of one indu
tive on Prop

in order to build an informative term. In these two 
ases, the form of indu
tive ensure that

its mat
hing brings no 
omputational information.

• The �rst 
ase is the one of an empty logi
al indu
tive, that is without 
onstru
tor, like

False. This elimination of False 
orresponds to the �ex-falso quodlibet� prin
iple: if

we have one term of type False, this implies that we are in a 
ontradi
tory 
ontext,

and we are then authorized to 
onstru
t a term of any type.

Definition False_re
t: ∀A:Type, False → A :=

fun (A:Type) (f:False) ⇒ mat
h f with end.

• The se
ond ex
eption deals with the logi
al singleton indu
tive. They are logi
al in-

du
tive with only one 
onstru
tor, and this only 
onstru
tor does not have informative

arguments. One 
an give as example and, and espe
ially eq. Having a term in su
h

indu
tive types does not bring any 
omputational 
ontent, sin
e one knows inevitably

whi
h is the 
onstru
tor of this term, and the arguments of this 
onstru
tor are again

without 
omputational 
ontents. Here follows for example the informative indu
tion

prin
iple asso
iated with eq, whi
h in fa
t des
ribes how to get from (P y) to (P x)

when it is known that x=y:

Definition eq_re
t: ∀A:Type, ∀x:A, ∀P:A→Type, P x → ∀y:A, x=y → P y

:= fun (A:Type)(x:A)(P:A→Type)(f:P x)(y:A)(e:x=y) ⇒
mat
h e with refl_equal ⇒ f end.

This prin
iple and its logi
al sibling eq

_

ind are the basis of the rewrite ta
ti
 of

repla
ement of terms by equal terms. By the way, it should be noted that these in-
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du
tion prin
iples ...

_

re
t and ...

_

ind are generated automati
ally by Coq when

the 
orresponding indu
tive type is de�ned.

1.1.4 Prop/Set mixed terms

Until now, we have seen how to use the Ci
 as a programming language, and how to


al
ulate with terms written with this Ci
. One may wonder then why we need an automati


me
hanism for extra
tion of programs starting from Ci
 terms, sin
e we now that su
h a

term is already a program? It is indeed true that the extra
tion of purely 
al
ulative terms

is only one problem of translation

3

of a sour
e language (Ci
) towards target languages

(O
aml or Haskell). But the things get more 
omplex (and more intersting) when we 
onsider

mixed terms, with logi
al and informative parts interla
ed. The use of this style of terms,

allowed by the Ci
, is very 
onvenient in many situations. One 
an in parti
ular enri
h a

informative term with pre- and post-
onditions, or use a well-founded indu
tion for justifying

the de
rease of a measure at ea
h re
ursive 
all of a �xpoint.

Pre-
onditions

In addition to the natural need to express a spe
i�
ation of fun
tions in the pre- and

post-
onditions form, the logi
al pre-
onditions also bring a solution to the problem of partial

fun
tions de�nition. Let us 
onsider, for example, an integer division fun
tion div of type

nat→nat→nat, whi
h is not de�ned when its se
ond argument is zero. There are then (at

least) three ways of pro
eeding:

(i) One 
an nonetheless de�ne (div N O), using one arbitrary value, for example O. The

problem is that a integer division 
an return O either as a legitimate result, or as mark

of an abnormal situation. One 
annot thus prove the following lemma any more:

Lemma div_gives_zero : ∀n m:nat, (div n m)=0 → n<m.

(ii) the se
ond solution is to simulate a ex
eptions me
hanism. That 
an be done by exten-

ding the output domain nat into a nat⊥, as is domain theory. Rather than modifying

all the types used, there is one generi
 method, namely the use of an indu
tive option:

Indu
tive option (A:Set) : Set :=

| Some : A → option A

| None : option A.

Thus, div will turn over None if its se
ond argument is O, and (Some r) if not, r

being then the true result of the 
omputation. The disadvantage of this method is the

heaviness of this en
oding: for ea
h use of a division, it will be ne
essary to 
arry out

one mat
hing for either rea
hing the true result, or again to turn over None.

3

We will see in fa
t that even this translation is not so simple, sin
e the type system of Ci
 is mu
h

more powerful than the ones of the fun
tional target languages.
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(iii) the last possibility is to express the fa
t that the se
ond argument must be non-null

via a logi
al pre-
ondition. The type of div then be
omes nat→∀n:nat, n6=O→nat.

The type of the se
ond argument is not given any more via an arrow type, that is an

anonymous produ
t, but by a named produ
t (by n) in order to be able to refer to

it in the logi
al assertion. It is the method whi
h approa
hes the most the 
on
ept of

partial de�nition. Indeed the fun
tion div is not de�ned outside the validity domain

of the logi
al assertion. The 
ounterpart is that one must now provide a logi
al proof

of non-nullity as third argument during ea
h 
all to div.

Coq < Lemma two_non_zero : 2 6=0. auto. Qed.

two_non_zero is defined

Coq < Eval Compute in (div 3 2 two_non_zero).

= 1

: nat

Post-
onditions

In addition to pre-
onditions, it is also possible to express logi
al post-
onditions, and

hen
e 
ombining both pre- and post-
onditions allows to give the spe
i�
ation of a fun
tion

in a Hoare-like style [45℄. Thus a fun
tion of type A → B, pre-
ondition P and of post-


ondition Q 
orresponds to a 
onstru
tive proof of the formula:

∀x:A, (P x)→ ∃y:B, (Q x y)

We will not trans
ribe this formula in Coq by using its already en
ountered existential

quanti�er ex on Prop. Indeed, that would amount to regard the result of the fun
tion as

being not-informative. We rather use a informative existential quanti�
ation, named sig.

Indu
tive sig (A:Set)(P:A→Prop) : Set :=

exist : ∀x:A, P x → sig A P.

It should be noted that sig A (fun x ⇒ P x), whi
h expresses the existen
e of one

informative obje
t x 
he
king the logi
al property (P x), is also written {x:A|(P x)}. This

thus gives us the following general form for a fun
tion with pre- and post-
onditions:

∀x:A, (P x) → { y:B | Q x y }

For example a version with post-
ondition of our integer division fun
tion 
an be spe
i�ed

as follows:

Definition div : ∀a b:nat, b6=O → { q:nat | q*b ≤ a ∧ a < (S q)*b }.

One 
an then �nd the 
al
ulative result of div via one mat
hing

4

4

The syntax let...:=... in... of this example is a short
ut for a mat
hing on an indu
tive type

with only one 
onstru
tor. In the same way a syntax if... then... else... exists as a short
ut for any

mat
hing on indu
tive types with two 
onstru
tors.
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Coq < Eval 
ompute in let (q,_) := div 3 2 two_non_zero in q.

= 1

: nat

This indu
tive sig 
an be also used to solve the partial fun
tion problem in a fourth way,

via a restri
tion of the starting domain. One 
an indeed express the type of the non-null

integers by { n:nat | n6=O }. This approa
h is equivalent to the one via by pre-
onditions,

and as it is slightly less natural in Coq, we will not use it.

Informative disjun
tion

Beside sig, another type is frequently used that 
ombines informative and logi
al parts.

This is sumbool, whi
h is a 
ounterpart of the logi
al disjun
tion or, ex
ept that it is pla
ed

in the Set universe:

Indu
tive sumbool (A B: Prop) : Set :=

| left : A → sumbool A B

| right : B → sumbool A B.

The type (sumbool A B) is also noted {A}+{B}. The 
onsequen
e of the use of Set in the

de�nition of sumbool is that one 
an test if an obje
t of type sumbool starts with left or

right, even if one is in an informative part. In 
omparison, that would be illegal with an

obje
t of type or. On the 
ontrary, the arguments of left and right remain logi
al, whi
h

prevent to analyze it for 
onstru
tive ends. From a 
omputational point of view, sumbool

is thus a type that is really similar to bool, it simply 
ontains in addition some logi
al

annotations. This type is primarily used to express results of de
idability, and 
an be read

�there exists an algorithm to determine if A or B�. For example:

Theorem eq_nat_de
 : ∀n m, {n = m} + {n 6= m}.

Or:

Lemma le_lt_de
 : ∀n m, {n ≤ m} + {m < n}.

Well-founded indu
tion

The de�nitions by well-founded indu
tion 
onstitute a last example of use of logi
al

parts in a 
omputational fun
tion. First, we need to formalize the fa
t for a relation of being

well-founded.

Se
tion Well_Founded.

Variable A : Set.

Variable R : A→A→Prop.

Indu
tive A

 : A→Prop :=

...

/

...
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...

/

...

A

_intro : ∀x:A, (∀y:A, R y x → A

 y) → A

 x.

Definition Well_founded := ∀a:A, A

 a.

The use of a Se
tion and Variable allows to fa
torize the 
ommon dependen
ies, here

over a type A and over a logi
al relation R on this type. An element is known as a

essible

(A

 x) with respe
t to A and R i� all prede
essors of x by R are themselves a

essible.

This indu
tive de�nition may seem strange, be
ause of the la
k of basi
 
ase. In fa
t, the

universal quanti�
ation ensures that an initial element (without prede
essor by R) is dire
tly

a

essible. The �niteness of the indu
tive obje
ts implies that one 
an interpret A

 as

follows: we have (A

 x) if all the sequen
es of su

essive prede
essors by R starting from x

are �nite. Finally the relation R is said to be well-founded if all the points in A are a

essible

by R.

We then need an inversion of the A

 indu
tive: if one point x is a

essible, then all its

prede
essors are a

essible. This is obtained by pattern mat
hing on (A

 x):

Definition A

_inv : ∀x:A, A

 x → ∀y:A, R y x → A

 y :=

fun x a ⇒
mat
h a in A

 x return ∀y, R y x → A

 y with

| A

_intro x' f ⇒ f end.

The two annotations �in A

 x� and �return ∀y, R y x → A

 y� 
an be ignored during

�rst reading. They are needed to spe
ify whi
h must be the type of the mat
h ... with...

subterm. These annotations are optional in the many simple situations where the system


an infer a suitable type. It is thus the 
ase of all mat
hings en
ountered until now, sin
e

they produ
e obje
ts of obvious types like nat. But here, the type of the se
ond argument f

of A



_

intro depends on the �rst argument x', whi
h is not visible outside of the term. In

fa
t, x' is ne
essarily x, but the system 
urrently does not know how to dis
over that, hen
e

the need for a manual annotation. For a more general dis
ussion on the need for annotations,

see page 84 of [68℄.

We now show that if an informative predi
ate P is propagated by R, then P is valid in

any a

essible point.

Se
tion A

_iter.

Variable P : A→Type.

Variable F : ∀x, (∀y, R y x → P y) → P x.

Fixpoint A

_iter (x:A)(a:A

 x) {stru
t a} : P x :=

F x (fun y h ⇒ A

_iter y (A

_inv x a y h)).

End A

_iter.

End Well_founded.

There are two astonishing things in this A



_

iter de�nition:

• First of all we build an informative term (sin
e its sort is Type) by indu
tion over a,

whi
h is a logi
al indu
tive obje
t. This is legal in Coq, but 
an seem to be a violation

of the prin
iple of the Prop/Set duality, a

ording to whi
h a logi
al part should not

in�uen
e a informative 
omputation. In fa
t this in�uen
e is limited to just provide
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the insuran
e that this re
ursion will terminate. True 
omputation is in fa
t 
arried

out in the fun
tion F, whi
h 
annot use the 
ontents of a be
ause of the restri
tions

on sorts in pattern mat
hings.

• the se
ond sho
king point is that the re
ursive 
all in (A



_

iter X a) is done on the

re
ursive argument (A



_

inv x a y H), whi
h does not seem stru
turally smaller

than the initial re
ursive argument a. But if a is of form (A



_

intro

_

F), then

(A



_

inv x a y H) 
an be redu
ed in (f y H). As f is the fun
tion 
ontained in a,

this de�nition satis�es indeed the stru
turally de
reasing 
riterion of Coq.

Let us mention a last fun
tion related to well-foundedness:

Coq < Che
k well_founded_indu
tion.

well_founded_indu
tion

: ∀(A:Set) (R:A→A→Prop),

well_founded R →
∀P:A→Set,

(∀x:A, (∀y:A, R y x → P y) → P x) →
∀a:A, P a

This is an alternative to A



_

iter, in with the relation R is supposed well-founded, and that

allows us to obtain (P x) for all x without any restri
tion.

As an appli
ation, this well-founded indu
tion allow us to de�ne fun
tions. Let us 
onsi-

der for example A = nat and R = lt, that is the stri
t order on nat. The standard library of

Coq 
ontains a proof named lt

_

wf stating that this order is well-founded. We 
an then de�ne

our integer division div by su

essive subtra
tions rather than by stru
tural indu
tion:

Definition div : ∀a b:nat, b6=0 → { q:nat | q*b ≤ a ∧ a < (S q)*b }.

Proof.

intro a; pattern a; apply (well_founded_indu
tion lt_wf); 
lear a.

intros a Hre
 b Hb.

elim (le_lt_de
 b a); intros Hab.

assert (H : a-b < a). omega.

elim (Hre
 (a-b) H b Hb); simpl; intros q (Hq,Hq').

exists (S q); simpl; omega.

exists 0; omega.

Qed.

1.1.5 Coq extensions

A 
ertain number of Coq extensions were voluntarily not presented here. They will be

the subje
t of spe
i�
 studies in 
hapter 4. This 
on
erns in parti
ular:

• the new system of modules of Coq (se
tion 4.1)

• the 
o-indu
tive types (se
tion 4.2)
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1.2 A formal presentation of the Ci


We now will give a more formal presentation of the Ci
. This formalism will be used in

the theoreti
al 
hapter whi
h 
omes next. The notations used here 
orrespond as mu
h as

possible to those of 
hapter 4 of the Referen
e Manual [78℄. The prin
ipal ex
eption 
on
erns

the environments and the 
ontexts. For simpli
ity reasons, we will merge these two 
on
epts.

First, let us spe
ify the terms syntax of the Ci
.

1.2.1 Syntax

De�nition 1 (terms) Terms of the Ci
 are given by the following grammar:

T ::= s
| x | c | C | I
| ∀x : t, t | λx : t, t | let x := t in t | (t t)
| 
ase(t, t, t . . . t)
| fix xi {x1/k1 : t := t . . . xn/kn : t := t}

where:

� s indi
ates a sort, among Set, Prop or Typei. We will omit the index of Typei as long

as it does not intervene expli
itly.

� x, c, C, I are identi�ers, that respe
tively refer to variables, 
onstants, indu
tive 
ons-

tru
tors and indu
tive types.

� for the �xpoint, the ki are integers that 
orrespond to the number of arguments awaited

by the xi 
omponents.

To lighten synta
ti
 expressions, we sometimes use ve
torial notations:

• (f −→x ) for (f x1 . . . xn)

• ∀−−−→x : X, T for ∀x1 : X1, . . .∀xn : Xn, T

• λ
−−−→
x : X, t for λx1 : Xn, . . . λxn : Xn, t

And we use the notation |−→x | to spe
ify the size of ve
tor

−→x , when this size is signi�
ant

and non-obvious.

It should be noti
ed that the syntax 
hosen here di�ers somewhat from the 
on
rete

syntax Coq :

• the λ is more 
on
ise than the keyword fun.

• the mat
h... with syntax, even if it is a improvement with respe
t to usage 
omfort,

is hardly adapted to theoreti
al reasoning, espe
ially in the presen
e of additional

annotations as, in and return. We use instead a 
ase(P, e,
−→
f ) syntax in whi
h e is

the mat
hed obje
t, P is the elimination predi
ate and the

−→
f fun
tions 
orrespond to

the bran
hes put in fon
tional form

5

: the equation (C x y z)⇒ t be
omes the fun
tion

λx, λy, λz, t. By the way, let us mention that a pattern mat
hing 
an perfe
tly have

5

In fa
t, this syntax is similar to the one used in versions 5.x of Coq. It was still usable in versions 7.x

via the keyword Case... of.
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zero bran
h, in whi
h 
ase we will note it 
ase(e, P, ∅). Con
erning the predi
ate P ,

if e is an indu
tive obje
t of type (I −→q −→u ), then the typing rules that follow for
e P
to be of the form λ−→u , λx : (I −→q −→u ), P0. The equivalent in Coq 
on
rete syntax is

then:

mat
h E have X in (I −→_ −→u ) return P0 with ... end

• The Coq 
on
rete syntax allows the de�nition of a blo
k of mutually re
ursive anony-

mous fun
tions via:

fix f1:Ti:=ti with ... with fn:Tn:=tn in fi

We will use following shortened syntax here:

fix fi {f1/k1 :T1 := t1 . . . fn/kn :Tn := tn}
where for ea
h fi 
omponent, the integer ki indi
ates the rank of the indu
tive ar-

gument on whi
h indu
tion is performed. This integer 
orresponds to the stru
t

annotation of Coq 
on
rete syntax. We will name this indu
tive argument the �guard�,

be
ause it will be used to 
ontrol the �xpoint redu
tion (see redu
tions below). This

is then 
alled guarded indu
tion.

De�nition 2 (
ontexts) A 
ontext Γ is a list that 
an 
ontain the following elements:

� assumptions (x : t)

� de�nitions (c := t : t′)

� indu
tive de
larations Indn(ΓI := ΓC), where n is the number of parameters, and

ΓI and ΓC are two 
ontexts respe
tively 
ontaining some indu
tive types and theirs


onstru
tors.

Compared to the notations of the Referen
e Manual, we have 
hosen not to pla
e the

parameters in a spe
ialized 
ontext, but to let them appear at the same time in ΓI and ΓC .

the n annotation allows to emphasize that the n �rst produ
ts in all the elements of ΓI

and ΓC 
orrespond to parameters. Besides, this is 
loser to the a
tual Coq implementation.

For example, let us write the de
larations of unary integers and of polymorphi
 lists in this

syntax:

Ind0(nat : Set := O : nat; S : nat→ nat)
Ind1(list :Set→Set :=

nil : ∀A :Set, list A; 
ons : ∀A :Set, A → list A → list A)

1.2.2 Redu
tions

De�nition 3 (redu
tions) The redu
tions of the Ci
 are as follows:

(beta) ((λx : X, t) u)→β t{x←u}
(delta) c→δ t if 
urrent 
ontext Γ 
ontains (c := t : T ).

(zeta) let x := t in u→ζ u{x← t}
(iota) 
ase(Ci

−→p −→u , P, f1 . . . fn)→ι fi
−→u

when Ci is the i-th 
onstru
tor of an indu
tive type having |−→p | parameters.
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(iota) if F is the re
ursive blo
k f1/k1 :A1 := t1 . . . fn/kn :An := tn, then:
(fix fi {F} u1 . . . uki

)→ι (ti{fj←fix fj {F}}∀J u1 . . . uki
)

if the �guard� argument uki
starts with a 
onstru
tor.

These redu
tions are strong: they are authorized at any position inside a term, via the

usual 
ompatibility rules. On the 
ontrary, we will also have to 
onsider later weak redu
tions,

that is redu
tions that 
an only happen at the top of the term, or either on the left or on

the right of an appli
ation or at the head of a Case. Said otherwise, redu
tions that 
an only

happen outside any binder. We will use→r to indi
ate a step of any of the strong redu
tions

→β, →δ, →ι or →ζ .

Starting from these redu
tions, one then de�nes the 
onvertibility relation =βδιζ and the


umulativity order ≤βδιζ whi
h are used below in the typing rule (Conv).

De�nition 4 (
onvertibility) Two terms u and v are 
onvertible (noted u =βδιζ v) if they
have a 
ommon redu
ed form w, that is su
h as u→∗

r w and v →∗
r w.

De�nition 5 (
umulativity) The 
umulativity order ≤βδιζ is re
ursively de�ned by:

� If u =βδιζ v then u ≤βδιζ v

� Typei ≤βδιζ Typej as soon as i ≤ j

� Set ≤βδιζ Type

� Prop ≤βδιζ Type

� If T =βδιζ T ′
and U ≤βδιζ U ′

then ∀x : T, U ≤βδιζ ∀x : T ′, U ′

It is noti
eable that due to the δ-redu
tion, these two 
on
epts depend impli
itly on a


ontext.

De�nition 6 (arity) An arity is a term 
onvertible to a sort or a produ
t ∀x : T, U with U
being again a arity. After redu
tion an arity 
an thus be written as ∀x1 : X1, . . .∀xn : Xn, s.
One then speaks of an arity of sort s.

1.2.3 Typing

We now give a 
ondensed de�nition of the typing rules of the Ci
. On
e again, we refer

to the Referen
e Manual [78℄ for a detailed version of these rules and their explanations.

De�nition 7 (typing rules) The typing judgement Γ ⊢ t : T , whi
h means that T is one

valid type for t in the 
ontext Γ, is de�ned simultaneously with the propertyWF(Γ) of 
ontext
good formation, via the rules of �gure 1.1.

Let us now give the side 
onditions of the typing rules for indu
tive types:

1. In rule (Prod), the 
ondition P(s1, s2, s3) on sorts is:

(s2 = s3 = Prop) ∨
(s2 = s3 = Set ∧ s1 6= Type) ∨
(s1 = Typei ∧ s2 = Typej ∧ s3 = Typek ∧ i ≤ K ∧ j ≤ k)

By the way, to let Set be impredi
ative (again), it is enough to remove the 
ondition

s1 6= Type on the se
ond line.
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WF(∅)
Γ ⊢ T : s x 6∈ Γ
WF(Γ; (x : T ))

Γ ⊢ t : T c 6∈ Γ
WF(Γ; (c := t : T ))

(WF)

WF(Γ)
Γ ⊢ Set : Typei

WF(Γ)
Γ ⊢ Prop : Typei

WF(Γ) i < j
Γ ⊢ Typei : Typej

(Ax)

WF(Γ) (x : T ) ∈ Γ
Γ ⊢ x : T

WF(Γ) (c := t : T ) ∈ Γ
Γ ⊢ c : T

(Var)(Cst)

Γ ⊢ T : s1 Γ; (x : T ) ⊢ U : s2 P(s1, s2, s3)
Γ ⊢ ∀x : T, U : s3

(Prod)

Γ ⊢ ∀x : U, T : s Γ; (x : U) ⊢ t : T
Γ ⊢ λx : U, t : ∀x : U, T

Γ ⊢ t : ∀x : U, T Γ ⊢ u : U
Γ ⊢ (t u) : T{x←u} (Lam)(App)

Γ ⊢ t : T Γ; (x := t : T ) ⊢ u : U
Γ ⊢ let x := t in u : U{x←u} (Let)

Γ ⊢ U : s Γ ⊢ t : T T ≤βδιζ U
Γ ⊢ t : U

(Conv)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (I : A) ∈ ΓI

Γ ⊢ I : A
(I-Type)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T ) ∈ ΓC

Γ ⊢ C : T
(I-Cons)

for all (I : A) ∈ ΓI , Γ ⊢ A : s
for all (C : T ) ∈ ΓC , Γ; ΓI ⊢ T : sC

In(ΓI , ΓC)

WF(Γ; Indn(ΓI := ΓC))
(I-WF)

Indn(ΓI = ΓC) ∈ Γ (I : ∀−−→p : T , A) ∈ ΓI σ = {−→p ←−→q }
|−→p | = n Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : Aσ; B)

for all 
onstru
tor Ci : ∀−−→p : T , ∀−−−→x : X, I −→p −→y ,

Γ ⊢ fi : ∀−−−−→x : Xσ, P −→yσ (Ci
−→q −→x )

Γ ⊢ 
ase(e, P, f1 . . . fm) : P −→u e
(Case)

∀i, Γ ⊢ Ai : si ∀i, Γ;
−−−−→
(f : A) ⊢ ti : Ai F(

−→
f ,
−→
A,
−→
k ,
−→
t )

Γ ⊢ fix fj {f1/k1 :A1 := t1 . . . fn/kn :An := tn} : Aj

(Fix)

Fig. 1.1: Typing rules for Ci
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2. In rule (I-WF) of good formation for an indu
tive de�nition, In(ΓI , ΓC) gathers all

the side 
onditions that must be ful�lled for this de�nition to be valid:

• All the names 
ontained in ΓI and ΓC must be new and distin
t.

• As we have not made expli
it the parameters, but only their number n, it should
be 
he
ked that all the de
larations of ΓI and ΓC start with the same n produ
ts

∀−−→p : P, and that all o

urren
es of the indu
tive type I in ΓC is applied to at

least

−→p .

• For all (I : A) ∈ ΓI , A must be an arity of a sort sI .

• For all (C : T ) ∈ ΓC , T must be a type of 
onstru
tor for one of the indu
tive

types I de�ned in ΓI , i.e. T must be of the form ∀−−→p : P , ∀−−−→x : X, I −→p −→y . Moreover

the sC sort in the typing premise of T must be sI .

• T must also 
he
k the positivity 
ondition with respe
t to all the types of ΓI . This


ondition is essential to guarantee strong normalization, but does not intervene

in the extra
tion. We will thus not detail it.

3. In rule (Case), the σ substitution repla
es the n formal parameters

−→p by n 
on
rete

parameters

−→q . And the 
ondition C(I −→q : Aσ; B) expresses the fa
t that the arrival

type of the 
ase must be 
ompatible with the indu
tive I whi
h is mat
hed:

• One has C(I : (∀x : X, A); (∀x : X, B)) i� for all x, one has C(I x : A; B).

• One has C(I : Prop; I → Prop)

• One has C(I : Prop; I → s) for a s 6= Prop sort i� I is an empty or singleton

logi
al indu
tive type.

• One has C(I : Set; I → s) for any s sort.

• One has C(I : Type; I → s) for any s sort.

In the previous de�nition:

• An empty logi
al indu
tive type is an indu
tive of sort Prop with zero 
onstru
tor.

• An singleton logi
al indu
tive type is an indu
tive of sort Prop with only one


onstru
tor whose non-parametri
 arguments are all of sort Prop.

Let us note that if Set is taken impredi
ative, one should a

ept C(I : Set; I → Type)
only when I is a small indu
tive, that is one whose 
onstru
tors 
annot have not-

parametri
 argument of sort Type.

4. In rule (Fix), the 
ondition F(
−→
f ,
−→
A,
−→
k ,
−→
t ) requires:

• for all i, Ai must be of the form ∀−−−→x : X, A′
i, with at least ki produ
ts, and the

Xki
type of the ki-th produ
t must be indu
tive.

• moreover ti 
an only 
ontain de
reasing re
ursive 
alls: if fj appears in ti, then
it must have at least kj arguments, and its kj-th argument must be stru
turally

smaller than the initial indu
tive argument xki
. The exa
t de�nition of this �stru
-

turally smaller� 
an be found in the Referen
e Manual. Informally, it is equivalent

to say that any subterm of an indu
tive term obtained by going through at least

one 
onstru
tor is stru
turally smaller than the starting term.
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1.2.4 Properties

A �rst property of Ci
 states that if there is Γ ⊢ t : T , then there is a sort s ∈
{Prop, Set, Type} su
h as Γ ⊢ T : s. Any t well-typed term thus admits at least a sort s.

In fa
t, one 
annot speak rigorously of �the� type and of �the� sort of a t term, be
ause

there is no uni
ity of types in the Ci
. For example an obje
t of type Prop also admits the

type Type via the rule (Conv) and 
umulativity.

However, a term 
annot admit at the same time Prop and Set as a sort. One 
an thus

speak about the smallest sort of a term, with respe
t to the 
umulativity order (Prop ≤ Type

and Set ≤ Type). This smallest sort will also be named prin
ipal sort.

In the same way, all types of a term are 
omparable via the 
umulativity order. One 
an

even show that there exists a type, unique modulo 
onversion, whi
h is smaller than all the

other types with respe
t to the 
onversion order. It will be named prin
ipal type. In fa
t,

this 
on
ept has only interest for types whi
h are arities. In the other 
ases, all the possible

types are equal modulo 
onversion. And we will then speak sometimes, by abuse, of �the�

type.

With respe
t to a 
ontext Γ, a term T is a type if it admits for type a sort s in this


ontext. In fa
t, rather than these Coq types, it is a superset of those whi
h will play a


ru
ial role for the extra
tion:

De�nition 8 (type s
heme) A type s
heme is a well-typed term whi
h admits at least one

arity as type, that is has the form ∀x1 : X1, . . .∀xn : Xn, s with s being a sort.

In other words, a type s
heme is a term whi
h will be
ome a type as soon as it is applied to

su�
iently many arguments. For example λX : Type, X → X is a type s
heme: on
e applied

to a type, one obtains the 
orresponding arrow type. On the 
ontrary, λX : Type, λx : X, x
is not a type s
heme: it may happen that a type is obtained by applying it (for example

with Set and nat), but one 
an also not obtain a type (for example by the appli
ation to

nat and O).

Lemma 1 (stability) the Ci
 admits the following results:

1. (Subje
t Redu
tion) Let t be a term that redu
es to u. Then any type T of t is also a

type of u. And any s sort of t is also a sort of u.

2. During the substitution of a variable in a term, the type of this term 
an obviously


hange. More pre
isely, if T is a type of t, then T{x←u} is a type of t{x←u}. But
the following properties are nonetheless preserved:

� If t has as a Prop sort, it is the same for t{x←u}
� If t is a type s
heme, it is the same for t{x←u}
� If t has an indu
tive type, it is the same for t{x←u}

3. Lastly, 
on
erning the appli
ations, if t has Prop as sort, it is also true for (t u), and
if t is a type s
heme, so is (t u).

Proof.We will admit these results here. Please refer to theoreti
al studies of the Ci
, su
h

as for example [83℄. ✷

It should be noted that for ea
h stability property above, the re
ipro
al is false:
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1. Let us take an unspe
i�ed type in Prop, say True. Then ((λX : Type, X) True) 
an
be redu
ed to True. However this last term a

epts Prop as type, and not the �rst

one. And in this example, Type0 is a sort of True, but not of the initial term, whi
h

has only Type1 as prin
ipal sort.

2. • Let us use the 
ontext Γ = (X : Type). Then (λx : X, x){X ← True} admits

Prop as sort whereas λx : X, x has Type for prin
ipal sort.

• In this same 
ontext, (λx : X, x){X←Set} is one type s
heme whereas λx : X, x
was not one originally.

• Let us take now Γ = (b : bool). If T = 
ase(b, Type, nat, bool), then the term

t = 
ase(b, T, O, true) does not admit an indu
tive type, whereas t{b← true}
admits as a type T{b←true} whi
h is 
onvertible to nat.

3. Let us take Id = λX : Type, λx : X, x. It is not a term of sort Prop, nor a type

s
heme. Yet (Id True) has sort Prop, and (Id Set) is a type s
heme.

In all the 
ases, the 
ounterexamples make use of the sort Type, whi
h thus illustrates

the pre
autions to be taken for in order to 
on
eive an extra
tion able to manage Type. This

being said, it is nevertheless ne
essary to relativize the importan
e of the problems implied

by the possible 
hange of the prin
ipal type during redu
tion:

Lemma 2 Let t be a well-typed term of Ci
 that redu
es to u, and let T and U be respe
-

tively prin
ipal types of t and u.

(i) One has U ≤βδιζ T .

(ii) If t is not a type s
heme, T =βδιζ U .

(iii) t is a type s
heme i� u is a type s
heme.

(iv) t and u have the same prin
ipal sort (if we 
onsider the various Typei sorts as only

one sort Type).

Proof.

(i) It is enough to point out that by �subje
t redu
tion�, T is always a type of u. Conse-
quently, the property of prin
ipality of U gives us the desired result.

(ii) If t is not a type s
heme, that means that T is not an arity. However, if we have

U ≤βδιζ T without U =βδιζ T , it means that these two types are arities with �nal sorts

sU < sT .

(iii) U ≤βδιζ T implies that:

• eiher U and T are equal modulos βδιζ , and in parti
ular are jointly arities or not.

• either U and T are distin
t modulos βδιζ , both of them being arities, with �nal

sorts sU < sT .

(iv) There are two 
ases: if t and u are type s
hemes, then they have Type as prin
ipal

sort. If they are not, then they share exa
tly the same types (modulo βδιζ), and thus

the same sorts.
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✷

The 
onservation of the prin
ipal sorts during redu
tion (iv) seem to be invalidated by

the �rst of the pre
eding 
ounterexamples. Is this 
onservation indeed true ? With Normandy

as native 
ountry, it is normal to answer yes and no. Yes, if one is interested just in the

distin
tion Set/Prop/Type, and forgets the indi
es of Typei. And no, in the opposite 
ase,

as shown by the 
ounterexample. In fa
t the point of view of the extra
tion will be it �rst.

One thus �nds again a border between the logi
al terms and the informative ones: a

logi
al term (i.e. of prin
ipal sort Prop) 
annot be
ome informative (i.e. of prin
ipal sort

Set or Type) during a redu
tion, and re
ipro
ally.

We will also have to study the possible forms of the Ci
 terms that are 
losed and in

normal form.

Lemma 3 Let t be a well-typed term of Ci
, 
losed and in normal form modulo βδιζ.

1. If t has an indu
tive type (I −→v ), it starts with a 
onstru
tor of this I type.

2. If t has a produ
t type, it is either:

a. a partially applied indu
tive 
onstru
tor

b. an indu
tive type whi
h 
an be alone or applied to arguments, in
luding partially.


. an λ-abstra
tion

d. a �xpoint (fix fi {. . .} −→u ). And in this 
ase, if the �guard� argument is the ki-th,

then |−→u | < ki.

3. If t has a sort s as type (i.e. t is a type), it is either:

a. a sort

b. a totally applied indu
tive type


. a produ
t

Proof. We pro
eed by indu
tion on the typing of t, and by 
ase on last rule:

• First of all, the rule (VAr) 
annot produ
e 
losed term, and the rules (Cst) and (Let)

build not-normal terms.

• The rule (Ax) 
orresponds to the 
ase (3a).

• The rule (Prod) 
orresponds to the 
ase (3b).

• (Lam): One 
annot be in the parts (1) or (3) of the statement, and the part (2
) is


learly 
he
ked.

• (App): Let us take t = (t′ u). The indu
tion hypothesis on Γ ⊢ t′ : ∀x : U, T leave us

four 
ases:

a. t′ = (C −→v ). Then t = (C −→v u). If C is still partially applied in t, then t have a
produ
t type, and we are in part (2a) of the statement. And when C is 
ompletely

applied, t has an indu
tive type: the 
ase (1) of the statement is ful�lled.

b. t′ = (I −→v ). Then t is only an indu
tive type with more arguments. If this indu
tive

type is now 
ompletely applied, it has a sort as type, and one is in 
ase (3b). If

not, its type is still a produ
t, and one is in 
ase (2b).
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. t′ 
annot be an λ-abstra
tion, otherwise (t′ u) would be redu
ible.

d. t′ is then a �xpoint with missing arguments. Let us suppose that u is the �guard�

argument awaited by this �xpoint. This u is then an indu
tive term, and the

indu
tion hypothesis 
orresponding to Γ ⊢ u : U shows that it starts with one


onstru
tor. The �xpoint is thus redu
ible, whi
h is 
ontradi
tory with the initial

assumptions. One is thus still in the situation of a �xpoint missing some argu-

ments. Lastly, this la
k of arguments ne
essarily implies that this �xed point has

a produ
t type. The parts (1) and (3) of the statement are thus ex
luded, and

the part (2) is 
orre
t via the 
ase (2d).

• (Conv): We dire
tly use the indu
tion hypothesis.

• (I-Type): If Γ ⊢ I : A and arity A has at least one produ
t, then the situation (2b) is


he
ked. And if A is dire
tly a sort, we are in 
ase (3b).

• (I-Cons): We are in the situation (1) if the 
onstru
tor awaits no argument, and other-

wise in the situation (2a) .

• (Box): The indu
tion hypothesis 
on
erning the head of the 
ase, whi
h is an indu
tive

term, shows that this term starts by a 
onstru
tor. The 
ase is thus redu
ible, and

that 
ontradi
ts the original assumption.

• (Fix): A �xpoint without argument always expe
ts at least one (the guard argument).

One 
annot thus be in parts (1) and (3) of the statement. On the other hand, the part

(2d) of the statement is 
learly valid.

✷

Curiously, the statement itself of this lemma shows that there are not other 
ases to

study for the type T of t. Indeed, T 
an also be pi
ked as 
losed and in normal form. The

part (3) of the statement then a�rms that it is either a sort, a produ
t or an indu
tive type.

Let us also noti
e that the proof of this result only requires the absen
e of redex at

pre
ise pla
es, namely at the top, on the left and right handside of an appli
ation and at

the head of a 
ase. This result will then remain perfe
tly valid when we will study the weak

redu
tion of the Ci
.

1.2.5 Ci
m : an Ci
 variant adapted to the semanti
 study

The presentation of the Ci
 given above is appropriate for the more synta
ti
 part of

the theoreti
al study we will make 
on
erning extra
tion. On the other hand, in the se
ond

time, we will make a more semanti
 study of the extra
tion 
orre
tness in the se
tion 2.4.

And for that, the Ci
 as formulated here will be slightly unsuited. Let us present here the

alternative Ci
m that we will then use.

The prin
ipal 
on
ern in this part 2.4 will be that Ci
 authorize the silent promotion of

a proposition to the rank of informative type. For example True, originally of Prop type, 
an

be also seen as having the type Type, via the typing rule (Conv). This will be awkward later

one, sin
e one will wish to give a di�erent semanti
s to a proposition and an informative

type, and this without having to look at prin
ipal type derivation to know in whi
h 
ase we

are.
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A solution is then to use a mark on the syntax level to announ
e the use of a 
umulativity

Prop ≤ Type. Thus True

†
will indi
ate the True obje
t promoted to the Type level. This

marking te
hnique dates ba
k to our DEA work [54℄, itself reusing the idea of [28℄. For

similar reasons, though less fundamental, it will be also interesting to mark the promotion

of a Set obje
t to the Type level. Thus nat

‡
will indi
ate the nat type seen at Type level.

On the syntax level of Coq, these marks would translate into expli
it �
asts�; True

†
and nat

‡

would be written (Prop

_

Type True) and (Set

_

Type nat), with:

Definition Prop_Type (t:Prop) : Type := t.

Definition Set_Type (t:Set) : Type := t.

Before 
ontinuing the presentation of this system Ci
m with marks, let us announ
e �rst

that we will somewhat restri
t the power of 
umulativity in this system, for simplifying the

presentation. For example, the initial (Conv) rule authorizes to write:

Γ ⊢ t : nat→ Set (nat→ Set) ≤βι (nat→ Type)
Γ ⊢ t : nat→ Type

(Conv)

From now on, we will authorize the use of the 
umulativity only on types and not on

type s
hemes: Set ≤ Type is a

epted but not nat → Set ≤ nat → Type any more.

This prohibits in parti
ular the pre
eding example, but one 
an approximate it via one

η-expansion: η-expansion:

Γ ⊢ t : nat→ Set

Γ; (x : nat) ⊢ (t x) : Set
(App)

Γ; (x : nat) ⊢ (t x) : Type
(Conv)

Γ ⊢ λx : nat, (t x) : nat→ Type

(Lam)

For a more detailed study on the 
umulativity in higher order type theories, one 
an look

at [57℄.

Let us now return to our marks

†
and

‡
. They are annotations that 
an be applied to

any term of Ci
. And we now repla
e the rule (Conv) by four new rules (Conv) (CumT)

(CumS) (CumP), in order to make 
ompulsory the presen
e of marks after the use of the


umulativity Prop ≤ Type or Set ≤ Type:

Γ ⊢ U : s Γ ⊢ t : T T =βιδζ U
Γ ⊢ t : U

(Conv)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej

(CumT)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type

(CumS)

Γ ⊢ t : Prop
Γ ⊢ t† : Type

(CumP)

The 
umulativity of Typei towards Typej, with no 
onsequen
e for the extra
tion, remains

impli
it. It should also be noti
ed that a well-typed marked term 
annot have two su

essive

marks: t† being of Type type, it is impossible to form t†
†
.

Let us stress the fa
t that are ignored by typing rules when they appear on the right of

a judgement. We only 
are about the in�uen
e of marks inside the term being typed. For

example the following appli
ation is quite legal:

Γ ⊢ t : ∀x : U †, T Γ ⊢ u : U
Γ ⊢ t u : T{x←u} (App)
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It would be possible to make formal this aspe
t of typing, by adding the following four rules:

Γ ⊢ t : T
Γ ⊢ t : T †

Γ ⊢ t : T †

Γ ⊢ t : T
Γ ⊢ t : T
Γ ⊢ t : T ‡

Γ ⊢ t : T ‡

Γ ⊢ t : T

In pra
ti
e, these rules will remain impli
it throughout our study.

We now spe
ify the status of these marks (for example

†
) with respe
t to substitution:

• A substitution without e�e
t does not 
hange anything 
on
erning the marks, for

example y{x← t†} = y

• Of 
ourse, a substitution without mark does not 
reate any: x{x← t} = t

• A variable repla
ed by a marked term gives a marked term: x{x← t†} = t†

• A marked variable gives a marked term after substitution: x†{x← t} = t†

• Lastly, the 
ase x†{x← t†} is prohibited by typing. Indeed, x†
is ne
essarily of type

Type, and x has the type Prop. However the t† that one wants to substitute for it is

also in Type, so the substitution is impossible.

Con
erning the redu
tions, they will in�uen
e the marks only via substitutions. A priori,

one 
ould need to spe
ify what be
omes a mark partially 
overing a redex, as in (λx : U, t)‡ u.
But in fa
t, this 
ase is ex
luded be
ause a marked term is inevitably a type, whi
h 
annot

begin with one λ-abstra
tion. In the same way, the head of a ι-redex 
annot be marked

be
ause it has an indu
tive type. It is thus not a type.

We must now justify again a 
ertain number of properties that our marking 
ould have

modi�ed. Let us start with the property of �subje
t redu
tion�, and before that by the


onservation of typing by substitution.

Lemma 4 Let t and u be two terms of Ci
m admitting for respe
tive types T and U . If x
is a free variable of t of type U , then t{x←u} admits T{x←u} for type in the Ci
m.

Proof. By indu
tion on the typing derivation of t. ✷

Lemma 5 Let t be a term of Ci
m admitting T as type, and u a redu
ed form of t. Then
u also admits T as type.

Proof. It is the same proof as for Ci
, but with the previous lemma instead of the initial

subtitution lemma. ✷

Now, the prin
ipal e�e
t of the marks presen
e is the uni
ity of types:

Lemma 6 Let t be a term of Ci
m admitting T and U as types. Then T =βδιζ U , as soon

as you aggregate all the the di�erent sorts Typei into only one, and you ignore the marks

inside types T and U .

Proof. In Ci
, the non-uni
ity of the types 
omes from the possibility to use the 
umulati-

vity part of rule (Conv) at any time. But with the presen
e of the marks, the rules (CumS)

and (CumP) are now rules whose use is 
ontrolled by the term syntax, like the majority of

other rules. And the rule (CumT) does not really modify the types, at least a

ording to

the point of view that we 
hoose here.
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On
e this is said, one pro
eeds by indu
tion on typing derivation t : T , and then 
ompares

this derivation with the one of t : U . Ex
ept for βδιζ-
onversions (Conv) that we 
an ignore

here, these two derivations have ne
essarily the same form. ✷

In parti
ular the 
on
ept of prin
ipal type be
omes now a 
ommonpla
e. Let us look

again at the 
ounterexample whi
h shows that a prin
ipal type in Ci
 is not ne
essarily

preserved during redu
tion: ((λX : Type, X) True). It is now badly typed in Ci
m. To

make a valid term from it, a mark would have to be added: ((λX : Type, X) True

†). But
then its redu
ed form True

†
admits only type Type, and not Prop any longer.

To �nish this presentation of Ci
m, we will 
larify the possible translations between Ci


and Ci
m. In the more simple dire
tion, it is immediate to take a t term of type T in Ci
m

and to obtain a 
orresponding well-typed term in Ci
 : it is enough to remove the marks.

And T (without its marks) then remains a valid type for it in Ci
. In the opposite dire
tion,

starting form a term t in Ci
 having for prin
ipal type T , one 
an obtain a 
orresponding

well-typed term in Ci
m that di�ers from t only by the presen
e of marks (and possibly of

η-expansion, 
f. restri
tion on the 
umulativity). Introdu
ing these marks is easy: we just

look at a typing derivation of t : T , and adapt all the uses of the rule (Conv) from top to

bottom. This way, the type of the Ci
m obtained term is still T (or rather the version of T
with marks).
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Chapitre 2

The extra
tion of Coq terms

This 
hapter is devoted to the presentation of our extra
tion fun
tion E over Ci
 terms.

For the moment, this fun
tion will return terms in an intermediate theoreti
al language

named Ci
✷, untyped, whi
h will play here a role similar to the one of Fω in the old

extra
tion. The next 
hapter then deals with the translation into the �nal language, and in

parti
ular with the problem of typing the 
ode extra
ted in this language.

In addition to the presentation of this fun
tion E , this 
hapter also 
ontains the 
orre
t-

ness proof of E , or rather the 
orre
tness proofs, sin
e this theoreti
al study is divided into

two parts:

• a �rst rather synta
ti
 study enables us to guarantee that any redu
tion of extra
ted

terms will su

eed, regardless of the stri
t or lazy evaluation strategy used. This part

is a revised version of the results presented in [55℄, themselves inspired by [54℄.

• In a se
ond time, we will establish in se
tion 2.4 the 
orre
tness of these extra
ted

terms with respe
t to the original Coq spe
i�
ations, by using a semanti
 approa
h

inspired by realizability.

Let us start �rst by detailing the limitations of the old fun
tion E of C. Paulin, whi
h led

us to build the 
urrent version of E .

2.1 The di�
ulties in the removal of logi
al parts

A potential danger indu
ed by removal of logi
al parts is that this removal 
an modify the

evaluation order. Let us take for example a fun
tion of type ∀x:A,(P x)→ B, with A and B

being informative types, and P a logi
al property. Our fun
tion f thus awaits an informative

argument x and a proof that this argument satis�es the pre-
ondition P x. If one also has

a term t of type A and a proof p of type (P t), one 
an then form the two well-typed Coq

terms (f t) and (f t p). On the Coq level, these two terms have appre
iably di�erent

nature. For example, the evaluation of (f t) will probably be qui
kly blo
ked by the la
k

of the se
ond argument p, whereas (f t p) is a total appli
ation whi
h 
an normally be

redu
ed towards a value of type B (when for example these terms f, t and p are 
losed).

Now let us examine the a
tion of a extra
tion fun
tion E that 
ompletely removes the

logi
al parts, like the old extra
tion does. The two pre
eding terms (f t) and (f t p) are
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then extra
ted into the same term (E(f) E(t)), be
ause p, logi
al, disappears. Sin
e the

type of E(f) is then of form E(A)→E(B), the extra
ted term (E(f) E(t)), being a total

appli
ation, behaves rather like (f t p), and thus 
an be redu
ed 
ompletely. Of 
ourse,

this behavior is quite di�erent from the one of (f t).

This modi�
ation of the order of evaluation has, of 
ourse, an in�uen
e on the e�
ien
y

when exe
uting extra
ted terms. But it 
an even be fatal to the good progress of this

exe
ution. The old extra
tion 
ould in parti
ular generate extra
ted terms whose evaluation

stopped prematurely on an un
aught ex
eption, or on similar other exe
ution error. And


onversely one 
ould also meet terms whose evaluation did not �nish.

The typi
al example of 
ode that 
an raise an ex
eption in 
ase of naive extra
tion

involves the 
onstant False_re
. This Coq term of type ∀P:Set, False→P is used to treat

the 
ontradi
tory sub-
ases of a proof. For example, the Coq ta
ti
 
ontradi
tion generates

proof terms that use this 
onstant. When one de�nes a fun
tion f of the type ∀x:nat,
(x6=0)→nat, it 
an thus be useful to use this 
onstant when x=0. During the extra
tion,

this False_re
 is translated into an ex
eption, whi
h means that the exe
ution must never

rea
h this absurd sub-
ase. Now, let us 
onsider again a partial appli
ation, (f 0), legal

in Coq, that will normally never re
eive its se
ond argument of type 06=0. The extra
tion

(E(f) 0) 
an then be exe
uted without waiting for the removed logi
al argument, and thus

raise the ex
eption asso
iated with False_re
. Our new extra
tion solves this problem by

giving ba
k to the extra
tion of (E(f) 0) its status of 
losure. For that, we leave arti�
ial

abstra
tions fun _ → ... ea
h time that it is ne
essary.

We will see thereafter in part 2.3.2 that it is also possible to generate other types of

errors with the old exe
ution, by 
ombining extra
tion, partial appli
ation and some Coq


onstants like eq

_

re
. There also exists examples of extra
ted 
ode that were not terminating

with the old extra
tion. These examples are based on the 
onstant A



_

re
, whi
h o�ers

the possibility in Coq of de�ning an informative �xpoint justi�ed by a de
reasing logi
al

measure. It is then possible, under an 
ontradi
tory 
ontext, to provide one false logi
al

justi�
ation. The extra
ted �xpoint, without its logi
al justi�
ation, may then loop forever.

A family of limitations of the old extra
tion relates to the Coq universes. Indeed, distin
-

tion in Coq between the informative and logi
al parts is made fuzzy by the presen
e of the

Type universe. One 
an, indeed, form hybrid terms like if B then nat else True, where

b is a boolean. This term will be either informative or logi
al a

ording to value of this boo-

lean b. This 
onstru
tion is allowed by the existen
e of rules known as 
umulativity rules,

whi
h express that Type 
ontains at least Set and Prop. In our example, nat:Set thus imply

also nat:Type and similarly True:Prop imply True:Type. And �nally, our hybrid term is

well-typed with the Type type. The pre
eding extra
tion simply refused to extra
t su
h a

type, and more generally any term using dire
tly or indire
tly the Type sort. This drasti


restri
tion allowed a 
omplete elimination of logi
al parts (at least in a system prohibiting

False_re
, eq

_

re
 and A



_

re
). On the 
ontrary, the goal of our work is to be able to

treat any Coq term. We then have to use one ad-ho
 
onstant (denoted ✷) to mark the sites

previously o

upied by logi
al parts, like the True above. Our approa
h is thus similar to

the pruning methods [12, 15℄.
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2.2 The new extra
tion fun
tion E
This fun
tion E of extra
tion will eliminate any subterm of sort Prop, be
ause these

subterms 
orrespond to logi
al parts, as explained in the previous 
hapter. But in addition

to that, we also eliminate the subterms 
orresponding to types, and more generally to type

s
hemes. Why remove these type s
hemes? This 
hoi
e is less natural than the one leading

to the elimination of the Prop parts. In parti
ular, there exists at least one Coq development

whose prin
ipal result is the 
onstru
tion of a type representing a parti
ular latti
e [62℄. The

extra
tion of su
h a development will then produ
e only one arbitrary 
onstant repla
ing

this type. But this situation is ex
eptional. In usual developments, the results 
on
ern only

datatypes, su
h as for example indu
tive types like bool, nat or Z. And in these 
ases, we will

show that the type s
hemes 
orrespond to dead 
ode from the point of view of 
omputation.

Another justi�
ation of this 
hoi
e of elimination is that unlike Coq, our target languages

(O
aml and Haskell) make a 
lear distin
tion between the level of types and the level of

terms, and in parti
ular do not allow the use of types like ordinary terms.

We de�ne Ci
✷ starting from the same language as Ci
, with in addition one spe
ial


onstant ✷. On the other hand the terms of Ci
✷ will not be typed. Indeed, we will not

adapt the typing relation of Ci
 to Ci
✷. Lastly, the redu
tions in Ci
✷ are de�ned as

being exa
tly those of Ci
, with ✷ seen like a non-redu
ible 
onstant.

Let us now de�ne our extra
tion fun
tion of Ci
 towards Ci
✷.

De�nition 9 (fun
tion E) The extra
tion fun
tion E is de�ned by stru
tural indu
tion on

any term t typable in a 
ontext Γ:

(✷) If t is a type s
heme or admits Prop as sort in the 
ontext Γ, then EΓ(t) = ✷

If not, one pro
eeds a

ording to the stru
ture of t:

(id) EΓ(a) = a if a is a variable x, a 
onstant c or a 
onstru
tor C.

(lam) EΓ(λx : T, t) = λx : ✷, EΓ′(t) where Γ′ = Γ; (x : T )

(let) EΓ(let x := t in u) = let x := EΓ(t) in EΓ′(u) where Γ′ = Γ; (x := t : T )
and T is a type of t

(app) EΓ(u v) = (EΓ(u) EΓ(v))

(cases) EΓ(
ase(e, P, f1 . . . fn)) = 
ase(EΓ(e), ✷, EΓ(f1) . . . EΓ(fn))

(fix) EΓ(fix fi {f1/k1 :A1 := t1 . . . fn/kn :An := tn}) =
fix fi {f1/k1 :✷ :=EΓ′(t1) . . . fn/kn :✷ :=EΓ′(tn)}
where Γ′ = Γ; (f1 : A1); . . . ; (fn : An)

And the extra
tion of a 
ontext is de�ned by:

(nil) E(∅) = ∅

(def) E(Γ; (c := t : T )) = E(Γ); (c := EΓ(t) : ✷)

(ax) E(Γ; (x : T )) = E(Γ); (x : ✷)

(ind) E(Γ; Indn(ΓI := ΓC)) = E(Γ); Indn(E(ΓI) := E(ΓC))
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Clearly, E is a �pruning� fun
tion: its only task is to repla
e 
ertain subterms by ✷.

In parti
ular there is no modi�
ation of the stru
ture. In the 
urrently implemented Coq

extra
tion, a se
ond phase is dedi
ated to some stru
tural modi�
ations. This phase will be

des
ribed in the 
hapter 4. This �pruning� is di�erent from what the previous extra
tions

were doing, sin
e they were in parti
ular not withdrawing the types, and were removing


ompletely the logi
al λ-abstra
tions, via a rule like:

(lam′) E(λx : P, t) = E(t) if P admits Prop for type.

In term of realizability, this last rule (lam′) 
orresponds to modi�ed realizability, whereas

our new rule (lam) 
orresponds more to re
ursive realizability. But as we have explained in

the previous se
tion, the rule (lam′) is not 
orre
t if one 
ombines it with stri
t evaluation

à la O
aml.

The reader may also have noti
ed the la
k of an expli
it rule dedi
ated to produ
ts. But

a produ
t is always a type, and thus a fortiori a type s
heme. The rule (✷) thus applies.

2.3 Synta
ti
 study of the redu
tion of extra
ted terms

Initially, we study the redu
tion of extra
ted terms, and we prove in parti
ular that this

redu
tion ne
essarily terminates in a �nite amount of time. This will be done by means of

a synta
ti
 method: we will simulate the derivations of the extra
ted terms by those of the

Coq initial terms.

But this �rst approa
h, relatively simple, is not very suitable to establish more semanti


properties of 
orre
tness, in parti
ular when fun
tional values and/or un
losed terms are


on
erned. The se
tion 2.4 is then devoted to a 
omplementary study, based on an extension

of the 
on
ept of realizability.

The synta
ti
 study whi
h follows now is split in two parts. The se
tion 2.3.1 leads to

theorem 1 whi
h establishes the strong normalization of the extra
ted terms, but only in a

slightly weaker version of Ci
. Then the se
tion 2.3.2 treats the 
omplete Ci
, whi
h on

the other hand obliges to restri
ted oneself to weak redu
tions for the extra
ted terms. In

this situation, the main result of 
orre
tness is the theorem 5.

2.3.1 Strong redu
tion in a restri
tion of Ci
✷

We wish here to establish that the evaluation of an extra
ted term �nishes, and that the

result of this evaluation has a 
orre
t meaning, for example true or false for an original

term in Ci
 of the bool type. And of 
ourse, we also wish this result to be 
oherent with

answer what would give the evaluation of the original term in Ci
.

We will thus pro
eed by simulation in Ci
 of derivations possible in Ci
✷, and vi
e

versa. The problem is that this simulation 
an lead to terms that still 
omprise Ci
 redex,

whereas their analogues in Ci
✷ are not redu
ible any more. In fa
t, there are three potential


ategories of Ci
 redex 
orresponding to non-redex zones of Ci
✷ :

1. a β-redex (λx : X, t) u 
orresponding to a non-redex ✷ u′

2. a ι-redex 
ase(e, . . . , . . .) 
orresponding to a non-redex 
ase(✷, . . . , . . .)
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3. a ι-redex (fix fi {. . .} u1 . . . un) 
orresponding to a non-redex, whi
h 
an be:

a. either (✷ u′
1 . . . u′

n)

b. either (fix fi {. . .} u1 . . . ✷) (the �guard� is now a ✷ blo
king the redu
tion)

In 
ase 1, we would like to have (λx : X, t) u dire
tly 
orresponding to ✷ instead of

✷ u. Indeed the stability lemma 
laims that the appli
ation preserves the fa
t of being of

Prop sort or of being a type s
heme. If λx : X, t 
ould be
ome ✷, then it should thus be

�morally� the same with (λx : X, t) u. This �la
k of pre
ision� of an extra
ted term 
an in

fa
t appears after some steps of redu
tion, as shown by the following example:

Example 1

t = (λX : Type, λf : nat→X, λg : X → nat, (g (f O))) Prop (λ_, True)
E(t) = (λX : ✷, λf : ✷, λg : ✷, (g (f O))) ✷ ✷

→∗
β λg : ✷, (g (✷ O))

We will solve this problem of 
ase 1 (and at the same time the 
ase 3a) thanks to an ad-ho


redu
tion:

De�nition 10 (✷-redu
tion) The ✷-redu
tion is de�ned by the rule (✷ u)→✷ ✷

The situation of 
ase 2 is rather di�erent. Unlike the the previous example where a

lambda be
ame logi
al after a redu
tion, a pattern mat
hing 
annot 
hange the indu
tive

type on whi
h it is performed. And E eliminates all pattern mat
hings that produ
e obje
ts

of sort Prop. Sin
e a mat
hing on an indu
tive type in Prop 
an normally only build an

obje
t in Prop, 
ase 2 should normally not o

ur. But this restri
tion on logi
al mat
hings

has two ex
eptions, 
on
erning logi
al empty indu
tive types and logi
al singleton indu
tive

types (see the previous 
hapter). For example Ci
 authorizes the following derivations:

p : False : Prop T : Set


ase(p, T, ∅) : T

p : x = y : Prop q : P x : Set


ase(p, P, q) : P y : Set

The �rst derivation 
orresponds to the Coq 
onstant named False_re
, while the se
ond


orresponds to eq_re
.

More generally, a logi
al elimination 
ase 
an produ
e something informative if the

elimination is 
arried out on a term whose indu
tive type whi
h:

1. has zero 
onstru
tor (empty indu
tive, like False in Coq)

2. has only one 
onstru
tor whose arguments are all logi
al, put aside possible parameters

(indu
tive singleton logi
al, like eq)

This is in fa
t a �rst ex
eption to the slogan: �logi
al obje
ts are never taken into 
onsi-

deration during 
omputations of informative obje
ts�. The se
ond distortion to this prin
iple

is the 
ase 3b: the �guard� of a �xpoint 
an be a logi
al indu
tive term whereas the 
omplete

�xpoint is informative.

Let us suppose one moment that these 
hara
teristi
s of typing Coq are dea
tivated.

Until the end of this se
tion 2.3.1, we will 
onsider two systems Ci


−
and Ci


−
✷
whi
h are

respe
tively Ci
 and Ci
✷ with the following restri
tions:

(i) The elimination of logi
al empty indu
tive terms 
annot produ
e informative terms.
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(ii) It is the same for elimination the logi
al singleton indu
tive terms.

(iii) For any 
omponent fi of a �xpoint, its �guard� 
annot be logi
al unless the type of fi

is also logi
al.

We now 
ompare the respe
tive results of redu
tions in Ci


−
✷
and Ci


−
. To simplify this


omparison, we will speak here only about types without logi
al 
ontents:

De�nition 11 A T type of Ci
 is said to have no logi
al 
ontent if for any 
losed normal

form t of type T we have E(t) = t.

The usual datatypes, like bool or nat ful�ll this 
ondition. Of 
ourse, a obje
t in a

non-redu
ed form in su
h a type 
an 
ontain logi
al parts, but they will disappear during

redu
tion to �nish on true or (S (S O)) for example. We then have the following result


on
erning the strong redu
tion of terms extra
ted in these types without logi
al 
ontents:

Theorem 1 Let t be a 
losed term, well-typed in Ci


−
, whose T type has no logi
al 
ontents.

Then any redu
tion of E(t) terminates on the normal form (in Ci


−
) of t.

We will not prove this result, be
ause it has less importan
e that the theorem 5 of the

following se
tion, while the proofs of the two theorems are similar. Similarly, it is possible to

establish a more general version of this result, dealing also of types whi
h are not without

logi
al 
ontents. But as the normal form of E(t) 
an then 
ontain ✷, we need new tools to


ompare it with the normal form of t. There again, this is not done here, but rather in the

following se
tion.

Lastly, let us note that the use of ✷-redu
tions is not ne
essary in this parti
ular result.

This is explained by the 
onjun
tion of the restri
tions (i), (ii) and (iii) and the assumption

that T is not-logi
. On the other hand the results of the following se
tion will have to use

this ✷-redu
tion.

2.3.2 Weak redu
tion in the 
omplete Ci
✷

As our obje
tive is a extra
tion me
hanism a

epting all the Coq terms, we must from

now on remove these restri
tions (i), (ii) and (iii). The restri
tion (i) 
on
erning empty

indu
tives is in fa
t easy to remove, sin
e a ι-redu
tion on one empty indu
tive in fa
t


annot o

ur, for la
k of 
onstru
tor to start the redu
tion. We 
an thus just ignore these


ase, and translate them later into ex
eptions (see the study of False_re
 in se
tion 2.1).

On the other hand deletion of the restri
tions (ii) and (iii) will oblige us to adapt authorized

redu
tions on the extra
ted terms: we must give up strong redu
tion (i.e. redu
tion under

the lambdas) and restrain to weak redu
tion. In any event, our fun
tional languages target

do not authorize strong redu
tion. To 
enter our study on weak redu
tion is thus perfe
tly

legitimate.

Singleton elimination

If H is an equality (hen
e logi
al), 
ase(H, nat, O) 
an be redu
ed and give O even

without knowing the exa
t value of H , hidden behind a ✷. In a similar way, we 
an redu
e

systemati
ally all elimination of logi
al singleton indu
tive. But that is dangerous when
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ombined with strong redu
tion, and 
an lead to exe
ution errors. Let us 
onsider for example

the following fun
tion 
ast that transforms an integer into a boolean on the 
ondition of

being able to prove that boolean and integers are identi
al

1

:

Definition 
ast : (nat=bool) → nat → bool :=

fun (H:nat=bool)(n:nat) ⇒
mat
h H in (_=bool) return bool with

| refl_equal ⇒ n

end.

Let us take then the following example:

Definition example :=

fun (H:nat=bool) ⇒
let b : bool := 
ast H 0 in

mat
h b with

| true ⇒ 0

| false ⇒ 1

end.

If now one 
arries out the a priori redu
tion of the 
ase in this example, the subterm (
ast

H 0) would be redu
ed to integer 0, whereas the mat
h whi
h follows awaits a boolean, and

that will result in an exe
ution error.

A similar example 
an also lead the integer 0 to be 
onsidered as being a fun
tion if one

has in assumption the equality nat = (nat→nat). And if one applies this �fun
tion� 0, we


an end with an exe
ution error (0 0), in the event of strong redu
tion of the extra
ted

terms

Clearly, if one prohibits the redu
tion under lambdas, these problems disappear. Indeed,

an singleton indu
tive term out of the lambdas is inevitably 
losed, and 
an thus be always

redu
ed to a 
onstru
tor, whi
h legitimates our redu
tion of logi
al singleton eliminations

out of any lambda.

Fixpoint with logi
al �guards�

The problem is now to redu
e informative �xpoint whose argument being used as �guard�

is logi
al. Of 
ourse, the immediate temptation is to remove this �guard� 
ondition, at least

for this 
ategory of �xpoint. But this, 
ombined with strong redu
tion, 
an lead to an

evaluation that does not terminate. The following fun
tion loop is built on the model of

A

_iter (see the previous 
hapter). It expe
ts an hypotheti
al proof of the false statement


laiming the a

essibility of 0 by the relation gt (that is > on the natural numbers of Coq).

If this proof were provided, loop would then go into an in�nity of re
ursive 
alls: F N would


all F (S N) and so on.

1

We will use here Coq syntax, more readable. The equivalent in our theoreti
al syntax of this mat
h with

annotations is 
ase(H, (λt : Set, λH : (eq Set nat t), t), n)
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Definition loop :=

fun (Ax:A

 gt 0) ⇒
(fix F (n:nat)(a:A

 gt n) {stru
t a} : nat :=

F (S n) (A

_inv a (S n) (gt_Sn_n n)))

0 Ax.

The (A



_

inv a...) subterm is a proof of a

essibility for (S N), using the 
onstants

A

_inv and gt_Sn_n provided by the standard library of Coq. The extra
tion E gives then:
E(loop) = λAx : ✷,

fix F {F/2 : ✷ :=
λn : nat, λa : ✷, (F (S n) ✷)}

O ✷

And if one withdraws here the �guard� 
ondition, then this term 
an be strongly redu
ed

even without being applied, and then give λAx : ✷, fix F {. . .} (S O) ✷, and so on...

Modi�
ation of redu
tion

To manage these ex
eptional 
ases of ι-redu
tion on logi
al terms, we must �rst of all

add an additional annotation on the Ci
 terms. The mat
h bearing on indu
tive types with

only one 
onstru
tor are normally written this way in Coq :

mat
h e with C

−→x ⇒ t end

With the �fun
tional syntax� used in this theoreti
al study, this be
omes:


ase(e, . . . , (λ−→x , t))

The latter form presents the disadvantage of losing tra
k of the number of the arguments

−→x for the single 
onstru
tor C of our indu
tive type. In parti
ular, with this syntax, it is

not 
orre
t to 
ount the number of lambdas, be
ause t 
an 
ontain additional ones. We will


ure this problem by marking this number of arguments in index for these 
ase with single

bran
h:


asen(e, . . . , (λ−→x , t))

And of 
ourse, the extra
tion fun
tion E will keep these annotations. To avoid obs
uring

(more) the notations, we will omit sometimes these annotations in situations where they are

not used.

Here now 
ome the modi�
ations to be made to the redu
tions Ci
✷ in order to be able

to manage these ✷ that may blo
k ι-redu
tions.

De�nition 12 (new ι-redu
tion) The ι-redu
tion on Ci
✷ terms is from now on:

(iota) 
ase(Ci
−→p −→u , P, f1 . . . fm)→ι fi

−→u
(iota) 
asen(✷, P, f)→ι f ✷ . . . ✷︸ ︷︷ ︸

n

(iota) Let F be the re
ursive blo
k f1/k1 :A1 := t1 . . . fn/kn :An := tn. Then:
(fix fi {F} u1 . . . uki

)→ι (ti{fj/fix fj {F}}∀j u1 . . . uki
)
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when uki
is ✷ or starts with a 
onstru
tor.

We also restri
t the redu
tions and prohibit strong redu
tion: for ea
h possible redu
tion,

one asso
iates to it a weak redu
tion.

De�nition 13 (weak redu
tions) The redu
tions →βw
, →ιw , →δw

, →ζw
and →✷w

are

de�ned from the same basi
 rules as respe
tively →β, →ι, →δ, →ζ, →✷, but with restraining

the 
ompatibility rules to only the following ones:

u→? v

(u t)→? (v t)

u→? v

(t u)→? (t v)

u→? v


ase(u, P, . . .)→? 
ase(v, P, . . .)

Lastly, as for →r, the 
omplete weak redu
tion →rw
is →βw

∪ →ιw ∪ →δw
∪ →ζw

.

In fa
t, this redu
tion →rw

an be seen as a 
ommon generalization of the strategies of


alls per value and 
all by name of O
aml and Haskell. The last step towards the redu
tions

a
tually implemented in these languages is to �x an evaluation order. To redu
e the argu-

ments initially will give us stri
t strategy of O
aml. And on the 
ontrary redu
ing �rst of

all the head of the term 
orresponds to the lazy strategy of Haskell.

A signi�
ant point to mention is that all this theoreti
al study is to be done in axiom-

free 
ontexts. Indeed, to study redu
tion in the presen
e of axioms is equivalent to study

the strong redu
tion under the lambdas 
orresponding to these axioms, whi
h we wish to

pre
isely avoid. In parti
ular, we will use on several o

asions the fundamental property

a

ording to whi
h an indu
tive term 
losed in a axiom-free 
ontext redu
es inevitably

towards a term starting with a 
onstru
tor. Clearly, the presen
e of an axiom 
an invalidate

this property. Of 
ourse, all axioms do not have this e�e
t, but for reasons of simpli
ity, we

prohibit them all.

To study the evaluation of the extra
ted terms, we will 
ompare it with the evaluation

of the initial terms. We hen
e need an invariant relating initial terms and extra
ted terms

that will be stable by redu
tion. Of 
ourse, one 
an try to dire
tly use the fun
tion E for this
invariant. Unfortunately, that is not a good 
hoi
e, be
ause E behaves badly with respe
t to

redu
tion: if t→r u, one may not have E(t)→r E(u) in some 
ases

2

. Instead of E , we de�ne
and use a non-deterministi
 relation →E whi
h will have good invarian
e properties.

De�nition 14 (relation →E) The non-deterministi
 relation→E relating a Ci
 term and

a Ci
✷ term, and depending impli
itly on one 
ontext Γ, is de�ned by the following rules:

2

The term t in example 1 is a 
ounterexample to that. Indeed, E(t) 
an be redu
ed into one term


ontaining (✷ O), whereas E never produ
es su
h subterm, but dire
tly ✷.
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Γ ⊢ t : ∀−−−→x : X, s
t→E ✷

(E−✷1)
Γ ⊢ t : T : Prop

t→E ✷
(E−✷2)

a = x or a = c or a = C
a→E a

(E−id)
t→E t′

λx : T, t→E λx : ✷, t′
(E−lam)

t→E t′ u→E u′

let x := t in u→E let x := t′ in u′ (E−let) t→E t′ u→E u′

(t u)→E (t′ u′)
(E−app)

e→E e′ ∀i, fi →E f ′
i Info(e)


ase(e, P, f1 . . . fn)→E 
ase(e′, ✷, f ′
1 . . . f ′

n)
(E−case)

∀i, ti →E t′i
fix fi {f1/k1 :A1 := t1. . .fn/kn :An := tn} →E fix fi {f1/k1 :✷ := t′1. . .fn/kn :✷ := t′n}

(E−fix)

The 
ondition Info(e) requires e to be of an informative indu
tive type (or empty logi
al or

singleton logi
al). One naturally extends →E to extra
t the 
ontexts.

The non-determinism 
omes from the two rules (E−✷1) and (E−✷2). When these rules


an be applied, one 
an indeed use them, or instead use one of the other stru
tural rules.

For example, if a variable x has sort Prop, one have both x→E ✷ and x→E x. Obviously,
the fun
tion E is just a way to make this relation deterministi
, by always 
hoosing to prune

as soon as possible:

Lemma 7 If t is a Ci
 term typable in a 
ontext Γ, then T →E E(t).
Proof. One only have to 
hoose the rules extra
ting towards ✷ as soon as a type s
heme

or a logi
al term is rea
hed. One must only 
he
k the auxiliary 
ondition Info(e) of the

rule (E−case): If a 
omplete term 
ase is not of sort Prop, then the mat
hed e term is

ne
essarily of an informative indu
tive type (or logi
al empty or logi
al singleton). The


ondition Info(e) is thus ful�lled. ✷

Lemma 8 Let t be a Ci
 term typable in a 
ontext Γ, and t′ a Ci
✷ term su
h as t→E t′.
We have the following immediate properties:

1. t and t′ di�er only at positions where t′ 
ontains ✷.

2. any subterm of

′t 
orresponding to a ✷ in t is of sort Prop or is a type s
heme.

3. all the 
ase remaining in t′ relate to indu
tive types that are informative or logi
al

singleton or logi
al empty types.

This relation →E has the advantage of being stable by substitution, 
ontrary to the

fun
tion E :
Lemma 9 Let t, u, T , U be four terms of Ci
 and Γ a 
ontext su
h that:{

Γ; (x : U) ⊢ t : T
Γ ⊢ u : U

Let also t′, u′
be Ci
✷ terms su
h that t→E t′ and u→E u′

. One then has:

t{x←u} →E t′{x←u′}
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Proof. By indu
tion on the derivation of t →E t′, and by 
ase analysis a

ording to the

last rule used in this derivation:

• (E−✷1) or (E−✷2): if t is a type s
heme or has sort Prop, then it is the same for t{x←u}
a

ording to the stability lemma 1. We then have indeed t{x←u} →E ✷ by the same

rule.

• (E−id): the 
ase where t is not the variable x is obvious, sin
e there is then nothing to

substitute. On the opposite, if t = x = t′, then x{x←u} = u→E u′ = x{x←u′}.
• (E−lam): we have t = λy : Y, t0 and t′ = λy : ✷, t′0 with t0 →E t′0. The indu
tion

hypothesis gives us t0{x← u} →E t′0{x← u′}. However (λy : Y, t0){x← u} = λy :
Y {x← u}, t0{x← u} and (λy : ✷, t′0){x← u′} = λy : ✷, t′0{x← u′}. These two last

terms are indeed related by →E , thanks to the rule (E−lam).

• (E−case): as for the rule (E−lam), one obtains as indu
tion hypothesis the good behavior
of ea
h sub-expression of the 
ase term with respe
t to substitution. Before using rule

(E−case) on the whole substituted 
ase, it is just ne
essary to make sure that the


ondition Info (e) remains true after substitution of the term e mat
hed in the 
ase.

However this is obvious, be
ause an indu
tive term does not 
hange its indu
tive type

by substitution.

• the remaining stru
tural rules are treated like (E−lam).

✷

The following theorem expresses that one 
an simulate on the Coq level all weak redu
tion

of an extra
ted term.

Theorem 2 Let t be a Ci
 
losed well-typed term and t′, u′
two Ci
✷ terms su
h that

t→E t′ and t′ →rw
u′
. There exists then a Ci
 term u su
h as u→E u′

and t→rw+ u.

t
rw+

✲ u

t′

→E

❄

rw

✲ u′

→E

❄

Proof. One pro
eeds by 
ase analysis a

ording to the redu
tion employed between t′ and
u′
. We will start with the two di�
ult 
ases:

• the redu
tion 
arried out is a ιw singleton redu
tion like


asen(✷, . . . , f ′)→ι (f ′ ✷ . . . ✷).

The 
ompatibility rules for the ιw-redu
tion implies that this redu
tion o

urs out

of any binder. Moreover axioms have been prohibited, so the a subterm of t whi
h


orresponds to the eliminated ✷ is thus typable in a 
ontext without assumption. As

a is an indu
tive term, it 
an then be redu
ed to a term having a 
onstru
tor at the

head: (C −→p −→v ).
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It is even possible to 
arry out this redu
tion to a 
onstru
tor in a weak way. In fa
t, C
is the single 
onstru
tor of this singleton logi
al indu
tive type, and C have exa
tly n
arguments apart from the parameters: |−→v | = n. Thus in t the subterm 
asen(a, . . . , f)

an be redu
ed to (f v1 . . . vn) via at least one step of rw-redu
tion. So we 
an take

for u the term resulting from t by these redu
tions. To 
he
k that u →E u′
, we need

only 
he
k that (f v1 . . . vn) →E (f ′ ✷ . . . ✷). And that is obvious, be
ause all the

vi have sort Prop sin
e they are arguments of the 
onstru
tor of a logi
al singleton

indu
tive type.

• the redu
tion 
arried out is a ιw-redu
tion of a �xpoint whose �guard� argument in t′

is ✷. Then the �guard� argument g 
orresponding to this ✷ in t has an indu
tive type.

Moreover, as in the previous 
ase, g is typable in one 
ontext without assumption, and


an thus be redu
ed to a term h beginning with a 
onstru
tor. One 
an then redu
e

the �xpoint in t. And �nally the terms obtained this way in Ci
 and in Ci
✷ are still

related by →E .

The other 
ases are mu
h easier. Let us 
onsider for example the 
ase where the redu
tion


arried out is a βw-redu
tion. A

ording to the de�nition of the extra
tion relation, the

β-redex in t′ ne
essarily have a 
ounterpart β-redex in t. We then just have to redu
e this

redex t in order to obtain a suitable u. And one has indeed u →E u′
, using the previous

substitution lemma for→E . Finally, all remaining 
ases (→δw
,→ζw

and the end of→ιw) are

similar to this 
ase →βw
. ✷

Corollaire 1 Let t be a 
losed well-typed Ci
 term and t′ a Ci
✷ term su
h that t →E t′.
Then any sequen
e of derivations →rw

starting from t′ is �nite.

Proof. Thanks to repeated appli
ations of the previous theorem, one 
an in fa
t build a


orresponding su

ession of derivations in Ci
 starting from t, with at least as many steps.

However the strong normalization of Ci
 implies that this last sequen
e is �nite. ✷

This termination is obviously a good property, but is not enough to ensure that the weak

redu
tion of an extra
ted term pro
eeds without problems. Indeed a redu
tion with a with a

premature, abnormal end is no more desirable that a redu
tion with no end. Could we �nish

on a normal term whi
h is not a value, su
h as (O true) or mat
h (fun x⇒ x) with ...?

For these two extreme examples, it is 
lear that the answer is no: otherwise the previous

theorem would show that these two terms 
ould be related by →E with well-typed terms of

Ci
, whi
h is here impossible.

On the other hand a perfe
tly possible normal form is the appli
ation (✷ O). For example,

we may start with a predi
ate P : ∀n : nat, True. We then have (P O)→E (✷ O), the former

being normal with respe
t to rw. Of 
ourse, we also have (P O)→E ✷, and this is the 
hoi
e

made by the fun
tion E . But we have already seen with the example 1 that this (✷ O) 
an
appear as subterm during a redu
tion. And with a strategy à la O
aml whi
h requires to

�rst evaluate arguments, one then �nds oneself to seek a value for (✷ O). At the theoreti
al
level, the answer is the ad-ho
 redu
tion →✷ already evoked. We will see in se
tions 2.6.3

and 3.3.2 how to deal with this ad-ho
 redu
tion in pra
ti
e.

Lemma 10 In Ci
✷, any sequen
e of redu
tions →✷w
is �nite.
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Proof. A redu
tion →✷w
stri
tly de
reases the size of the term. ✷

Lemma 11 Let t be well-typed Ci
 term and t′, t′′ be Ci
✷ terms su
h that t →E t′ and
t′ →✷w

t′′. Then t→E t′′.

Proof. It is enough to 
onsider the redex (✷ v′) of t′ that one redu
es to get t′′. This redex

orresponds to a (u v) subterm of t. One knows that u is either a type s
heme or has sort

Prop. (
f lemma 8). However this fa
t being stable by appli
ation, it is thus the same for

the subterm (v u). We 
an then 
on
lude by applying (E−✷1) or (E−✷2) a level earlier in t.
✷

Theorem 3 Let t be a 
losed well-typed Ci
 term and t′ su
h that t →E t′. then any

sequen
e of derivations →(rw|✷w) starting from t′ is �nite.

Proof. Let us 
all t′0 . . . t′n . . . this sequen
e in Ci
✷. One 
an then build a sequen
e tn in

Ci
 verifying at ea
h 
 that tn →E t′n:

• if t′n →✷w
t′n+1, we take tn+1 = tn and the invariant 
orresponds to the previous lemma.

• if t′n →rw
t′n+1, we use the theorem 2, and obtain tn+1 su
h that tn →rw

tn+1.

First of all, in this Ci
 sequen
e, there 
an be only be a �nite number of su

essive steps

equality, be
ause they 
orrespond to su

essive redu
tions→✷w
on the Ci
✷ level. This Ci


sequen
e thus 
onsists of redu
tion steps possibly mixed with a �nite number of step of

equality at ea
h time. However, be
ause of the strong normalization, there must be only a

�nite number of su
h redu
tion step. The sequen
e in Ci
 is thus �nite, just as the initial

sequen
e. ✷

The integration of this redu
tion→✷w
does not a�e
t termination during the evaluation

of an extra
ted term. One 
an now ta
kle the question of the shape of normal forms with

respe
t to the redu
tion→(rw|✷w). To answer this question, we will need a result dual to the

theorem 2:

Theorem 4 Let t, u be Ci
 well-typed terms (not ne
essarily 
losed) and t′ a Ci
✷ term

su
h that t→E t′ and t→rw
u. Then it exists a Ci
✷ term u′

su
h that u→E u′
and verifying

t′ →rw
u′

or t′ →∗
✷w

u′
.

t
rw

✲ u

t′

→E

❄

rw|✷w∗
✲ u′

→E

❄

Proof.

• If the redex r redu
ed in t 
orresponds to a similar redex in t′ whi
h is 
omplete, then

we just have to redu
e this redex of t′ to obtain a u′
whi
h is appropriate.
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• If r is 
ompletely 
ontained in a subterm of t 
orresponding to a ✷ of t′, it is enough
to take u′ = t′.

• We now will 
onsider the intermediate 
ases where r 
orresponds to a redex of t′ that
is in
omplete be
ause partly hidden by a ✷. These situations 
orrespond to 
ases 1,

2, 3a and 3b of se
tion 2.3.1.

� If r is a β-redex, the only situation to be 
onsidered is r = (λx : X, a) b in t

orresponding to (✷ b′) in t′. One 
an then simulate the β-redu
tion of t by one

✷-redu
tion in t′.

� If r is a δ- or ζ-redex, there is no problemati
 situation to 
onsider.

� If r is a ι-redex for a 
ase, the only remaining 
ase is


ase(e, P, . . .)

in t 
orresponding in t′ to


ase(✷, P ′, . . .).

The properties of →E (lemma 8) ensure that e is either of sort Prop or is a type

s
heme. As e is an indu
tive term, whi
h thus 
annot be a type s
heme, e is

ne
essarily of sort Prop. In addition, the 
ondition Info states that this 
ase in

t 
on
erns one indu
tive type that is either informative, logi
al empty, or logi
al

singleton. Taking into a

ount the sort of e, the informative 
ase is impossible.

The empty indu
tive 
ase is also impossible, sin
e the la
k of 
onstru
tor prevents

any redu
tion to o

ur. So we are in presen
e of a logi
al singleton elimination,

whi
h we 
an now to redu
e at the Ci
✷ level thanks to the new ι-redu
tion.

� If r is a ι-redex for a fix, there are two sub-
ases. If the fix disappears in t′

but not all the arguments 
omposing the initial redex (
ase 3a), then one 
an

simulate the ι-redu
tion of t by some ✷-redu
tions in t′. And if the fix is present

in t′, it means that the �guard� argument has be
ome ✷ (
ase 3b). We 
an then

redu
e it thanks to the news ι-redu
tion for fix.

✷

Theorem 5 Let t be a 
losed well-typed Ci
 term and t′ a Ci
✷ term su
h that t →E t′.
Then any normal form t′0 of t′ modulo →(rw|✷w) 
orresponds via →E to a weak normal form

t0 of t. More pre
isely, we are in one of the four following 
ases:

(i) t′0 = ✷

(ii) t′0 = C −→v where the arguments

−→v are also in normal form modulo →(rw|✷w).

(iii) t′0 starts with an λ-abstra
tion.

(iv) t′0 = fix fi {. . .} −→v . If the guard argument is ki-th, then |−→v | < ki and
−→v is also in

normal form modulo →(rw|✷w).

Proof. As in the proof of theorem 3, we build a sequen
e of derivations starting from t
and 
orresponding on the Ci
 level to the derivation sequen
e leading from t′ to t′0. This
gives us a Ci
 term t1 su
h that t→∗

rw
t1. If we now 
ontinue to apply weak redu
tions to
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t1, we end up with a Ci
 term t0 in weak normal form. One 
an then re�e
t this derivation

t1 →∗
rw

t0 on the Ci
✷ level via the theorem 4, what gives us a sequen
e of derivations

→(rw✷w)∗ starting from t′0. But this t′0 is in normal form with respe
t to these redu
tions,

therefore does not 
hange. Finally, we have the following diagram:

t
rw∗

✲ t1
rw∗

✲ t0

t′

→E

❄

(rw✷w)∗
✲ t′0

→E

❄

=
✲ t′0

→E

❄

The remainder of the statement 
omes dire
tly from the study of the possible shape of

a 
losed weak normal form in Ci
 (
f lemma 3). Indeed t0 
an be:

• a sort, an applied indu
tive type or a produ
t, whi
h 
an only give ✷ a

ording to the

rules of →E .

• a applied indu
tive 
onstru
tor, that gives by →E either ✷ or the same 
onstru
tor

applied to extra
ted arguments.

• a λ-abstra
tion, whi
h gives by →E either ✷ or another λ-abstra
tion.

• a �xpoint la
king some arguments, whi
h gives by →E either ✷ or a 
orresponding

�xpoint.

✷

Even if it mentions only the general redu
tion→rw
, this theorem is also interesting from

the point of view of the parti
ular evaluation strategies, stri
t (à la O
aml) or lazy (à la

Haskell). Indeed, it was already mentioned previously that these two strategies 
an be seen

like restri
tions of →rw
, with the additional 
ondition that the right part (resp. left) of an

appli
ation should be in normal form before being able to redu
e the other side. In all the


ases, the returned term at the end of a stri
t evaluation is 
learly normal with respe
t to

→rw
, and in the same way for a lazy evaluation. To be able to use the previous theorem,

it is just needed that these stri
t or lazy evaluations also integrate the redu
tion →✷w
. In

se
tion 2.6, we will see how to re
on
ile our requirements in term of redu
tion rules with

the redu
tion me
hanism implemented in O
aml and Haskell.

It is also possible to give some more pre
ise details 
on
erning the four 
ase of the

previous theorem. If t′0 = ✷ then t0 is a type s
heme or has a Prop sort. The lemma 2 shows

that it in is then also the same for t. Said di�erently (by 
ontraposition): if t is informative

and is not a type s
heme, then the redu
tion of its extra
tion 
annot �nish on ✷.

Re
ipro
ally, we would like to have that t′0 = ✷ as soon as t is logi
al or is a type

s
heme. That is ina

urate, be
ause of the non-determinism of→E , as shown by the example

λx : True, x→E λx : ✷, ✷. But of 
ourse, we only have to spe
ialize the previous theorem

with t′ = E(t) instead of T →E t′ to ensure this property. Anyway,→E has no interest ex
ept

as intermediate invariant.

Con
erning the other 
ases of the result:
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• For (ii): if t′0 starts with a 
onstru
tor, then t has an indu
tive type if the 
onstru
tor

is 
ompletely applied, and otherwise a produ
t type if not.

• Re
ipro
ally: if t′ = E(t), and if t has an informative indu
tive type, then the redu
tion

will ne
essarily ends in in 
ase (ii).

• If we are in 
ase (iii) or (iv), this implies that t had initially a produ
t type.

• On the other hand if we just know that t has a produ
t type, we 
an end in any 
ase

(i) (ii) (iii) or (iv).

The main result of this study is that the redu
tion of extra
ted terms 
an be done without

problems. If the redu
tion me
hanism must 
arry out an appli
ation, it well will �nd at the

head a value a

epting one argument: 
losure, �xpoint or ✷ (or an indu
tive 
onstru
tor as

long as one keeps their 
urry�ed notation). And if the redu
tion me
hanism must 
arry out

a pattern mat
hing, the mat
hed obje
t will be indeed redu
ible towards one 
onstru
tor

totally applied to arguments, ex
ept in the spe
ial 
ase of logi
al singleton mat
hings.

The question is now to know if the �nal result of the redu
tion of an extra
ted term is

indeed 
orre
t with respe
t to the initial term. Obviously, the work makes up to now will

allow to give a �rst answer, at least in simple 
ases, su
h as for example the parti
ular 
ase

of terms belonging to a datatype:

De�nition 15 a datatype is an indu
tive type D whose 
onstru
tors have as arguments

only obje
ts of type D or of type another datatype.

For example, an indu
tive type I with a 
onstru
tor of type (nat → I) → I (i.e.

en
apsulating a fun
tion) is not a datatype. On the other hand usual types like bool, nat or

Z are datatypes in this sense. One 
an then spe
ialize our previous result for this parti
ular


ase:

Theorem 6 Let t be a 
losed well-typed Ci
 term whose type T is a datatype without logi
al


ontents. Then all derivations of E(t) via →∗
rw✷w

ends on the normal form Ci
 of t.

Proof. We just have to 
onsider again the proof of the previous theorem, ex
ept that now

t0 is in normal form and not only in weak normal form. This 
omes from the fa
t that T is

a datatype: a 
losed weak normal form in this type, not being able to 
ontain 
losures, is

thus also in normal form. And 
onsequently, the de�nition of being without logi
al 
ontents

shows that E(t0) = t0. There is thus nothing to extra
t in t0, and we have t′0 = t0. ✷

For example, if we build in Coq an arbitrarily 
omplex term answering true or false

to a parti
ular question, one is sure that its extra
tion will redu
e to the same answer as

in Coq. The same applies if our term returns the hundredth Fibona

i number or the list of

the �rst thousand π digits.

This result, although interesting, is in fa
t strongly limited. In parti
ular, it says nothing

about the 
orre
tness of non-
losed terms or fun
tions (whi
h is in fa
t the same, modulo

λ-abstra
tions). To treat these 
ases, it is �rst of all ne
essary to spe
ify what one means by


orre
t fun
tions, and then establish this 
orre
tness. The simple idea is to show that if all

the arguments are 
orre
t in a 
ertain way, then so is output 
omputed by the fun
tion. The

formalization of this idea and its proof turned out to be mu
h more di�
ult than initially

planned. This is the obje
t of all the following se
tion.



2.4. Semanti
 study of extra
tion 
orre
tness 61

2.4 Semanti
 study of extra
tion 
orre
tness

In the following study, we fo
us on 
larifying what it mean for an extra
ted term to

be 
orre
t, and we do it by means of semanti
 
onsiderations. Up to now we indeed used

a purely synta
ti
 
orre
tness property, namely the 
omparison between the stru
tures of

an extra
ted term and of the initial term. But su
h an approa
h does not allow to treat

fun
tions in a satisfa
tory way.

This study is intended in the long term to allow the generation in Coq of the 
orre
tness

proof of extra
ted obje
ts. This aim in�uen
es largely this study, �rst in the 
hoi
e of the

logi
al framework, then in the de�nitions and the proofs that follow, made in the most

detailed and me
hani
al possible manner.

We �rst of all will de�ne a transformation J.K, that will give us in parti
ular, on
e applied

to a type T , the 
orre
tness predi
ate that must veri�ed by any extra
ted term E(t) from

an obje
t t of type T . Then we will establish su

essively:

• the preservation of this transformation J.K by substitution;

• the preservation of J.K via redu
tion;

• the fa
t that the obje
ts built by J.K are 
orre
tly typed;

• the fa
t that the extra
ted terms verify indeed the 
orre
tness predi
ates given by J.K.

Warning: to try to simplify this study, we do not treat the 
ases of �let-in� or 
onstants or

�xpoint with more than one 
omponent. Anyway, these 
ases are not the 
riti
al ones, and

taking them into a

ount would be a tedious but a priori straightforward job. On the other

hand the prin
ipal 
hange 
ompared with the previous se
tion is the use of the modi�ed

system Ci
m with expli
it marking of 
umulativities, introdu
ed in se
tion 1.2.5.

2.4.1 The logi
al framework

We use here a point of view as 
lose as possible to a real formalization in Coq of the

extra
tion 
orre
tness. Even if this formalization has remained a paper one during this thesis,

it is possible that we try in the future to make a true development Coq of it. The logi
al

system in whi
h we will express our 
orre
tness properties is here the Ci
m.

We already evoked in page 9 of introdu
tion the fa
t that it is not not possible in general

to be able to type-
he
k the extra
ted terms in Ci
m. Amongst other reasons, we 
an

mention here the possible disappearan
e of logi
al de
reasing 
erti�
ates in �xpoints. It will

thus be ne
essary to embed these extra
ted terms into one datatype, like:

Indu
tive expr : Set :=

| Var : identifier → expr

| Lam : identifier → expr → expr

| App : expr → expr → expr

| ...

We suppose from now on that we have in Ci
m su
h a 
on
rete type, that we will name Λ
thereafter, internalizing the syntax of untyped Ci
m terms (or pre-terms), plus one 
onstant
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✷. Generally, we will note tΛ the obje
t t internalized in Λ. With a slight abuse of notation,

we will 
ontinue to use the Ci
m syntax for these internalized obje
ts. Thus we will write

(SΛ OΛ) rather than (App SΛ OΛ).
Just as two 
onvertible obje
ts of Ci
m have the same properties, and in parti
ular are

equal via the standard equality eq, we require two 
onvertible Λ obje
ts to be equal. In

parti
ular, we will use the fa
t that ((λx:X, t) x) and t are the same obje
t. We do not

spe
ify more pre
isely, for the moment, whi
h notion of 
onvertibility is ne
essary on the Λ
level, leaving that to be 
lari�ed later on.

This logi
al framework being �xed, the fun
tion E extra
tion seen at the beginning of

this 
hapter is now a meta-level fun
tion, transforming any Ci
m term into an obje
t in the


on
rete type Λ.

2.4.2 The simulation predi
ates

In similar works on extra
tion 
orre
tness, the usual method is to de�ne the 
orre
tness

of the extra
ted terms with respe
t to the initial type of extra
ted obje
t. Theses works

exhibit a realizability predi
ate p r T , whi
h is read as follows: �the program p realize the

type T �. And the goal is then to show that E(t) r T when t : T . The 
riti
al point is the

realization of fun
tions. The natural rule to realize a fun
tional type is as follows:

p r A→B i� ∀a, a r A⇒ (p a) r B

If one wants to generalize this to the dependent produ
t type ∀x : A, B, it is ne
essary

to take into a

ount the possible appearan
e of x in B, that we underline by the notation

B(x). Let us try:

p r ∀x:A,B(x) i� ∀a, a r A⇒ (p a) r B(a)

In a system allowing an internal extra
tion, this may be appropriate, although a r A does

not ne
essarily imply that a : A, and hen
e B(a) may be badly typed. In any 
ase, like the

extra
ted parts have here the type Λ, there is no 
han
e that this rule is well typed. One


an then try to be rely on an element x of type A:

p r ∀x:A,B(x) i� ∀x :A, ∀a, a r A⇒ (p a) r B(x)

In this formulation, the annoying point is now that x and a are not 
orrelated, although

they must morally 
orrespond respe
tively to a Ci
m term and to a possible extra
tion of

this term. To express this 
orrelation, we have 
hosen to introdu
e a simulation predi
ate

T ∼ p relating a Ci
m term t and an extra
ted term p. More pre
isely, we de�ne a family

of predi
ates ∼T indexed by Ci
m types T :

∼T : T → Λ→ Prop

The realization rule for a produ
t now be
omes:

f ∼∀x:A, B(x) p i� ∀x :A, ∀a, x ∼A a ⇒ (f x) ∼B(x) (p a)
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In fa
t, we will 
enter everything on these predi
ates ∼T , and relegate to the ba
kground

the realizability predi
ate r, whi
h will be in fa
t de�ned via the simulation predi
ates:

p r T i� ∃t :T, t ∼T p

And to a
hieve the initial goal, whi
h was to establish E(t) r T , one now need to prove that

t ∼T E(t), whi
h is more pre
ise.

At the te
hni
al level, these predi
ates ∼T for T : s are not yet general enough to be

de�ned and handled dire
tly. We indeed need to extend them for type s
hemes T : K. As

in general, these predi
ates will not be binary relations anymore, we will not keep the in�x

notation ∼, and will speak instead of predi
ates T̂ . When T is a type, t ∼T p will then be

just an abbreviation for (T̂ t p).

In pra
ti
e, we will not be able to de�ne dire
tly these predi
ates T̂ , but rather some

dependent pairs JT K whi
h will have these predi
ates T̂ as se
ond 
omponents, and an

enri
hed alternative T for T as �rst 
omponents. We will thus use three types of dependent

pairs adapted to our needs:

Re
ord Type

+
: Type := mk_Type

{ type_Type :> Type;

pred_Type : type_Type → Λ → Prop }.

Re
ord Set

+
: Type := mk_Set

{ type_Set :> Set;

pred_Set : type_Set → Λ → Prop }.

Re
ord Prop

+
: Type := mk_Prop

{ type_Prop :> Prop;

pred_Prop : type_Prop → Λ → Prop := fun _ _ ⇒ True }.

If s is one of the three sort Set, Prop or Type, the 
onstru
tor of a dependent pair of type s+

is mk

_s, and the two proje
tions are type

_s and pred

_s. These two proje
tions respe
tively

give again the type 
ontained in s+
and the predi
ate of simulation asso
iated with this

type. Let us look at the types of theses proje
tions now. The type of the �rst is very simple:

type_s : s+ → s.

The one of the se
ond presents a dependen
y:

pred_s : ∀T:s+
, (type_s T) → Λ → Prop.

In addition, the �rst proje
tion 
an be seen as a 
oer
ion of s+
into s, whi
h is announ
ed

by the Coq syntax :> instead of the usual : syntax. In Coq, this 
oer
ion allow to avoid

writing the �rst proje
tion expli
itly. In the theoreti
al study that follows, we will 
ontinue

to 
larify these proje
tions. On the other hand, we will do it using a lighter syntax:

• T.1 for (type_s T )

• T.2 for (pred_s T )
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These abbreviations are voluntarily ambiguous, be
ause they do not spe
ify the initial type

Type

+
, Set

+
or Prop

+
. When needed, typing the expression T allows to solve this ambiguity.

It should be noted that the 
ase of Prop

+
is a little parti
ular. We have indeed de�nitively

�xed the 
ontents of the �eld pred

_

Prop during the de�nition of the Prop

+
type. Thus

the predi
ate asso
iated with an obje
t in Prop

+
is ne
essarily the trivial predi
ate, always

equivalent to True. The idea is that the extra
tion of a logi
al part 
an be 
hosen arbitrarily,

without that having reper
ussion over the 
orre
tness of the extra
ted term. At the pra
ti
al

level, the only di�eren
e between the Prop

+
type and the Type

+
types and Set

+
is that it


onstru
tor mk

_

Prop awaits one argument instead of two. On the other hand two proje
tions

type

_

Prop and pred

_

Prop exist and operate as des
ribed previously.

The homogeneity between the s+
will allow us to plunge Set

+
and Prop

+
in Type

+
in

order to mimi
 
umulativities Set < Type and Prop < Type. In Ci
m, these 
umulativities

are announ
ed by the marks

‡
and

†
. These marks will here be mirrored by the two following

fun
tions:

Definition Set

+
_Type

+
:= fun T:Set

+ ⇒ let (t,p):=T in mk_Type t

‡
p.

Definition Prop

+
_Type

+
:= fun T:Prop

+ ⇒ let (t,p):=T in mk_Type t

†
p.

2.4.3 The transformation J.K

We now de�ne a transformation J.K for all obje
t ofCi
m. In fa
t, only the transformation

of types really imports. But these types 
an be found on any positions, for example in the

arguments of an indu
tive 
onstru
tor, and then re-appear during a pattern mat
hing. And

a type 
an also be in fa
t the appli
ation of a type s
heme to arguments. In short, J.K needs
to deal with any Ci
m term.

In the parti
ular 
ase of a type T : s, JT K will be a dependent pair whose se
ond 
om-

ponent JT K.2 is the expe
ted simulation predi
ate. In this pre
ise 
ase, we will shorten

JT K.1 in JT K
1

and JT K.2 in JT K
2

. To help the reading, it 
an be interesting to note that this

meta-theoreti
al transformation J.K preserve typing judgments: if t : T , then JtK : JT K
1

. Here


omes now the de�nition of J.K by stru
tural indu
tion:

� JxK = x

� Jt t′K = JtK Jt′K

� Jλx : T, tK = λx : JT K
1

, JtK

� J∀x : T, T ′K =

mk

_s ∀x : JT K
1

, JT ′K
1

λt, λp, ∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′ → JT ′K
2

(t x) (p x′)

if the type

3

of ∀x : T, T ′
is s 6= Prop. The type of the two shortened abstra
tions

are respe
tively ∀x : JT K
1

, JT ′K
1

and Λ. And if s = Prop, one removes the se
ond

argument of mk

_s.

� JsK = mk

_

Type s+ λ_, λ_, True

� Jt‡K = Set

+
_

Type

+ JtK

3

Noti
e: in Ci
m, we have uniqueness of types modulo 
onversion.
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� Jt†K = Prop

+
_

Type

+ JtK

� JIK = λ
−−−−−→
u : JUK

1

, (mk_s (I −→u ) (Î −→u ))

when the indu
tive type I admits ∀−−−→u : U, s as arity, with s 6= Prop. See the 
ontext

transformation for the de�nition of I and Î. And if s is Prop, we just remove the

se
ond argument of mk

_s.

� JCK = C for a 
onstru
tor C of the indu
tive type I. And C is then a 
onstru
tor of

the indu
tive I. See the 
ontext transformation for the de�nition of I.

� J
ase(e, P,
−→
fi )K = 
ase(JeK, P ,

−−→
JfiK)

Here, for P of form λ−→u , λx : (I −→q −→u ), T , one notes P = λ−→u , λx : (I
−→
JqK −→u ), JT K

1

.

� Jfix x : T := tK = fix x : JT K
1

:= JtK

Finally this transformation J.K extends to 
ontexts as follows:

� JΓ; (x : T )K = JΓK; (x : JT K
1

)

� Ea
h de
laration of indu
tive a I of arity K = ∀−−−→u : U, s and of 
onstru
tors Ci : Ti is

repla
ed by two indu
tive I and Î, the se
ond being useful only if s 6= Prop.

1. I is simply the propagation of J.K
1

to I. Its arity is K = ∀−−−−−→u : JUK
1

, s and its


onstru
tors Ci has type JTiK1.

2. Î is used as simulation predi
ate for I. Its arity is K̂ = ∀−−−−−→u : JUK
1

, (I −→u )→ Λ→
Prop. And its 
onstru
tors Ĉi have type (JTiK2 Ci Ci

Λ), with Ci
Λ being the i-th


onstru
tor of the indu
tive E(I) extra
ted from I and internalized in Λ.

Let us re
onsider one moment the de�nitions of I and Î. It 
an to seem indeed surprising

that JTiK1 on the one hand and (JTiK2 Ci Ci
Λ) on the other hand are valid types of 
onstru
-

tors. In fa
t if Ti is form ∀
−−−→
v : V , (I −→w ), one then has:

JTiK1 = ∀−−−−−→v : JV K
1

, (I
−→
JwK)

and also:

(JTiK2 Ci Ci
Λ) = ∀J−−−→v : V K, (Î

−−−→
S(w) (Ci

−→v ) (Ci
Λ
−→v Λ))

We used here two new notations:

• ∀J−−→x : T K, . . . whi
h denotes ∀−−−−−→x : JT K
1

, . . . plus one additional program variable x′
as-

so
iated with ea
h variable initial x, and the proof Hx of 
orre
tness 
onne
ting x and

x′
. More pre
isely:

∀J(x : T )
−−−−→
(vi : Vi)K, . . . = ∀x : JT K

1

, ∀x′ : Λ, ∀Hx : (JT K
2

x x′), ∀J−−−→vi : ViK, . . .

• −→u Λ
is the extra
ted version of the variables: ea
h variable x is repla
ed by its asso
iated

extra
ted variable x′
.

For a 
ontext Γ, one will need later to handle an even ri
her alternative for JΓK, in whi
h

a de
laration (x : T ) generates, in addition to (x : JT K
1

), the de
laration of a asso
iated

program variable (x′ : Λ) and a proof Hx 
onne
ting x and x′
, of type (JT K

2

x x′). We will

note this extended 
ontext JΓK+.
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2.4.4 One example

It is now time to test all this pretty formalism on one example. We will seek to know

whi
h 
orre
tness 
ondition must satisfy a program extra
ted E(div) when the original term

div is an integer division:

div : ∀a b:nat, b6=0 → { q:nat | q*b ≤ a ∧ a < (S q)*b }

First of all, as the arity of nat is dire
tly Set, one has JnatK = mk

_

Set nat n̂at, and

thus JnatK
1

= nat. Types of new 
onstru
tors O and S of nat are then respe
tively nat and

nat → nat, with the result that nat is exa
tly isomorphi
 with nat. We will thus identify

them. And 
on
erning n̂at, one has:

Indu
tive n̂at : nat → Λ → Prop :=

| Ô : n̂at O OΛ

| Ŝ : ∀n:nat, ∀n':Λ, n̂at n n' → n̂at (S n) (SΛ n').

This indu
tive predi
ate expresses simply the fa
t that n':Λ is a 
orre
t extra
tion of (S

(S ... (S O)...)) i� n' = (SΛ (SΛ ... (SΛ OΛ)...)). Another indu
tive type used in

the type of div is sig :

Indu
tive sig (A:Set

+
)(P:A.1 → Prop

+
) : Set :=

| exist : ∀x:A.1, (P x).1 → sig A P.

This de�nition is not, in fa
t, so di�erent from that of sig, in parti
ular if one omits the


oer
ions .1 inferable by Coq. There is even the following relation:

sig A P ↔ sig A.1 λx, ((P x).1)

Here is now the de�nition of the indu
tive ŝig:

Indu
tive ŝig (A:Set

+
)(P:A.1 → Prop

+
) : sig A P → Λ → Prop :=

| êxist : ∀x:A.1, ∀x':Λ, A.2 x x' →
∀h:(P x).1, ∀h':Λ, (P x).2 h h' →
ŝig A P (exist x h) (existΛ x' h')).

Let us name Div the type of div and let P be (fun a b q ⇒ q*b ≤ a ∧ a < (S q)*b).

We obtain then that JDivK
1

is isomorphi
 with Div, and that JDivK
2

has for type Div →
Λ→ Prop and is:

JDivK
2

= fun (f:Div)(p:Λ) ⇒
∀a:nat, ∀a':Λ, n̂at a a' →
∀b:nat, ∀b':Λ, n̂at b b' →
∀h:b 6=O, ∀h':Λ, Jb6=OK

2

h h' →
(ŝig JnatK (JPK a b) (f a b h) (p a' b' h')).

However, sin
e b 6=O is a logi
al proposition, the predi
ate Jb6=OK
2

whi
h is asso
iated for

him is the trivial predi
ate. And similarly, for any triplet of integer a, b and q, the predi
ate

(JPK a b q).2 is also λ_, λ_, True. Finally, JDivK
2

is equivalent to:
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fun (f:Div)(p:Λ) ⇒
∀a:nat, ∀a':Λ, n̂at a a' →
∀b:nat, ∀b':Λ, n̂at b b' →
∀h:b 6=O, ∀h':Λ,
∃q, ∃q', (f a b h) = (exist q _) ∧ (p a' b' h') = (existΛ q' _) ∧

n̂at q q' ∧ P a b q.

Our extra
ted fun
tion div will thus be 
orre
t i� for two arguments 
orresponding to Coq

integers (the se
ond being non-null) and a third unspe
i�ed argument, it returns a 
onstru
-

tor existΛ whose �rst argument has a Coq 
ounterpart that 
he
k the post-
ondition P.

Despite all the delays resulting of the formalism 
omplexity, the informal meaning of pre-

and post-
onditions is indeed there.

2.4.5 Substitution properties of the transformation J.K

The �rst step on the way to the 
orre
tness proof for the extra
tion is to establish the

substitution properties what veri�es the transformation J.K. This will 
on
ern here only the

substitution of the last variable of a 
ontext, whi
h in parti
ular does not in�uen
e indu
tive

types de�ned previously.

Lemma 12 The transformation J.K preserves substitutions: Jt{x←r}K = JtK{x←JrK}
Proof. This proof is done by stru
tural indu
tion, and is purely synta
ti
. Be
ause of the

important number of 
ases, we will not treat them all. Here a typi
al 
ase:

J(t t′){x←r}K subst.
= Jt{x←r} t′{x←r}K

def. J.K
= Jt{x←r}K Jt′{x←r}K

hyp. rec.
= JtK{x←JrK} Jt′K{x←JrK}

subst.
= (JtK Jt′K){x←JrK}

def. J.K
= Jt t′K{x←JrK}

All the 
ases other than the basi
 
ases follow this s
heme:

1. propagation of substitution

2. use of J.K de�nition

3. repeated uses of the indu
tion hypothesis

4. fa
torization of substitution

5. reversed use of J.K de�nition

There is nevertheless a deli
ate point: nothing guarantees a priori that the same de�nition

rule for J.K will apply before (point 5) and after (point 2) the propagation of substitution.

Fortunately a substitution does not upset the stru
ture: a substituted appli
ation remains
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an appli
ation, a substituted mat
hing remains a mat
hing, et
. Of 
ourse, a substituted

variable 
an give anything else, but this 
ase is 
orre
tly managed:

Jx{x←r}K subst.
= JrK

subst.
= JxK{x←JrK}

Lastly, even if the same de�nition rule for J.K is used before and after substitution, it is still

ne
essary that this rule produ
es similar obje
ts. In parti
ular, the transformation JIK of one
indu
tive type and the transformation J∀x : T, T ′K of a produ
t type use both a 
onstru
tor

mk

_s that depend on a sort s. This sort is respe
tively the sort at the end of the arity of I
and the type of the produ
t. It is thus essential for the validity of the present lemma that a

substitution 
annot modify this sort s. This is a 
ommonpla
e in the indu
tive 
ase: the sort

at the end of the arity of I 
annot 
hange via substitution. On the other hand this is mu
h

less obvious in the produ
t 
ase. In the initial Ci
 system, they is even false: if x : Type,
then ∀y : Y, x has type Type, whereas (∀y : Y, x){x← True} has type Prop. What about

Ci
m now? If one 
onsider again this example, one obtain:

J∀y : Y, xK = mk

_

Type ∀y : JY K
1

, JxK
1

. . .

To be legal, the substitution must now be {x←True

†}. One then has:

J∀y : Y, x{x←True

†}K
= J∀y : Y, True†K
= mk

_

Type ∀y : JY K
1

, (Prop+
_

Type

+ JTrueK).1 . . .

On the other side, the substitution to be applied after transformation is {x← JTrue†K} =
{x←Prop

+
_

Type

+ JTrueK}. And we �nally have the same �nal term.

In a general way, our modi�ed system Ci
m always veri�es the 
onservation of the type

of produ
t by substitution. Indeed, if s is the initial type, then s{x← r} = s is 
learly a

type of the substituted produ
t a

ording to the lemma 4. We 
an then 
on
lude using the

uniqueness of types in Ci
m. ✷

2.4.6 Redu
tion properties of the transformation J.K

As we ex
luded from our study the 
onstants and the �let-in�, we 
onsider here only the

redu
tions β and ι.

Theorem 7 The transformation J.K preserves the redu
tion: t→βι t′ ⇒ JtK→βι Jt′K

Proof. Let us start �rst with the 
ases where the redu
tion is performed at the top:

• t = (λu : U, a) b being redu
ed by β in t′ = a{u←b}. Then JtK is (λu : JUK
1

, JaK) JbK
and 
an be indeed redu
ed to JaK{u← JbK}. And the former is equal via the previous

lemma of substitution to Ja{u←b}K = Jt′K.

• If a β-redu
tion o

urs at the head of a type s
heme, we pro
eed in the same way.

• t = 
ase(Ci
−→p −→u , P, fj) being redu
ed by ι in t′ = (fi

−→u ). Then JtK is in fa
t


ase(Ci

−→
JpK
−→
JuK, P ,

−−→
JfjK) whi
h 
an be indeed redu
ed to (JfiK

−→
JuK) = Jt′K.
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• t = (fix x : T := t0)
−→u being redu
ed by ι in t′ = t0{x← (fix x : T := t0)} −→u .

Then JtK = (fix x : JT K
1

:= Jt0K)
−→
JuK. In parti
ular the indu
tive guard argument,

whi
h started with one indu
tive 
onstru
tor, preserves his head stru
ture. One 
an

thus redu
e JtK in Jt0K{x← (fix x : JT K
1

:= Jt0K)}
−→
JuK. The previous substitution

lemma shows that this term is indeed equal to Jt′K.

• If a ι-redu
tion o

urs at the head of a type s
heme, we pro
eeds in the same way.

When the redu
tion takes pla
e deep inside a term, one pro
eeds by indu
tion over the

stru
ture of the initial obje
t t. As these 
ases bring no surprises, we will not detail them.

✷

2.4.7 Validity of terms produ
ed by the transformation J.K

Theorem 8 The transformation J.K preserves typing judgment: Γ ⊢ t : T ⇒ JΓK ⊢ JtK :
JT K

1

Proof. By indu
tion over the initial typing derivation, and at the same time over the good

formation of transformed 
ontexts JΓK.

(WF) WF(∅) ⇒ WF(J∅K)

(WF)

Γ ⊢ U : s u 6∈ Γ
WF(Γ; (u : U))

⇒
JΓK ⊢ JUK : JsK

1

JΓK ⊢ JUK
1

: s
u 6∈ JΓK

WF(JΓK; (u : JUK
1

))

Indeed JsK
1

= s+
and thus the �rst proje
tion of JUK has type s.

(Ax)

WF(Γ) s ∈ {Set, Prop, Typei} i < j
Γ ⊢ s : Typej

⇒ WF(JΓK) s ∈ {Set, Prop, Typei} i < j
JΓK ⊢ JsK : JTypejK1

Indeed JsK = mk

_

Type s+ λ_, λ_, True and JTypejK1 = Type

+
.

(Var)

WF(Γ) (u : U) ∈ Γ
Γ ⊢ U : U

⇒ WF(JΓK) (u : JUK
1

) ∈ JΓK
JΓK ⊢ JuK : JUK

1

First of all, the variables are invariant by J.K, therefore JuK = u. And in addition, types

present in environment JΓK have indeed the form JUK
1

(
f. rule (WF)).

(Prod)

Γ ⊢ T : s1 Γ; (x : T ) ⊢ T ′ : s2 P(s1, s2, s3)
Γ ⊢ ∀x : T, T ′ : s3⇒

JΓK ⊢ JT K : Js1K1 JΓK; (x : JT K
1

) ⊢ JT ′K : Js2K1 PROD(s1, s2, s3)
. . .

JΓK ⊢ mk

_s3 ∀x : T , T ′ λt, λp, ∀x : T , ∀x′ : Λ, (T̂ x x′)→ (T̂ ′ (t x) (p x′)) : Js3K1

With T = JT K
1

and T̂ = JT K
2

and idem for T ′
.
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The derivation outlined here is the one for s3 6= Prop. Instead of writing all the

details, we will just des
ribe the general s
heme. Js1K1 = s+
1 and Js2K1 = s+

2 . Thus

T and T ′
have as respe
tive types s1 and s2, and T̂ and T̂ ′

have as respe
tive types

T → Λ → Prop and T ′ → Λ→ Prop. A use of the typing rule for the produ
t allows

us then to a�rm that ∀x : T , T ′
admits s3 for type. It is then easy to see that the

predi
ate part of the dependent pair is indeed of type ∀x : T , T ′ → Λ → Prop. It is

then quite legal to form this dependent pair, whi
h has thus type Js3K1 = s+
3 .

The 
ase s3 = Prop is a simpli�ed version of what pre
edes, sin
e mk

_s3 only has one

argument.

(Lam)

Γ ⊢ ∀u : U, V : s Γ; (u : U) ⊢ v : V
Γ ⊢ λu : U, v : ∀u : U, V⇒

JΓK ⊢ J∀u : U, V K : JsK
1

JΓK ⊢ ∀u : JUK
1

, JV K
1

: s
JΓK; (u : JUK

1

) ⊢ JvK : JV K
1

JΓK ⊢ λu : JUK
1

, JvK : J∀u : U, V K
1

Using the indu
tion hypothesis for J∀u : U, V K, one dedu
es via the �rst proje
tion that
J∀u : U, V K

1

= ∀u : JUK
1

, JV K
1

has type s. This plus the other indu
tion hypothesis

for JvK allows us to apply the rule (Lam) and to 
on
lude.

(App)

Γ ⊢ v : ∀u : U, V Γ ⊢ w : U
Γ ⊢ (v w) : V {u←w} ⇒ JΓK ⊢ JvK : J∀u : U, V K

1

JΓK ⊢ JwK : JUK
1

JΓK ⊢ (JvK JwK) : JV K
1

{u←JwK}
As previously, one use the equality J∀u : U, V K

1

= ∀u : JUK
1

, JV K
1

. Lastly, one has

indeed JV K
1

{u←JwK} = JV {u←w}K
1

via the previous substitution lemma.

(Conv)

Γ ⊢ U : s Γ ⊢ t : T T =βι U
Γ ⊢ t : U⇒

JΓK ⊢ JUK : JsK
1

JΓK ⊢ JUK
1

: s
JΓK ⊢ JtK : JT K

1

JT K
1

=βι JUK
1

JΓK ⊢ JtK : JUK
1

Note that T =βι U implies indeed JT K
1

=βι JUK
1

, be
ause of the previous theorem of

redu
tion preservation for J.K.

(CumT)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej⇒

JΓK ⊢ JtK : JTypeiK1 i < j
JΓK ⊢ JtK : JTypejK1

This is immediate, sin
e JTypeiK1 = JTypejK1 = Type

+
.
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(CumP)

Γ ⊢ t : Prop
Γ ⊢ t† : Type⇒
JΓK ⊢ JtK : JPropK

1

JΓK ⊢ Jt†K : JTypeK
1

Here Jt†K = Prop

+
_

Type

+ JtK, whi
h is then indeed of type JTypeK
1

= Type

+
.

(CumS)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type⇒
JΓK ⊢ JtK : JSetK

1

JΓK ⊢ Jt‡K : JTypeK
1

Here Jt‡K = Set

+
_

Type

+ JtK, whi
h is then indeed of type JTypeK
1

= Type

+
.

(I-Type) For an arity K = ∀−−−→u : Us, with s 6= Prop, one has:

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (I : K) ∈ ΓI

Γ ⊢ I : K⇒
WF(JΓK) Indn(Γ

I,bI
:= Γ

C, bC
) ∈ JΓK (I : K) ∈ ΓI (Î : K̂) ∈ ΓI

. . .

JΓK ⊢ λ
−−−−−→
u : JUK

1

, (mk_s (I −→u ) (Î −→u )) : JKK
1

with the abbreviations K = ∀−−−−−→u : JUK
1

, s and K̂ = ∀−−−−−→u : JUK
1

, (I −→u ) → Λ → Prop.

And one has JKK
1

= ∀−−−−−→u : JUK
1

, s+
. The dotted lines in the derivation tree 
orrespond

to a double uses of the rule (I-Type), to dedu
e that I and Î have respe
tive type K

and K̂, and then of the typing of the lambdas and of the dependent pair.

Lastly, the 
ase s = Prop is only one simpli�
ation of what pre
ede, be
ause mk

_s has

then only one argument.

(I-Cons)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T ) ∈ ΓC

Γ ⊢ C : T⇒
WF(JΓK) Indn(ΓI,bI := ΓC, bC) ∈ JΓK (C : JT K

1

) ∈ ΓC

JΓK ⊢ C : JT K
1

(I-WF) Con
erning the de
laration of an indu
tive I, of arity K = ∀−−−→u : U, sI and 
onstru
tors

Ci : Ti, if we pose ΓI = (I : K) and ΓC = (C1 : T1); . . . ; (Ck : Tk), we then originally

have :

Γ ⊢ K : s Γ; ΓI ⊢ Ti : sI In(ΓI , ΓC)
WF(Γ; Indn(ΓI := ΓC))
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Let us �rst examine the de�nition of I. Its arity is ∀−−−−−→u : JUK
1

, sI . However one has :

JΓK ⊢ J∀−−−→u : U, sIK : JsK
1

indu
tion hypothesis for K

JΓK ⊢ ∀−−−−−→u : JUK
1

, s+
I : s via the �rst proje
tion, sin
e JsK

1

= s+

JΓK ⊢ ∀−−−−−→u : JUK
1

, sI : s sin
e s+
I has a larger type than sI .

And 
on
erning the new types JTiK1 of the 
onstru
tors Ci, we have:

JΓK; JΓIK ⊢ JTiK : JsIK1 indu
tion hypothesis for Ti

JΓK; JΓIK ⊢ JTiK1 : sI via the �rst proje
tion

In fa
t, JΓIK = (I : ∀−−−−−→u : JUK
1

, s+
I ) and not (I : ∀−−−−−→u : JUK

1

, sI). But I will appear in

JTiK1 only behind the �rst proje
tion, in a form like (I −→w ).1. One 
an then 
hange

these o

urren
es into (I −→w ) and repla
e JΓIK by (I : ∀−−−−−→u : JUK
1

, sI).

Finally the side 
onditions In are indeed satis�ed for I. In parti
ular the JTiK1 are

always types of 
onstru
tors for sorts sI . As for the 
ondition of positivity, without

going into to mu
h details, the intuition is that J.K
1

preserve the stru
ture of the Ti,

and in parti
ular positivity.

Let us pass now to the de�nition of Q̂. Its arity is ∀−−−−−→u : JUK
1

, (I −→u ) → Λ → Prop,

whi
h is indeed typable of type Type. As for 
onstru
tors Ĉ, the 
hosen de�nition

ensures that they are types of 
onstru
tors for Î of sort Prop. And one more time, we

will not detail the positivity veri�
ation, but here again it does not seem to pose any

problem.

(Case) Let us now look at the 
ase of a mat
hing on an obje
t of indu
tive type I, whose

arity is K = ∀−−→p : P, K ′
with K ′ = ∀−−−→u : U, s and whose 
onstru
tors are Ci : Ti. We

note Ti = ∀−−→p : P, ∀−−−→v : V , (I −→p −→w ) the types of 
onstru
tors Ci. Let �nally σ be the

substitution of formal parameters

−→p by 
on
rete parameters q.

Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : K ′
σ; B) ∀i, Γ ⊢ fi : ∀−−−→v : Vσ, P −→wσ (Ci

−→q −→v )
Γ ⊢ 
ase(e, P, f1 . . . fk) : P −→u e⇒

JΓK ⊢ JeK : I
−→
JqK
−→
JuK JΓK ⊢ JP K : JBK

1

C(I −→JqK : ∀−−−−−−→u : JUσK
1

, s; B)

∀i, JΓK ⊢ JfiK : ∀−−−−−→v : JVσK1, JP −→wσ (Ci
−→q −→v )K

1

JΓK ⊢ 
ase(JeK, P , Jf1K . . . JfkK) : JP −→u eK
1

The transformed version above is not dire
tly a legal appli
ation of the rule (Case):

there are some adjustments to be made. First of all let us study the predi
ate P , whi
h

form is λ
−−−→
u : U, λx : (I −→q −→u ), T . Its type B is of the form ∀−−−→u : U, (I −→q −→u ) → sP .

Thus JBK
1

= ∀−−−−−→u : JUK
1

, (I
−→
JqK
−→
JuK)→ s+

P . And JP K = λ
−−−−−→
u : JUK

1

, λx : (I
−→
JqK
−→
JuK), JT K.

This implies that our new predi
ate P = λ
−−−−−→
u : JUK

1

, λx : (I
−→
JqK −→u ), JT K

1

is well typed,

of type ∀−−−−−→u : JUK
1

, (I
−→
JqK
−→
JuK) → sP . Let us note B this last type. Sin
e ∀−−−−−−→u : JUσK1, s

and B are arities on the same sort than their original versions, the 
ondition C is
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always 
he
ked afterward transformation. Finally the following equalities hold:

JP −→u eK
1

= (JP K
−→
JuK JeK).1 = (P

−→
JuK JeK)

and similarly:

JP −→wσ (Ci
−→q −→v )K

1

= (P
−−→
JwσK (Ci

−→
JqK
−→
JvK))

This now allows a legal appli
ation of the rule (Case), modulo some permutations

between substitution J.K and σ.

(Fix)

Γ ⊢ T : s Γ; (x : T ) ⊢ t : T F(x, T, k, t)
Γ ⊢ (fix x/k : T := t) : T⇒

JΓK ⊢ JT K : JsK
1

JΓK ⊢ JT K
1

: s
JΓK; (x : JT K

1

) ⊢ JtK : JT K
1

F(x, JT K
1

, k, JtK)

JΓK ⊢ (fix x/k : JT K
1

:= JtK) : JT K
1

Con
erning side 
onditions F(x, JT K
1

, K, JtK):

� the argument number awaited by JtK is the same one as the one of t, and the k-th
argument of JtK still has an indu
tive type, whi
h is now I instead of I.

� For ea
h re
ursive 
all (x −→u ) in t there exists a 
orrespond one (or several)

re
ursive 
all(s) (x
−→
JuK) in JtK. The important point is that the �guard� argument

uk undergoes only the transformation J.K to be
ome JukK, whi
h does not 
hange

the fa
t that it is stru
turally smaller than the initial indu
tive argument, sin
e

J.K preserve the stru
ture of t.

✷

2.4.8 Corre
tness of E with respe
t to the transformation J.K

Let us start with two auxiliary results, whi
h 
on�rm that the elimination 
ases of the

extra
tion are quite valid with respe
t to J.K.

Lemma 13 For any Ci
m arity K, well-typed in a 
ontext Γ, one 
an prove ∀x : JKK
1

, ∀x′ :
Λ, JKK

2

x x′
in the 
ontext JΓK.

Proof. This is shown by indu
tion on the stru
ture of K:

• If K = s, then JKK
2

is dire
tly λx : JKK
1

, λx′ : Λ, True. The term λ_, λ_, I is then

appropriate as proof of the required property.

• If now K is a produ
t ∀x : T, K ′
, we have:

JKK
2

= λt : JKK
1

, λp : Λ, ∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′ → JK ′K
2

(t x) (p x′)

However the indu
tion hypothesis for K ′
gives us a term Hr whose type is ∀y :

JK ′K
1

, ∀y′ : Λ, JK ′K
2

y y′
in the 
ontext JΓK; (x : JT K

1

). The following term is then

appropriate:

λz : JKK
1

, λz′ : Λ, λx : JT K
1

, λx′ : Λ, λ_, Hr{x←x} (z x) (z′ x′)
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✷

Lemma 14 For any Ci
m type T admitting Prop like sort in a 
ontext Γ, one 
an prove

∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′
in the 
ontext JΓK.

Proof. A

ording to theorem 8, JT K has type Prop+
. Considering the de�nition of Prop

+
,

the predi
ate JT K
2

is thus λ_, λ_, True. ✷

We now will state and prove the prin
ipal result of this semanti
 study: the extra
tion

E is 
orre
t with respe
t to the simulation predi
ates obtained via the transformation J.K :

Theorem 9 For any well-typed Ci
m obje
t t, if Γ ⊢ t : T , then (JT K
2

JtK E(t)) is provable

in the 
ontext JΓK+.

Proof. First of all, the basi
 
ases, whi
h are arities and logi
al parts, are treated using

the two previous lemmas. The remainder of the proof is done by indu
tion over the typing

derivation Γ ⊢ t : T .

(Ax) In this rule that allow the typing of sorts, T is a sort, and thus a fortiori an arity. We

thus use lemma 13.

(Prod) Here T is again a sort, hen
e the use of lemma 13.

(Var)

WF(Γ) (x : T ) ∈ Γ
Γ ⊢ x : T

If T admits Prop as type or is an arity, then E(x) = ✷ and we use lemma 14 or lemma

13. If not, E(x) is the program variable asso
iated with x in the 
ontext JΓK+, namely

x′
. And this 
ontext also 
ontains a proof Hx of type (JT K

2

x x′), whi
h gives us the


laimed (JT K
1

JxK E(x)).

(Lam)

Γ ⊢ ∀x : T0, T ′ : S Γ; (x : T0) ⊢ t′ : T ′

Γ ⊢ λx : T0, t′ : ∀x : T0, T ′

If T = ∀x : T0, T ′
is an arity or has type Prop, we apply one of the previous lemmas.

If not, the indu
tion hypothesis for t′ states that:

JΓK+; (x : JT0K1); (x
′ : Λ); (Hx : JT0K2 x x′) ⊢ HR : JT ′K

2

Jt′K E(t′)
However we have:

JT K
2

= λz : JT K
1

, λz′ : Λ, ∀x : JT0K1, ∀x′ : Λ, ∀Hx : JT0K2 x x′, JT ′K
2

(z x) (z′ x′)

The desired property is then:

∀x : JT0K1, ∀x′ : Λ, ∀Hx : JT0K2 x x′, JT ′K
2

((λx : JT0K1, Jt′K) x) ((λx′ : ✷, E(t′)) x′)

And this 
an be simpli�ed using (λx : JT0K1, Jt′K) x = Jt′K and (λx′ : ✷, E(t′)) x′ =
E(t′). Finally, the following term is a 
orre
t proof of the wanted property:

λx : JT0K1, λx′ : Λ, λHx : JT0K2 x x′, Hr{x, x′, Hx←x, x′, Hx}

(App)

Γ ⊢ t′ : ∀x : T0, T ′ Γ ⊢ t0 : T0

Γ ⊢ (t′ t0) : T ′{x← t0}
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If T ′{x← t0} is an arity or has type Prop, one applies one of the previous lemmas. If

not, one will use the two indu
tion hypothesis:

JΓK+ ⊢ H1
r : ∀x : JT0K1, ∀x′ : Λ, JT0K2 x x′ → JT ′K

2

(Jt′K x) (E(t′) x′)

JΓK+ ⊢ H2
r : JT0K2 Jt0K E(t0)

However the desired property is:

JT ′{x← t0}K2 Jt′ t0K E(t′ t0) = JT ′K
2

{x←Jt0K1} (Jt′K Jt0K) (E(t′) E(t0))
It is then enough to take as proof:

H1
r Jt0K E(t0) H2

r

(Conv)

Γ ⊢ T : S Γ ⊢ T : T ′ T ′ =βι T
Γ ⊢ T : T

We have JT ′K =βι JT K, and in parti
ular the se
ond proje
tions are 
onvertible. It is

thus enough to use exa
tly the proof term 
oming from the indu
tion hypothesis for

t : T ′
.

(CumT)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej

Typej is a sort thus a fortiori an arity. We use lemma 13.

(CumP)

Γ ⊢ t : Prop
Γ ⊢ t† : Type

Prop is a sort thus a fortiori an arity. We use lemma 13.

(CumS)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type

Set is a sort thus a fortiori an arity. We use lemma 13.

(I-Type) An indu
tive type ne
essarily has an arity as type. We use lemma 13.

(I-Cons)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T ) ∈ ΓC

Γ ⊢ C : T

If the 
onstru
tor belongs to a logi
al indu
tive type, the lemma 14 is used. If not, an

unfolding of (JT K
2

JCK E(C)) show that it is exa
tly the type of the 
onstru
tor Ĉ of

the indu
tive Î. It is then enough to take this Ĉ as proof term.

(Case) Let us now look at the 
ase of a pattern mat
hing on an obje
t of indu
tive type I

whose arity is K = ∀−−→p : P , K ′
with K ′ = ∀−−−→u : U, s and whose 
onstru
tors are Ci : Ti.

We note Ti = ∀−−→p : P, ∀−−−→vi : Vi, (I −→p −→wi) the types of the 
onstru
tors Ci. Let �nally σ
be the substitution of formal parameters

−→p by 
on
rete parameters q.
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Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : K ′
σ; B) ∀i, Γ ⊢ fi : ∀−−−−→vi : Viσ, P −→wiσ (Ci

−→q −→vi )
Γ ⊢ 
ase(e, P, f1 . . . fk) : P −→u e

First of all, if T = (P −→u e) admits Prop as type, or is an arity, we use one of the

previous lemmas. Let us suppose now that this mat
hing is informative. The indu
tion

hypothesis give us:

JΓK+ ⊢ Hr : JIK
2

−→
JqK
−→
JuK JeK E(e) with JIK

2

= I if s 6= Prop or λ
−→
_, True

otherwise

JΓK+ ⊢ H i
r : J∀−−−−→vi : Viσ, P −→wiσ (Ci

−→q −→vi )K2 JfiK E(fi) for all i

Said otherwise, with the notations of page 65:

JΓK+ ⊢ H i
r : ∀J−−−−→vi : ViσK, (JP K

−−−→
JwiσK (Ci

−→
JqK −→vi )).2 (JfiK

−→v ) (E(fi)
−→vi

Λ)

On the other hand, one wishes to prove:

(JP K
−→
JuK JeK).2 
ase(JeK, P ,

−−→
JfiK) 
ase(E(e), ✷,

−−−→E(fi))

The head e of this mat
hing is then in one of the three following 
ases:

• Its indu
tive type I is an logi
al empty indu
tive. We are then in a situation

similar to a proof of False : we 
an just eliminate this proof e via a pattern

mat
hing to be able to prove anything. And the post-transformation version JeK
has still an empty indu
tive type, whi
h is now I. The proof will be thus of the
form 
ase(JeK, . . . , ) with the good head predi
ate.

• Its type indu
tive I is a logi
al singleton indu
tive. There is thus only one


onstru
tor C1 for I, and all the non-parametri
 arguments of C1 are logi
al.

Let n be the number of su
h arguments. The expression 
ase(E(e), ✷,
−−−→E(f1)) is

in fa
t 
asen(✷, ✷, E(f1)), whi
h 
an be redu
ed to (E(f1)
−→
✷ ).

We then de�ne a new predi
ate P̂ whose body is:

λ
−−−−→
u : JUK, λx : I

−→
JqK −→u , (JP K −→u x).2 
ase(x, P,

−−→
JfiK) (E(fi) ✷ . . . ✷)

The proof to be built then starts with a mat
hing on JeK a

ording to this predi-


ate P̂ . This mat
hing have then only one bran
h, whose type must be:

∀−−−−−−−→v1 : JV1KJσK, P̂
−−−−→
Jw1KJσK (C1

−→
JqK −→v1) =

∀−−−−−−→v1 : JV1σK, (JP K
−−−→
Jw1σK (C1

−→
JqK −→v1)).2 (Jf1K

−→v1) (E(f1)
−→
✷ )

modulo a ι-redu
tion and some permutations between J.K and σ. Now, for ea
h
variable v1j of the sequen
e

−→v1 , one knows that it is a logi
al variable. By using

repeatedly the lemma 14, one builds for ea
h j a term Hj of type (JV1jσK2 v1j ✷).
The required bran
h of the mat
hing is then:

λ
−−−−−−→
v1 : JV1σK, (H1

r v11 ✷ H1 . . . v1n ✷ Hn)

• Its indu
tive type I is informative. There again, we pro
eed by pattern mat
hing

on JeK, but we need to destru
t Hr during mat
hing. One thus starts with a

generalization (Generalize in Coq) with respe
t to the type of Hr. On the level

of the �nal proof term, this 
orresponds to an appli
ation to Hr. And the head

of this appli
ation now will be a pattern mat
hing on JeK a

ording to following
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predi
ate P̂ :

λ
−−−−→
u : JUK, λx : I

−→
JqK −→u , Î

−→
JqK −→u x E(e)→

(JP K −→u x).2 
ase(x, P,
−−→
JfiK) 
ase(E(e), ✷,

−−−→E(fi))

The j-th bran
h of this mat
hing must then have for type:

∀−−−−−−−→vj : JVjKJσK, P̂
−−−−→
JwjKJσK (Cj

−→
JqK −→vj ) =

∀−−−−−−→vj : JVjσ
K, Î
−→
JqK
−−−→
Jwjσ

K (Cj

−→
JqK −→vj ) E(e)→

(JP K
−−−→
Jwjσ

K (Cj

−→
JqK −→vj )).2 (JfiK

−→vi ) (
ase(E(e), ✷,
−−−→E(fj)))

This mat
hing bran
h is then built as follows:

1. We starts by introdu
ing the variables

−→vj .

2. We introdu
e the spe
ialized version of Hr, where JeK has be
ome (Cj

−→
JqK −→vj ).

3. It is then possible to inverse this new Hr (Inversion in Coq). And a

ording

to the form of its type, we then obtain the existen
e of variables v′
jk asso
iated

to ea
h variable vjk of

−→vj , as well as proof Hk of type (JVjkσK2 vjk v′
jk), and

�nally we also obtain the fa
t that E(e) is equal to (Cj
Λ
−→vj

Λ).

4. We 
an then rewrite E(e) in the 
urrent goal, in whi
h the part 
on
erning

E be
omes 
onvertible then with (E(fj)
−→vj

Λ).

5. The only remaining step is to apply Hj
r to the good arguments vjk, v′

jk and

Hk.

(Fix)

Γ ⊢ T : s Γ; (f : T ) ⊢ t : T F(f, T, k, t)
Γ ⊢ (fix f/k : T := t) : T

If T is of type Prop or is an arity, we use one of the previous lemmas. If not, we use

the indu
tion hypothesis:

JΓK+; (f : JT K
1

; (f ′ : Λ); (Hf : JT K
2

f f ′) ⊢ Hr : JT K
2

JtK E(t)
However one wishes to establish the following statement:

JT K
2

(fix f : JT K
1

:= JtK) (fix f ′ : ✷ := E(t))
Thereafter, we note fix and fixΛ the respe
tive �xpoints (fix f : JT K

1

:= JtK) and

(fix f ′ : ✷ := E(t)). The idea is then to make a proof by �xpoint, something like:

fix F : JT K
2

fix fixΛ := Hr{f←fix}{f ′←fixΛ}{Hf←F}
Unfortunately, this term is slightly ina

urate. The type of Hr after substitution is

indeed (JT K
2

JtK{f ← fix} E(t){f ′ ← fixΛ}) instead of (JT K
2

fix fixΛ). However
unfolded versions of �xpoint fix and fixΛ are 
onvertible with their initial versions

only when a guard argument is present and starts with a 
onstru
tor. It is in fa
t

possible to 
orre
t these ina

ura
ies. To simplify the writing, we will pro
eed only

in the situation where the guard argument is in the �rst position. But of 
ourse,
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this method extends to the general 
ase. We thus suppose that T 
an be written

∀x : I −→u , T ′
. The type (JT K

2

JtK E(t)) of Hr rewrites to:

∀x : I
−→
JuK, ∀x′ : Λ, ∀Hx : Î

−→
JuK x x′, JT ′K

2

(JtK x) (E(t) x′)

However one 
an prove that:

∀x : I
−→
JuK, JtK{f←fix} x = fix x

To establish that, we 
an just reason by 
ase over x, and in ea
h 
ase x is then

repla
ed by a 
onstru
tor, whi
h implies that the equality be
omes trivial thanks to a

ι-
onversion. And we 
an also prove similarly that:

∀x : I
−→
JuK, ∀x′ : Λ, ∀Hx : Î

−→
JuK x x′, E(t){f ′←fixΛ} x′ = fixΛ x′

There again one pro
eeds by mat
hing on x. Then, in order to dedu
e the form of x′
,

we �inverse� Hx as in the previous sub-
ase for (
ase). This shows us that x′
starts

with one 
onstru
tor, and there again the required equality be
omes trivial after a

ι-
onversion. The next step is to use these two equalities to rewrite the type of the

substituted version of Hr, so that its type be
omes indeed (JT K
2

fix fixΛ).

Finally, it should be 
he
ked that this �xpoint proof that we have just built is indeed

legal: are its re
ursive 
alls stru
turally de
reasing? It is a matter of lo
ating the uses

of Hf in Hr. However the o

urren
es of f in the t term initial are applied to de
reasing

arguments. And the 
onstru
tion of Hr respe
ts the stru
ture of t: a 
ase produ
es a


ase, one appli
ation generates an appli
ation, et
. To ea
h appli
ation (f y) in t will

orrespond an appli
ation (Hf JyK E(y) . . .) in Hr, whi
h relies (f JyK) and (f ′ E(y)).
And if y was stru
turally smaller than the initial indu
tive argument, it is indeed the

same for JyK.

✷

2.5 Summary of the 
orre
tness results

At the end of this double study of 
orre
tness, it is time to make an assessment of the

properties of 
orre
tness whi
h we have proved. In fa
t, the synta
ti
 part (se
tion 2.3) and

the semanti
 part (se
tion 2.4) are quite 
omplementary.

• the synta
ti
 study allows to establish the termination without anomaly of any weak

redu
tion of a 
losed extra
ted term. On the other hand if the extra
ted term is a

fun
tion, this is not very instru
ting. This part is a relatively simple methodology,

obtained early during this thesis works.

• Su
h as we formulated it, our semanti
 analysis does not allow to prove by itself the

termination of our extra
ted programs. Perhaps that would be it possible by adding

termination 
onditions among the de�nitions of JK, but we do not have pushed further

in this dire
tion for la
k of time. Indeed, this semanti
 analysis has required an impor-

tant quantity of e�orts to be a
hieved. In parti
ular, issues like 
umulativity of Ci


have been quite hard to deal with, and that has only be done in the last months of this

thesis. In any 
ase, this analysis allows to give a meaning to extra
ted fun
tions, and
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a�rms that they preserve the properties of the initial Coq fun
tions. This analysis also

opens the door to one study of the extra
tion in the presen
e of axioms, something

ex
luded by our �rst study.

2.6 Toward a more realisti
 extra
tion

We have seen before that the redu
tion rw studied in se
tion 2.3.2 
orresponded to the

respe
tive redu
tion strategies of Haskell and O
aml, depending on whether one redu
ed

initially the head or the argument of the appli
ations.

There remain nevertheless four substantial di�eren
es between our theoreti
al model and

the redu
tions a
tually used by Haskell and O
aml :

1. empty indu
tive types and their eliminations

2. the ad-ho
 rule →i of elimination of logi
al singleton indu
tive types

3. the ad-ho
 rule →✷ eliminating the arguments of 
onstants ✷

4. the rule →i 
on
erning the �xpoints and their 
on
ept of �guard�

2.6.1 The empty indu
tive types

Our target languages do not authorize the de�nition of empty indu
tive types, and a

fortiori the mat
hing over su
h an indu
tive. But in fa
t, if one handles an obje
t having an

empty indu
tive type, that means that we are in some impossible situation. A mat
hing on

su
h an obje
t is in parti
ular a portion of 
ode that will never be exe
uted.

More pre
isely, let us suppose that the evaluation of an extra
ted obje
t meet a term

of the form 
ase(e, P, ∅). The theorem 2 enables us to obtain a 
orresponding well-typed

Ci
 term 
ase(e0, P0, ∅). In parti
ular e0 is an obje
t having an empty indu
tive has type.

We 
an then 
ontinue with a reasoning similar to the one used during the proof of theorem

2: sin
e these redu
tions are done in a weak manner, i.e. in an empty 
ontext and outside

all lambdas, the indu
tive obje
t e0 is thus 
losed. It 
an then to be redu
ed to a term

having a 
onstru
tor as head. This is obviously impossible, be
ause an empty indu
tive has

by de�nition no 
onstru
tor.

One 
an thus freely repla
e any pattern mat
hing on an empty indu
tive obje
t by

arbitrary 
ode. In pra
ti
e, a natural 
hoi
e is to repla
e this mat
hing by the raising of

an ex
eption. This allows to underline the ina

essible 
hara
ter of this position of the


ode, while giving the most general type to this portion of 
ode. We thus use in O
aml the


onstru
tion assert false, and error in Haskell.

One may note that this treatment of empty indu
tives is 
ompletely independent of the

logi
al or informative 
hara
ter of this indu
tive type. Whether we deal with the logi
al

indu
tive False or with its dual in Set named empty, their two eliminations False

_

re
 and

empty

_

re
 result in the raising of an ex
eption.
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2.6.2 The elimination of logi
al singleton indu
tive types

In the study of se
tion 2.3.2, we used one ι-redu
tion rule adapted to treat the elimination

of logi
al singleton indu
tive types:


asen(✷, P, f)→ι f ✷ . . . ✷︸ ︷︷ ︸
n

The reason for su
h an ad-ho
 rule is to allow the fun
tion E to disturb as less as

possible the stru
ture of the terms, whi
h simplify its study. This redu
tion thus does not

have anything fundamental, so mu
h so that it is perfe
tly possible to integrate it into the

extra
tion: rather than to en
ode this spe
ial rule in our languages targets, we 
an �pre-


ompile� during the extra
tion all these eliminations of logi
al singleton indu
tive, without

losing 
orre
tness of extra
tion.

Justifying su
h an optimization of the extra
ted terms is not 
ompletely immediate.

Indeed this tri
k implies to redu
e all the eliminations of logi
al singleton, in
luding those

lo
ated under lambdas, whereas our 
orre
tness results of the se
tion 2.3.2 are valid only

with the use of the weak version of this ι-redu
tion.
It 
an seem paradoxi
al besides to want to 
arry out strong redu
tions after having war-

ned against the dangers of su
h redu
tions in the examples of the beginning of se
tion 2.3.2.

But let us 
onsider again the fun
tion 
ast of page 51, whi
h translated into a mat
hing on

a logi
al singleton indu
tive. It is not the ι-redu
tion itself of the body of (
ast H 0) to

0 that generate an error in the exe
ution of the fun
tion example, but rather the following

mat
hing where 0 is seen as a boolean. And this se
ond non-singleton mat
hing will remain

quite prohibited be
ause it is done under a lambda.

We will note→ιs the strong version of this ad-ho
 ι-redu
tion, usable even under lambdas,


ontrary to the weak version→ιw . From one extra
ted term t, we now justify the 
orre
tness

of one term t′ obtained via t→∗
ιs

t′, using a simulation of t′ by t.

Theorem 10 Let t, t′ and u′
be three terms of Ci
✷ su
h that t→∗

ιs
t′ and t′ →rw

u′
. There

exists a Ci
✷ term u su
h that u→∗
ιs

u′
and t→rw+ u.

t
rw+

✲ u

t′

ιs∗
❄

rw

✲ u′

is∗
❄

Proof. Taking into a

ount the rule →ι for logi
al singleton indu
tive, the terms t and t′

have extremely 
lose stru
tures. It is enough then to 
ompare the position of the redex r
whi
h is redu
ed in t′ with the 
orresponding position in t.

• If this position is apart from any bran
h of pattern mat
hing on a logi
al singleton

indu
tive, then the same redu
tion 
an be 
arried out in t, whi
h gives us a suitable

term u.
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• Suppose now that this position in t is under one or more pattern mat
hing(s) over

logi
al singleton indu
tives. First of all let us 
onsider the 
ase of a single mat
hing

on the way to the redex 
orresponding to r in t. The redu
tion whi
h one 
arries out

in t′ is weak. In t, that mean that our logi
al mat
hing singleton is a fortiori lo
ated

outside any binder, these binder being lambdas or mat
hings. One 
an then start by

using →ιw to redu
e this mat
hing over a logi
al singleton indu
tive, before redu
ing

the redex 
orresponding to r. And in the 
ase of multiple mat
hings, the argument is

the same: the most external mat
hing 
an be redu
ed in a weak way, then the se
ond,

and so on, before �nishing by the redex 
orresponding to r.

✷

Theorem 11 Let t, t′ and u be three terms of Ci
✷ su
h that t→∗
ιs

t′ and t→rw
u. There

exists a Ci
✷ term u′
su
h that u→∗

ιs
u′

and verifying t′ →rw
u′

or t′ = u′
.

t
rw

✲ u

t′

ιs∗
❄

rw|ǫ
✲ u′

ιs∗
❄

Proof. First of all, if the redu
tion of t to u is a ι-redu
tion of a logi
al singleton term

already 
arried out between t and t′, then taking u′ = t′ is appropriate. If not, the weak

redu
tion between t and u is done outside of any mat
hing, in
luding mat
hing on logi
al

singleton. There is thus one exa
tly identi
al redex in t′, that one 
an redu
e for getting a

suitable u′
. ✷

In addition to the redu
tions →rw
, the redu
tions →✷ 
an also be simulated between

the initial extra
ted term t and its optimized version t′. Finally, any sequen
e of redu
tions

starting from t′ is �nite, otherwise the theorem 10 would allow us to build an in�nite sequen
e

redu
tions for the extra
ted term t. And by 
ombining the two previous theorems it 
an be

shown that the weak normal forms of t and t′ are related by →ιs, and in parti
ular equal if

they 
ontain no more λ-abstra
tions.
During the extra
tion, we are indeed in right to 
arry out all the ι-redu
tions of logi
al

singleton indu
tive, even strongly, on the raw extra
ted term generated by E . Moreover the

head of a mat
hing over a logi
al singleton is inevitably Prop as sort, and thus is extra
ted

by E into ✷. This thus implies that all mat
hings over logi
al singletons 
asen are indeed

redu
ed by →ιs and disappear 
ompletely.

2.6.3 The elimination of the possible arguments of ✷

Let us now 
onsider the ad-ho
 redu
tion (✷ x)→✷. Unlike the previous ad-ho
 redu
tion

on logi
al singleton indu
tive types, it will not be possible to avoid it 
ompletely after

extra
tion. Of 
ourse, the extra
tion E never generates itself su
h (✷ x) terms, sin
e the
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whole initial term (f x) is then identi�ed as worth eliminating, and gives dire
tly ✷. On the

other hand, the example 1 of page 49 shows that su
h a subterms 
an appear after some

redu
tions inside an extra
ted term.

O
aml

If one evaluates à la O
aml the extra
ted terms, i.e. with a stri
t strategy, it is then

ne
essary to be sure that this (✷ x) appli
ation will not fail. In pra
ti
e that 
an be done by


hoosing 
arefully the 
on
rete term whi
h will implement ✷. Usually, one 
hooses the term

() of type unit to repla
e an arbitrary 
onstant like our ✷, but that is thus not appropriate

here. One 
an then try try to rather use fun

_ → (), or fun

_ _ → () when it is known

that ✷ 
an re
eive up to two arguments, and so on. Unfortunately, we have been unable to

simply determine the maximum number of arguments that 
an re
eive a parti
ular ✷ term.

We thus have 
hosen a more general though less elegant solution, namely one �xpoint that

absorbs its arguments. In O
aml, that 
an be written as follows:

let re
 f x = f

Of 
ourse, this de�nition is badly typed, and we will see in the next 
hapter how to 
ir-


umvent this problem. In any 
ase, from the point of view of the exe
ution, a 
onstant ✷

implemented this way 
an indeed re
eive an arbitrary number of arguments without failing.

Haskell

In the 
ase of a lazy evaluation to the Haskell, one 
ould perfe
tly reuse this idea of a

�xpoint absorbing its arguments. But that is in fa
t not ne
essary. If one studies again the

example 1, the extra
ted obje
t is after redu
tion λg : ✷, (g (✷ O)). The (✷ O) subterm do

not appear at the head, and the fun
tion g may 
ompletely not use its argument, in whi
h


ase the (✷ O) appli
ation will never be 
omputed. This situation is in fa
t quite 
ommon,

and one will in fa
t never need to use the rule →✷ with lazy strategy. This lazy strategy

implies that the head of terms will always be redu
ed �rst, a

ording to the two following


ompatibility rules (see de�nition 13):

u→? v

(u t)→? (v t)

u→? v


ase(u, P, . . .)→? 
ase(v, P, . . .)

Let us take a initial 
losed term t0, well-typed in the Ci
, and t = E(t0). Let also u be

one of the su

essive redu
ed forms of t by the lazy strategy. If a redu
tion (✷ x) →✷ ✷


an intervene in u at a position permitted by these two 
ompatibility rules, there are two

possible situations:

• the ✷ 
an be at the top of u, whi
h is then of the form (✷ −→a ). A

ording to the

theorem 2, this term 
orresponds to a term u0 = (f0
−→a0) of Ci
, whi
h is a redu
ed

form of the initial term t0. And f0 is then either of sort Prop sort or is a type s
heme.

A

ording to the stability lemma 1, it is the same for the whole term u0 = (f0
−→a0).

Then the lemma 2 shows that the initial term t0 is also of sort Prop or is a type s
heme.

And thus E(t0) = ✷, whi
h show that the 
ase 
onsidered here is impossible.
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• the ✷ 
an be at the beginning of the head of a mat
hing, that is u 
ontains a subterm of

the form 
ase(✷ −→a , . . . , . . .). A similar reasoning to the one of the previous 
ase shows

that the indu
tive term 
orresponding in Ci
 to (✷ −→a ) is of sort Prop. But in the ex-

tra
ted term t = E(t0), all 
ase on logi
al indu
tive inevitably has ✷ as head, whether

this logi
al indu
tive is empty or singleton. And that 
annot 
hange under redu
tion,

whi
h 
ontradi
ts the presen
e in u of the subterm of the form 
ase(✷ −→a , . . . , . . .).

The rule →✷ is thus never used in a redu
tion with Haskell. ✷ 
an thus always be imple-

mented by an arbitrary term.

In fa
t one 
an even go further and 
onsider that ✷ is an abnormal �nal result during

the evaluation of an extra
ted term. Indeed, the 
omputation of an extra
ted term only

have interest when its result is . . . informative, su
h as for example true, 3, or fun x⇒x.

This result 
an of 
ourse 
ontain residues ✷ of logi
al parts or type s
hemes, for example

inside a fun
tion. But the whole result being ✷ is abnormal. We thus made the 
hoi
e to

implement ✷ by the raising of an ex
eption. And that does not disturb the 
omputations

on informative parts of terms:

• We have just seen that ✷ 
annot be evaluated as the head of an appli
ation.

• ✷ will never be evaluated either like head of a mat
hing on a logi
al indu
tive term,

sin
e we saw in the two previous se
tions how to make disappear these mat
hings over

the logi
al empty of singleton indu
tive.

2.6.4 Toward a usual redu
tion of �xpoints

The redu
tion of �xpoint is the last major di�eren
e between the redu
tions in our system

Ci
✷ and those in the target languages. Indeed in these target languages there is obviously

no 
on
ept of �guard� argument, that should start with a 
onstru
tor for the redu
tion to

be possible.

O
aml

In the 
ase of O
aml, the di�eren
e is not so important. Indeed one �xpoint with two

arguments let re
 f x y = t will only be redu
ed when it re
eives its two arguments.

And in the 
ase of an indu
tive argument, O
aml will evaluate 
ompletely this argument,

whose value will thus start indeed with one 
onstru
tor, before 
ontinuing the evaluation of

the �xpoint. We 
an then just simply translate the fix f {f/2 : ✷ := λx, λy, t} example

into let re
 f x y = t in f. And it is not abusive to suppose that the body of a �xpoint

starts with enough λ-abstra
tions, here at least two. In fa
t, the 
on
rete Coq syntax for

the Fixpoint and the fix obliges us to de
lare the arguments at least up to the guard

argument. Lastly, dealing with mutual �xpoints brings no more di�
ulties. There is no

additional 
on
erns about logi
al guard argument, sin
e the 
ondition �being ✷� has been

substituted to the original 
ondition �starting by one 
onstru
tor� in our new ι-redu
tion.
And the 
omplete evaluation of a logi
al argument 
annot indeed �nish on anything else

than ✷.
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Haskell

On the other hand, for Haskell, the situation is more deli
ate. Unfolding of a �xpoint f is

done when f 
omes to the head of the term to be evaluated, and this is done with no initial

redu
tion on the arguments. The 
onstraint on the (at least partial) evaluation of the guard

argument, prior to any unfolding, has no parti
ular reason to be ful�lled. It is thus not sure

that the order of the redu
tions in Haskell 
an be re�e
ted on the Ci
 level in the spirit of

the theorem 2.

Let us try to informally show that everything work 
orre
tly nonetheless. The de
reasing


onstraints that the Ci
 imposes imply that the following re
ursive 
all is done with a

�smaller� guard argument. And to obtain su
h a �smaller� argument, it is ne
essary to

destru
t at least one level of the initial argument. The evaluation of the guard argument is

thus simply pushed ba
k from one re
ursive 
all to the next one.

The previous justi�
ation is unsatisfa
tory. First, su
h a modi�
ation of the evaluation

order is not ne
essarily safe. Moreover our reasoning assumes that the analysis of the guard

argument, that produ
es the new re
ursive argument, is made at the head of term, and hen
e

that Haskell will 
arry out it without additional delay. Usually, it is true that the body of one

�xpoint starts immediately with a mat
h. But that is not a general rule, as the example of

A



_

iter shows (see page 29). In this 
ase, the analysis of the argument of guard is pushed

ba
k in the term being used as following argument. A



_

iter is in fa
t a bad example,

be
ause its guard argument is logi
al, and thus disappears with the extra
tion. But we 
an

imagine a similar example with an informative guard argument, and this argument 
ould

indeed never be evaluated by Haskell.

We now will outline a rigorous justi�
ation of the simple translation of Ci
✷ �xpoints

into Haskell �xpoints. For that, we show that the 
omputation order during a redu
tion of

a �xpoint in Haskell 
an be simulated in Ci
 using a modi�ed version of the initial �xpoint.

For that we will use a remark that C. Paulin made p. 103 of [68℄: every stru
tural �xpoint

on an indu
tive I 
an be transformed into a de�nition by well-founded indu
tion over an

order <I , that is in a stru
tural �xpoint over the indu
tive A

 having for parameter <I .

The interest of su
h a translation is to add an argument of logi
al a

essibility whi
h will

serve as new guard argument. This way, there is not need anymore in Ci
 to evaluate the

old guard argument even partially before an unfolding, sin
e the 
onstraints are now being


on
entrated on the new logi
al argument.

We will not propose here a proof of C. Paulin's remark, already justi�ed in [68℄. Instead,

we try to illustrate this me
hanism on a simple example, that is the addition of Peano

integers. For I = nat, an appropriate order <I is the standard order lt (or <) over integers.

We also use the large version le (or ≤) of this order. Here 
ome a version of plus in

whi
h the guard argument is not one of the two main arguments, but a third argument of

logi
al a

essibility:
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Definition plus (n m:nat) : nat :=

(fix plusre
 (n m:nat) (a:A

 lt n) {stru
t a} : nat :=

mat
h n as n0 return n0≤n → nat with

| 0 ⇒ fun h ⇒ m

| (S n') ⇒ fun h ⇒ S (plusre
 n' m (A

_inv a n' h))

end (le_refl n))

n m (lt_wf n).

Let us 
ompare with the last version of plus presented page 20:

• One added an additional a

essibility argument a, that is used as de
reasing argument.

And for ea
h re
ursive 
all, its new a

essibility argument is obtained via the fun
tion

A



_

inv already met page 29.

• the true �xpoint, plusre
, awaits now three arguments. The fun
tion plus is thus a

en
apsulation of this plusre
 in whi
h one provides the proof (lt

_

wf n) stating that

n is indeed a

essible as third argument.

• Lastly, the typing of the mat
h is mu
h more 
omplex than in the initial plusre
, and

requires spe
ial annotations, as well as an arti�
ial abstra
tion on a variable h of type

n≤n. And a proof of this n≤n is provided immediately after the mat
h via the term

(le

_

refl N).

To be 
onvin
ed that this new plus allows to simulate on the Ci
 level any redu
tion

made at the Haskell level with the extra
tion of the initial plus, it is enough to 
ompare the

extra
tions of both plus. Here in parti
ular is what E gives for our new plus

4

:

Definition plus (n m:✷) : ✷ :=

(fix plusre
 (n m:✷) (_:✷) : ✷ :=

mat
h n with

| 0 ⇒ fun _ ⇒ m

| (S n') ⇒ fun _ ⇒ S (plusre
 n' m ✷)

end ✷)

n m ✷.

One notes the presen
e of residues of logi
al parts, whi
h di�erentiate this extra
tion from

that of the plus initial. But these residues do not have an in�uen
e on the order of 
om-

putations. For example, anonymous abstra
tions present in the bran
hes of mat
h re
eives

immediately their argument ✷ lo
ated after the mat
h. Any 
omputation in Haskell with the

initial extra
tion thus 
orresponds to a 
omputation with this news extra
tion, 
omputation

that �nally be simulated on the Ci
 level, whi
h guarantees the 
orre
tness of the initial

extra
tion.

Finally let us note that in the extra
tion of new the plus, all these logi
al, 
onstant

residues ✷ and anonymous abstra
tions, are in pra
ti
e dete
ted and removed by extra
tion

optimizations that we des
ribe in se
tion 4.3. And �nally the extra
ted term from this plus

is exa
tly the same as that extra
ted from the old plus.

4

We use here a syntax à la Coq, more readable, instead of our Ci
✷ syntax.
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Chapitre 3

Typing the extra
ted terms

We have built in the previous 
hapter an extra
tion from Coq terms to raw, untyped,

λ-terms. We have in parti
ular shown that the exe
ution of these extra
ted terms was

ne
essarily �nite and without error. It now remains to study the �nal translation towards a

true fun
tional language, and that is the subje
t of this 
hapter.

As we mentioned in introdu
tion, we wish that extra
ted 
ode 
an be integrated into

a broader development. It is thus ne
essary to be able at least to in
lude/understand the

signature of the extra
ted obje
ts. Two 
hoi
es arise then: one 
an generate sour
e 
ode for

a parti
ular language, or dire
tly some byte-
ode or even assembly 
ode asso
iated with a

readable interfa
e. But in addition to the di�
ulty of generating binary 
ode, this would

lead to a � bla
k box� solution, without possibility of a posteriori 
ontrol. We preferred to

produ
e sour
e 
ode, whi
h leaves the user the possibility of reading this 
ode, and whi
h

also allows to pro�t from the optimizing 
ompilers already existing. The �open sour
e�

movement showed in parti
ular that a

essibility and readability of sour
es largely in
rease

the 
on�den
e in a program.

This �rst 
hoi
e rises a new question: whi
h language should we use as target of the

extra
tion? All we need is a λ-
al
ulus with indu
tive types. This explains the 
hoi
e of

languages derived from ML, namely O
aml and Haskell. But these languages are typed, and

their typing systems a la Hindley-Milner [59, 27℄ are appre
iably di�erent from that of Coq.

In parti
ular one 
annot express in these languages any dependent types nor universes. As

already mentioned previously, the old extra
tion made the pragmati
 
hoi
e of refusing any

Coq term using the Type sort. But even this restri
tion was not su�
ient to be 
ertain to

obtain well-typed ML terms. For example, the 
on
ept of polymorphism di�ers between ML

and Coq. It is thus 
lear that a simplisti
 translation of λ-terms Coq into ML λ-terms 
an

lead to non-typable terms.

We should thus adapt our terms if we want to use the standard 
ompilers like the ones

of O
aml or Haskell, not modi�ed for the extra
tion. At the same time, we would wish to

remain as 
lose as possible of a dire
t translation, and this for several reasons. First, within

the ordinary examples of Coq terms, a large majority have indeed a ML 
ounterpart that is


orre
tly typed. Se
ondly, the need for an interfa
e to the extra
ted 
ode also militates in

favor of a simple and natural translation. Lastly, any e�ort aiming at 
ir
umventing these

typing problems by an ad-ho
 en
oding seems to lead to a stage of pre
ompilation whi
h

we pre
isely wish to avoid. An parti
ular en
oding was tested by L. Pottier [70℄, but this
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oding may still produ
e ML non-typable terms.

How then 
an we use 
ompilers for typed languages when extra
ted terms are potentially

non-typable? Con
erning O
aml, we use now, just like L. Pottier, an undo
umented features

of this language, 
alled Obj.magi
. This fun
tion allows to give a generi
 type 'a to any

term. By using this fun
tion, one 
an thus lo
ally 
ir
umvent the type 
he
king done by

O
aml 
ompiler. We will see in a se
ond time how the 
urrent extra
tion allows to auto-

mati
ally generate Obj.magi
 in the extra
ted 
ode. And 
on
erning Haskell, some of the

implementations of this language propose a undo
umented fun
tion unsafeCoer
e whi
h

seems equivalent to Obj.magi
. It should then be possible in the future to extend to Haskell

this automati
 generation of arti�
ially well-typed terms.

Let us mention by the way the realization of an experimental extra
tion towards the

language S
heme. Like this fun
tional language derived from Lisp is untyped, it seemed to

us one for a moment that it 
ould be an promising target language for the extra
tion, sin
e

it allow to avoid the problem of non-typable terms. Unfortunately, S
heme does not have

natively any indu
tive types nor pattern mat
hing over su
h types. It is thus ne
essary to

en
ode them using ma
ros, ex
ept in the parti
ular 
ase of the Bigloo implementation [75℄.

In addition to that, preliminary tests showed a signi�
ant di�eren
e in e�
ien
y of extra
ted


ode, 
learly in favor of Haskell/O
aml to the detriment of S
heme. The e�ort in favor of

this S
heme extra
tion thus have not been 
ontinued.

In addition, we should emphasize that it is not even su�
ient to simply ensure the

existen
e of a 
orre
t type for ea
h extra
ted term if we 
annot determine this type in

advan
e. Indeed, as we want to allow an easy integration of the extra
ted 
ode in broader

developments, we must be able to envisage whi
h will be the types of the extra
ted terms,

and to produ
e �les interfa
es. Moreover, if one wants to be able to extra
t modules and

fun
tors of Coq (
f se
tion 4.1), it will be ne
essary to be able to do su
h type predi
tion.

This study of the typing of extra
ted terms is organized as follows. First of all, we

des
ribe the typing errors that our extra
tion on the terms 
an produ
e. Then we present

an automati
 method for bypassing these errors, via insertion in the 
ode of type-
hanging

primitives, for making this 
ode arti�
ially typable. To guide this insertion, we �rst 
ompute

a �reasonable� extra
ted type starting from the Coq initial type of the 
onsidered obje
t.

We des
ribe this extra
tion Ê of types. Then, we for
e this desired extra
ted type to really

be
ome the type of the extra
ted raw term, initially untyped :

t : T ⇒ E(t) : Ê(T )

This is done via an alternative of the algorithmM of type 
he
king/inferring, modi�ed so

that ea
h dete
ted typing error produ
es an insertion of a type-
hanging primitive.

3.1 Analysis of the typing problems

The problems start with types de
larations, that is de
larations of indu
tive types or of

type abbreviations. Coq in
ludes indeed typing features without 
ounterparts in O
aml or

Haskell, and in parti
ular the following ones:

• mat
hings on the type level (mat
h)
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• �xpoint on the type level (fix)

• polymorphism by universal quanti�
ations at non-prenexe positions or in the types of

indu
tive 
onstru
tors.

The rest of this se
tion details ea
h of these situations. In versions 6.x and earlier of Coq,

these de
larations of untranslatable types were refused by the extra
tion, with message of

the kind: Error: .... is not an ML type.

The situation of terms is di�erent. The use of an untranslatable type in a Coq term does

not prevent, a priori, its typability in Haskell or O
aml, sin
e these languages do not in
lude

type annotations on the lambdas and mat
hings: there is so no expli
it referen
es to the

untranslatable types. The old extra
tion then generated 
ode without being 
on
erned with

its typability. The type inferen
e on this extra
ted term 
ould then either �nd a simpler

type, a

eptable in Haskell or O
aml, or fail.

In fa
t, it should be said that the frequen
y of the typing errors in pra
ti
al in the

extra
ted 
ode is low. For example, there is not a single one in the extra
tion of Coq

standard library. And in all the 
ontributions Coq studied from the extra
tion point of

view (see 
hapter 5), only 4 
ontributions present some errors: Lyon/Cir
uits, Lannion,

Ro
q/Higman, and Nijmegen/C-CoRN. We will examine the three last in more details in


hapters 5 and 6. This s
ar
ity 
an be explained by the fa
t that, most of the time, the users

write theirs informative fun
tions as they would have written them in O
aml or Haskell. Thus

the dependent types are generally used only as a form of polymorphism, or to express logi
al

properties (pre/post-
onditions for example). One 
an also see a form of self-
ensorship there:

the majority of these examples date ba
k to before this renewal of the extra
tion, hen
e the

use of too advan
ed features gave at that time the insuran
e of not being able to extra
t

the development.

Let us see now more in detail several typi
al situations that generate typing errors during

extra
tion.

3.1.1 The type �integer or boolean�

Let us take for example a predi
ate P that depends on a boolean, whose value is either

nat or bool:

Definition P (b:bool) : Set := if b then nat else bool.

This predi
ate now allows to aggregate two values of di�erent types:

Definition p (b:bool) : P b :=

mat
h b return P b with

| true ⇒ O

| false ⇒ true

end.

The type of p hen
e depends on b, be
ause (p true) has for type (P true) = nat, while

(p false) has for type (P false) = bool. The extra
tion of the previous 
hapter then

proposes for p an non-typable extra
ted term:
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let p = fun
tion

| True → O

| False → True

There is obviously no equivalent neither in O
aml nor in Haskell of one su
h dependent type

over a boolean. A possibility is then to forget this dependen
e by using an approximation

of P as being a disjoint union of nat and bool:

type approx_P = Nat of nat | Bool of bool

let p = fun
tion

| True → Nat O

| False → Bool True

It would then be ne
essary to also allow the return to nat or bool as soon as the �rst

argument is known. That implies to lo
ate ea
h pla
e in Coq where the 
onversion typing

rule (P true) → nat is used. One would insert there the following unwrapping during

extra
tion:

let nat_of_P = fun
tion (Nat n) → n | _ → assert false

And idem with false and bool. Su
h a transformation presents several disadvantages.

First, it denatures the initial program by introdu
ing wrappings/unwrappings whi
h involve


omputations without equivalents in the original term. And se
ondly addition, the automati


generation of these unwrappings is far from being obvious. Indeed, the use of 
onversion (P

true) → nat is transparent for Coq, and is re
orded nowhere. As it thereafter will be seen,

it is thus not this method whi
h was sele
ted to treat this example.

3.1.2 A more realisti
 version

It should be noted than even if the previous example is so simpli�ed that it may look

useless and unrealisti
, it is nonetheless inspired by real developments. For example, let us

try to formalize the semanti
s of an imperative mini-language à la Pas
al, using a memory

model. If our language has only integers as basi
 type, the a

ess fun
tion to a storage 
ell

will have a very simple type:

Parameter get_value : memory → address → nat.

with memory representing a state of the memory and address the address of a memory

lo
ation. Now let us add other basi
 types, and referen
es. One 
an write for example:

Indu
tive types : Set :=

| Nat : types

| Bool : types

| Address : types → types. (* type of a referen
e to another type *)

Whi
h type 
ould now have our get_value fun
tion ? Of 
ourse, we 
an represent the values

with a sum type:
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Indu
tive values : Set :=

| Val_nat : nat → values

| Val_bool : bool → values

| Val_ref : address → values.

Parameter get_value : memory → address → values.

The problem of su
h a representation is that it implies to 
ontinuously reason by 
ase on

this type values, even if it is already known that we are in one of the situations.

If we now use dependent types, mu
h of these 
ase reasoning will be
ome simple 
om-

putation. For that, let us asso
iate to a memory lo
ation the type of its 
ontent:

Parameter get_type : memory → address → types.

And let us use a fun
tion returning the domain asso
iated with ea
h type name:

Definition domain (t:types) : Set :=

mat
h t with Nat ⇒ nat | Bool ⇒ bool | Address _ ⇒ address end.

One 
an then give the following signature to get_value:

Parameter get_value : ∀m:memory, ∀a:address, domain (get_type m a).

This way, if one really implements the fun
tion get_type in a 
omputable way, then the

type (domain (get_type m a)) 
an be redu
ed to nat, bool or address a

ording to the


ase via a simple 
onversion.

During its extra
tion, an implementation of this get_value will then present exa
tly the

same kind of typing di�
ulty that our simplisti
 example p.

3.1.3 The type of integer fun
tions with arity n

The situation is even worse when the dependent type may be redu
ed to an in�nity of

di�erent types, depending of the input value. For example the following predi
ate F asso
iates

to the integer n the type of the integer fun
tions with n arguments:

Fixpoint F (n:nat) : Set :=

mat
h n with

| O ⇒ nat

| S n ⇒ nat → F n

end.

One 
an then build a fun
tion whose arity depends on its �rst argument:

Fixpoint f (n:nat) : F n :=

mat
h n return F n with

| O ⇒ O

...

/

...
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...

/

...

| S n ⇒ fun _ ⇒ f n

end.

There again, the raw extra
tion of f is untypable:

let re
 f = fun
tion

| O → O

| S n → (fun x → f n)

One 
an still propose a typable version via the use of an union type designed to simulate

the stru
ture of F, but that be
omes really di�
ult to des
ribe this workaround in the most

generi
 
ase of a Fixpoint on types. Moreover, it is possible to hide this �xpoint behind a


onstant. Indeed, F 
an be also written as:

Definition F := nat_re
t (fun _ ⇒ Set) nat (fun _ t ⇒ nat → t).

3.1.4 Untranslatable indu
tive types

The indu
tive types also raise problems, be
ause Coq allows to write types without

equivalent in O
aml or Haskell. For example, we 
an write in Coq an indu
tive type being

able to 
ontain obje
ts of any type:

Indu
tive any : Type := Any : ∀A:Type, A → any.

A naive typed extra
tion type 'a any = Any of 'a would be unsatisfa
tory. One would

indeed propagate a type variable 'a with no 
ounterpart in Coq. An initial version of our ex-

tra
tion implementation was pro
eeding of the kind, and was sometimes produ
ing indu
tive

types with hundredths of type variables, be
ause of this propagation of variables.

In the same spirit, one 
an obtain a non-homogeneous list:

Indu
tive anyList : Type :=

| AnyNil : anyList

| AnyCons : ∀A:Type, A → anyList → anyList.

Definition my_anyList := AnyCons bool true (AnyCons nat O AnyNil).

Here, a naive translation (whi
h would here give in fa
t the usual polymorphi
 lists) would

be not only unsatisfa
tory, but even worse, 
ompletely in
orre
t from the point of view of

types. This example does not seem to be adaptable into O
aml 
ode that would be typable

and equivalent. The only solution here is then the one presented in the following se
tion.

To show that these lists are perfe
tly usable in Coq, here 
omes for example the fun
tion

returning the head of a non-empty list, or an obje
t of type unit in the 
ase of an empty

list. The type of this fun
tion uses a predi
ate that depends on the list:

Definition getHeadType (l:anyList) : Type :=

mat
h l with

...

/

...
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...

/

...

| AnyNil ⇒ unit

| AnyCons A _ _ ⇒ A

end.

Definition getHead (l:anyList) : getHeadType l :=

mat
h l return getHeadType l with

| AnyNil ⇒ tt

| AnyCons _ a _ ⇒ a

end.

The extra
tion of getHead presents typing problems 
lose to those of the initial example p.

3.1.5 Dependent types and polymorphism

Even when dependent types are used to express simple polymorphism, one 
an have

nasty surprises. The 
lassi
al example is a derived form of the distr_pair property:

Definition distr_pair : (∀X:Set, X → X) → nat*bool :=

fun f ⇒ (f nat O, f bool true).

It is known that fun f → (f O, f true) is untypable in ML. And there again, no simple

adaptation into an equivalent typable 
ode.

3.1.6 Contradi
tory 
ase and typing

A last example, parti
ularly awkward, is the use of an 
ontradi
tory assumption for


hanging types. Let us suppose for example that an axiom makes the assumption that nat

= bool

Se
tion Strange.

Variable absurd : nat = bool.

We 
an then use this false equality to show that O is a boolean.

Definition O_as_bool : bool.

rewrite <- absurd; exa
t O.

Defined.

And 
onsequently, nothing prohibits to de�ne a term by 
ase on O being either true or

false!

Definition strange := if O_as_bool then O else (S O).

End Strange.

It should be noted that internally, O_as_bool is a simple 
all to eq_re
, the indu
tion

prin
iple for the equality.
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Coq < Print O_as_bool.

O_as_bool =

fun absurd : nat = bool ⇒ eq_re
 nat (fun P : Set ⇒ P) 0 bool absurd

: nat = bool → bool

As explained in the previous 
hapter, eq is the emblemati
 example of logi
al singleton

indu
tive types, it thus disappears during extra
tion, leaving for eq_re
 only the identity.

Moreover, the logi
al argument nat=bool is ignored and be
omes a _. the extra
tion of

O_as_bool is then:

let O_as_bool _ = O

Con
erning strange, it gives (as soon as we repla
e O_as_bool by its de�nition

1

):

let strange _ =

mat
h O with

| True → O

| False → S O

It should be noted that even if a term extra
ted from a Coq proof 
an 
ontain a 
all

to strange, this 
all will never be fully evaluated, be
ause of the la
k of the argument

that would start the evaluation of the mat
hing. The body of strange is here in fa
t dead


ode. But even if the extra
tion of strange is safe from the point of view of exe
ution, it is

undeniable that this extra
ted term leads to typing problems.

3.2 An arti�
ial 
orre
tion of typing errors

3.2.1 Obj.magi
 and unsafeCoer
e

We have seen that some of these typing errors 
ould be solve if required by rewriting

the produ
ed 
ode. But some other situations 
annot be treated this way, whi
h is anyway

quite di�
ult to automatize and moreover undesirable. This is why we followed a uniform

approa
h 
onsisting in the use of low-level and not-do
umented primitives whi
h allow to

arti�
ially 
hange the type of an expression. For example, in O
aml, we use Obj.magi
 : 'a

→ 'b. Su
h a primitive, implemented internally as the identity, is obviously not normally

de�nable in O
aml, and its use voids the vast majority of theoreti
al results 
on
erning

O
aml : in parti
ular, an O
aml well-typed term with Obj.magi
 is not anymore guaranteed

to be exe
utable without error.

Some implementations of Haskell 
ontain a primitive named unsafeCoer
e, whi
h should

be usable exa
tly in the same way that Obj.magi
. Be
ause of la
k of time, we did not

implemented the automati
 generation of unsafeCoer
e in the Haskell extra
ted 
ode. But

this generation is a priori no more di�
ult than the generation of Obj.magi
. The rest of

this 
hapter is thus devoted to O
aml.

1

See later in se
tion 4.3.3 the study of su
h repla
ements.



3.2. An arti�
ial 
orre
tion of typing errors 95

Let us make for example transform a boolean into an integer via Obj.magi
.

# (Obj.magi
 true) + 1;;

- : int = 2

The fa
t that this 
omputation su

eeds is here a 
onsequen
e of the internal representation

of obje
ts in O
aml : true being 
oded by 1, one obtains 2 as �nal result. On the other

hand, if the 
himera 
reated by the use of Obj.magi
 is not 
ompatible with the internal

representation of obje
ts, the san
tion is immediate:

# (Obj.magi
 1) 2;;

Segmentation fault

Indeed, one tries here to use 1 as pointer to the 
ode of a fun
tion, whi
h generates a memory

error.

The use of Obj.magi
 by the programmer, without being prohibited, is thus in any 
ase

strongly not re
ommended, and must be done with great 
aution. But one should not either

disregard these Obj.magi
, that are quite pra
ti
al in some situations. For example there

are some in the 
urrent implementation of the Queue module of the O
aml standard library,

or in the Dyn module of dynami
 typing in the sour
es of Coq.

Within the extra
tion framework, fortunately, we already know that an exe
ution error

is not possible. We then have the freedom to pla
e as many pla
e Obj.magi
 as ne
essary

in order to ensure typing. A 
orre
ted extra
tion of the example p of se
tion 3.1.1 
an for

example be:

let p = fun
tion

| True → Obj.magi
 O

| False → Obj.magi
 True

How to pla
e these Obj.magi
 ? A possibility is obviously to put some at ea
h node of

the program. But that presents two disadvantages:

• the 
ode be
omes 
ompletely unreadable, whi
h 
ontradi
ts one of our obje
tives.

• more serious, the performan
es are de
reased, as showed by L. Pottier [70℄. This is

explained (at least partly) by the fa
t that the O
aml 
ompiler skips a 
ertain number

of optimizations around the Obj.magi
.

Sin
e we have seen that the typing errors generally remain very marginal in extra
ted


ode, it is thus really interesting to �nely lo
ate these error lo
ations in order to insert as

less Obj.magi
 as possible.

3.2.2 A �rst attempt at 
orre
ting the types

We thus have embedded in our extra
tion an type-
he
ker that also behaves as a type-


orre
tor: for ea
h dete
ted error, it inserts a Obj.magi
 that solves it. First, we present a

relatively simple way of doing that. Sin
e this �rst manner is also little satisfa
tory, we then

des
ribe another method, more 
omplex, used in pra
ti
e in the extra
tion implementation.
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The algorithms W and W'

The simplest way to dete
t and 
orre
t the typing errors is to pro
eed in a lazy way. For

that we use one algorithm for inferen
e/veri�
ation of types, su
h as the W algorithm of

Damas-Milner [27℄. The type of this algorithm is the following:

W : env * expr → type * subst

And its 
orre
tness is expressed by W(Γ, t) = (T, σ) ⇒ σ(Γ) ⊢ T : σ(T ).
This algorithm 
an fail to type a term only through a failure of the type uni�
ation

subpro
ess mgu. All that remains to be done is to 
at
h these uni�
ation errors and transform

them into su

ess thanks to new Obj.magi
. For that we adapt W so that it also returns

modi�
ations made under the terms. Its type is now:

W' : env * expr → type * subst * expr

And the desired property is now W ′(Γ, t) = (T, σ, T ′) ⇒ σ(Γ) ⊢ t′ : σ(T ) and t′ ∼ t.
The W algorithm being now more than famous, we just give here a presentation of W'


entered on our modi�
ations. A more formal presentation of W 
an be found in [51℄. The

presentation given here has been inspired by a 
ourse of X. Leroy.

First of all, let us point out the me
hanisms of instantiation and of generalization, that

allow to go from a type s
heme to an O
aml type and re
ipro
ally:

Inst(∀−→αi .τ) = τ [−→αi/
−→
βi ], with

−→
βi fresh variable.

Gen(τ, Γ) = ∀−→αi .τ , with
−→αi being the variables of τ free in Γ

The �gure 3.1 
ontains the de�nition of a minimalist version of W', parameterized by

an environment E of de
larations of 
onstants provided with their types. This presentation

does voluntarily in
lude no re
ursivity: on the typing level, we 
an present re
ursivity via

an �xpoint operator fix having for signature ∀α, (α→ α)→ α.

The en
oding of indu
tive types

The indu
tive types will also be represented by en
oding via 
onstants, in order to leave

the 
entral algorithm as simple as possible. Consider an indu
tive type O
aml t de�ned by:

type (α1, . . . , α2) t = C1 of τ1,1 ∗ . . . ∗ τ1,n1
| . . . | Cp of τp,1 ∗ . . . ∗ τp,np

We represent the 
onstru
tors of t by 
onstants C1 . . .Cp having for types:

Ci : ∀α1, . . . , αn.τi,1 → . . .→ τi,ni
→ (α1, . . . , αn) t

And we represent pattern mat
hing on t by an operator Ft with the following type:

Ft : ∀α1, . . . , αn, β.(α1, . . . , αn) t→
(τ1,1 → . . .→ τ1,n1

→ β)→ . . .→ (τp,1 → . . .→ τp,np
→ β)→ β

A simpli�
ation to be avoided

At �rst sight, it may seem that our algorithmW' in
ludes an overly 
omplex generation

me
hanism for Obj.magi
. Indeed, for an appli
ation (a1 a2), we distinguish two 
ases:
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W ′(Γ, x) = (Inst(Γ(x)), id, x) for a variable x

W ′(Γ, c) = (Inst(E(x)), id, c) for a 
onstant c

W ′(Γ, fun x→ a) =
let (τ1, φ1, ã) =W ′(Γ + {x : β}, a) in with β fresh variable

(φ1(β)→ τ1, φ1, fun x → ã)

W ′(Γ, a1 a2) =
let (τ1, φ1, ã1) =W ′(Γ, a1) in
let (τ2, φ2, ã2) =W ′(φ1(Γ), a2) in
let σ = mgu(φ2(τ1), α→ β) in with α and β fresh

if σ = error then

(γ, φ2 · φ1, (Obj.magi
 ã1) ã2) with γ fresh

else

let µ = mgu(τ2, σ(α)) in
if µ = error then

(σ(β), φ · φ2 · φ1, ã1 (Obj.magi
 ã2))
else

(µ(β), µ · σ · φ2 · φ1, ã1 ã2)

W ′(Γ, let x = a1 in a2) =
let (τ1, φ1, ã1) =W ′(Γ, a1) in
let (τ2, φ2, ã2) =W ′(φ1(Γ) + {x : Gen(τ1, φ1(Γ))}, a2) in
(τ2, φ2 · φ1, let x = ã1 in ã2)

Fig. 3.1: De�nition of W'

• if the head a1 does not have an arrow type, we surround it by an Obj.magi
.

• if the argument a2 does not have a type 
ompatible with the beginning of the arrow

type, then we pla
e an Obj.magi
 around this argument.

If an Obj.magi
 is ne
essary, an simpler solution, also 
orre
t, is to always pla
e the

Obj.magi
 around the head of the appli
ation. The problem is that the 
onstants Ci and

Ft that en
ode indu
tive terms 
an then be surrounded by Obj.magi
, and this forbids

their transformation ba
k to O
aml syntax. Our solution with two uni�
ations avoids this

problem.

Corre
tness of W'

This W' algorithm satis�es the property W ′(Γ, t) = (T, σ, t′) ⇒ σ(Γ) ⊢ t′ : σ(T ).
The proof is similar to the one of the unmodi�ed W algorithm. It is just ne
essary to


he
k in addition the two 
ases that generate Obj.magi
. However we have by indu
tion
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hypothesis φ1(Γ) ⊢ ã1 : τ1 and φ2(φ1(Γ)) ⊢ ã2 : τ2. From the �rst relation we obtain

φ2(φ1(Γ)) ⊢ ã1 : φ2(τ1).

• The �rst 
ase generating Obj.magi
 is the simplest: the type s
heme ∀αβ.α → β
allows to give any type to (Obj.magi
 ã1), and in parti
ular τ2 → γ. The appli
ation
((Obj.magi
 ã1) ã2) thus a

epts γ as type in the environment φ2(φ1(Γ))

• In the se
ond 
ase, we have σ(φ2(φ1(Γ))) ⊢ ã1 : σ(φ2(τ1)). Taking into a

ount the

de�nition of σ, this rewrites into σ(φ2(phi1(Γ))) ⊢ ã1 : σ(α) → σ(β). It is now

(Obj.magi
 ã2) that 
an a

ept any type and in parti
ular σ(α), and �nally the term

(ã1 (Obj.magi
 ã2) thus a

epts σ(β) as type in the environment σ(φ2(φ1(Γ))).

Behavior of W' on an example

Let us now test our W' algorithm on the extra
tion of the example p. In our en
oding,

the body of p is written: fun b→ Fbool b O True. The su

essive 
alls to W' are then, from

the more internal to the most external:

W ′({b : α}, Fbool) = (bool→ β → β → β, id, Fbool)

W ′({b : α}, Fbool b) = (β → β → β, {α← bool}, Fbool b)

W ′({b : α}, Fbool b O) = (nat→ nat, {α← bool; β ← nat}, Fbool b O)

W ′({b : α}, Fbool b O True) = (nat, {α← bool; β ← nat}, Fbool b O (Obj.magi
 True))

W ′(∅, fun b→ Fbool b O True) = (bool→ nat, . . . , fun b→ Fbool b O (Obj.magi
 True))

On the fourth line, True 
annot have the type nat that would be ne
essary for a 
orre
t

appli
ation. It is then surrounded by an Obj.magi
. Finally, the 
orre
ted term is thus (in

O
aml syntax):

let p = fun
tion

| True → O

| False → Obj.magi
 True

The limitations of W'

If this method works indeed and produ
e typable terms, it is nevertheless not very

satisfa
tory. In fa
t, the inferred O
aml types are sometimes strange and asymmetri
al, the

order of uni�
ation playing a signi�
ant role in the �nal result. In our example p the typing

problem is in parti
ular dis
overed only on the se
ond bran
h of mat
h, and it is thus only

this se
ond bran
h that 
arries an Obj.magi
. This implies that the type of p is bool→
nat, and that the o

urren
es of (p false) will be surrounded by Obj.magi
, whereas the

o

urren
es of (p true) will not.

This asymmetry forbids to guess a priori what type will be inferred for a given extra
ted

term. The only way of 
al
ulating this type is to apply the W' algorithm. In parti
ular two

Coq terms with the same type will not ne
essarily have the same O
aml type on
e extra
ted.

To illustrate that point, it is enough to 
onsider p and its following alternative, where one

�lters in the other dire
tion by using the opposite boolean:
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Definition p' :=

fun b: bool ⇒
mat
h negb b as b' return P (negb b') with

| true ⇒ true

| false ⇒ O

end.

The extra
tion of p' via W' gives then:

let p' b =

mat
h negb b with

| True → Obj.magi
 True

| False → O

And this term extra
ts has as a type bool→bool instead of bool→nat of p. A slight abuse

should be noted here: the Coq type of p' is ∀b:bool, P (negb (negb b)), and that is not

exa
tly the type of p, whi
h is ∀b:bool, P b. To 
orre
t this abuse, we 
an for example


onsider (p true) and (p' true) instead of p and p'. In this 
ase the two terms have both

the type nat sin
e (P true) = (P (negb (negb true))) = nat. And after extra
tion (p

true) and (p' true) will have for respe
tive O
aml types nat and bool

2

.

This impossibility of knowing in advan
e the types of the extra
ted terms has for
ed us

to stop using this method. Indeed, this la
k of determinism in types is really annoying when

interfa
ing with extra
ted 
ode in broader developments. And even without speaking of

integration with external 
ode, the extra
tion of Coq modules to O
aml modules (
f. se
tion

4.1) is strongly 
ompli
ated by su
h a property.

3.2.3 The algorithm M
To solve these di�
ulties, we pro
eed in two stages.

• the �rst stage is to 
ompute a type O
aml Ê(T ) awaited for the extra
ted term starting

from t : T . This 
omputation is done independently of the body of the Coq term t,
and uses only its type T , in order to remain modular. This extra
tion stage Ê will be

detailed later on.

• on
e we known this awaited type, we use it as goal, and for
e the extra
tion of t to
a

ept indeed Ê(T ) as O
aml type, always thanks to Obj.magi
.

We start now by detailing this se
ond stage, whi
h is done on
e again by adapting an

typing algorithm. But now the stress is more laid on the 
he
king of types that on the

inferen
e. And to this 
hange of approa
h 
orresponds a 
hange of algorithm: we repla
e

2

Another way of obtaining two adequate terms is to wrap p' into a term p'' having the same type as p.

Indeed, sin
e the types of p and p' are provably equal instead of being 
onvertible, one 
an pass from the

one to the other via the lemma negb_elim: ∀b:bool,negb (negb b)=b. This gives us:

Definition p'' : ∀b:bool,P b. intro b; rewrite <- negb_elim; exa
t (p' b). Defined.
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W by theM algorithm. This algorithm, des
ribed in 1998 by O. Lee and K. Yi in [51℄, is

itself an alternative ofW. But unlike the latter,M pro
eeds via top-down analysis instead of

bottom-up, hen
e its reversed name 
ompared withW. For the re
ord, thisM algorithm has

been used until 1993 in Caml Light prior to version 0.7. And even if we will take advantage

of this property, we nevertheless note thatM dete
ts the typing errors in a �ner way than

W. The interested reader 
an �nd more details on this subje
t in [51℄.

The di�eren
e betweenM and W is already visible on the level of their types:

W : env * expr → type * subst

M : env * expr * type → subst

Instead of infer a result type,M asks rather for a type as input and 
he
ks that this type

is be appropriate, modulo possible substitution. Its 
orre
tness is expressed by:

M(Γ, t, T ) = σ ⇒ σ(Γ) ⊢ t : σ(T ).

In pra
ti
e, the di�eren
e between the two algorithms is not not so large. We 
an always,

indeed, use M with an initial type 'x in order to retrieve an inferen
e algorithm, and the

inferred type obtained at the end is σ('x). And anyway, even an algorithm 
entered on

type-
he
king likeM must make steps of inferen
e, for example when it meets a let-in.

To useM within the framework of the extra
tion, we adapt it the same way we adapted

W in W':

M' : env * expr * type → subst * expr

And one wishes now thatM′(Γ, t, T ) = (σ, t′) ⇒ σ(Γ) ⊢ t′ : σ(T ). The �gure 3.2 gives the

de�nition ofM', whi
h uses the same notations as the de�nition of W'. We also reuse the

same even en
oding of re
ursivity and indu
tive types.

If we 
ompareM' and W', we noti
es that the let-in 
ase is similar in the two algo-

rithms. This is explained by the need for inferring the type of the lo
al de�nition. For the

other 
ases, the roles are reversed 
on
erning the use of the mgu uni�er. The appli
ation does

not require any uni�
ation, whereas on the opposite the last 
ases (fun
tions, 
onstants and

variables) now 
ontain some.

The 
orre
tness ofM' will not be developed. Just as forW andW', this 
orre
tness relies

on the 
orre
tness ofM, whi
h is proved in [51℄, and on the study of the 
ases generating

Obj.magi
.

But we still 
annot use M' dire
tly for extra
tion. Indeed we wish, for a given type τ ,
to for
e a term a to a

ept exa
tly τ as type. However M′

returns a substitution σ to be

applied on the variables of τ before getting the �nal appropriate type of a. Hen
e the �nal
type σ(τ) of a 
an be stri
tly less general than τ . To solve this problem, we have used two

types of variables:

• the substitutable variables, whi
h are those used until now, but whi
h will not be used

any more ex
ept internally insideM', during 
reations of fresh variables.

• non-substitutable variables, only authorized in extra
ted types that are used as initial

arguments fromM'. If the uni�er mgu must solve an equation of the form α =? τ with

α non-substitutable variable and τ a type di�erent from α, a uni�
ation error is raised
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M′(Γ, x, τ) =
let σ = mgu(τ, Inst(Γ(x))) in
if σ = error then (id, Obj.magi
 x) else (σ, x)

M′(Γ, c, τ) =
let σ = mgu(τ, Inst(E(c))) in
if σ = error then (id, Obj.magi
 c) else (σ, c)

M′(Γ, fun x→ a, τ) =
let σ = mgu(τ, α→ β) in with α and β fresh

if σ = error then

let (φ, ã) =M′(Γ + {x : α}, a, β) in
(φ, Obj.magi
 (fun x→ ã))

else

let (φ, ã) =M′(Γ + {x : σ(α)}, a, σ(β)) in
(φ · σ, fun x→ ã)

M′(Γ, a1 a2) =
let (φ1, ã1) =M′(Γ, a1, α→ τ) in with α fresh

let (φ2, ã2) =M′(φ1(Γ), a2, φ1(α)) in
(φ2 · φ1, ã1 ã2)

M′(Γ, let x = a1 in a2) =
let (φ1, ã1) =M′(Γ, a1, α) in with α fresh

let (φ2, ã2) =M′(φ1(Γ) + {x : Gen(φ1(α), φ1(Γ))}, a2, φ1(τ)) in
(φ2 · φ1, let x = ã1 in ã2)

Fig. 3.2: De�nition ofM'

instead of returning the substitution {α ← τ}. And this uni�
ation error will make

M' generate an Obj.magi
 whi
h will allow to keep the most general type, here α.

From now on, by ensuring that the τ type provided toM' only 
ontains non-substitutable

variables, we thus guarantee that the substitution result σ leaves τ invariant. We 
ould then

ignore this substitution. Finally, starting from a Coq term t : T , the extra
ted typable term

tml and its type Tml are obtained by: Tml = Ê(T ) and tml = snd(M′(∅, E(t), Ê(T ))). And

whatever is the 
hoi
e of Ê(T ), we are sure that tml has indeed Tml as type and di�ers from

E(t) only by possible insertion of Obj.magi
.
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3.3 The extra
tion of Coq types

We now present the extra
tion Ê of Coq types into O
aml types. This extra
tion of

types, as we have seen, is used by ourM' algorithm. But it is anyway made ne
essary by

the presen
e of indu
tive types in Coq : starting from the Coq types of indu
tive 
onstru
tors,

we must dedu
e the O
aml types that are the most faithful for the extra
ted 
onstru
tors.

As long as exe
ution is 
on
erned, the only 
onstraint 
on
erning the indu
tive types is to

preserve the number of their 
onstru
tors and the argument numbers of these 
onstru
tors.

But ensuring only this 
onstraint would oblige to put far too many Obj.magi
, and would

produ
e unreadable extra
ted terms and types. Moreover, this extra
tion of types will enable

us to produ
e a interfa
e �le .mli for ea
h produ
ed �le .ml, and that in a foreseeable way:

only the Coq types will in�uen
e this interfa
e, and not the 
ontents of the terms to be

extra
ted.

3.3.1 A approximation of Coq types

The previous examples showed that the ri
hness of the Coq types 
ould not always be

translated in O
aml in an faithful way. We then pro
eed by approximation. For that, we use

a most general O
aml type (or most unknown), that we will note T. We have implemented

3

this T type thanks to the internal O
aml type of all the obje
ts, Obj.t. And 
onversions

between Obj.t and the other types are 
arried out via Obj.magi
.

This T type allow to give a satisfa
tory response to the previous examples. For example,

the fun
tion p whi
h returns an integer or a boolean will have the type bool → T. And


on
erning the indu
tive type any 
ontaining any obje
t, it be
omes:

type any = Any of T

It must then be 
lear that the extra
tion of types whi
h we propose is ne
essarily ar-

bitrary at 
ertain pla
es, even if it gives good results in pra
ti
e. This �e�
ien
y� of the

extra
tion of types is measured:

• by the pre
ision of the approximation 
arried out. One extra
tion of types that would

always answer T, although possible, is of 
ourse not interesting.

• by the low number of Obj.magi
 ne
essary to for
e the 
orresponden
e between ex-

tra
ted terms and extra
ted types.

In fa
t, the following de�nition of Ê pro
eeds only by repla
ement of subterms by T, if

one puts aside the syntax questions. It would be then possible to give to the set of all types

with T a stru
ture of semi-latti
e upward, whose maximal element would be T. And we

would then have for any type Coq U that U ≤ Ê(U) ≤ T. This order would then 
onstitute

a measure of the degree of approximation made during the extra
tion of types.

3

In the extra
ted 
ode, the ASCII notation for this T type is __. Note the absen
e of 
on�i
t with the

notation of the term ✷ whi
h is also __: in O
aml names of types and terms do not interfere
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3.3.2 The type of logi
al residues

We saw in the previous 
hapter that the extra
tion of the terms was not able to 
omple-

tely remove logi
al parts from terms, and that it 
ould remain some the residual 
onstants

✷. Whi
h type 
ould we then give to these residues ✷? Ideally any 
onstant type with at

least a value 
ould be appropriate, su
h as for example unit. Unfortunately, it 
an happen

during a redu
tion in O
aml that a residue is found applied (see example 1 in the previous


hapter). The rule of redu
tion to be used is then:

(✷ X)→ ✷

Implementing ✷ by () is thus in
orre
t from the point of view of the exe
ution. We 
an

nevertheless get the good behavior in O
aml, provided we 
heat with the typing

4

:

# let re
 __ x = Obj.magi
 __;;

val __ : 'a → 'b = <fun>

# __ 1 true [℄;;

- : '_a = <poly>

The only di�
ulty is that the type 'a→'b given for ✷ is harmful for the readability of

signatures, be
ause it multiply the useless type variables. We then de
ided to �
ast� this

type into Obj.t. This 
an be done by using instead of Obj.magi
 its alternative Obj.repr:

'a → Obj.t. We have �nally 
hosen the following implementation of ✷:

# let __ = let re
 f _ = Obj.repr f in Obj.repr f

val __ : Obj.t = <fun>

In the following de�nition of the extra
tion Ê of types, we will use the symbol ✷ to indi
ate

the type of the 
onstant ✷. This symbol of the type is de�ned as an alias to T. In fa
t, one

synta
ti
ally separates these two symbols only during the extra
tion, during whi
h they will

play distin
t roles:

• If the extra
tion of a type gives nat→✷, one knows that all the type is logi
al, and it

is desirable to produ
e the extra
tion ✷ for the whole.

• Conversely if a type is extra
ted in nat→T, one knows that it a
ts as the type of a

fun
tion with an integer argument and unknown result. And there, an approximation

of the whole type with T is not desirable be
ause any information would then been

lost.

3.3.3 The border between types and terms

Let us re
all that Coq does not make synta
ti
 distin
tion between terms and types,

unlike O
aml. The extra
tion need then to de
ide to pla
e an Coq obje
t in the world of

extra
ted terms or in the world of extra
ted types. In the previous 
hapter 
on
erning the

4

The ASCII notation of ✷ is

__

.
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extra
tion of terms, we pruned all type s
hemes

5

into the 
onstant ✷. The reason of this

pruning was that a type s
heme, whi
h will be
ome a type on
e applied to su�
iently many

arguments, does not have real 
al
ulative 
ontent.

For extra
tion of types, in a 
oherent way with the extra
tion of terms, type s
hemes are

on
e again used as border between types and terms. In fa
t, the extra
tion of types a

ept

any Coq term, but immediately returns the unknown type T if the input term is not a type

s
heme, in the same way that the extra
tion of terms returns ✷ in the degenerated 
ases.

3.3.4 The Coq types, from simple to 
omplex

Before entering the de�nition itself for extra
tion of types, we try here to give an intui-

tion of its behavior. For that, we �rst present a 
ertain number of examples of Coq types

su�
iently simple to have a faithful equivalent in O
aml. Then we 
ontinue with in
reasingly


omplex Coq types.

The indu
tive types

First of all, One 
an obviously mention the indu
tive types whose 
onstru
tors are


onstant, su
h as bool.

Indu
tive bool : Set := true : bool | false : bool.

⇓

type bool = True | False.

More generally indu
tive types without parameter and whose 
onstru
tors have simply trans-

latable types are themselves simply translatable. For example:

Indu
tive nat : Set := O : nat | S : nat → nat.

⇓

type nat = O | S of nat.

When we 
onsider parameters of type Set (or Type), the situation remains natural. One


an indeed see Set as the set of all types. The Coq parameter then be
omes an O
aml type

variable. For example:

Indu
tive list (A:Set) : Set :=

| nil : list A

| 
ons : A → list A → list A.

⇓

type 'a list = Nil | Cons of 'a * 'a list

5

As a reminder, one type s
heme is a term admitting a type of the form: ∀x1 : X1, ...∀xn : Xn, s
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Note the transformation of the 
onstru
tor type, from a 
urry�ed fun
tional form in Coq

to a sequen
e of produ
ts in O
aml. Of 
ourse, the appli
ation of su
h an indu
tive type is

obviously translated into an O
aml appli
ation of types: a (list nat) of Coq be
omes a

(nat list) in O
aml.

There is no reason to limit ourself to parameters, the produ
ts present in the signature

of indu
tive types playing a similar role:

Indu
tive list2 : ∀A:Set, Type :=

| nil2 : ∀A:Set, list2 A

| 
ons2 : ∀A:Set, A → list2 (A*A) → list2 A.

⇓

type 'a list2 = Nil2 | Cons2 of 'a * ('a * 'a) list2

But we enter here a dangerous zone. Changing slightly the previous de�nition leads to a

problem.

Indu
tive list3 : ∀A:Set, Type :=

| nil3 : ∀A:Set, list3 A

| 
ons3 : ∀A:Set, A → list3 A → list3 (A*A).

This de�nition is the dual of the previous one, in whi
h the pairs will a

umulate on the right

of lists. But in O
aml, for an indu
tive list3 with one type variable 'a, the 
onstru
tors are

used to build a 'a list3 and no other type. There is thus no way of translating a

urately

this indu
tive, and we need to 
hoose an approximation, for example

type 'a list3 = Nil3 | Cons3 of T * T list3

With these parameters or variables in the type Set, we have already rea
hed the whole

of de�nable indu
tive types in O
aml. Any indu
tive type Coq more 
omplex will thus bring

issues. For example, if a parameter is a type s
heme, to represent it by a type variable is

imperfe
t: this variable, instead of representing a whole potential family of types, represents

only one of them. We take nevertheless this representation, be
ause one 
annot do better in

O
aml. For example:

Indu
tive poly (X:nat→Set) : Set := Poly : ∀n:nat, X n → poly X.

⇓

type 'x poly = Poly of nat * 'x

Finally, last 
ase, if a parameter or a variable is on the terms level, it will not be translatable

in O
aml. The 
lassi
al example is the lists of size n.

Indu
tive listn (A:Set) : nat → Set :=

| niln : listn A O

...

/

...
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...

/

...

| 
onsn : ∀n:nat, A → listn A n → listn A (S n).

A solution is then to repla
e ea
h untranslatable argument by T.

type ('a,'n) listn = Niln | Consn of nat * 'a * ('a,T) listn

But we will see later than one 
an always lo
ate su
h dependen
ies with respe
t to terms

and 
ompletely remove them.

The type s
hemes

The type s
hemes 
orrespond rather naturally to O
aml types with type variables. Let

us take for example the 
ase of a type s
heme having a dependen
y with respe
t to a type:

Definition S
h1 : Set → Set := fun X:Set ⇒ X → X.

⇓

type 'x s
h1 = 'x → 'x

And if one applies this type s
heme in Coq, one also obtains an appli
ation in O
aml : (S
h1

nat) gives (nat s
h1) in O
aml syntax.

As for the indu
tive types, as long as the dependen
y is with respe
t to a type, everything

remains simple. Let us 
onsider now the 
ase of a dependen
y with respe
t to a term. It is

enough to take again the 
onstant P of se
tion 3.1:

Definition P (b:bool) : Set := if b then nat else bool.

Definition S
h2 (b:bool) : Set := P b.

There is obviously no su
h possible dependen
y in O
aml. To remain uniform, a solution is

to produ
e nonetheless a type variable whi
h is in fa
t never used:

type 'b p = T

type 'b s
h2 = T p

We will see later that it is in fa
t possible to lo
ate su
h dependen
ies with respe
t to terms

and remove them 
ompletely, in order to obtain:

type p = T

type s
h2 = p

Lastly, let us now 
onsider the last 
ase, the one of a dependen
y with respe
t to a new

type s
heme:

Definition S
h3 : (bool → Set) → Set :=

fun (X:bool→Set) ⇒ X true → X false.

A priori, an O
aml type variable is insu�
ient to represent the type s
heme X. We must thus

approximate, whi
h 
an be made in several manners.
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• The most 
autious answer is to 
onsider (X true) and (X false) as unknown. Indeed,

if one instantiate X with the 
onstant P as de�ned above, one obtains for example:

S
h3 P = nat → bool

This leads us to a �rst possibility for extra
tion: all variable whi
h is not a type is

seen as unknown, with its arguments. Here:

type 'x s
h3 = T → T

• But this answer is in pra
ti
e too fuzzy to be interesting. Indeed, in a situation not

really dependent like (S
h3 (fun

_ ⇒ nat)), one obtains as �nal type T → T

instead of nat → nat. And this o

urs frequently in pra
ti
e. On the other hand, one

obtains nat → nat if one takes for extra
tion:

type 'x s
h3 = 'x → 'x

And 
on
erning the dependent situations like (S
h3 P), this new extra
tion behaves


orre
tly. Here for example, P will be regarded as an unknown type T. And one thus

still obtains T → T .

Between the �rst version, more systemati
, and the se
ond, sharper, we have 
hosen the

se
ond.

The types themselves

The type 
onstru
tion whi
h is immediately translatable in O
aml is the fun
tional arrow,

i.e. the non-dependent produ
t. Clearly, nat → nat is dire
tly expressible both in Coq and

in O
aml.

On the opposite, the dependent produ
t is in general not expressible in O
aml. In parti-


ular, it indu
es a lo
al binding of a variable inside a type. Let us look at the type of our

distr_pair example of the se
tion 3.1:

((X:Set) X → X) → nat*bool

If one tries at all 
osts to generate a type variable for X, then this variable will be visible in

the whole type. In addition to distorting the semanti
s of the Coq type, that has harmful


onsequen
es: ea
h de
laration 
ontaining produ
ts will see its parameter number explode.

The only reasonable translation is in fa
t to be unaware of the dependen
y indu
ed by the

internal produ
t, and to repla
e ea
h o

urren
e of the variable by T. One obtains here:

(T → T → T) → nat*bool

Only the produ
ts at the head of the type 
an be translated slightly more faithfully (
f.

se
tion 3.5).

To study the other 
ases, it should be noted that we are allowed to redu
e in the types

during their extra
tion, in order to limit the number of situations that are unsupported by

O
aml types. This is new 
ompared to the extra
tion of terms, during whi
h any redu
tion
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is obviously out of question. In the rest of the 
hapter, all is thus done modulo βιζ , in order

to be as pre
ise as possible. The situation of the δ-redu
tion, more 
omplex, will be evoked

together with the extra
tion of type 
onstants. All these redu
tions are obviously dangerous

for the e�
ien
y of the extra
tion fun
tion, but fortunately, in pra
ti
al, extra
tion times

remain reasonable, even on 
onsequent examples.

One will thus 
onsider any type in its head normal form, whi
h has the following shape:

∀−−−−→xi : Xi, (t −→aj ). It was already seen how to treat the head produ
ts. The extra
tion of what

remains is done a

ording to the stru
ture of the head t, whi
h 
an be:

• a s sort (whi
h is then without argument)

• a 
onstant c

• an indu
tive type I

• a variable X

• a non-redu
ible mat
h

• a non-redu
ible fix

If this head t is a sort, any term of type t is a type s
heme, and its extra
tion gives ✷.

In order to remain 
oherent with this extra
tion of terms, the t type must be extra
ted to

the type ✷.

Let now us 
onsider the 
ase of an applied 
onstant c. One easy solution is then to

δ-redu
e this 
onstant. But this is not satisfa
tory be
ause that leads to larger and less

readable types. And in addition, this is not always feasible, sin
e all the 
onstants do not

ne
essarily have a usable body. Consider for example the abstra
t 
onstants in a module

signature, or type axioms

6

We then distinguish three situations for 
onstants:

1. The most favorable 
ase is when this 
onstant is a type s
heme. We then want, as for

(S
h1 nat), to translate the arguments and to return the appli
ation of the O
aml

types. But nothing for
es the arguments to be types:

• If an argument is a term, the approximation by T is mandatory.

• Si now an argument a is a type s
heme waiting n arguments, one 
an try to see

it as a true type gathering all the possible evolutions of a. For that we apply

n times T to this type s
heme, ex
ept that in pra
ti
e, instead of leave these T

arguments, we redu
e: this is equivalent to removing the n head lambdas

7

of a,

and repla
e with T the variables 
reated by these lambdas.

2. If now we are in the unusual situation where a type in
ludes at the head a 
onstant

whi
h is not a type s
heme, there is little 
han
e to translate this 
onstant into a type


onstant. The best approa
h is then to redu
e the 
onstant, if possible, and then to

extra
t the redu
ed version. The usual example (though not very realisti
) illustrating

this situation is the identity.

6

In pra
ti
e the 
urrent extra
tion allows realization of informative axioms by manually provided 
ode.

But this provided 
ode is not analyzed by the extra
tion (
f se
tion 4.4.2).

7

If there are less than n lambdas at the head of a, we adds some via η-expansion
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Definition id := fun (X:Type)(x:X) ⇒ x.

It is 
lear that to translate (id Set nat) into T only be
ause the head 
onstant is

not a type s
heme is too 
oarse, sin
e a step of δ-redu
tion leads to nat.

3. Finally for the 
onstants not type s
hemes and non-redu
ible, the last solution is the

approximation by T.

The 
ase of an applied indu
tive type is similar to the one of a applied 
onstant, just

simpler sin
e an indu
tive I has by 
onstru
tion a type of the form ∀a : A, . . . ∀z : Z, s. We

thus leave always the indu
tive type at the head, and we just need to extra
t the arguments

as previously.

Con
erning variables, everything has already been said, depending of the origin of this

variable. If this variable 
omes from a dependent produ
t, the variable and its arguments

be
ome T sin
e the dependen
y disappears in O
aml. If this variable 
omes from the pa-

rameters of a type s
heme or an indu
tive type, it then gives an O
aml type variable, its

arguments being ignored.

Con
erning the last 
ases not yet evoked for a type, namely the non-redu
ible types built

with mat
h or fix, they are too mu
h 
omplex for O
aml, and are thus translated into T.

3.3.5 The fun
tion Ê of extra
tion of types

We now des
ribe again, in a formal way, the di�erent situations mentioned up to now.

De�nition 16 The fun
tion Ê of extra
tion of types, from Ci
 to O
aml types, is de�ned

in a mutually re
ursive way. It uses a set v of type variables to be translated, noted in index

and initially empty.

Let us start with the types themselves, i.e. the Coq terms a

epting a sort as type. The

�rst 
ase relates to the logi
al parts.

(prop) if U is of type Prop, then Êv(U) = ✷.

The other 
ases are done by 
ase on the head of the type after βιζ-redu
tion:

(sort) Êv(s) = ✷

(prod1) if Êv(B) = ✷, then Êv(∀x : A, B) = ✷

(prod2) if Êv(B) 6= ✷, then Êv(∀x : A, B) = Êv(A)→ Êv(B)

(
ase) Êv(
ase(. . . , . . . , . . .) −→ai ) = T

(�x) Êv((fix . . .) −→ai ) = T

(var1) if X ∈ v, then Êv(X
−→ai ) = ′X

(var2) if X 6∈ v, then Êv(X
−→ai ) = T

(ind1) if I is an indu
tive type, we pose

8

: Êv(I a1 . . . an) = (Êv(a1), . . . , Êv(an)) I

8

we use as output the post�x syntax of O
aml for the type appli
ations
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(
st1) if the 
onstant c is a type s
heme, then:

Êv(c a1 . . . an) = (Êv(a1), . . . , Êv(an)) c

(
st2) Otherwise, and if the 
onstant 
an be redu
ed, we do it:

if (c −→ai )→δ U then Êv(c
−→ai ) = Êv(U)

(
st3) Finally in the 
ase of a non-redu
ible 
onstant that is not a type s
heme,

one uses an ultimate approximation: Êv(c
−→ai ) = T

The re
ursive 
alls of Ê on the arguments of indu
tive or 
onstant type do not ne
essarily

apply only to Coq types. We then extend Ê in the following way:

(s
h) If U is a type s
heme, one 
an thus write it modulo η-expansion in the form:

λa : A, ...λz : Z, V , with V being a type. We then pose:

Êv(U) = Êv(V ), by thus ignoring the variables.

(term) If U is not a type s
heme, then Êv(U) = T.

Finally, the extra
tion of an environment of Coq de
larations is done as follows:

(nil) Ê([]) = []

(def1) For the de
laration of a type s
heme c whose body 
an be written

t =η λa : A, ...λz : Z, U , we pose v = {a, . . . , z} and
Ê(Γ; (c := t : T )) = Ê(Γ); (type (′a, . . . , ′z) c = Êv(U))

(def2) For the de
laration of a 
onstant c that is not a type s
heme, we do not

produ
e anything: Ê(Γ; (c := t : T )) = Ê(Γ)

(ax1) For an axiom whose type T is of the form ∀a : A, ...∀z : Z, s we produ
e a

de
laration of abstra
t type:

Ê(Γ; (ax : T )) = Ê(Γ); (type (′a, . . . , ′z) ax)

(ax2) For the other axioms we do not produ
e anything: Ê(Γ; (ax : T )) = Ê(Γ)

(ind2) For an indu
tive type I having n parameters

−→pi and whose 
onstru
tors are−→
Ci, we pose:

Ê(Γ; Indn((I : ∀−−−→pi : Pi, ∀
−−−−→
xi : Xi, s) := (

−−−−→
Ci : Ti)))

= Ê(Γ); (type (
−→
′pi,
−→
′xi) I = C1 of π(Êv(T1)) | . . . | Cn of π(Êv(Tn)))

with v = {p1, . . . , pn}
π(τ1 → . . .→ τn → τ) = τ1 ∗ . . . ∗ τn

This algorithm terminates even if it uses the Coq redu
tions, thanks to the strong nor-

malization of Ci
. It should also be noted that it produ
es well-formed O
aml types. In

parti
ular ea
h appli
ation of indu
tive or 
onstant type is done with the good number of

arguments. Let us take for example the 
ase of a 
onstant type c : ∀−−−→x : X, s. When we

extra
t a Coq type having c at its head, we knows that c has exa
tly n arguments, sin
e it

is the only way to satisfy the 
ondition that (c −→ai ) should have a sort as type. And ea
h

argument ai will give an extra
ted argument Ê(ai) in O
aml. In addition, the number of type

variables in the de
laration of c in O
aml is indeed n. The 
ase of indu
tive type is similar.
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3.4 Extra
tion, typing and 
orre
tness

As explained previously, the typing of extra
ted terms we ensure by the a
tion of our

algorithmM' does not brings by itself any 
orre
tness property for the exe
ution of these

terms, be
ause of the presen
e of the Obj.magi
. On the other hand a �raw� extra
ted term

E(t) is modi�ed during the typing stage only via this insertion of Obj.magi
. However these

Obj.magi
 do not have any in�uen
e on the exe
ution of a term: from the point of view

of untyped λ-
al
ulus, they are only identity fun
tions. The results of 
orre
tness of the

previous 
hapter thus still apply to the �nal well-typed extra
ted term.

3.5 Di�eren
es with the implemented extra
tion of types

For reasons of simpli
ity and 
on
ision, the Ê de�nition is in
omplete. The mutual indu
-

tive types, for example, although not evoked here, are treated without more problems. And


on
erning 
o-indu
tive type, the se
tion 4.2 is dedi
ated to their study. A 
ertain number

of parti
ular 
ases are also distinguished in the implementation, like the empty indu
tive

types, the singleton indu
tive types and the re
ords. These 
ases will be evoked in se
tion

4.3 about optimizations.

3.5.1 Dealing with type parameters

One di�eren
e between the a
tual implementation and the previous des
ription of Ê

on
erns the type parameters and type arguments We have seen that the arguments whi
h

are not type s
hemes are translated in T. One 
an in fa
t remove 
ompletely those arguments,

be
ause they 
an always be identi�ed, and only thanks to their typing. That 
orresponds

to the rules (ind1) and (
st1). Obviously, in order to remain 
oherent, one must then also

�lter the variables from the types we generate, a

ording to whether they 
orrespond or not

to type s
hemes. The rules (def1) (ax1) and (ind2) should then be re-examined. It is this

optimized version whi
h has been implemented. The previous example of lists of size n is

thus extra
ted to:

type 'a listn = Niln | Consn of nat * 'a * 'a listn

This 
orresponds to the usual lists, put besides this nat argument witness of the size of the

list, whi
h must be preserved.

3.5.2 Dealing with the nonparametri
 arguments of indu
tive types

Then, it should be noted that for simpli
ity reasons, the fun
tion Ê manages 
orre
tly

only the parameters of the indu
tive types. Let us take again our example, the indu
tive

type list2 previously de�ned:

Indu
tive list2 : ∀A:Set, Type :=

...

/

...



112 Certi�ed fun
tional programming

...

/

...

| nil2 : ∀A:Set, list2 A

| 
ons2 : ∀A:Set, A → list2 (A*A) → list2 A.

If Ê is followed s
rupulously, the extra
tion of list2 is the one desired, but rather:

type 'a list2 = Nil2 of T | Cons2 of T * T * (T * T) list2

In fa
t, Ê does not establish a link between the produ
t ∀A : Set, ... in the type of the

indu
tive and the produ
ts ∀A : Set, ... in the 
onstru
tors types. The �rst gives a 'a

whereas the others give T. In pra
ti
e, the extra
tion of types 
urrently implemented tries

as mu
h as possible to lo
ate these �pseudo-parameters�, and on this example list2 give:

type 'a list2 = Nil2 | Cons2 of 'a * ('a * 'a) list2

3.5.3 Redu
tion of some types 
onstants

Another di�eren
e between Ê des
ribed above and the implementation relates to the

type 
onstants. The rule (
st1) above always translates an applied type s
heme 
onstant

into the same applied 
onstant. We have seen in the example S
h3 that (S
h3 P) gave in

O
aml the type p s
h3, whi
h is in fa
t T → T when redu
ed. But if we δ-redu
es (S
h3 P)

at the Coq level, we obtains nat → bool, whi
h is extra
ted to itself, and a more pre
ise

extra
tion than before is thus obtained The 
urrently implemented strategy is to test the

two. Let us 
onsider a Coq type t whi
h δ-redu
es to u:

• if the δ-redu
ed form of Ê(t) in O
aml is equal to Ê(u), owe keep the most 
ompa
t

version, namely Ê(t).
• if not, the most pre
ise version is kept, even if it is not the most 
ompa
t, namely

Ê(u).

3.5.4 Spe
ial treatment of head produ
ts

Finally, a last optimization of implementation deals with the head produ
ts. Indeed, the

approximation of all variables of produ
ts by T is sometimes too extreme. For example, the

type of the polymorphi
 identity id is not the expe
ted one:

Ê(∀X:Set, X → X) = T → T → T

instead of T→ 'x → 'x. This is partly 
orre
ted in the implementation:

• In the 
ase of an extra
tion of type Ê(T ), in order to determine the type of a extra
ted

term t : T , we authorizes the head produ
ts of T to generate type variables. This

allows to obtain �ner types for the extra
ted terms In parti
ular, the type of id is

indeed as expe
ted.

• The other situation is that of an extra
tion of type Ê(T ) performed in order to trans-

form a Coq type de
laration into a O
aml type de
laration. In this 
ase, we generates no

variable, to respe
t the following prin
iple of the type s
hemes: as many type variables

as head lambdas.



Chapitre 4

Extra
tion in pra
ti
e: re�nements and

implementation

In this 
hapter, we des
ribe the 
urrent state of the extra
tion su
h as it is implemented

in version 8.0 of Coq. This des
ription 
onsists of two parts.

First of all, we present a 
ertain number of features implemented in the extra
tion tool,

but not yet evoked up to now. These features are presented only in an informal way, be
ause

their theoreti
al study is for the moment not also 
omplete that the one of the E fun
tion

of 
hapter 2. These re�nements are:

• the support of the new modules system of Coq,

• the support of 
o-indu
tive types,

• the addition of several optimizations intended to improve the e�
ien
y of the extra
ted


ode.

In a se
ond time, we present the implementation whi
h was done during this thesis and

des
ribe brie�y its internal behavior and then detail its usage from the point of view of the

user.

4.1 Extra
tion of the new Coq modules

During this thesis, a signi�
ant innovation appeared in Coq, and we adapted the extra
-

tion to it. This new Coq feature is the new module system, that allows to stru
ture the

developments in a dramati
ally more �exible way, as well as do some abstra
t reasoning and

re-use 
odes and/or proofs. From the point of view of extra
tion, this module system opens

new prospe
ts in term of proof of programs, by fa
ilitating the design of autonomous 
erti-

�ed elements. Whether they are modules or fun
tors, these 
erti�ed parts 
an then be easily

assembled via theirs interfa
es with other parts, 
erti�ed or not, in order to 
onstitute one

appli
ation of greater s
ale. The extra
tion of modules extends in fa
t the e�ort des
ribed

in the previous 
hapter aiming at obtaining a interfa
e .mli for any extra
ted �le .ml. From

now on, all stru
tures extra
ted, modules and fun
tors, will have their interfa
es.

The development that we present later in 
hapter 7 
onstitutes indeed a �rst stone to-

wards the 
onstru
tion of a library of 
erti�ed modules, usable by any programmer, whether
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he wishes to build an 
ompletely 
erti�ed appli
ation, or quite simply to re-use building

blo
ks of good quality. In this development about the stru
tures of �nite sets, we 
ertify

several implementations of fun
tors having the same interfa
e, whi
h allows any appli
ation

built on this interfa
e to make its 
hoi
e among various implementations, several being 
er-

ti�ed. In addition, we implemented many derived properties starting from the Coq interfa
e

of �nite sets. These properties are thus automati
ally shared by all the implementations of

this interfa
e, allowing, let us hope, to easily 
ertify programs using this library of �nite

sets.

Before presenting these new Coq modules and their extra
tion, we start �rst with a rapid

overview of the module system of O
aml, whi
h inspired deeply the one of Coq.

4.1.1 The O
aml modules

The module system of O
aml [52℄ is itself derived from the original system of SML [42℄.

The latter has also evolved/
hanged in return, and the two systems are now very 
lose and

known under the name of Harper-Lillibridge-Leroy module system. One 
an �nd a 
omplete

presentation of this system in the O
aml referen
e manual [53℄. To be short, one 
an say

that this module system adds three kinds of stru
tures above the basi
 de
larations of the

language for types and 
onstants:

• A �rst additional stru
ture is named module. It allows to group several de
larations

whi
h 
an 
orrespond to values, types or possibly new modular substru
tures.

module OneModule = stru
t

type 'a oneType = OneConstru
tor of 'a

let oneFun
tion = fun
tion OneConstru
tor x → x

end

The signi�
ant point is that the internal de
larations inside the module share the same

name s
ope, distin
t from the external name s
ope. We then a

ess the internal obje
ts

via the quali�ed notation, for example here OneModule.oneType.

• The signatures or interfa
es form a se
ond kind of stru
tures. They also 
onsist of

a group of de
larations, but these de
larations relate only to types. These signatures

allow to type the pre
eding modules. For example, if we enter in O
aml the de
laration

of the module OneModule, the system returns us a 
orresponding signature:

# module OneModule = stru
t

type 'a oneType = OneConstru
tor of 'a

let oneFun
tion = fun
tion OneConstru
tor x → x

end;;

module OneModule :

sig

type 'a oneType = OneConstru
tor of 'a

...

/

...
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...

/

...

val oneFun
tion : 'a oneType → 'a

end

As previously the module bodies were delimited by the keywords stru
t...end, here

a signature is introdu
ed by sig...end. In the parti
ular 
ase of the pre
eding signa-

ture, inferred by O
aml, we see that ea
h type de
laration has been left un
hanged,

whereas any value de
laration is translated into a val 
onstru
t spe
ifying its type.

This signature is thus the most pre
ise spe
i�
ation possible. But other signatures are

also a

eptable for typing our module:

� Compared to the most pre
ise signature, one 
an remove 
ertain de
larations.

This way, one obtains lo
al obje
ts inside the module, ina

essible from outside.

� One 
an also hide the 
ontents of 
ertain types, in order to get abstra
t types,

whose obje
ts 
an only be handled via the primitives provided in the module.

Here:

module type OneRestri
tedSignature = sig

type 'a oneType

val oneFun
tion : 'a oneType → 'a

end

• Lastly, the fun
tors are generalizations of modules. Roughly speaking, a fun
tor is a

fun
tion taking module(s) as argument(s) and manufa
turing a new module:

module OneFun
tor = fun
tor (M:OneRestri
tedSignature) → stru
t

type 'a oneOtherType = ('a M.oneType) list

let oneOtherFun
tion l = List.map M.oneFun
tion l

end

The body of this fun
tor is thus parameterized with respe
t to a module variable M.

And any module admitting the signature OneRestri
tedSignature as type 
an then

be applied to OneFun
tor, be substituted for this module variable M and then give a

new module:

# module OneNewModule = OneFun
tor(OneModule);;

module OneNewModule :

sig

type 'a oneOtherType = 'a OneModule.oneType list

val oneOtherFun
tion : 'a OneModule.oneType list → 'a list

end

To 
on
lude this short presentation of O
aml modules, we obviously need to mention

that these O
aml modules present several other subtleties that we do not des
ribe here,

su
h as for example the with 
onstru
t in the types of modules. Lastly, for more advan
ed

examples of module usage, one 
an 
onsult the 
hapter 7 about a formalization of �nite sets

by the means of modules.
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4.1.2 The Coq modules

A proper module system for Coq has long been a desired but missing feature. Previously,

some existing tools were intended to organize a development in a modular way, su
h as for

example the splitting into several �les, the me
hanism of Se
tion within a �le or the use of

axioms. But these methods were qui
kly rea
hing theirs limits. For example, starting from

a development parameterized by an axiom, the only way of re-using this development in a


on
rete 
ase was to dupli
ate its 
ode and to repla
e the axiom by the 
on
rete de�nition.

One �nds this pro
ess for example in the C-CoRN proje
t (see 
hapter 6) for the real number

stru
ture.

The �rst study of a module system for Coq was made by J. Courant in its thesis [22℄.

But his system, more ambitious than the one of O
aml, seemed to be too 
omplex for

being implemented over the existing Coq 
ode. Instead, a system à la O
aml was �nally

implemented by J. Chrz¡sz
z [18, 19℄, taking as a starting point the the modular module

system of X. Leroy [52℄.

In Coq, we 
an now �nd modules, signatures and fun
tors. For example, an equivalent

of our pre
eding toy module 
an be written this way in Coq :

Module OneModule.

Indu
tive oneType (A:Set) : Set := OneConstru
tor : A → oneType A.

Definition oneFun
tion (A:Set)(a:oneType A) : A :=

mat
h a with OneConstru
tor x ⇒ x end.

End OneModule.

Unlike O
aml, the Coq modules are intera
tive. Whereas in O
aml, a module must be

provided in one whole de
laration, Coq allows to build it step by step, by su

essive de-


larations between the starting 
ommand (Module OneModule) and the ending one (End

OneModule). This need for intera
tivity rises from the possible presen
e of theorems, and

thus of proof, among the de
larations present in one module. Ex
ept for the lu
ky ones

whose native language is λ-
al
ulus, it is then illusory to try to dire
tly give a not-trivial

proof. This di�eren
e, even if signi�
ant from the user's point of view, does not in�uen
e

the extra
tion, whi
h always pro
eeds after the end of the module de
larations.

The signatures and the fun
tors are de�ned in the same manner:

Module Type OneSignature.

Parameter oneType : Set → Set.

Parameter oneFun
tion : ∀A:Set, (oneType A) → A.

End OneSignature.

Module OneFun
tor (M:OneSignature).

Definition oneOtherType := fun A ⇒ list (M.oneType A).

Definition oneOtherFun
tion := fun A l ⇒ List.map (M.oneFun
tion A) l.

End OneFun
tor.

Con
erning the 
ontents of a signature, one moves away somewhat from the parallel with

O
aml signatures, be
ause of the di�eren
es between the two systems, and in parti
ular the

la
k of distin
tion between terms and types in Coq. Let us re
all that in O
aml a term
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is ne
essarily abstra
t be
ause of the de
laration val, whereas a type de
laration 
an be

abstra
t or not.

• For an abstra
t de
larations in a Coq interfa
e, the generi
 keyword

1

is Parameter,

and 
an be used for a fun
tion like oneFun
tion or a type oneType.

• Writing a 
on
rete type in a interfa
e Coq leads no surprise: we 
an still de
lare a new

indu
tive type via Indu
tive, or de�ne an alias via Definition.

• the prin
ipal innovation is the possibility of pla
ing one 
on
rete term in an interfa
e.

Thus, Definition x:=0 in a interfa
e will oblige any implementation of this interfa
e

to 
ontain a 
onstant x being worth 0.

The use of Coq interfa
es are made deli
ate by two pra
ti
al details. First of all, only

a type oneType de�ned as a 
onstant (via Definition for example) is a

epted for rea-

lization of the parameter oneType, and not a type de�ned by Indu
tive. Thus, for Coq,

OneSignature is not a valid signature of OneModule. The solution is then to pla
e an alias

on the level of the module OneModule: we rename oneType in oneType' in the indu
tive

de�nition, then the following de
laration is added:

Definition oneType := oneType'.

In addition, it should be noted that if a signature is imposed to our module (for example

via Module OneModule : OneSignature), and if this signature 
ontains abstra
t de
lara-

tions Parameter, then the body of our fun
tion oneFun
tion is hidden: one 
an never again

make use of it out of the module, for example during a 
omputation. That semanti
s dif-

fers from O
aml : the values of the 
onstants are a
tually hidden in the interfa
es by the


onstru
tion val, but we obviously use these values during the exe
ution of program! The

Coq typing relation �:� between modules and interfa
e is then very 
onstraining, and we

often prefer to use instead the weaker form �<:�, that only 
he
ks if the interfa
e 
ould be a

valid signature for this module, but without setting up the asso
iated restri
tions.

Just as for the presentation of the O
aml modules, mu
h remains to be said 
on
erning

the advan
ed possibilities of the Coq modules. And on
e again, the 
hapter 7 presents some

more realisti
 examples using these modules and fun
tors.

4.1.3 The extra
tion of modules

Let us now see what be
omes the extra
tion in presen
e of these Coq modules. First of

all, let us announ
e that only the extra
tion to O
aml 
an 
urrently treat the Coq modules.

Indeed, there is no dire
t equivalent in Haskell of su
h a module system, but rather a system

of 
lasses, a rather di�erent 
on
ept. Perhaps it is possible to use these 
lasses to express

the extra
ted Coq modules, but the feasibility of this translation was not explored.

We now 
onsider the extra
tion of the Coq modules towards O
aml. At �rst glan
e,

everything works simply: a Coq signature be
omes a O
aml signature, a Coqmodule be
omes

a O
aml module and similarly for fun
tors.

1

In fa
t, Axiom is also appropriate, it is even a synonym here.
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When we want to go further than these obvious points, the deli
ate point is the transla-

tion of the internal de
larations inside these modular stru
tures. Indeed one wish to preserve

during the extra
tion the typing relations between modules and signatures. To translate a

Coq de
laration in a 
orresponding O
aml de
laration, we use the extra
tion fun
tions E
and Ê of 
hapters 2 and 3, whi
h respe
tively produ
es terms and types.

We now detail the various possible situations. In fa
t, there are only four types of possible

de
larations in Coq :

• the de
laration of indu
tive via Indu
tive.

• the de
laration of a 
onstant, for example via Definition. All the de
larations Lemma,

Theorem, Fixpoint are indeed only variants of Definition allowing an easier build

for the body of the 
onstant being de�ned.

• the spe
i�
ation of an obje
t in a signature via Parameter.

• the de
laration of an axiom in a module, via Axiom. We ignore this 
ase for the moment,

see se
tion 4.4.2 for the treatment of axioms by the extra
tion.

The �rst two 
ases 
an o

ur both inside a module (or fun
tor) or inside a signature.

First, all de
larations of obje
ts of sort Prop, both indu
tive types and 
onstants, will

be purely and simply removed by the extra
tion. Indeed no extra
ted de
laration 
an later

depend on su
h a logi
al de
laration. If we take for example the de
laration of a 
onstant

logi
al 
 of sort Prop, any following o

urren
e of 
 will be pla
ed by fun
tion E under a


onstant ✷. And if 
 appears in a term whi
h is a type and is thus treated by the fun
tion

Ê , then any referen
e to 
 also disappears, be
ause 
 is not a type. As for a logi
al indu
tive

type I, the fun
tion E make it disappear like all types, and the fun
tion Ê transforms it into

a degenerated type ✷.

Then, a simple 
ase is the de
laration of an informative indu
tive type. Indeed, we then

quite simply output the asso
iated de
laration generated by the fun
tion Ê . And this is valid

both in a signature or in a module.

Let us now 
onsider an informative de
laration Parameter x:T in a signature, whi
h

thus 
laims the existen
e of an obje
t x of type T in any module ful�lling this signature.

O
aml, unlike Coq, distinguishes types and values. This de
laration 
an thus 
orrespond in

O
aml either to the de
laration of a value val x:Ê(T), or either to the de
laration of an

abstra
t type type X. And this 
hoi
e is done a

ording to the shape of T: if T is a type

like nat, this leads to de
laration of a 
onstant val x:nat. On the 
ontrary, if T is a sort,

or more generally an arity, x is a type (resp. a type s
heme), and its natural translation is

a type de
laration in O
aml.

The last 
ase 
on
erns the de
laration of a 
onstant, typi
ally via Parameter x:T:=t.

We then re-use the distin
tion between type s
hemes and other terms. For the former, we

generate a type de
laration by using the fun
tion Ê , and return type X = Ê(t). For the
latter, we generate a de
laration of an O
aml term. And this de
laration is either a 
on
rete

form if we are inside a module or a fun
tor, namely let x = E(t), or either an abstra
t

form val x : Ê(T) if we are in a signature.

We 
an summarize all these possible situations in the following table:
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Prop sort type s
heme standard 
ase

Indu
tive i := C:T ∅ ///////////// type i = C of Ê(T)
Definition x:T:=t ∅ type X = Ê(t)

{
Module: let x = E(t)
Signature: val x : Ê(T)

Parameter x:T ∅ type x val x : Ê(T)
Even if this summary table does not show it in order to remain simple, all O
aml type

de
larations, both those 
oming from indu
tive types and type s
hemes, 
an 
ontain type

variables 'a, as we have seen in 
hapter 3.

On
e des
ribed this �shunting� of the Coq obje
ts towards either O
aml terms or types,

one must then 
he
k that this shunting is quite 
oherent. In fa
t, for any Coq obje
t named


 who �nds himself pla
ed on the term level by the extra
tion, all the uses of 
 in the

obje
ts extra
ted later on must also be on the term level. And the same for an obje
t pla
ed

at the type level. This property is not 
ompletely immediate. Let us take for example the

polymorphi
 identity:

Definition id := fun (X:Type)(x:X) ⇒ x.

As it is not a type s
heme, our extra
tion 
hooses to transform it into an O
aml fun
tion:

let id _ x = x

But id 
an 
ertainly be also used in a Coq type:

Definition nat_bis := id Set nat.

A possible extra
tion of this type nat

_

bis would be then the appli
ation nat id, with id

referring here to a type 
onstant id whi
h 
ould be de�ned by:

type 'x id = 'x

However our extra
tion does not de�ne this type 
onstant, but only the 
onstant id at

the term level. In fa
t everything works 
orre
tly here, thanks to the rules 
hosen for the

extra
tion Ê of types in se
tion 3.3.5. Indeed, the extra
tion Ê(nat_bis) is not nat id, but

nat, be
ause id is not a type s
heme. This 
onstant id is thus redu
ed before extra
ting,

a

ording to the rule (
st2) de�ning Ê .
More generally, our �shunting� is 
oherent with both fun
tions E and Ê be
ause these

three operations divide with respe
t to the same strati�
ation 
riterion, namely the fa
t of

being or not a type s
heme. Thus a type 
onstant 
 
annot appear in a extra
ted term:

sin
e it is a type s
heme, it ends under a ✷. On the opposite, a term 
onstant as id 
annot

remain in an extra
ted type a

ording to the rules (
st1) (
st2) and (
st3) of Ê .

4.1.4 Current limitations of the extra
tion of modules

This extra
tion of the modules Coq is still to be 
onsidered as experimental. First of all,

a thorough theoreti
al study has not been done yet for la
k of time. This would suppose in
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parti
ular the integration in our theoreti
al system (
hapters 1 and 2) of the typing rules

spe
i�
 to Coq modules. However these rules 
urrently o

upy 6 pages in the Referen
e

Manual [78℄ (
hapter 5).

The implementation, whi
h is thus more advan
ed than the theory 
on
erning these

modules, gives in pra
ti
e satisfa
tory results on the �rst real developments using these

modules. One 
an for example refer to the 
hapter 7 for a 
ase study about �nite sets. But

we have in same time identi�ed two extreme situations whi
h 
an put the 
urrent 
ode at

fault.

A �rst typing problem

As we mentioned previously, an essential property of the extra
tion of modules is the


onservation of the typing relations between a module and a signature during the extra
tion.

This is for example 
riti
al in order for a fun
tor appli
ation to remain legal after extra
tion.

At �rst sight, this property seem to be a simple 
onsequen
e of the following result 
onne
ting

the fun
tions E and Ê :
t : T ⇒ E(t) : Ê(T )

Unfortunately, this result speaks only about 
on
rete types, and the presen
e of abstra
t

types in a signature 
an disturb this situation. In fa
t, it is 
urrently possible to build

a module Mod and a signature Sig 
ontradi
ting our expe
ted 
onservation property for

module typing. For that, it is enough to 
ombine abstra
t types and type s
hemes whose

extra
tion will be an approximation:

Module Type Sig.

Parameter t : nat → Set.

Parameter x : t 0.

End Sig.

Module Mod : Sig.

Definition t := F.

Definition x := 0.

End Mod.

The type s
heme F 
omes from page 91: (F N) is the type of the integer fun
tions of arity n,

and thus (F 0) is the type of the integer fun
tions with 0 arguments, that is nat. However

the extra
tion of Mod and Sig gives:

module type Sig =

sig

type t

val x : t

end

module Mod =

stru
t

...

/

...
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...

/

...

type t = T

let x = O

end

Indeed, the type s
heme F de�ned by �xpoint gives the most general extra
ted type T,

and at the abstra
t level t 0 is approximated in t sin
e one 
annot redu
e the abstra
t type

t. It is then visible that after extra
tion, Sig is not any more a valid signature for Mod.

To 
orre
t this problem, one 
ould imagine to make T really be
ome an universal type

for O
aml, and require that t:T for any term O
aml t, and in parti
ular O:T. But this

would suppose a modi�
ation of the type system of O
aml. Otherwise, one solution is here

to insert a Obj.magi
 around the O in Mod. The problem with this insertion of Obj.magi


is that it is no longer done a

ording to a lo
al analysis (the type of x inside the module),

but a

ording to a global analysis, for example knowing if Mod is used later on with the

signature Sig in an fun
tor appli
ation. One 
ould also use a en
apsulation at the time of

the fun
tor appli
ation, like:

module Mod_bis =

in
lude Mod

let x = Obj.magi
 x

end

None of these solutions have been implemented for the moment. Anyway, it is time to mode-

rate the importan
e of this problem. It is 
ertainly one ex
eption in our goal of the �100% of

Coq 
onstru
tions extra
table in a well-typed way�. But until now, no realisti
 development

has felt into this pre
ise 
ase, namely the 
ombination of abstra
t types and type s
hemes

in a signature. And even if the 
urrently low number of su
h modular developments makes

an extrapolation di�
ult, it is really far from probable that the problem will o

ur one day

in pra
ti
e.

A se
ond typing problem

In fa
t it is also possible to indu
e typing problems between modules and signature by

using the 
umulativity :

Module Type Sig2.

Parameter t:Type.

Parameter x:t.

End.

Module Mod2 : Sig2.

Definition t:Prop:=True.

Definition x:True:=I.

End.

The signature is naturally translated into:
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module type Sig2 =

sig

type t

val x : t

end

On the other hand the extra
ted module Mod2 is empty, be
ause Mod2.t and Mod2.x are

respe
tively a type and a logi
al value. And we made previously the 
hoi
e of removing su
h

de
larations that are never useful in later de
larations. However, here, the typing of Mod2

by Sig2 requires the presen
e of �elds t and x in Mod2. But this typing problem is less

awkward than it �rst appears. After all, nothing prevents us from re
onsidering our 
hoi
e

and stopping the 
omplete elimination of logi
al de
larations, for getting here:

module Mod2 =

stru
t

type t = T

let x = T

end

But the extra
tion would then leave quantity of parasite logi
al de
larations, never useful

ex
ept in the event of a 
umulativity use between a module and its signature. It is then

better to 
ontinue to purge modules and signatures from the logi
al de
larations and to 
ure

the highly ex
eptional situations of 
umulativity via a en
apsulation similar to solution of

the previous problem. Moreover, the 
orre
tness of these two situations with problems will

be studied without doubt in a joint way.

In fa
t, our preo

upations about module typing present large similarity with the typing

problems on the term level. In the same way that we need untyped 
oer
ion fun
tions

Obj.magi
, it would be ne
essary to have 
oer
ion fun
tions at the module level, for example

at the time of a fun
tor appli
ation to a module. But unlike for terms, su
h fun
tions do

not exist at the module level.

Let us �nish nonetheless this dis
ussion about typing of extra
ted modules by two posi-

tive remarks:

• The 
urrent extra
tion ful�lls at least a weak form of 
onservation for the module

typing: if a module M admits S as its most general signature (the one inferred by the

system), then the extra
tion of M still admits the extra
tion of S as its most general

signature. And more generally, in the absen
e of abstra
t types and of 
umulativity

between module and signature, then everything works well.

• Pragmati
ally, if the O
aml type-
he
ker is satis�ed by the result of an extra
tion


ontaining modular stru
tures, then all is for best. In parti
ular the pre
eding 
or-

re
tness results for the exe
ution or the semanti
s of an extra
ted term are still valid.

After all, modules and fun
tors are only a way of re-using 
ode. And sin
e the fun
-

tors appli
ations are known stati
ally, one 
an obtain equivalent 
ode with no fun
tors

thanks to a pro
ess named defun
torization. And this pro
ess has been in parti
ular

implemented for O
aml by J. Signoles [77℄.
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A naming problem

Another problem, synta
ti
 this time, 
an also lead to extra
ted modules being refused

by O
aml. Coq, with its intera
tive modules, is more tolerant than O
aml 
on
erning the

possibilities of obje
t naming. In parti
ular one 
an refer to a module even during its built,

whereas this is illegal in O
aml. The following example is valid in Coq :

Module M.

Definition t := 0.

Module N.

Definition t := 1.

Definition u := M.t

End N.

End M.

On the other hand in O
aml one 
annot use the quali�ed name M.t inside M, and the simple

name t is in
orre
t due to the presen
e in the lo
al name spa
e of the t 
orresponding to N.t.

Sin
e renaming 
an be di�
ult be
ause of the possible signatures to respe
t, a reasonable

solution, proposed by J. Signoles, is then to add a lo
al renaming module:

module M =

stru
t

let t = O

module AdHo
 = stru
t let t = t end

module N =

stru
t

let t = S O

let u = AdHo
.t

end

end

Dete
ting the need for su
h modules and adding them properly in all the possible 
ases

(terms and types) is very 
omplex and is not implemented yet. But as for the pre
eding pro-

blems, it is a priori far from probable to fall into su
h a situation in a realisti
 development.

4.2 Co-indu
tive types and extra
tion

4.2.1 From indu
tive types to 
o-indu
tive types

The indu
tive types that we handled up to now are designed to only deal with �nite

obje
ts. More pre
isely these obje
ts 
annot 
ontain more than a �nite number of 
onstru
-

tors of this type

2

. This �niteness, or good foundation, implies the existen
e of indu
tion

2

By the way, one 
an note that an O
aml indu
tive type like list do not ful�ll the same property of

�niteness as the type list of Coq. Indeed, O
aml authorizes in�nite 
y
li
 obje
ts like let re
 l = 0::l.

And obviously, if one applies this list to a extra
ted fun
tion like map, 
omputation will never end. This
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prin
iples asso
iated with ea
h of these indu
tive types. These indu
tion prin
iples are in

fa
t generated automati
ally by Coq, su
h as for example nat

_

re
 for nat. Now, thanks to

the works of E. Giménez, there also exist in Coq some types similar to the indu
tive types,

but for whi
h there is no �niteness 
onstraint. These are the 
o-indu
tive types (see for

example [37℄). The typi
al example of su
h a type is the stream type:

CoIndu
tive Stream (A:Set) : Set := Cons : A → Stream A → Stream A.

When an 
o-indu
tive type is de�ned, the �rst di�eren
e with de
laration of an indu
tive

type is that Coq 
annot generate any asso
iated indu
tion prin
iple, sin
e these prin
iples

are not valid for in�nite obje
ts.

On an 
o-indu
tive obje
t, the 
ase analysis works as for an indu
tive obje
t. Here is for

example the way to rea
h the head of a stream:

Definition hd (A:Set) (x:Stream A) :=

mat
h x with

| Cons a _ ⇒ a

end.

On the other hand the indu
tion is quite di�erent in the 
o-indu
tive world. First of all,

one speaks rather of 
o-indu
tion, and the Coq keyword is CoFixpoint instead of Fixpoint

3

.

Then there is no 
on
ept of de
reasing argument as for the Fixpoint. One 
an thus write:

CoFixpoint from (n:nat) : Stream nat := Cons n (from (S n)).

Or, without any argument:

CoFixpoint zero_stream : Stream nat := Cons 0 zero_stream.

But any de�nition is ne
essarily authorized, be
ause it is at the very least deli
ate to give a

meaning to a de�nition su
h as:

CoFixpoint dummy : Stream nat := dummy.

The rule is to authorize only 
o-indu
tions whi
h indeed build a new 
o-indu
tive obje
t.

More pre
isely, any 
o-re
ursive 
all must be lo
ated under at least a 
o-indu
tive 
onstru
-

tor, and that is not the 
ase for our dummy example.

Con
erning the redu
tion of 
o-�xpoints, it also follows a parti
ular rule, in order not to

break the strong normalization property of the system. This redu
tion is lazy: one 
o-�xpoint


an be unfolded and repla
ed by its body only if this 
o-�xpoint and its possible arguments

appear in head position of a pattern mat
hing. For example (from 0) is in normal form,

whereas in (hd (from 0)) it is not, sin
e hd 
ontains a pattern mat
hing. In the latter 
ase,

the from 
an unfold, whi
h gives after simpli�
ation 0 for normal form.

does not invalidate the theoreti
al results of the 
hapter 2, sin
e l 
annot be put in 
orresponden
e via l̂ist

with a list l' of Coq.

3

There exists also a 
ofix anonymous 
onstru
t similar to the fix.
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4.2.2 The extra
tion of 
o-indu
tive types

The 
ase of Haskell

The 
o-indu
tive types form the �rst and only feature of Coq whi
h was initially taken

into a

ount by the extra
tion towards Haskell before being integrated into the O
aml extra
-

tion. The reason is of 
ourse the laziness of the Haskell evaluation, whi
h makes obvious the

extra
tion of 
o-indu
tive types towards this language. Thus, there is no di�eren
es between

the extra
tion of the �nite lists and that of the streams ex
ept the presen
e or not of the

base 
ase Nil.

data List a = Nil

| Cons a (List a)

data Stream a = Cons a (Stream a)

Then the extra
tion of a 
o-�xpoint gives naturally a re
ursive fun
tion:

from n =

Cons n (from (S n))

zero_stream =

Cons O zero_stream

As long as zero

_

stream is not ne
essary to a later 
omputation, this 
onstant will never be

unfolded. And even then, there will never be super�uous unfolding. Thus, if one asks the

printing of (hd (tl (tl zero

_

stream))), there will be only three unfoldings, leading to a

result of O.

Histori
ally, the extra
tion of 
o-indu
tive types towards Haskell was already usable in

the old extra
tion. We only maintained this possibility. As an example, one 
an refer to the

user's 
ontribution named Ro
q/MUTUAL-EXCLUSION. E. Giménez studies in this development

the mutual ex
lusion of two pro
esses via the Petersson's algorithm. A small graphi
al

interfa
e using the Fudgets library of Haskell allows to visualize the run of the algorithm in

an intera
tive way.

The 
ase of O
aml

During the implementation of our new extra
tion, we have added the possibility of ex-

tra
ting from 
o-indu
tive type towards O
aml. This is done via an en
oding, be
ause a

dire
t and naive translation of our pre
eding examples would be in
orre
t, due to the stri
t

evaluation of O
aml. If one takes:

type 'a stream = Cons of 'a * 'a stream

let re
 from n = Cons n (from (S n))

Then the 
omputation of (hd (from O)) starts an in�nite loop of 
alls to from.

Fortunately, there exists in O
aml a me
hanism to introdu
e lazy obje
ts. First, (lazy

x) is a stopped version of the 
omputation of the obje
t x. And if this x has a type a, then
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(lazy x) has type a Lazy.t. Finally the fun
tion Lazy.for
e: 'a Lazy.t → 'a makes

it possible to for
e the resumption of a 
omputation.

We thus use this me
hanism to en
ode the 
o-indu
tive types extra
ted from Coq. Ea
h

type t is in fa
t extra
ted into two types t and

__

t, mutually de�ned, the �rst being the

type of obje
ts on standby, and the se
ond the type of freed obje
ts. In the 
ase of streams,

that gives us:

type 'a stream = 'a __stream Lazy.t

and 'a __stream = Cons of 'a * 'a stream

Then we simulate the Coq redu
tion in the following way. A 
o-indu
tive 
onstru
tor

produ
es a frozen obje
t, and is thus surrounded by the keyword lazy. On the other hand,

a pattern mat
hing on a 
o-indu
tive obje
t needs to rea
h the head stru
ture of this obje
t.

We thus for
e a level of 
omputation by inserting a Lazy.for
e around the mat
hed obje
t.

This gives us the following O
aml extra
tion for our examples:

let hd x = mat
h Lazy.for
e x with

| Cons (a,s) ⇒ a

let re
 from n =

lazy (Cons (n, (from (S n))))

let re
 zero_stream =

lazy (Cons (O, zero_stream))

This en
oding is inspired by the style �even, with di�
ulty� presented in [81℄. The naming

�even� refers to the fa
t that any 
o-indu
tive 
onstru
tor is asso
iated to a lazy, thus

doubling the number of synta
ti
 
onstru
tions. And the �with di�
ulty� announ
es that this

style is opposed to another style, simpler but being able to 
arry out super�uous evaluations

of elements in a stream. But even this 
hosen style for extra
tion 
an pose problems of

super�uous evaluation and thus of e�e
tiveness, as we will see now.


o-indu
tive types, O
aml and e�
ien
y

The use of lazy and Lazy.for
e 
onstru
tions by the extra
tion does nothing but delay

the evaluation of 
o-indu
tive 
onstru
tions. But this is not enough for transforming O
aml

into a 
ompletely lazy language. In parti
ular, stri
t aspe
ts of O
aml 
an re-appear, in

parti
ular during the evaluation of fun
tion arguments, and lead to signi�
ant di�eren
es

with the Haskell evaluation of our examples 
ontaining 
o-indu
tive types.

Let us 
onsider for example a fun
tion iter whi
h, starting from a fun
tion f and an

initial point a, 
al
ulates the stream made up of a, (f a), (f

2
a), et
.

CoFixpoint iter (A:Set)(f:A→A)(a:A): Stream A := Cons a (iter A f (f a)).

Its extra
tion is then:

let re
 iter f a = lazy (Cons (a, (iter f (f a))))
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But then asking for the evaluation of (hd (iter f a)) leads to the super�uous evaluation

of (f a), even if the re
ursive 
all (iter f (f a)) is indeed blo
ked by the lazy at the

head of iter. This super�uous evaluation, not very natural, 
an be annoying if f leads to

long 
omputations.

At the same time, these super�uous evaluations 
annot be 
onsidered as 
orre
tness

problem for the extra
tion. Indeed, if the redu
tion done in O
aml starts from (hd (iter f

a)), one 
an simulate this redu
tion by a similar redu
tion at the Coq level, in a same way

that for the theoreti
al results of the 
hapter 2. That means that Coq 
ould also 
hoose to

normalize (f a) when redu
ing (hd (iter f a)). In pra
ti
e Coq does not do it, sin
e its

strategy is rather lazy by default.

We thus enter, with this example, in the �eld of the e�
ien
y questions for the extra
ted


ode. We detail this �eld in the following se
tion, but we 
an already announ
e that very

often this �eld has only imperfe
t solutions.

Here, in the 
urrent example, one 
an 
hoose to move the lazy 
onstru
t in order to

blo
k the evaluation of the arguments for the re
ursive 
all:

let re
 iter f a = Cons (a, lazy (iter f (f a)))

The fun
tion iter does not build any more a stream but a

__

stream. But in addition to

the small types adjustments that it implies, this solution 
orresponds to the �odd� style of

the arti
le [81℄. And this style also su�ers from problems of super�uous evaluation. One 
an

also try to blo
k the evaluation of iter at two pla
es :

let re
 iter f a = lazy (Cons (a, lazy (Lazy.for
e (iter f (f a)))))

In a more general way, it seems to be sometimes interesting to insert additional blo
king

points lazy (Lazy.for
e (...)) in the extra
ted 
ode around the sub-expressions of 
o-

indu
tive types. This is not made automati
ally yet, but adding su
h blo
king points ma-

nually 
an be made without risk, be
ause this does not modify the 
orre
tness of the 
ode.

A situation 
lose to that of the pre
eding iter was met during the test of the O
aml

extra
tion upon the 
ontribution Ro
q/MUTUAL-EXCLUSION. A blo
king point has been added

via one diverted use of the 
ommand Extra
t Constant, whi
h will be presented at the

end of this 
hapter. The reader interested by more details 
an 
onsult dire
tly the �les of

this 
ontribution.

Lastly, let us remark that for supporting 
o-�xpoint without arguments that does not

start with a 
onstru
tor, it would be ne
essary to insert a lazy (Lazy.for
e (...)) around

the body of this 
o-�xpoint. It's true that O
aml a

epts our �xpoint without argument

zero

_

stream. But it will refuse more 
omplex bodies, starting for example with one if.

Hiding these overly 
omplex bodies under a lazy would allow to 
ir
umvent the di�
ulty.

4.3 Extra
tion and 
ode optimizations

We now des
ribe a 
ertain number of transformations that the extra
tion 
arries out

on the extra
ted 
ode in order to try to improve its e�
ien
y, or sometimes simply its

readability.
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4.3.1 Removal of some logi
al arguments

The �rst of these transformations is intended to make disappear as mu
h as possible the

logi
al residues left by the extra
tion fun
tion E of 
hapter 2. These residues

4

take the form

of anonymous abstra
tions fun

_ → ... and 
onstants ✷. We have already seen that in

Haskell, ✷ 
an be implemented by an error (see page 81). On the other hand, in O
aml, the

possibility of having to redu
e ✷ x into ✷ for
es us to use a 
omplex de�nition (see page

103):

let __ = let re
 f _ = Obj.repr f in Obj.repr f

It is then obviously desirable to remove as mu
h as possible these 
onstants ✷, for both a

better e�
ien
y and readability of the extra
ted 
ode.

Let us take the example of a division div with pre-
ondition, but without post-
ondition,

whose Coq type is ∀a b:nat, b 6=0 → nat. The extra
tion seen until now produ
es a fun
-

tion div of type nat → nat → ✷ → nat . And any later use of this fun
tion to 
ompute

a division will have the form (div a b ✷).

Now, if we must keep su
h a logi
al residue, this 
omes from the evaluation in O
aml

of the partial appli
ations that 
ould otherwise lead to abnormal situations (see 2.1). The

logi
al residual argument of div allows here to ensure that (div a b) is a 
losure, blo
ked

until it �nds its third argument.

But the large majority of the appli
ations met by the extra
tion are in fa
t total. It

is thus preferable to treat these total appli
ations of fun
tion as simply and naturally as

possible, even if it means to weigh down the writing of partial appli
ations.

Let us try then to return to our extra
ted fun
tion div its natural type nat → nat →
nat. Con
erning the de�nition of div, this does not pose any problem. Modulo η-expansion,
one 
an indeed to suppose that this de�nition of div starts with fun a b

_ →.... It is

then enough to remove the third abstra
tion. On
e this de�nition of div is simpli�ed, it is

obviously ne
essary to also adapt the later 
alls to this fun
tion:

• Let us �rst 
onsider a total appli
ation (div a b ✷). To adapt to our new puri�ed

fun
tion div, it is enough to to throw the third argument ✷. In this 
ase, we �nd ba
k

the 
ode produ
ed by the old extra
tion: only informative arguments remain whereas

the logi
al arguments disappear 
ompletely. And this is not done to the detriment of

safety: if we unfolds div in this appli
ation before and after the transformation, it is

seen that one goes from:

(fun a b _ → ...) a b ✷

to the new form:

(fun a b → ...) a b

These two forms are 
learly equivalent from the point of view of evaluation.

4

In fa
t, these residues 
an also 
ome from type s
hemes and not only from logi
al parts, but we will

merge here these two situations by simply speaking of �residues�.
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• now Let us now take in Coq a partial appli
ation (div a0 b0), and thus an extra
tion

produ
ing originally a partial appli
ation like (div a b). For using our new improved

version of div, we must imperatively maintain the �blo
ked� aspe
t of this partial ap-

pli
ation. For that, we just adapt it in (fun

_ → (div a b)). On
e again, unfolding

div shows that we have not modi�ed the semanti
s of the appli
ation:

(fun a b _ → ...) a b

be
omes

(fun _ → ((fun a b → ...) a b))

The only 
onsequen
e is to delay the evaluation of a and b. One 
ould imagine an

even more faithful adaptation, namely:

let x = a and y = b in fun _ → (div x y)

But in pra
ti
e using this version has not seemed ne
essary.

• In the 
ase of appli
ations that are even more partial, like (div a) and �nally div

without any argument, we pro
eeds in the same way: (div a) be
omes (fun b

_ →
(div b)) and div only be
omes (fun a b

_ → (div a b)).

Of 
ourse, the method des
ribed here for div 
an be generalized to the transformation of

any fun
tion de
laration having an arbitrary number of arguments, and logi
al arguments

also at arbitrary positions. Thus the de
laration of a fun
tion f of type t1 →... → tn →
t will be transform into the de
laration of a fun
tion of type ti1 →... → tip → t where

the tik are the ti di�erent from ✷.

The only ex
eption to this method relate to the fun
tions having only logi
al argu-

ments, su
h as for example False

_

re
 (see 2.1). Removing all the arguments and hen
e

transforming the extra
tion of False

_

re
 into a 
onstant would not be 
orre
t, sin
e here

False

_

re
 
orresponds to an abnormal situation, and thus indu
es the raising of an ex
ep-

tion via assert false in O
aml. The following de
laration:

let false_re
 = assert false

would then stop the �nal program as soon as its laun
h. This problem is 
orre
ted by keeping

always at least one argument to our fun
tions, whi
h gives us here:

let false_re
 _ = assert false

The transformation presented here does not obviously allow to remove all logi
al residues.

For example a pattern mat
hing having some of its bran
hes as informative and soon as

logi
al will 
ontinue to produ
e ✷ during the extra
tion. In addition, this method only a
ts

at the �rst level: we remove or not some arguments of the treated fun
tions, but we do not

modify at all type of these arguments. Thus a fun
tion of type nat → ✷ → nat will have

as new type nat → nat, but a fun
tion of type (nat → ✷ → nat) → nat will remain

un
hanged.
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Extending this transformation to allow the simpli�
ation of the type interior has been


onsidered for one moment, then abandoned: this would indeed imply the use of in
reasingly


omplex term manipulations for ea
h additional treated nesting level.

In pra
ti
e, the 
urrently implemented transformation, although limited, allows already

to eliminate most of the logi
al residues. This new extra
tion is then very frequently 
om-

patible with the old extra
tion, even on quite 
omplex examples, whilst still keeping its


orre
tness property, even on the most pathologi
al examples.

Let us �nally announ
e that in Haskell this elimination 
ould be mu
h more advan
ed,

be
ause this language has no need for logi
al residues in order to blo
k redu
tions. For

the moment, this was not done, the Haskell and O
aml extra
tion 
urrently share a broad


ommon base for simpli
ity reasons.

4.3.2 Optimizations of indu
tive types

We show now how the elimination of the logi
al arguments presented previously for the

fun
tions also apply to the 
onstru
tors of indu
tive types. Then in a se
ond time we present

two two parti
ular 
ases of indu
tive types that are subje
t to parti
ular treatments by the

extra
tion, that is the singleton types and the re
ords.

Constru
tors and elimination of logi
al arguments

Just as the arguments of type ✷ for fun
tions, the arguments of type ✷ for indu
tive


onstru
tors 
an also be removed, be
ause they are super�uous. Let us take for example the

informative indu
tive type sig initially presented page 28. As a reminder, the type (sig

A P) expresses the existen
e of an obje
t x of type A ful�lling the predi
ate P, a fa
t that

we also notes with the syntax {x:A|P x}. And the single 
onstru
tor of sig admits four

arguments: (exist A P x p) has type (sig A P) when x is the required witness and p is

a proof of (P x). The raw version of the extra
tion of sig is then

5

:

type 'a sig0 = Exist of ✷ * ✷ * 'a * ✷

In fa
t, the �rst two arguments A and P of exist are parameters of the indu
tive

type sig. The typing rules of Ci
 ensure that these parameters 
annot vary during the the

de�nition of sig 
onstru
tors. These parameters thus 
annot bring new 
al
ulative 
ontents,

and are systemati
ally removed from indu
tive de�nitions by the extra
tion. Here, in fa
t,

that does not 
hange anything, be
ause these parameters are types, whi
h would thus have

been removed by the me
hanism we are about to see. But even one informative parameter,

for example of type nat, would have been removed by the extra
tion.

Sin
e the third argument is to be kept, it only remains to study fourth argument, whi
h

is a logi
al term. But it is in fa
t immediate to free the extra
ted de�nition from this useless

✷ :

type 'a sig0 = Exist of 'a

5

sig is renamed into sig0 by the extra
tion sin
e sig is an O
aml keyword.
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One must then adapt the uses of this type:

• On the level of an appli
ation to the 
onstru
tor Exist, one must suppose the presen
e

of the four arguments. Indeed, the un
urry�ed syntax of O
aml requires it, with the

result that the extra
tion builds when needed the missing arguments by η-expansion.
The last step is then to �lter the arguments, and here only keep the third one.

• On the level of a mat
hing like mat
h e with Exists(a, p, x, q) → t, the pro-

perties of the extra
tion ensure that a, p and q, who have all ✷ as type, will not appear

in t. We thus repla
es this mat
hing by mat
h e with Exists(x) → t.

And what was presented here for sig is generalized to all indu
tive types, whatever are

its number of 
onstru
tors, parameters and arguments. One 
an noti
e that there is no need

here for a parti
ular treatment when all the arguments of a 
onstru
tor are removed during

the pro
ess: this 
onstru
tor is simply a 
onstant one afterward.

Simpli�
ation of informative singleton types

In the parti
ular 
ase of the extra
tion of the indu
tive type sig, one 
an go one step

further in the simpli�
ations. Indeed, it is noti
eable that there remains only one argument to

Exist after the previous transformation. Sin
e sig has one argument, its extra
ted version

is now a simple en
apsulation. It is then preferable to remove this layer of en
apsulation.

So we simply 
onvert the type (a sig0) into a, and the term Exists(t) into t. Finally

we need to represent a pattern mat
hing on an obje
t of type sig: the term mat
h e with

Exists(x) → t 
orresponds now to let x = e in t.

This simpli�
ation extends to the types known as informative singletons, that is having

one 
onstru
tor, and whose single 
onstru
tor has only one argument after extra
tion

6

.

This treatment of informative singleton types allows to gain in memory o

upation, in


omputation times and also in readability. In addition to that, we then obtain the awaited

behavior for the extra
tion with respe
t to the informative existential quanti�
ation: starting

with a Coq proof whose statement has the form ∀x:t, P x → ∃y:u, Q y, we now obtain

a fun
tion of type t → u, and not of type t → U sig0.

Re
ords

The other 
ategory of indu
tive types that re
eives a parti
ular treatment during extra
-

tion are the indu
tive types de�ned via the de
laration Re
ord of Coq. For example:

Re
ord paire (A B:Set) : Set := { gau
he : A ; droite : B }.

At the internal level, these Coq re
ords are not primitive, but translated into indu
tive types.

Our example is thus stored by Coq under the form:

Indu
tive paire (A B:Set) : Set := Build_paire : A → B → paire A B.

6

To be 
ompletely a

urate, one should also 
he
k that the type of this unique remaining argument does

not mention the original indu
tive type, otherwise this simpli�
ation is erroneous.



132 Certi�ed fun
tional programming

The advantage of the Re
ord de
laration is that Coq generates automati
ally

7

from this

de
laration two proje
tion fun
tions gau
he: (pair A B) → B and droite: (pair A B)

→ B.

During the extra
tion, it is absolutely possible to stay unaware of the fa
t that the type

paire has been de�ned as a re
ord. This type would then be extra
ted like a standard

indu
tive type:

let ('a,'b) paire = Build_paire of 'a *'b

And the asso
iated proje
tions would then be mat
hings, for example:

let gau
he = fun
tion

| Build_paire (x, y) → x

At the same time, it is preferable to bene�t from the possibilities of O
aml

8

, by using

its primitive syntax for the re
ords. This allows in parti
ular to rea
h dire
tly a re
ord �eld

via the �dotted notation�, here for example p.gau
he, whi
h is slightly more e�e
tive than

a proje
tion by mat
hing. Moreover, the readability of the extra
ted 
ode is also improved.

Let us illustrate the 
hange for the primitive re
ords of O
aml with our small example:

• The extra
ted type is now:

type ('a,'b) paire = { gau
he : 'a; droite: 'b }

• The proje
tion fun
tions are then provided only for 
ompatibility, in 
ase they are

used without argument:

let gau
he x = x.gau
he

• And for ea
h proje
tion 
oming with its argument, rather than using the fun
tional

form (gau
he p), we now produ
e p.gau
he.

• Ea
h use of the 
onstru
tor Build

_

paire, as in (Build

_

paire G d), be
omes a re
ord

{gau
he=g; droite=d }. Note that during the pre
eding transformations of indu
tive

ones, any partial appli
ation of this 
onstru
tor has already been initially η-expanded.

• Lastly, any pattern mat
hing on a type that be
omes a re
ord is adapted as follows:

mat
h p with Build_paire (x,y) → ...

be
omes:

mat
h p with {gau
he=x; droite=y} → ...

7

It is ne
essary to note that the generation of some proje
tion fun
tions is sometimes impossible for

typing reasons.

8

There also exists in Haskell some primitive re
ords, but the extra
tion does not use them yet.
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Originally, the need of an improved extra
tion of the re
ords was felt during the �rst

extra
tion tests of the C-CoRN proje
t (see 
hapter 6 for more details). Indeed, this deve-

lopment uses abundantly algebrai
 stru
tures de�ned via re
ords. And these stru
tures are


onne
ted by 
oer
ions whi
h are in fa
t some proje
tions. At the level of the Coq develop-

ment, these 
oer
ions remain impli
it, thus invisible. But on the level of the extra
ted 
ode,

the least addition of two reals in this formalism makes then intervene 7 proje
tions. Any

pro�t of e�e
tiveness and readability at this level is then appre
iable.

4.3.3 Unfolding the body of some fun
tions

The transformations presented up to now 
ould modify the types of the extra
ted ob-

je
ts. We now go on a se
ond 
ategory of transformations, that preserve the type of the

extra
ted obje
ts. The �rst of these transformations 
onsists in repla
ing some names of

fun
tions by their bodies. In other words, during the extra
tion time, we anti
ipate the

δ-redu
tion of these fun
tions. Obviously, su
h unfoldings are not to be performed systema-

ti
ally, otherwise the returned 
ode would be
ome giganti
. But we will see that in 
ertain

pre
ise 
ases, these unfoldings are 
ru
ial for the e�
ien
y of the extra
ted 
ode in O
aml.

In fa
t there was already su
h a me
hanism of unfolding in the old extra
tion. We used this

previous me
hanism as inspiration whereas modifying some of its 
riteria. Moreover this

former me
hanism has never been do
umented, up to our knowledge.

Let us �rst study the indu
tion prin
iple

9

bool

_

re
t asso
iated to the boolean type.

This fun
tion is automati
ally generated by Coq at the time of the de�nition of the type

bool. Its type is:

∀P:bool→Type, P true → P false → ∀b:bool, P b

And its extra
tion is:

let bool_re
t f f0 = fun
tion

| True → f

| False → f0

In this de�nition, f 
orresponds to the proof of (P true) and f0 to the proof of (P false).

One 
an naturally note that a

ording to the value of the third boolean argument applied

to this fun
tion, only one of the terms f or f0 will really be used. However any appli
ation

(bool

_

re
t a a' b) leads in O
aml to the evaluation of a and a', be
ause of the stri
t

evaluation strategy of the arguments in this language. Of 
ourse, that 
an be trivial if a and

a ' are simple values like 0, or fun
tional 
losures whose evaluation stops immediately. But

if a and a' 
arry out expensive 
omputations, that 
an be annoying.

A solution to avoid these super�uous evaluations is then to repla
e bool

_

re
t by its

de�nition, and then evaluate symboli
ally its arguments. This then will have for e�e
t of to

push the arguments a and a' under a mat
hing, in bran
hes that are mutually ex
luded:

9

In fa
t, there are normally three su
h prin
iples, one for ea
h sort of Coq. But we will 
onsider only the

one over Type, named bool

_

re
t. The two others, bool

_

re
 and bool

_

ind, are in fa
t only alias.
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bool_re
t a a' b

be
omes:

(fun f f0 b = mat
h b with True → f | False → f0) a a' b

that we immediately simplify into:

mat
h b with True → a | False → a'

In indu
tion prin
iples with more than two 
onstru
tors, there always exists su
h argu-

ments that will be redu
ed by O
aml even if some of them are in fa
t useless. But one 
an

also meet this situation in several other lo
ations. The strategy of the extra
tion towards

O
aml is then the following one:

• All the prin
iples of indu
tion are unfolded, even for indu
tive with less than two


onstru
tors. Indeed, in addition to the interest in term of e�
ien
y, this leads experi-

mentally to an extra
ted 
ode whi
h is 
loser to what an human would have written,

and thus more readable. In parti
ular, the ta
ti
s elim and indu
tion use systema-

ti
ally the indu
tion prin
iples and never the underlying �xpoint and mat
hings.

• For the other fun
tions, one 
arries out an unfolding when the two following 
onditions

are met:

� the body of the fun
tion is not too large, i.e. in pra
ti
e of size lower than a

arbitrary limit �xed at ten synta
ti
 
onstru
tions.

� 
ertain arguments are dete
ted as potentially useless, for example present under

only one bran
h of a mat
hing.

Of 
ourse, this is an heuristi
 trade-o� between opposed requirements, whi
h 
an 
ertainly

be still improved. Until more 
omplete investigation of this subje
t, we have at least given

to the user the possibility of 
ontrolling these unfoldings more �nely:

• With the 
ommand Set (resp. Unset) Extra
tion AutoInline, the user 
an a
tivate

(resp. dea
tivate) our automati
 me
hanism of unfolding.

• It is also possible to for
e the unfolding or the non-unfolding of a parti
ular obje
t t

with Extra
tion Inline t or Extra
tion NoInline t.

To illustrate the 
riti
al aspe
t of these unfoldings for the e�
ien
y, we now study a


on
rete problem appeared one day where an unfortunate modi�
ation in the extra
tion

sour
e 
ode has 
ompletely dea
tivated the automati
 unfolding. An extra
ted example

10

,

whi
h normally runs for a few se
onds, was still running this parti
ular day even after ten

hours. The faulty fun
tion was a fun
tion 
omparing two Peano integers, lt

_

eq

_

lt

_

de
.

At that time, this fun
tion was built by a double indu
tion on its two arguments

11

. This

10

In fa
t the 
ontribution Ro
q/COC.

11

In fa
t, the se
ond indu
tion is useless here and has sin
e been repla
ed by a simple 
ase analysis. And

this 
hange in the proof solves almost 
ompletely the problem of e�
ien
y of the non-unfolded extra
ted

version. But who is 
on
erned by su
h details when the �rst goal is to �nish a proof?
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leads after extra
tion to a term 
ontaining two levels of nat

_

re
t, whi
h is the indu
tion

prin
iple asso
iated with the type nat:

let lt_eq_lt_de
 n m =

nat_re
t

(fun m0 → nat_re
t (Inleft Right) (fun m1 iHm → Inleft Left) m0)

(fun n0 iHn m0 → nat_re
t Inright (fun m1 iHm → iHn m1) m0)

n m

The details of this 
ode are not so relevant, only this double level of nat

_

re
t. Here is the

same fun
tion after the automati
 unfolding of fun
tions:

let re
 lt_eq_lt_de
 n m =

mat
h n with

| O → (mat
h m with

| O → Inleft Right

| S n0 → Inleft Left)

| S n0 →
(mat
h m with

| O → Inright

| S n1 → lt_eq_lt_de
 n0 n1)

If we study this unfolded version, it is 
lear that the 
omparison between two integers of

Peano n and m will involve a number of re
ursive 
alls that is min(n, m). On the other hand,

the not-unfolded previous version has a quite di�erent behavior. That 
an seem strange,

be
ause even if nat

_

re
t evaluates its arguments, they are only fun
tions here. But if one

looks in detail the sequen
e of the fun
tion 
alls (with #tra
e by example), one realizes that

these unne
essarily evaluated fun
tions will nevertheless meet some arguments, be redu
ed,

and �nally make the 
omplexity explode.

The re
ursivity being hidden behind the fun
tion nat

_

re
t, we 
ount here the number of


alls to this fun
tion. Here is the table re
apitulating the number of these 
alls with respe
t

to the value of the input integers n and m:

m

n 0 1 2 3 4 5 6 7 8 9 10

0 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 5 8 12 17 23 30 38 47 57

3 2 3 5 9 16 27 43 65 94 131 177

4 2 3 5 9 17 32 58 100 164 257 387

5 2 3 5 9 17 33 64 121 220 383 639

6 2 3 5 9 17 33 65 128 248 467 849

7 2 3 5 9 17 33 65 129 256 503 969

8 2 3 5 9 17 33 65 129 257 512 1014

9 2 3 5 9 17 33 65 129 257 513 1024

10 2 3 5 9 17 33 65 129 257 513 1025

One notes in parti
ular that to 
omparing an integer n with itself involve 2n + 1 
alls to
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nat

_

re
t. In fa
t, if we name N m

n

these 
all numbers, one 
an note that N m

n

−N m-1

n

= Cm

n

.

The 
olumns of this table are thus partial sums of Cm

n

starting from 2, and one hen
e �nds

again the parti
ular 
ase of the diagonal. We do not justify more these formulas giving N m

n

,

but it is not (too mu
h) di�
ult to establish for example N n

n

= 2n + 1 starting from the


ode of lt

_

eq

_

lt

_

de
.

In any 
ase, 
omparing this way 30 and 32 generates more than one billion 
alls of

nat

_

re
t! The unfolding of nat

_

re
t transforms here an exponential fun
tion into a linear

one.

4.3.4 Code improvements: optimization or de
eleration?

The 
on
lusion of the pre
eding example is that it is very deli
ate to predi
t whi
h will

be the form of the extra
ted 
ode when one looks at the original proof s
ript made of long

sequen
es of ta
ti
s like indu
tion or auto. And very often the raw extra
ted 
ode does

not 
orrespond at all to what an human would have written. In addition to the readability

problem, this 
an implies e�
ien
y problems, as we have just seen. And this is parti
ularly

obvious with a stri
t language like O
aml.

In addition to its problem with nat

_

re
t, the pre
eding fun
tion lt

_

eq

_

lt

_

de
 also

illustrates a 
ase of stupid extra
ted 
ode. Without one of the extra
tion optimizations,

the extra
tion of this fun
tion would 
ontain instead of the re
ursive 
all (lt

_

eq

_

lt

_

de


n0 n1) a subterm being worth:

mat
h lt_eq_lt_de
 n0 n1 with

| Inleft x →
(mat
h x with

| Left → Inleft Left

| Right → Inleft Right)

| Inright → Inright

Obviously, de
onstru
ting an obje
t to rebuild it identi
ally has no interest, even if it is

hardly expensive here. And no programmer will ever write su
h a 
ode spontaneously. The

reason of these surprising mat
hings is to be sought in the logi
al parts, erased during

the extra
tion. Indeed, the 
onstru
tors left, right and inright of the indu
tive types

sumbool and sumor 
arry at �rst a logi
al argument ea
h. And the initial mat
hings in Coq

are in fa
t useful to modify these logi
al arguments. The extra
tion then tries to simplify

su
h mat
hings.

More generally, the extra
tion applies a 
ertain number of transformations aimed at

giving the produ
ed 
ode a more usual aspe
t. Here the detail of these transformations:

0. (
ode=1) Elimination of internal logi
al residues.

1. (
ode=2) Improvement of the printing for fun
tions de�ned by �xpoint.

2. (
ode=4) When a mat
hing is at the head of another mat
hing, one permutes the

order of these two mat
hings if some simpli�
ations o

ur in all new bran
hes.

3. (
ode=8) A mat
hing on bool, sumbool or sumor building again what it just has

de
onstru
ted is removed
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4. (
ode=16) This optimization extends the previous one to all types of mat
hings.

5. (
ode=32) A mat
hing in whi
h all bran
hes produ
e the same result is repla
ed by

this result.

6. (
ode=64) If all the bran
hes of mat
hings begin with one abstra
tion, one moves this

abstra
tion in front of the mat
hing.

7. (
ode=128) One propagates the arguments of one mat
hing inside its bran
hes.

8. (
ode=256) One permutes the appli
ations and let-in.

9. (
ode=512) An abbreviation let x=u in t is unfolded if x appears at most on
e in

t.

10. (
ode=1024) a β-redex ((fun x → t) u) is redu
ed if x appears at most on
e in u.

If one wishes to dea
tivate all these transformations, it is enough to use the 
ommand

Unset Extra
tion Optimize. If one wishes on the 
ontrary to return to the default si-

tuation where (almost) all transformations are a
tivated, one 
an use the 
ommand Set

Extra
tion Optimize. Between these two extremes, version 8.0 of Coq makes it possible

to re�ne the preferen
es via the 
ommand Set Extra
tion Flag N, where n is an integer

between 0 and 2047, 
orresponding to the sum of the binary 
odes of the transformations

the user wants to a
tivate. For example, if one wish all to be a
tivated ex
ept the transfor-

mation n

o

4, of 
ode 16, one use n = 2047− 16 = 2031. By the way, this value 
orrespond in

fa
t to the default situation enfor
ed by Set Extra
tion Optimize, and we will see why

in a moment.

One 
an wonder why su
h a me
hanism �à la 
arte� for 
ontrolling the behavior of

the extra
tion. The problem is that these transformations are not always optimizations,

sin
e they rely on some heuristi
s whi
h were not yet the subje
t of deep studies, and 
an

perfe
tly appear harmful in 
ertain situations. Worse, a transformation re
ently turned out

to be perilous for the good typing of the extra
ted terms.

Let us see now in detail whi
h bene�t and 
on
ern one 
an wait from ea
h transformation.

0. These internal eliminations of logi
al residues are a priori always bene�
ial.

1. This embellishment of �xpoint 
an sometimes alter the arguments of the internal

re
ursive 
alls, making these 
alls less e�e
tive.

2. This permutation of two mat
hings 
an in
rease the size of the 
ode, or de
rease it,

depending of further simpli�
ations that 
an be applied on ea
h new bran
h.

3&4. We delete here the previously mentioned �stupid� mat
hings. This is a priori benign,

but let us take the following example:

type 'a t = T

let f a = mat
h a with T → T

It is then very tempting to 
hange f into let f a = a, but its type would be then

'a t →'a t and not any more 'a t →'b t. A fast remedy for this problem was to

split this transformation in two, with on one side a sure part a
ting only on known

types like sumbool, and on the other side a not-sure part dea
tivated by default. In
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pra
ti
e the optimization n

o

3 is enough for simplifying the usual situations of �stupid�

mat
hings. In addition, optimization n

o

4 is not so dangerous: an user a
tivating this

option will likely obtain 
orre
tly typed 
ode, whi
h is then 
ompletely 
orre
t.

5. This optimization is normally without disadvantage.

6. Moving up λ-abstra
tion in front of a mat
hing 
an lead to multiple evaluations of

the head of this mat
hing, but 
an also improve the deletion of the logi
al residues by

other transformations.

7. This option dupli
ates 
ode, but 
an also help to propagate simpli�
ations.

8. A term as ((let x = t in u) v) is little natural, and hides the fa
t that v is morally

an argument of u, whi
h prevents from possibly applying others simpli�
ations. It

seems benign to permute the appli
ation and the let-in, in order to obtain let x

= t in (u v). Unfortunately, we have met on
e a situation where this permutation,


ombined with η-expansions intended to over
ome some limitations of O
aml, produ
ed

in fa
t a permutation between a fun
tion and a let-in, whi
h 
orresponds to the next


ase, and is not always desirable.

9. This unfolding of a let-in, even linear, is debatable, 
onsidering that a 
omputation

initially fa
torized 
an then be found in one fun
tion, and thus been 
arried out several

times. But this 
omputation 
an also be moved in a bran
h whi
h is never evaluated.

In addition, fun
tions generated by ta
ti
s 
ontain very often partial appli
ations like

let g = f x in g y. This 
an lead to the 
omputation of many useless intermediate


losures, and prevents the O
aml 
ompiler from optimizing the total 
all f x y as it

should.

10. The problems are the same as in the previous 
ase.

These transformations are then to be used with great pre
autions. All the di�
ulty is that

the Coq 
ode to be extra
ted 
an as well 
ome from proof by ta
ti
s or from fun
tions written

dire
tly in the fun
tional language of Coq. In the �rst 
ase, the di�
ulty in 
ontrolling the

pre
ise underlying proof term implies that one has to expe
t many transformation before

obtaining some reasonable extra
ted 
ode. But in the se
ond 
ase, the best thing to be done

is to leave the term inta
t to respe
t the 
hoi
es of the user. In any event, it is illusory to

always hope to �nd the most e�e
tive 
ode, hen
e the interest in allowing the user to make

his 
hoi
es among the suggested transformations.

The extra
tion 
urrently makes the 
hoi
e to privilege the improvement of 
ode 
oming

from proofs, to the possible detriment of the dire
tly written 
ode. All possible optimizations

are thus a
tivated, ex
ept the one endangering the typing, that is the n

o

4.

This 
urrent situation of optimizations is �nally far from satisfa
tory:

• No 
orre
tness guarantee other than a visual inspe
tion of the transformation rules.

• Improvement of the e�
ien
y and readability on average, but presen
e of harmful

parti
ular situations.

• Possibility of a manual adjustment, but whi
h remains rather 
oarse, and on the level

of a entire �le.
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This part would thus deserve a thorough study. Finally, the extra
tion is here only a auto-

mati
 generator of 
ode. Perhaps it is ne
essary to move the problem of optimization to the

level of the 
ompiler or or to the level of a generi
 tool for prepro
essing sour
e 
ode. At

the same time, the extra
ted 
ode has a 
ertain number parti
ular features that a generi


tool would perhaps negle
t, like the absen
e of imperative parts, or the importan
e of the

partial appli
ations. Moreover, it would undoubtedly be interesting to apply a sear
h for

dead-
ode in the extra
ted 
ode sin
e the informative parts not pruned by the extra
tion


an still 
ontain some.

4.4 Current state of the a
tual implementation

4.4.1 Des
ription of the 
ode

The implementation of the new extra
tion of Coq made during this thesis began in

2001 with the initial assistan
e of J.-C. Filliâtre. This implementation has been improved

gradually, from version 7.0 of Coq until the 
urrent 8.0. It is 
urrently in a reasonable state of

stability and of fun
tionality, even if for example the pre
eding se
tion shows that a 
ertain

number of optimizations are to be re-examined.

This implementation is lo
ated in the sub-dire
tory 
ontrib/extra
tion of the sour
es

of Coq, and is 
urrently 
omposed of 3 700 lines of O
aml. The �gure 4.1 presents the

dependen
y graph of the �les 
ontained in this implementation. More pre
isely:

Table Miniml

Scheme

Ocaml Modutil

Mlutil
Haskell

Extraction

Extract_env Common

Fig. 4.1: Dependen
y graph of the implementation

• The interfa
e Miniml de�nes the abstra
t syntax trees for terms and types of a MiniML

language whi
h is used as 
ommon target by the extra
tion.

• The module Table is the �memory� of the extra
tion, it allows for example to �nd the

extra
tion of indu
tive type already met.

• The module Mlutil is a toolbox for handling terms and types of MiniML. There

is de�ned for example the substitution over terms, or the uni�
ation over types, or

various optimizations over terms.

• As for Modutil, it 
ontains auxiliary fun
tions to handle the module stru
tures of

MiniML

• The module Extra
tion is the heart of the extra
tion. It is there that a Coq term is

translated into a MiniML term or type.
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• The three modules O
aml, Haskell and S
heme are used to translate the MiniML

obje
ts into 
on
rete syntax of one target languages.

• The module Common fa
torizes some fun
tions of renaming 
ommon to the three target-

languages.

• Lastly, Exta
t

_

env allows to determine whi
h minimal environment of Coq obje
ts

will have to be extra
ted to satisfy the request of a user.

4.4.2 Small user's manual

Naturally, this small handbook will be less detailed than the entire 
hapter present in the

Coq Referen
e Manual [78℄. But sin
e the present manus
ript is meant to be a self-
ontained

and 
omplete review of the extra
tion in Coq, here 
omes a brief outline of Coq 
ommands

related with extra
tion.

The extra
tion itself

Coq < Extra
tion plus.

Coq < Re
ursive Extra
tion plus minus.

Coq < Extra
tion "myfile" plus minus.

The �rst order is the simplest, it only prints on the s
reen the extra
tion of an obje
t, here

plus. The se
ond, on the other hand, prints in addition every dependen
y of the required

obje
t(s). In our example, one will also see the extra
tion of the type nat. Finally the third

order behaves exa
tly as the se
ond, ex
ept that it writes to a �le and not on the s
reen.

Normally, sin
e this �le 
ontains all the needed dependen
ies, it is dire
tly 
ompilable. Let

us note that when the sele
ted target-language is O
aml, one obtains at the same time a �le

*.ml and an interfa
e *.mli. Lastly, these orders also a

ept one module M in the pla
e of an

obje
t like plus.

Coq < Extra
tion Library Peano.

Coq < Re
ursive Extra
tion Library Peano.

These two somewhat obsolete orders are intended to extra
t in one pass the 
omplete


ontents of a Coq library, i.e. a �le *.v 
ompiled and 
harged via a Require. In the 
ase of

the library Peano.v, one obtains then peano.ml and peano.mli. In the se
ond alternative,

the extra
tion produ
es also the *.ml and *.mli �les for all the libraries on whi
h Peano.v

depends.

How to 
ontrol the extra
tion

One 
an �rst modify the target language:

Coq < Extra
tion Language O
aml.

...

/

...
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...

/

...

Coq < Extra
tion Language Haskell.

Coq < Extra
tion Language S
heme.

We also en
ounter again the 
ommands 
ontrolling the �optimizations�, already met in

previous se
tion 4.3:

Coq < Set Extra
tion Flag n.

Coq < Set Extra
tion Optimize.

Coq < Unset Extra
tion Optimize.

Taking into a

ount the 
urrent state of these optimizations, it is sometimes preferable to

use for the moment the Unset version.

Here �nally 
ome the 
ommands 
ontrolling the unfolding of fun
tions, also des
ribed

already in se
tion 4.3:

Coq < Unset Extra
tion AutoInline.

Coq < Set Extra
tion AutoInline.

Coq < Extra
tion Inline f g.

Coq < Extra
tion NoInline h k.

Coq < Reset Extra
tion Inline.

The axioms

It is in fa
t possible to use the extra
tion in 
onjun
tion of axioms in a development.

If a logi
al axiom is used, the extra
tion only prints a warning message re
alling that the


orre
tness of the extra
ted 
ode rely on the validity of this logi
al axiom. And when a

development uses an informative axiom f, the extra
ted 
ode whi
h depends on it then


ontains an ex
eption announ
ing that some missing 
ode have to be �lled:

let f = failwith "AXIOM TO BE REALIZED"

The user must then provide 
ode indeed realizing this axiom. This 
an be done manually in

the extra
ted �le, or in Coq via a spe
ial 
ommand:

Coq < Extra
t Constant f ⇒ "my_realizing_
ode".

This 
ommand is only some synta
ti
 
onvenien
e, it does not 
he
k the 
ontents of the


hara
ter string provided in realization of the axiom, but only generates:

let f = my_realizing_
ode

It may be happens that an axiom is a type s
heme. By example, for t : Set → Set →
Set , the following realization:

Coq < Extra
t Constant t "'a" "'b" ⇒ "'a * 'b".

generates the type de
laration:
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type ('a,'b) t = 'a * 'b

Even if it does not 
on
erns axioms, a related feature is the possibility of repla
ing an in-

du
tive type by another at the the extra
tion time. For example, the Coq type sumbool with

its two 
onstru
tors left and right, presented p.29, is isomorph to bool after extra
tion.

One 
an then identify these two types as follows:

Coq < Extra
t Constant sumbool ⇒ "bool" [ "true" "false" ℄.

4.5 A �rst 
omplete example

We now give as illustration the 
omplete extra
tion of the fun
tion div of page 31. This

fun
tion, with pre- and post-
onditions, is de�ned by using the well-foundedness of the usual

order over the Peano integers. If we extra
t the fun
tion named well

_

founded

_

indu
tion

used in the de�nition by ta
ti
s for our fun
tion div, one obtains a �xpoint 
ombinator à

la Y, without tra
e of logi
al parts put aside an anonymous lambda:

let re
 well_founded_indu
tion f a =

f a (fun y _ → well_founded_indu
tion f y)

And this 
onstant well

_

founded

_

indu
tion will be automati
ally unfolded in div, leaving

�nally the desired non-stru
tural �xpoint.

In addition, div uses an auxiliary fun
tion le

_

lt

_

de
 used to 
ompare two integers.

This fun
tion, 
lose to the fun
tion lt

_

eq

_

lt

_

de
 already met, works with obje
ts of type

sumbool. As announ
ed right before, it is 
onvenient to repla
e sumbool by bool:

Coq < Extra
t Indu
tive sumbool ⇒ bool [ true false ℄.

The �nal step is of 
ourse the extra
tion itself:

Coq < Extra
tion "div.ml" div.

The obtained interfa
e div.mli is then:

type nat =

| O

| S of nat

type 'a sig0 = 'a

(* singleton indu
tive, whose 
onstru
tor was exist *)

val minus : nat → nat → nat

val le_lt_de
 : nat → nat → bool

...

/

...
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...

/

...

val div : nat → nat → nat sig0

In this signature, the sig0 is nothing more that an alias re
alling that the type of div

was previously �nishing by one existential type. That put aside, one obtains the type

nat→nat→nat expe
ted for div.

Here 
omes �nally the �le div.ml:

type nat =

| O

| S of nat

type 'a sig0 = 'a

(* singleton indu
tive, whose 
onstru
tor was exist *)

(** val minus : nat → nat → nat **)

let re
 minus n m =

mat
h n with

| O → O

| S k → (mat
h m with

| O → S k

| S l → minus k l)

(** val le_lt_de
 : nat → nat → bool **)

let re
 le_lt_de
 n m =

mat
h n with

| O → true

| S n0 → (mat
h m with

| O → false

| S n1 → le_lt_de
 n0 n1)

(** val div : nat → nat → nat sig0 **)

let re
 div x b =

mat
h le_lt_de
 b x with

| true → S (div (minus x b) b)

| false → O
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Chapitre 5

Examples of extra
tion

Sin
e the beginning of the works by C. Paulin on the extra
tion in Coq, we must admit

that no appli
ation of industrial s
ale has been 
ompletely 
erti�ed via this method. Despite

this fa
t, several examples of signi�
ant size have been 
arried out. We try here to draw up

a brief panorama of these examples. Among these examples, we have sele
ted four of them

who have bene�ted from our new extra
tion or 
ould not exist without it. These pra
ti
al


ases that we have 
hosen to illustrate are:

• the 
ontribution Lannion of J.-F. Monin,

• the 
ontribution Ro
q/HIGMAN of H. Herbelin,

• the 
ontribution Nijmegen/C-CoRN by the team of H. Barendregt,

• the 
ontribution Ro
q/FSets by J.-F. Filliâtre and the author.

The �rst two 
ontributions are detailed in this 
hapter. The third is 
overed by the following


hapter, dedi
ated to the extra
tion of a 
onstru
tive formalization of real numbers. Lastly,

the fourth 
ontribution is des
ribed in the 
hapter 7.

5.1 The standard library of Coq

If one sear
h Coq developments for proofs to extra
t, the �rst a

essible sour
e is the

standard library of Coq, whi
h is dire
tly provided with the system. A good number of

fun
tions given as illustration up to now 
ome from there or are derived from fun
tions

available there. We have set up a test 
onsisting in extra
ting systemati
ally all 
ontents of

this standard library. This test 
ame be found in the dire
tory 
ontrib/extra
tion/test

of Coq sour
es. On
e in this dire
tory, the 
ommand make tree; make allows to laun
h the

test.

When we look in detail at the fun
tions extra
ted from this standard library, the inter-

esting obje
ts are sparse. First of all, the majority of the results in this library are logi
al

properties, and thus do not appear after extra
tion. Then, the more signi�
ant 
omponent

of this library, namely the Reals, are out of the �eld of the extra
tion. This is due to the

axiomati
 approa
h followed during this formalization of the real numbers, starting with:
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Parameter R : Set.

Parameter R0 : R. (* one *)

Parameter R1 : R. (* zero *)

Parameter Rplus : R → R → R.

This is not inevitably 
rippling for the extra
tion, whi
h 
an work with axioms as we have

just seen in the previous 
hapter. But some of these axioms 
orrespond to a non-
onstru
tive

vision but rather 
lassi
al of the reals, and thus 
annot be realized a

urately. For example,

this is the 
ase for:

Axiom total_order_T : ∀r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

It is well known indeed that no exa
t real arithmeti
 
an have a de
idable equality. Even

more awkward, the last of the axioms, 
ompleteness, requests the 
onstru
tive existen
e

of a smaller upper bound for any non-empty upper-bounded set of reals. However a set is

here a logi
al obje
t of type R→Prop. This axiom is thus non-realizable.

Finally, it remains after extra
tion only elementary fun
tions dealing with data stru
tures

like Peano natural numbers, binary lists or binary integers. The latter 
onstitute the most

interesting part of these examples, with divisions fun
tions, square roots, et
. One 
an also

�nd a sorting algorithm for lists in the dire
tory theories/Sorting. Finally the dire
tory

theories/IntMap 
ontains a formalization of �nite sets indexed by integers. Amongst all

these informative fun
tions, one �nally �nd relatively little fun
tions de�ned by ta
ti
s, the

only ones really interesting from the extra
tion point of view. And the extra
tion behaves

reasonably well on these fun
tions, whi
h all are su�
iently standard not to need Obj.magi


to type-
he
k.

5.2 The user 
ontributions

The main examples base for extra
tion is today the developments proposed the users

of Coq. These user 
ontributions are gathered and 
lassi�ed by Coq development team (by

geographi
al origin and topi
). They are also maintained up to date with respe
t to ea
h

modi�
ation of Coq and published for ea
h new version of Coq. It is possible to 
onsult the

list of the 88 
urrent 
ontributions on the site http://
oq.inria.fr/
ontribs-eng.html.

Obviously, this data base of Coq developments is 
ertainly not exhaustive, sin
e it relies

on a de
laration on behalf of the users. And some extremely interesting Coq developments

with respe
t to the extra
tion are 
urrently not part of these 
ontributions proposed by the

users. Among su
h developments, one 
an quote for example a de
ision pro
edure dedi
ated

to propositional intuitionisti
 logi
, by K. Wei
h [82℄, and also a stati
 programs analyzer

by abstra
t interpretation, by D. Ca
hera, T. Jensen, D. Pi
hardie and V. Rusu [17℄. And

there exists doubtless other works whi
h would deserve to be quoted here ex
ept that we

are not aware of them.

Let us return now to these user 
ontributions. First, several do not 
on
ern the extra
tion,

be
ause they only establish results in Prop. Nevertheless, about thirty of them are relevant
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for the extra
tion. The 
omplete list of these extra
table 
ontributions 
an be found in

Appendix A.

If we try to somewhat 
lassify these multiple examples, we 
an �rst distinguish a 
ertain

number of de
ision pro
edures. Several of them 
on
ern the boolean formulas: Dyade/BDDS,

Suresnes/BDD and Sophia-Antipolis/Stalmar
k [56℄. As for Ro
q/GRAPHS, it treats of

linear (in)equalities over Z. Nan
y/FOUnify and Lannion solve the problem of �rst order

term uni�
ation. And Ro
q/COC proposes an type-
he
ker for the 
al
ulus of 
onstru
tions.

In addition, several 
ontributions are 
entered on data stru
tures, and 
an thus be used as

basi
 library for other work. We 
an in parti
ular �nd some de�nitions of rational numbers,

Nijmegen/QArith and Orsay/QArith, of 
onstru
tive real numbers in Nijmegen/C-CoRN,

of tree stru
tures in Bordeaux/Sear
hTrees, Bordeaux/di
tionnaries and Orsay/FSets.

Lastly, formalizations of already quoted BDDs 
an also to in
luded in this 
ategory.

On the other hand, the large variety of the 
ontributions prevents from pushing mu
h

further su
h a 
lassi�
ation. And the subje
ts of study are not the only variable aspe
t in

these 
ontributions. First, the size of these 
ontributions 
an go from a simple �le of 300

lines, as for Bordeaux/Ex
eptions, up to more than one hundred �les and 75 000 lines for

Nijmegen/C-CoRN.

The age is also very variable. Among the oldest 
ontributions, one �nds Ro
q/Higman

made around 1992 with Coq version 5.x. On the opposite, some 
ontributions bene�t from

re
ent features of Coq, like the new module system for Bordeaux/di
tionnaries and

Orsay/FSets.

The authors' attitude with respe
t to extra
tion di�ers also from 
ontributions to 
ontri-

butions. In 
ertain 
ases, the authors have planned from the beginning to extra
t their re-

sults. For example, B. Barras has integrated in the Makefile of Ro
q/COC an extra
tion

followed by the 
ompilation of the extra
ted �le and the laun
h of a test for this extra
ted

program. On the opposite, the initial developers of Nijmegen/C-CoRN, although 
ons
ious

of the theoreti
al possibility of extra
ting their work, have not 
onsidered it as feasible. In

several 
ontributions, we have emphasized the informative aspe
ts by adding extra
tions,


ompilations and automati
 tests in the spirit of Ro
q/COC. This has been done during a

manual inventory of the 
ontributions. Perhaps it still remains some extra
table examples

not yet lo
ated in these 
ontributions.

Lastly, the di�
ulty of extra
tion varies largely. For example, in Lyon/Firing-Squad, the

main extra
ted obje
t is a purely informative transition fun
tion, written via a Fixpoint.

The extra
tion 
onsists then of a simple translation into the syntax of the target language.

The program �nally obtained is nonetheless interesting be
ause it allows to visualize the

evolution of the states under the a
tion of this transition fun
tion, thanks to a small graphi
al

interfa
e. But the interest is very limited from the pure extra
tion point of view. By the way,

let us note that this 
ase 
orresponds to an indire
t possible use of the extra
tion, namely

for simulating and illustrating Coq fun
tions. Con
erning the task of the extra
tion, we note

that there is few extra
tions of fun
tions de�ned by ta
ti
s. In addition, the majority of the

situations were working or 
ould have worked with the old extra
tion.

All the pre
eding points explain why there remain little 
ontributions allowing to study

the 
ontributions of our new extra
tion. in parti
ular, there exist only four 
ontributions
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whi
h are extra
ted into untyped 
ode, requiring the usage of some Obj.magi
 : these four


ontributions are Lyon/Cir
uits, Lannion, Nijmegen/C-CoRN and Ro
q/Higman. And we

have already announ
ed that only two 
ontributions use the new module system. Lastly, we

have only tested our extra
tion of 
o-indu
tive types towards O
aml in the situation of the


ontribution named Ro
q/Mutual-Ex
lusion. We now study more in detail some of these


ontributions bene�ting from our new extra
tion.

5.3 Ex
eptions by 
ontinuations in Coq

We start by studying the works by J.-F. Monin 
on
erning the 
erti�
ation of fun
tional

programs with ex
eptions. These works [60, 61℄ were 
arried out between 1995 and 1997.

Histori
ally, this is one of the two 
on
rete situations where the old extra
tion of Coq was

generating non-typable 
ode. The se
ond of these 
on
rete situations 
orresponds to the


ontribution Ro
q/Higman whi
h we study just afterward.

5.3.1 Formalization of the ex
eptions in Coq

To model ex
eptions in Coq, J.-F. Monin uses a translation by 
ontinuation (CPS, for

�
ontinuation passing style�). We enter dire
tly in the 
ore of this method, the reader eager

to �nd an more gradual introdu
tion to these works 
an refer to [61℄. Here 
omes, �rst of all,

the type s
heme used to express the result type of a fun
tion that 
an raise an ex
eption:

Definition Mx (C:Prop)(A:Set) :=

∀(X:Set)(P:Prop), (P→X) → (C → P) → (A → X) → X.

Here, the informative type A is the �usual� return type for the fun
tion that we 
onsi-

der, whereas C is a logi
al 
ondition implying the raising of an ex
eption. The presen
e of

the quanti�
ation on X 
orresponds to the translation by 
ontinuation

1

. Lastly, P and the

following argument e of type P→X represents the manner of building the result X of the


ontinuation in 
ase of an ex
eption. Finally, the type (Mx C A) 
an be seen as a sum type

A∨C, representing the two possible exits, standard or ex
eptional, of our fun
tion.

Let us now see how to manufa
ture values in this type:

Definition Mx_unit (C:Prop)(A:Set)(a:A) : Mx C A :=

fun X P e i k ⇒ k a.

Definition Mx_raise (C:Prop)(A:Set)(
:C) : Mx C A :=

fun X P e i k ⇒ e (i 
).

The �rst fun
tion 
orresponds to the normal result: if one su

eeds in building an obje
t a of

type A, it is enough to apply it to the 
urrent 
ontinuation k of type A→X. On the 
ontrary,

the se
ond fun
tion deals with the raising of an ex
eption: if one obtains a proof 
 stating

that one is in the ex
eptional situation C, one uses the me
hanism of ex
eption generation,

namely the fun
tions i then e of the respe
tive types C→P and P→X.

1

Without the ex
eptions, this translation would have 
onsisted in 
hanging A into ∀X, (A→X)→X.
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Here 
ome now two fun
tions allowing to treat the ex
eptions. The �rst 
orresponds to

an 
ase analysis:

Definition Mx_try (C:Prop)(A:Set)(m:Mx C A)(X:Set)(k:A→X)(e:C→X): X :=

m X C e (fun p ⇒ p) k.

In other words, if one 
an always generate a result of type X starting as well from a normal

value of type A or from an ex
eption of type C, then one 
an always build a result in X

starting from an obje
t m in the sum type (Mx C A). In addition, one 
an pass from a type

with ex
eptions to another type with ex
eptions by the means of the following fun
tion:

Definition Mx_bind

(A A':Set)(C C':Prop)(m:Mx C A)(f:A→Mx C' A')(j:C→C') : Mx C' A' :=

fun X P e i k ⇒ m X P e (fun 
 ⇒ i (j 
)) (fun a ⇒ f a X P e i k).

This operator allows in pra
ti
e to 
ompose two fun
tions being both able to raise ex
eptions.

5.3.2 Impredi
ativity and typing of the extra
ted fun
tions

The 
ontribution Lannion uses the impredi
ativity of Set (
f page 23) for the type Mx.

Indeed, this type, whi
h 
ontains a universal quanti�
ation on X:Set, should a priori be

in Type. But if we a
tivate the impredi
ativity of Set, Mx 
an then be of type Set. As

a 
onsequen
e, this allows to take X=(Mx C A) inside (Mx C A). This situation o

urs for

example when one builds a result of type Mx C A via a Mx

_

try. Su
h an impredi
ative

situation is a strong indi
ator of the presen
e of typing errors in the raw extra
ted 
ode.

J.-F. Monin noti
es moreover p.48 of [61℄ that problems o

ur for �xpoint (translated into


ontinuations) of the shape:

let re
 f x = ... try ... f y ... with ...

We will see thereafter that the impredi
ativity alone does not involve ne
essarily the need

for Obj.magi
 in the extra
ted 
ode, and also that Obj.magi
 
an appear without any

impredi
ative obje
ts. Histori
ally anyway, the need for Obj.magi
 in the extra
ted 
ode

was felt initially in Lannion and Ro
q/Higman, two 
ontributions using the impredi
ativity,

and that is not by 
han
e.

5.3.3 The extra
tion of this development

If we sti
k to the extra
tion of types exposed in 
hapter 3, the type Mx is translated in a

very approximate way, be
ause of its two universal quanti�
ations, the se
ond being logi
al

in addition:

type 'a mx = __ → __ → (__ → __) → __ → ('a → __) → __

On the other hand, in the type of Mx

_

unit and Mx

_

raise, this type s
heme Mx is used in

head position, and its universal quanti�
ations ends on the �rst level of types. Improvement



150 Certi�ed fun
tional programming

of types des
ribed in se
tion 3.5.4 gives then a type mu
h more standard to these two

fun
tions:

(** val mx_unit : 'a1 → (__ → 'a2) → ('a1 → 'a2) → 'a2 **)

let mx_unit a e k = k a

(** val mx_raise : (__ → 'a2) → ('a1 → 'a2) → 'a2 **)

let mx_raise e k = e __

We 
an see in parti
ular that the extra
tion of these two fun
tions do not require the use

of Obj.magi
, even if their later use 
an need some. On the other hand, the situation gets

worse for Mx

_

try, sin
e Mx is then found in the type of one of the arguments of this fun
tion,

and not any more in head position.

(** val mx_try : 'a1 mx → ('a1 → 'a2) → (__ → 'a2) → 'a2 **)

let mx_try m k e = Obj.magi
 m __ __ e __ k

We see that an Obj.magi
 appears. For example, the argument e of Mx

_

try has a type C→X

on the Coq level, whi
h be
omes

__→' a2 on the O
aml level sin
e C is logi
al and sin
e we

try to transform X into a type variable a

ording to the improvement 3.5.4. But the obje
t

m of type (Mx C A) expe
ts on the O
aml level a third argument, of type

__→__

. The use

of an Obj.magi
 is thus ne
essary if one wishes to keep the type of e as generi
 as possible.

In fa
t, if we would not have applied the improvement 3.5.4, the type of mx

_

try would

have been made up primarily of

__

, and this fun
tion would have been typable without

Obj.magi
. But pro
eeding this way would do nothing but delay the problem, here at the

time of the use of mx

_

try.

Lastly, for Mx

_

bind, the situation is similar to that of Mx

_

try:

(** val mx_bind :

'a1 mx → ('a1 → 'a2 mx) → (__ → 'a3) → ('a2 → 'a3) → 'a3 **)

let mx_bind m f e k =

Obj.magi
 m __ __ e __ (fun a → Obj.magi
 f a __ __ e __ k)

5.3.4 Usage of these ex
eptions

The 
ontribution Lannion 
ontains a 
ertain number of appli
ations of these ex
eptions

to pra
ti
al 
ases. We now des
ribe the extra
tion of these various 
ases.

Uni�
ation of �rst order terms

In dire
tory Lannion/
ontinuations/FOUnify

_


ps, J.-F. Monin extends the study by

J. Rouyer of a de
ision pro
edure for the uni�
ation of �rst order terms (
f Nan
y/FOUnify).

Simply, in the event of an uni�
ation failure for two subterms, an ex
eption is now raised

instead of �nishing to treat all remaining 
omputations.
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In this simple 
ase (only one ex
eption, without 
ontents), J.-F. Monin use in fa
t a

simpli�ed version of the ex
eptions presented previously, without polymorphism related to

the ∀X. Instead of Mx, the type of the ex
eptions is:

Definition Nx (X:Set)(P:Prop)(e:P→X)(C:Prop)(A:Set) :=

(C → P) → (A → X) → X.

And the fa
t of having X, P and e in parameters rather than in universally quanti�ed variables

largely improves the a

ura
y of the extra
ted type:

type ('x, 'a) nx = __ → ('a → 'x) → 'x

And the last remaining

__


orresponds to the logi
al argument of type C→P. Finally, the

extra
ted uni�
ation program is dire
tly typable without Obj.magi
, a fa
t that J.-F. Monin

has already noted in [61℄:

This example only in
ludes one try... with whi
h is outside the 
all to a re-


ursive fun
tion. The impredi
ativity of Mx is thus not put at 
ontribution, the

extra
ted program is typable in ML.

And our extra
tion does not generate here any super�uous Obj.magi
.

Traversal of trees with ex
eptions

Here 
omes the examples of the dire
tory Lannion/
ontinuations/weight. The goal

is now to 
ompute the �weight� of a binary tree, namely the sum of all integers present at

its leafs. And the use of ex
eption is gradually introdu
ed in order to answer the following

(arbitrary) 
onstraints:

• One stops the traversal if the 
urrent partial sum ex
eeds a 
ertain preset quantity.

• One also stops the traversal if one meets a zero in one of the leafs.

In pra
ti
e, these examples use ex
eptions of the same kind as the pre
eding example of

uni�
ation, i.e. with a parameter X �xed in advan
e instead of an universal quanti�
ation on

X. During extra
tion, one 
an note that these examples are more 
omplex that the previous

uni�
ation: some Obj.magi
 appear indeed. But these Obj.magi
 are used here just to

ensure the 
onformity of the type of ea
h subterm with the 
hoi
es of our extra
tion of

types. And in fa
t the extra
ted 
ode remains typable here if these Obj.magi
 are removed.

Hu�man's algorithm

The dire
tory Lannion/poly
ont 
ontains the �rst true example using the impredi
ative

situation identi�ed by J.-F. Monin, namely the use of ex
eptions in a re
ursive loop. As

reminder, the Hu�man's en
oding algorithm asso
iates a path

2

in a tree t to an obje
t a

that we wish to en
ode. Here is a manually 
oded version:

2

that is a list of dire
tions L or R
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let en
ode a t =

let re
 lookup = fun
tion

| Leaf → raise Not_found

| Node(t1,b,t2) →
if a=b then [℄

else try L::lookup t1 with Not_found → R::lookup t2

in lookup t

And here 
omes the version �nally extra
ted from the Coq proof of J.-F. Monin:

(** val lookup : 'a1 → 'a1 tree → (__ → 'a2) →
(dire
tion list sig0 → 'a2) → 'a2 **)

let lookup a t e x =

let re
 lookup0 = fun
tion

| Leaf → (fun _ _ x0 _ x1 → x0 __)

| Node (t1, b, t2) →
(mat
h eg a b with

| true → (fun _ _ x0 _ x1 → x1 Nil)

| false →
mx_try (Obj.magi
 lookup0 t1) (fun h _ _ x0 _ x1 →

x1 (Cons (L, h))) (fun _ _ _ x0 _ x1 →
mx_bind (Obj.magi
 lookup0 t2) (fun l2 _ _ x2 _ x3 →

x3 (Cons (R, l2))) x0 x1))

in lookup0 t __ __ e __ x

(** val en
ode : 'a1 → 'a1 tree → dire
tion list sig0 **)

let en
ode a t =

mx_try (fun _ _ x _ x0 → lookup a t x x0) (fun x → x) (fun _ → Nil)

It is thus noti
eable that this version is very 
omplex, and 
ontains two Obj.magi
 (plus

three hidden behind mx

_

try and mx

_

bind). In fa
t, as already remarked by J.-F. Monin,

only one Obj.magi
 in front of mx

_

try is su�
ient.

In addition, the presen
e of the Obj.magi
 seems to intera
t badly with the optimizations

normally 
arried out by the extra
tion, whi
h usually allows to remove the majority of the

logi
al residues

_

and

__

. We intend to improve that in the future.

In any 
ase, the generated 
ode, without being elegant, has the advantage of being

generated automati
ally, in
luding the Obj.magi
, and of being dire
tly 
ompilable.

Maximal sharing of 
ommon subterms

We will not develop the last example of this 
ontribution, namely a tree transformation

with maximum sharing of subtrees. Indeed the behavior of this example with respe
t to the

extra
tion is similar to the one of Hu�man.
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5.4 Higman's lemma

We now study the extra
tion of another 
ontribution taking advantage of the impredi
a-

tivity, namely Ro
q/Higman. This 
ontribution is a 
onstru
tive proof of Higman's lemma

in the 
ase of words on an two letter alphabet, implemented in Coq by H. Herbelin around

1992.

Higman's lemma is a 
ombinatorial result whi
h stipulates that for any sequen
e wn of

words on a �nite alphabet, there exists two indi
es i < j su
h that wi is a sub-word of wj ,

in the sense that it is enough to remove some letters of wj to obtain wi. We note wi ✂wj the

latter relation on words. This lemma also has a formulation in term of well quasi-orders, this

time on alphabets that are not ne
essarily �nite any more. Sin
e the alphabet 
onsidered

here has only two letters, we do not use this generalized formulation.

This result gave pla
e to a lot of works in the intuitionisti
 
ommunity, aiming at building

a 
onstru
tive proof of whi
h the algorithm derived by extra
tion is the most e�e
tive

possible. Instead of re
alling here the 
omplete history of these works, we prefer to refer the

interested reader to the very good manus
ript of M. Seisenberger [74℄, and in parti
ular to

the synopti
 table p.47. For repla
ing the formalization of H. Herbelin in its 
ontext, let us

just mention that an elegant 
lassi
al proof of Higman's lemma has been found by Nash-

Williams in the sixties, i.e. ten years after the work of Higman. This proof is based on an

reasoning known as of �minimal bad sequen
e�. Then several years later, in 1990, C. Murthy

has formalized this 
lassi
al proof in Nuprl in order to obtain from it a 
onstru
tive version

by using the A-translation of Friedman. Independently, H. Herbelin formalized around 1992

an A-translation �when required� in Coq, introdu
ing a minimum of double-negations.

But it qui
kly appeared that the algorithm 
orresponding to this initial 
onstru
tive

proof had very bad 
omputational properties, as we will see thereafter. This is why many

other 
onstru
tive proofs of this lemma has been proposed later on, su
h as for example [63℄

or [21℄. A

ording to H. Herbelin:

The motivation of T. Coquand was not so mu
h the extra
tion, but the unders-

tanding of the share of impredi
ativity needed in the proof, in fa
t indu
tion on

trees with in�nite bran
hing, as well as the symmetrization of the proof, that is

abstra
ting oneself to the need of ordering the alphabet. I should also add his very

strong quest for elegan
e, and his 
on
ern of a

essing the very 
ore of mathe-

mati
al theorems.

The proof of [21℄ is in fa
t a reformulation of the one by Nash-Williams, in whi
h the

reasoning by 
ontradi
tion has been made positive via the use of some ad ho
 indu
tive

types. This proof suggested by T. Coquand and D. Fridlender has sin
e been formalized in

Minlog by M. Seisenberger [74℄ and in Isabelle by S. Berghofer [13, 14℄. Lastly, S. Berghofer has

re
ently adapted his Isabelle proof into Coq. This new Coq formalization of Higman's lemma,

whi
h forms now a user 
ontribution named Muen
hen/Higman, is parti
ularly 
on
ise while

providing at the same time an extra
ted 
ode ex
essively more e�e
tive than the 
ode

extra
ted from Ro
q/Higman.
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5.4.1 Higman and the impredi
ativity

We �rst illustrate the me
hanism of the proof formalized by H. Herbelin, whi
h is origi-

nally due to Nash-Williams for its 
lassi
al part, then transformed of 
onstru
tive proof by

A-translation. In parti
ular we now detail how this formalization relies strongly on impre-

di
ativity, and how this fa
t implies the presen
e after extra
tion of type non expressible in

ML.

The proof is done by reasoning on an hypotheti
al �minimal bad sequen
e�. In this


ontext, a �bad sequen
e� is a su

ession of words whi
h would invalidate Higman's lemma.

Here sequen
es are formalized via informative relations

3

(i.e. on Set) 
onne
ting integers

and words:

Definition seq := nat → word → Set.

Se
tion Bad_sequen
e.

Variable f : seq.

Definition exi_im := ∀n, (∀x, f n x → A) → A.

Definition uniq_im := ∀n x y, f n x → f n y → (x = y → A) → A.

Definition 
ex := ∀i j x y, f i x → f j y → i < j → x ✂ y → A.

Indu
tive bad : Set := bad_intro : exi_im → uniq_im → 
ex → bad.

End Bad_sequen
e.

The properties exi

_

im and uniq

_

im stipulate that our relation f is in fa
t fun
tional, by

requiring respe
tively the existen
e and the uniqueness of the image of an integer n by f. On

the way, one 
an note the e�e
ts of the A-translation. Intuitively, A plays the role of False,

but will be �nally used to 
ontain the result of the 
onstru
tive algorithm. For example,

(∀x, f n x → A)→A is to be read informally as ¬(∀x, ¬(f n x)), whi
h is 
lassi
ally

equivalent to ∃x, f n x. Then, the property 
ex express the fa
t that f invalids indeed

Higman's lemma. And �nally, a sequen
e f is �bad� if we have (bad F), that is the three

pre
eding 
onditions are met.

On
e spe
i�ed what is a �bad sequen
e�, let us pass now to the de�nition of a �minimal

bad sequen
e�:

(* To be equal on the n-1 first terms *)

Definition eqgn (n : nat) (h h' : seq) :=

∀i, i < n → ∀s t, h i s → h' i t → (s = t → A) → A.

(* To be minimal on the nth term *)

Definition Minbad (n : nat) (h : seq) (y : word) :=

...

/

...

3

H. Herbelin told us that this use of relations, and as a 
onsequen
e the use of impredi
ativity, allows to

avoid the use of the des
ription axiom ne
essary to the proof via fun
tions.
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...

/

...

∀h' : seq, bad h' → eqgn n h h' → ∀z, h' n z → z ≺ y → A.

(* To be minimal on the first n-1 terms *)

Definition Minbadns (n : nat) (h : seq) :=

∀p, p < n → (∀y, h p y → Minbad p h y → A) → A.

(* The minimal (bad) 
ounter-example *)

Definition Min
ex (n : nat) (x : word) :=

∀C : Set,

(∀h : seq, bad h → Minbadns n h → h n x → Minbad n h x → C) → C.

Let us detail mostly the last de�nition. One re
ognizes there in fa
t the impredi
ative

en
oding of an universal quanti�
ation, hen
e Min
ex means informally:

Definition Min
ex (n : nat) (x : word) :=

∃h:seq, bad h ∧ Minbadns n h ∧ h n x ∧ Minbad n h x.

One 
an also interpret Min
ex as an in�nite union over all sequen
es. And the impredi
ative


hara
ter of this en
oding 
omes of 
ourse from the quanti�
ation over all the types C:Type,

while at the same time we wish Min
ex to be a sequen
e, and thus has a result in Set.

After having built this smaller bad sequen
e in an abstra
t way, the proof then establishes

that, if there is a bad sequen
e (not ne
essarily minimal), then Min
ex is also a bad sequen
e

(i.e. we have bad Min
ex). The next step is to derive from any bad sequen
e another smaller

bad sequen
e. By examining the sequen
e thus derived starting from Min
ex, we �nally

obtain a 
ontradi
tion (that is a proof of A) by taking into a

ount the minimality properties

of Min
ex. Choosing A 
arefully allows to 
on
lude, here to get that ∃i j, i<j → f i ✂

f j.

5.4.2 The extra
tion of Higman

Histori
ally, this formalization was extra
ted by H. Herbelin around 1992, by using a

version 5.x of Coq. This was one of the �rst versions of the Coq extra
tion, implemented

then by C. Paulin and B. Werner. The target languages for extra
tion during these �rst

experiments were Caml Lourd and also LazyML, a lazy version of ML, whi
h one still �nds

today as base for the hb
 
ompiler for Haskell.

In addition to the interest of lazyness, 
lose to the redu
tion strategy of Coq, LazyML pre-

sented as other interest at that time to have an 
ompilation option dea
tivating 
ompletely

the type-
he
king.

In fa
t, we have observed that there is only one lo
ation in all the extra
ted 
ode whi
h

requires a workaround for getting ML typability. This is rather surprising 
ompared to the


entral role of Min
ex in the formalization and its ML-in
ompatible type. The 
urrent extra
-

tion retrieve indeed automati
ally this problemati
 point, and inserts there an Obj.magi
 :
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let snake badf f0 f_0_f0 a h n h0 h1 =

xa_elim a n h1 (fun y h3 →
Obj.magi
 h3 __ (fun _ h5 h6 h7 h8 →

h8 __ (badfx (badMin badf f0 f_0_f0) a h n (Leastp_intro (h1, h0)))

(fun x _ x0 x2 x3 x4 x5 →
eqgn_fxMin_h badf f0 f_0_f0 a n h5 h6 x x0 x2 x3 x4 x5) y (Fxtl

(n, (Leastp_intro (h1, h0)), h3)) __))

On the other hand, just as for Lannion, some other �super�uous� Obj.magi
 are also added.

They are used to make 
oin
ide the approximate type 
hosen for Min
ex and the types of

the fun
tions handling su
h Min
ex obje
ts. If the goal is only to 
ompile the �le higman.ml


reated by the extra
tion, then these 14 additional Obj.magi
 
an be removed. But then

the obtained �le is not any more 
ompatible with the interfa
e higman.mli automati
ally

generated.

Let us return now to the study of the obtained program. The extra
ted 
ode is relatively

short (435 lines) but in
omprehensible even with a good preliminary knowledge of the initial

proof, as shown by the previous ex
erpt. Con
erning the exe
ution of this program, it is

possible, at least for small examples:

./higman 101 0110 01010

f(0)=101

f(1)=0110

f(2)=01010

f(3)=...

==> f(0) is in
luded in f(2)

This display has been printed by the standalone program obtained by 
ombining the extra
-

ted 
ode with a small manual interfa
e allowing a simple input of a word sequen
e pre�x to

test (see the 
ontents of 
ontribution Ro
q/Higman). This interfa
e also allows to randomly


hoose words to test the behavior of the algorithm when it must explore longer sequen
es

and/or larger words. But these tests qui
kly en
ountered an ine�e
tive behavior of the pro-

gram. Indeed, as soon as the pre�x to manipulate 
ontains more than a dozen elements, it

be
omes frequent to obtain a fast but disappointing answer:

./higman --random

Fatal error: ex
eption Sta
k_overflow

We have also tested an extra
tion to Haskell

4

. As the extra
tion does not generate yet

any unsafeCoer
e (the fun
tions equivalent to Obj.magi
 in Haskell), we have inserted one

manually in the fun
tion snake. We then obtain a program with a di�erent behavior: no

more sta
k over�ows, but really slow 
omputation times. For example, we easily ex
eed

one minute of 
omputation on a re
ent ma
hine for a sequen
e for whi
h the pre�x to be

4

Unlike the extra
tion to O
aml, the 
orresponding �les of this experimentation are not yet part of

Ro
q/Higman. The interested reader 
an still 
onta
t the author.
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onsidered is made of less than ten elements. And these 
omputation times grow very qui
kly

when the length of the pre�xes in
reases, in an apparently exponential way.

Our experiments thus join the former analysis announ
ing disastrous e�e
tiveness for the

algorithm obtained by (partial) A-translation. Moreover, taking into a

ount the 
omplexity

of the produ
ed 
ode, it seems di�
ult to analyze a posteriori this 
ode for understanding

how to improve it.

5.4.3 The new proof of Higman

We now evoke a new proof of Higman's lemma in Coq, still in the version restri
ted to

an alphabet of two letters. This new version, that dates ba
k to 2003, is due to S. Berghofer,

and is now named Muen
hen/Higman as a 
ontribution.

This se
tion is intended for to illustrate the progresses 
arried out sin
e 1993 in the

sear
h of an e�e
tive 
onstru
tive proof of Higman's lemma. On the other hand, 
ontrary

to all the others examples detailed starting from this 
hapter, the extra
tion of this new

formalization is not of great interest from the stri
t point of view of the Coq extra
tion.

Indeed, the types handled here are very simple, without re
ourse to the impredi
ativity or

to quanti�
ations of an higher nature. Finally, one obtains some extra
ted 
ode perfe
tly

typable in ML, free from any Obj.magi
, and that the old extra
tion 
ould have managed.

A new approa
h in the proof

As mentioned in our introdu
tion to Higman's lemma, the 
on
ept of this new forma-

lization is due to T. Coquand and D. Fridlender [21℄. This is a use of a prin
iple named

�bar indu
tion�, whi
h is a form of indu
tion on trees with in�nite bran
hing. This indu
tion

prin
iple allows to turn in a positive way the reasoning by 
ontradi
tion of Nash-Williams.

In fa
t, the 
urrent implementation in Coq is only an adapted version of the implementation

in Isabelle made by S. Berghofer. In addition, a similar proof was also implemented in Alf

by D. Fridlender and in Minlog by M. Seisenberger [74℄. We do not des
ribe here in detail

the proof, very well des
ribed in [14℄, p. 104. Let us simply announ
e that instead of relying

on an hypotheti
al smaller 
ounterexample Min
ex, one now de�nes a predi
ate bar on the

�nite sequen
es of words:

Indu
tive L (v : word) : list word → Set :=

| L0 : ∀w ws, w ✂ v → L v (w::ws)

| L1 : ∀w ws, L v ws → L v (w::ws).

Indu
tive good : list word → Set :=

| good0 : ∀ws w, L w ws → good (w::ws)

| good1 : ∀ws w, good ws → good (w::ws).

Indu
tive bar : list word → Set :=

| bar1 : ∀ws, good ws → bar ws

| bar2 : ∀ws, (∀w, bar (w::ws)) → bar ws.
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This predi
ate bar thus expresses either that one already found the two overlapping words

w ✂ v in the 
urrent �nite pre�x, that is to say that all prolongation of this pre�x leads

later to the validation of the lemma. This is in in fa
t a 
onstru
tive formulation of the good

foundation of ✂. The key point of the demonstration is then to establish (bar nil). For

that we use two other indu
tive predi
ates:

Indu
tive R (a : letter) : list word → list word → Set :=

| R0 : R a nil nil

| R1 : ∀vs ws w, R a vs ws → R a (w::vs) ((a::w)::ws).

Indu
tive T (a : letter) : list word → list word → Set :=

| T0 : ∀b w ws zs, a 6= b → R b ws zs → T a (w::zs) ((a::w)::zs)

| T1 : ∀w ws zs, T a ws zs → T a (w::ws) ((a::w)::zs)

| T2 : ∀b w ws zs, a 6= b → T a ws zs → T a ws ((b::w)::zs).

And with these �ve predi
ates (plus ✂), we have �nished the tour of all the stru
tures

used by this formalization! The remainder is only a su

ession of small lemmas aiming at

establishing (bar nil) in a �rst time, then at extra
ting from that the two expe
ted indi
es

i and j. On the whole, this gives us a proof of 220 lines of Coq, whi
h is remarkably short

5


ompared to the 1085 lines of the proof obtained by A-translation from Nash-Williams's

proof.

The extra
tion

After extra
tion, one obtains 165 lines of 
ode, whi
h hen
e gives us an extremely low

ratio (Coq s
ript)/(extra
ted 
ode), ratio whi
h is usually nearer to 10 (see for example

Orsay/FSets in 
hapter 7). In addition, this extra
ted 
ode is extremely simple. Here is for

example the largest and most 
omplex extra
ted fun
tion:

let re
 prop2 a b xs h ys x zs x0 x1 =

mat
h h with

| Bar1 (ws, g) → Bar1 (zs, (lemma3 ws zs a x0 g))

| Bar2 (ws, b0) →
let re
 f l0 b1 zs0 h2 h3 =

mat
h b1 with

| Bar1 (ws0, g) → Bar1 (zs0, (lemma3 ws0 zs0 b h3 g))

| Bar2 (ws0, b2) → Bar2 (zs0, (fun w →
mat
h w with

| Nil → prop1 zs0

| Cons (l1, l2) →
(mat
h letter_eq_de
 l1 a with

...

/

...

5

In fa
t, we have re-worked the proof of S. Berghofer in order to use as mu
h as possible the automati


ta
ti
s of Coq, whi
h redu
es appre
iably the size of this 
ontribution, whereas this have not been done in

the 
ase of Ro
q/Higman.
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...

/

...

| Left →
prop2 a b (Cons (l2, ws))

(b0 l2) ws0 (Bar2 (ws0, b2)) (Cons ((Cons

(a, l2)), zs0)) (T1 (l2, ws, zs0, h2)) (T2

(a, l2, ws0, zs0, h3))

| Right →
f (Cons (l2, ws0)) (b2 l2) (Cons ((Cons (b,

l2)), zs0)) (T2 (b, l2, ws, zs0, h2)) (T1

(l2, ws0, zs0, h3)))))

in f ys x zs x0 x1

Even if the two internal bran
hes are not very readable due to an imperfe
t pretty-printing,

one re
ognizes at least the algorithmi
 stru
ture of this fun
tion, whi
h was very di�
ult

with Ro
q/Higman.

But the major progress with respe
t to Ro
q/Higman is the gain in exe
ution speed. The

program obtained 
an now handle pre�xes of more than one thousand of words in a few tens

of se
onds, ea
h word having a random length ranging between 20 and 80.
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Chapitre 6

Constru
tive reals and extra
tion

In this 
hapter, we present some works that we 
arried out in 
ollaboration with several

others European resear
hers. The goal of these works is obtaining a 
erti�ed library of exa
t

real arithmeti
, and this by extra
tion from 
onstru
tive formalizations of real analysis in

Coq.

The �rst of these works relates to the C-CoRN proje
t (previously known as FTA) from

the university of Nijmegen in the Netherlands. The study of the extra
tion for 
ertain parts

of this proje
t was started by two members of the Nijmegen team, namely L. Cruz-Filipe

and B. Spitters. In parti
ular, they have presented this �rst study in a publi
ation, whose

referen
e is [25℄. We see in the �rst part of this 
hapter that a lot of progresses have been

a

omplished sin
e the idea of extra
ting FTA was �rst laun
hed, but also that a great

number of di�
ulties remain, in parti
ular 
on
erning the e�e
tiveness of the extra
ted


ode. This �rst part of the 
hapter is very 
lose to 
hapter 6 to [24℄, sin
e they both report

the same work, simply approa
hed under slightly di�erent angles.

More re
ently, we had the opportunity to have long dis
ussions with H. S
hwi
htenberg


on
erning the extra
tion of 
onstru
tive real numbers during the summer s
hool 2003 in

Marktoberdorf. And these dis
ussions were prolonged by a visit of one week in Muni
h in

September 2003. We then realized together the outline of a formalization of 
onstru
tive

reals in Coq. This mini-formalization is obviously without 
ommon s
ale with C-CoRN from

the point of view of the size, but its interest is to be right from the beginning thought in

term of extra
tion. And this study has brought new insights to the di�
ulties en
ountered

with the extra
tion of C-CoRN.

6.1 The extra
tion of the C-CoRN proje
t

6.1.1 Des
ription of the FTA/C-CoRN proje
t

FTA is the abbreviation of the Fundamental Theorem of Algebra. This theorem stipulates

that any not-
onstant polynomial with 
omplex 
oe�
ients has at least a root in C. In

1999 and 2000, the group dire
ted by H. Barendregt at the university of Nijmegen has

formalized in Coq a 
onstru
tive proof, due to Kneser, of this result [35℄. This formalization

is really impressive, the �nal version of FTA being made of 40 000 lines of Coq s
ripts (see
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http://www.
s.kun.nl/gi/proje
ts/fta/).

The algebrai
 stru
tures of FTA

The prin
ipal reason of su
h a width is the 
onstru
tion from s
rat
h of a whole sta
k

of 
onstru
tive algebrai
 stru
tures, sin
e the standard library of Coq do not 
omprise su
h

algebrai
 stru
tures adapted to the need for this formalization. These stru
tures 
onsist in

parti
ular of:

• CSetoids

• CSemiGroups

• CMonoids

• CGroups

• CRings

• CPolynomials

• CFields

• COrdFields

• CReals

• CComplex

It should be noted that the CSetoids are based on a 
al
ulative relation of di�eren
e, or

�apartness�, rather than on a relation of equality, whi
h 
ould not be 
onstru
tive for �elds

like real numbers.

In addition, these stru
tures are nested the ones in the others via the use of Coq 
oer
ions.

For example, here is the de�nition of semigroups:

Definition is_CSemi_grp (A:CSetoid)(unit:A)(op:CSetoid_bin_op A) :=

Asso
iative op.

Re
ord CSemi_grp : Type :=

{ 
sg_
rr :> CSetoid;


sg_unit : 
sg_
rr; (* non-empty *)


sg_op : CSetoid_bin_op 
sg_
rr;


sg_proof : is_CSemi_grp 
sg_
rr 
sg_unit 
sg_op

}.

A CSemi

_

grp is thus 
omposed of a CSetoid whi
h is additionally required to be non-

empty (sin
e it is equipped at least of an element), and must also 
ontain an asso
iative

operation on the other hand. Without going more into the details, let us just note that the


oer
ion :>ensure that any CSemi

_

grp is also visible as a CSetoid. And similarly for the

other algebrai
 stru
tures: ea
h one is based on a pre
eding stru
ture, and adds new obje
ts

and/or properties. One thus obtains a linear 
hain of 
oer
ions going from a CComplex down

to a CSetoid. The polynomials form the only stru
ture that deviates from this 
ontinuous


hain.
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The de�nition of these stru
tures and their basi
 properties deserve between one third

and one half of the 40 000 lines previously mentioned, in
luding a big part devoted to the

basi
 properties of polynomials. In fa
t, on
e proved the intermediate value theorem

1

and

the existen
e of n-th roots

2

in R and C, there only remain approximately 3 000 lines devoted

to Kneser's lemma and FTA itself

3

.

Some axiomatized reals, later realized

Let us mention another 
ru
ial point of the FTA ar
hite
ture. The real numbers have

been used in an �axiomati
 way� [36℄. Indeed, after de�ning in CReals.v the Coq type of

the algebrai
 stru
tures that are isomorph to the real numbers, all the remainder of the FTA

proof is done with respe
t to su
h a parti
ular stru
ture. In fa
t, for te
hni
al 
onvenien
e

4

, this stru
ture is posed as an axiom:

Axiom IR : CReals.

This way, any parti
ular representation of the 
onstru
tive real numbers 
an repla
e this

axiom IR. And su
h a parti
ular representation Con
rete

_

R was developed later on by M.

Niqui, based on the Cau
hy sequen
es. The transformation of the previous axiom in the

following de�nition should normally not modify the validity of the remainder of FTA :

Definition IR : CReals := Con
rete_R.

From FTA to C-CoRN

Sin
e the 
ompletion of the FTA proof itself, this formalization was gradually reorganized

in a more ambitious proje
t. The proof of the fundamental theorem of the algebra is now

just one of the the fa
ets of this new C-CoRN proje
t (for Constru
tive Coq Repository At

Nijmegen). This proje
t is aimed at be
oming a wide library of 
onstru
tive mathemati
al

results based on the hierar
hy of algebrai
 stru
tures des
ribed previously. C-CoRN 
ontains

already, in addition to FTA, some extended results 
on
erning series, usual trans
endent

fun
tions, and espe
ially a part named FTC (for Fundamental Theorem of Cal
ulus). L.

Cruz-Filipe has proved there that integration and derivation are two re
ipro
al pro
esses

[23℄.

6.1.2 The �rst extra
tion attempts

Our �rst 
onta
t with FTA dates ba
k to O
tober 2001. In a mail, M. Niqui reported

his �rst attempt at extra
ting FTA : �after 24 hours my ma
hine ran out of memory�, the

mentioned ma
hine being quite reasonable.

1

See the �le IVT.v.

2

See the �les NRootIR.v and NRootCC.v.

3

See the �les KeyLemma.v, MainLemma.v, KneserLemma.v, FTAreg.v and FTA.v.

4

At that time, the modules and fun
tors did not exist in Coq.
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It should be said that FTA have not been initially 
on
eived with the extra
tion in mind.

Of 
ourse, as this development is 
onstru
tive, its authors were 
ons
ious of the theoreti
al

possibility of extra
ting a program from it. But this possibility, 
onsidered to be unrealisti


at the time, has not in�uen
ed the initial design 
hoi
es. In parti
ular, all the development

has been pla
ed initially in the sort Prop of the obje
ts pre
isely ignored by the extra
tion.

For his �rst extra
tion attempts, M. Niqui then simply repla
ed all the o

urren
es of Prop

by Set. Instead of ignoring everything, the extra
tion now keeps and translates everything.

Sin
e this development of 40 000 lines of Coq s
ript generates 
omplex and bulky proof

terms, it is understandable that this extra
tion is ex
essively more demanding than the one

of other examples met up to that point, hen
e the problems of 
omputing time and memory

o

upation of M. Niqui.

In fa
t, it appeared thereafter that the extra
tion of this version of FTA using Set

as universe was not so unfeasible after all, provided that one uses slightly more re
ent

hardware and in addition 
orre
ts the extra
tion by removing one heuristi
 �optimization�

more than hazardous, whi
h as a 
onsequen
e the repla
ement of too many 
onstants by

their de�nitions. In the parti
ular 
ase of FTA, that was leading to an amazing in
rease in

the 
ode size. Here what L. Cruz-Filipe reported in February 2003:

You might �nd it interesting to know that we a
tually managed to extra
t the

*original* FTA version (e.g. the one 
urrently in the Coq library, with all the

logi
 in Set) after you �xed the inlining bug in the extra
tion routine. We still

almost ran out of resour
es (on a 2GHz ma
hine with 1Gb RAM memory and

2Gb swap), but the extra
ted 
ode is "only" around 13 Mb.

This �gure of 13 Mo of sour
e 
ode seems really aberrant for a program whi
h, let us

re
all, is just supposed to 
ompute approximations of roots for 
omplex polynomials. One


an nevertheless relativize somewhat these 13 Mo. They are indeed due in great part to two

unpleasant, but simple phenomena:

• the �rst problem is due to the attempts made by the extra
tion to embellish the

display (or �pretty-print�). This printing is done by means of display boxes, verti
al

or horizontal, provided by the O
aml language. However this me
hanism works with a

�xed width of line, whi
h is 80 
olumns by default. In the 
ase of the disproportionate

fun
tions of FTA, respe
ting at the same time the indentation and this width limit

implies to frequently use only the last quarter of the lines, sometimes even less. Finally

more than half of the extra
ted �le is made up of white spa
es at the beginning of

lines.

• Looking qui
kly at this enormous extra
ted �le, the other point immediately noti
eable

is the omnipresen
e of proje
tions resulting from 
oer
ions. For example, for a stru
ture

like that the real numbers, the addition is done by 
onsidering R as a semi-group

CSemi

_

grp, thanks to a su

ession of 
oer
ions, then by using the operator inside the

�eld 
sg

_

op of this CSemi

_

grp stru
ture. In fa
t, the Coq user does not have to be


on
erned by these 
oer
ions, sin
e they are impli
it. If IR is the stru
ture of real

numbers, one 
an form IR.
sg

_

op dire
tly. But these 
oer
ions are stored expli
itly in

the proof term, and are thus found also in the �nal extra
ted term. Thus the extra
tion

of the addition over reals is:



6.1. The extra
tion of the C-CoRN proje
t 165

iR.
rl_
rr.
of_
rr.
f_
rr.
r_
rr.
g_
rr.
m_
rr.
sg_op

One 
an re
ognize here the su

essive proje
tions into the substru
tures of ordered

�eld, then �eld, then ring, then group, then monoid, and �nally semi-group, before

the �nal proje
tion into the �eld 
ontaining the addition operator. Finally, one needs

almost a line to write this addition, who appears several hundreds of times in the

extra
ted �le. And the same applies to other elementary obje
ts like 0, 1 and the

remaining operations.

It is of 
ourse possible to fa
torize the produ
ed 
ode in order to avoid, at least

partially, su
h 
hains of proje
tions. It would thus be enough to de�ne on
e and for all

a 
onstant iR

_

plus equal to the previous obje
t. But what 
ould be easily done for a

�xed stru
ture like iR, is mu
h more 
ompli
ated and less e�e
tive to do it in �rst half

of the extra
ted �le, where one reasons on unknown stru
tures, given as argument of

fun
tions.

In fa
t, even after manually fa
torizing these spa
es and these 
oer
ions 
hains, the

sour
e 
ode still weight several megabytes. It thus seems obvious that a substantial part of

this 
ode has in fa
t no interest at the algorithmi
 level.

6.1.3 Distin
tion between logi
al parts and informative parts

To allow the extra
tion to at least partially eliminate the dead 
ode from these extra
ted

terms, L. Cruz-Filipe and B. Spitters have then modi�ed again the initial development, and

tried to identify the parts that 
ould remain in Prop. This work is des
ribed in detail in [25℄

and in the beginning of 
hapter 6 of [24℄.

It should be well understood that FTA is an atypi
al development with respe
t to the

distin
tion between informative and logi
al parts. Usually, it is rather easy to see the dis-

tin
tion between informative operations like 1+2 and logi
al assertions like n=0∨0<n. But
in FTA, it is 
ru
ial for the relation < over reals to be informative: behind x<y is in fa
t

hidden a stri
tly positive rational below y-x. And this rational is indeed used in pra
ti
e in

operations, for example when 
omputing the inverse of a non-null real (see for example p.

148 of [24℄). In the same way, di�eren
e between two real has some 
omputational 
ontents.

On the opposite, the equality and the relation ≤ are not de
idable over reals and 
an

thus remain logi
al. In fa
t, these two relations are de�ned as the respe
tive negations of the

apartness and stri
t order < relations. This gives them a logi
al status, sin
e False, used in

negations, always remains in Prop.

These de
isions for basi
 relations then in�uen
e the status of operators like disjun
tions

or 
onjun
tions. For example, one will not be able to use the usual logi
al disjun
tion or in

the example n=0∨0<n, sin
e the right part is informative. In parti
ular, this expression is

not equivalent 
onstru
tively to 0≤n, whi
h is 
ompletely logi
al.

One sees that using the Prop/Set distin
tion in the 
ase of FTA is not obvious, whi
h

explains the initial 
hoi
e of �everything logi
al�, and then the swit
h to the 
onverse in a

se
ond time. L. Cruz-Filipe and B. Spitters have in parti
ular had to alter 
ertain portions
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of the initial development, similarly to the previous or repla
ed by an ad ho
 disjun
tion.

But this task was worth it, sin
e one obtains a gain of a fa
tor 10 on the size of the extra
ted


ode.

In addition to this distribution between Prop and Set for all 
onstru
tions of FTA, L.

Cruz-Filipe and B. Spitters also noted that it was possible to de
rease even more the size

of the extra
ted terms thanks to some 
lever modi�
ations of the proofs relating < and ≤.
First of all, they have exploited the fa
t that the two following formulations of the Cau
hy

property are equivalent:

∀ε > 0 ∃N : nat ∀m, n > N |xm − xn| < ε

and

∀ε > 0 ∃N : nat ∀m, n > N |xm − xn| ≤ ε

Using the se
ond alternative then results in making disappear from the extra
ted terms the

major part of these Cau
hy properties, and only keeping the essential part, namely the part

building indeed the bound N starting from a given ε.

Another example of optimization 
on
erns the proofs of properties of the form a < b.
Initially, these proofs were frequently done by su

essive reasoning as in a < x1 < x2 < x3 <
b. In fa
t, only one of these stages really requires a stri
t order: it is enough for example to

establish a < x1 ≤ x2 ≤ x3 ≤ b, and only this �rst stage of reasoning will remain in the

extra
tion.

Finally, thanks to su
h transformations of the FTA proof, and in parti
ular the redesign of

the division part, L. Cruz-Filipe and B. Spitters have redu
ed the size of the extra
ted 
ode

down to a little more than 200 KB, that is to say almost 100 times less than during the �rst

su

essful extra
tion. Moreover, this extra
tion is now 
arried out in a few se
onds, even if the

speed of extra
tion has never been yet a major design goal for our implementation . Lastly,

this size of 200 KB still in
ludes multiple redundan
ies related to 
oer
ions/proje
tions,

whi
h are not solved yet in a satisfa
tory way. On the other hand, redu
ing the size of the

extra
ted 
ode largely attenuates the problems of indentation for this extra
ted 
ode.

6.1.4 Compilation of the extra
ted 
ode

After bringing the extra
ted 
ode from FTA on a more reasonable s
ale of a few thousands

of lines, the following 
hallenge 
onsists in trying to build a program whi
h 
an be run

and return some useful result. In fa
t, during the �rst su

essful extra
tions of FTA, we

en
ountered immediately an important obsta
le, namely the non-typability of this extra
ted


ode. And we were far from the situation of 
ontributions like Lannion and Higman as in

the previous 
hapter, where it was still possible to insert manually one or two om. Here, the

typing 
on�i
ts amount to hundreds, whi
h almost impose the use of an automati
 method.

Fortunately, we have in the meantime implemented an automati
 insertion of Obj.magi


at the lo
ations of these typing 
on�i
ts (see 
hapter 3). Here, approximately 400 of these

Obj.magi
 are inserted in the extra
ted 
ode. And this 
ode is indeed a

epted by the


ompiler O
aml without any additional modi�
ation.
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If we look more 
losely at these typing 
on�i
ts, we �nd some of the situations evoked in


hapter 3. For example, the �rst problem that appears is related to the CSetoid stru
ture:

Re
ord CSetoid : Type :=

{ 
s_
rr :> Set;


s_eq : (Relation 
s_
rr);


s_ap : (Crelation 
s_
rr);


s_proof : (is_CSetoid 
s_
rr 
s_eq 
s_ap)

}.

A CSetoid is thus an unspe
i�ed type provided with two equality and apartness relations.

In fa
t, this example is similar to the indu
tive type any of page 92. In both 
ases, one

embed a type in a stru
ture, and subsequent �elds of this re
ord depend over this type. This

stru
ture does not have 
ounterparts

5

in ML, and the extra
tion produ
es the following

approximation, in whi
h 
s

_


rr was repla
ed by the unknown type T (or

__

):

type 
Setoid = { 
s_ap : __ 
relation; 
s_proof : (__, __) is_CSetoid }

The use of the �elds 
s

_

ap or 
s

_

proof then leads frequently to untypable situations, whi
h

for
e the use of Obj.magi
.

6.1.5 The exe
ution of the extra
ted program

On
e settled the question of 
ompilation, we then designed a small input-output interfa
e

in order to be able to use this 
ode and to test its e�
ien
y. As FTA handles real numbers

as Cau
hy sequen
e, our interfa
e just asks for an rank n and a prede�ned real x to approxi-

mate, and then returns the rational number xn 
onstituting the n-th element of the Cau
hy

sequen
e x. More exa
tly, this interfa
e tries to return xn. Very qui
kly, it has appeared

that this extra
ted program su�ers from huge e�
ien
y problems. In parti
ular, in the 
ase

of the �
anoni
� example of the 
omputation of

√
2 seen as a root of the polynomial x2 − 2,

the program seems to need a few 
enturies, ex
ept in the 
ase of the �rst approximation

. . . whi
h is worth zero. As L. Cruz-Filipe has said on
e, �the only good news was that this

program required very little memory to run�.

In fa
t, to obtaining an e�
ient extra
ted program is a 
hallenge at least as di�
ult as

the �rst task of giving it a reasonable size. And the resolution of this new 
hallenge is still in

progress today even if mu
h has already be done. The remaining of this se
tion reports the

various transformations and optimizations that we tried on FTA, and the progresses thus

realized. It should be noted that this part 
orresponds to a phase of very a
tive 
ollaboration

with the Nijmegen team and in parti
ular with L. Cruz-Filipe, whereas our personal 
ontri-

bution to this study of FTA had been previously limited to only 
orre
t the dysfun
tion of

the extra
tion leading to too many unfoldings of 
onstants.

5

In fa
t, O
aml 3.07 allows in re
ords a 
ertain form of abstra
tion over types. We 
an write type setoid

= {eq : 'a.'a→'a→bool}. But this is not really appropriate for our needs here, be
ause one parti
ular

equality eq

_

int: int→int→bool 
annot to be used to build su
h a setoid.



168 Certi�ed fun
tional programming

Improving the datatypes

Our �rst try for improving the extra
ted program has been to hunt and remove ine�e
tive

datatypes. Indeed, in other development, this sole stage had sometimes allowed to produ
e

reasonable programs starting from developments not initially planned to be extra
ted, su
h

as for example the 
ontribution Bordeaux/Additions of P. Castéran. In the 
ase of FTA, a

�rst modi�
ation has been related to the rational numbers used by M. Niqui to model real

numbers via Cau
hy series. These rational numbers were indeed at �rst re
ords where the

�rst �eld was an integer representing the numerator of the fra
tion, and the se
ond �eld was

a natural number 
oding the denominator. But as mu
h the integers are e�e
tive sin
e 
oded

in a binary way in the Coq type Z, as mu
h the natural numbers used at �rst were nat, 
oded

in a unary way. Our �rst 
ontribution to FTA has thus been to repla
e in the denominator

the type nat by the type positive of stri
tly positive integers, en
oded in binary notation.

Not only has this largely a

elerated the operations on the rational numbers, but it has even

simpli�ed the formalization: there is no need any more to be 
on
erned with the 
ase of a

null denominator.

A redesign of the real number model

In fa
t, the previous modi�
ation was rather disappointing. Of 
ourse, this improvement

of the rational numbers deserved to be made, but it did not indu
e a visible e�e
t on the

�rst tests: 
omputations whi
h were diverging 
ontinued to do it. Worse, the extra
ted 
ode

persisted, in spite of this 
hange, to 
ontain hundredths of values in nat, in
luding several


onstants up to 48. In fa
t, this kind of 
onstants was useful primarily during the 
onstru
tion

of a model of reals by the means of Cau
hy sequen
es. And L. Cruz-Filipe �nally understood

how to alter 
ompletely this part, so that a giganti
 proof like Rmult

_

is

_

extensional

6

, long

of 1800 lines of Coq s
ript, is now obtained in ten lines. And the size of the extra
ted 
ode

still de
rease, the majority of these bulky 
onstants of type nat disappear . . . but however

the e�e
tiveness is still not improved 
on
erning the 
omputation of

√
2 via FTA.

Some less ambitious tests

In front of su
h di�
ulties, we then tried to better identify the 
auses of ine�
ien
ies

via more progressive tests. It then appeared that all arithmeti
al 
omputations on numbers

rational are almost instantaneous, even when these rationals are seen as reals

7

or when these


omputations are done via the use of polynomials. On the other hand, the 
omputation of

√
2

as re
ipro
al of 2 by the fun
tion λx.x2
diverges, while at the same time this way of obtaining√

2 is normally mu
h simpler than the use of FTA on the polynomial x2 − 2. By seeking

examples of simple real numbers that have nevertheless non-
onstant Cau
hy sequen
e, L.

Cruz-Filipe then suggested to 
onsider limits of series, and in parti
ular e =
∑∞

n=0
1
n!

and

to a lesser extent π = 4
∑∞

n=0
(−1)n

2n+1
. For the �rst time, we then obtained �nishing not-trivial

6

This result stipulates that for all reals su
h as a*b 6=a'*b', then a 6=a' or b 6=b '. This is the dual of

the usual statement on the equality, whi
h states that two multipli
ations of equal numbers produ
e equal

numbers

7

We then 
onsiders 
onstant Cau
hy sequen
e.
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omputations. Here 
ome for example the fra
tions returned as �rst terms of the Cau
hy

sequen
e representing the 
onstant e. Without surprise, they are partial sums of the previous

series.

rank fra
tion value

0 0/1 0.000000000
1 1/1 1.000000000
2 2/1 2.000000000
3 5/2 2.500000000
4 32/12 2.666666666
5 780/288 2.708333333
6 93888/34560 2.716666666
7 67633920/24883200 2.718055555
8 340899840000/125411328000 2.718253968
9 13745206960128000/5056584744960000 2.718278769
10 4987865758275993600000/1834933472251084800000 2.718281525
11 18099969098565397826764800000/6658606584104736522240000000 2.718281801

In fa
t, we were unable of obtaining all these fra
tions during the �rst tests, sin
e 
om-

puting the approximation of rank 7 took already more than one hour, for experimentally

giving only three 
orre
t digits. The reason of su
h a limited e�e
tiveness lies in the manner

of 
omputing the terms

1
n!
of the series. Indeed the real number n! was initially 
al
ulated in

type nat via the fa
torial fa
 : nat→nat, then only in a se
ond time inje
ted into reals via

the fun
tion nring : ∀R:CRing, nat→R plus some more 
oer
ions. And this last fun
tion

just transforms a unary integer in a su

ession of additions 1 + . . . + 1 in the 
onsidered

ring R, here the one of reals. This method thus implies a huge number of 
omputations

on the fa
torial numbers with a unary 
oding of numbers. We then proposed to pla
e the


omputation of fa
torial in the type positive, followed by the use of a fun
tion pring :

∀R:CRing, positive→R, whi
h inje
ts integers into a ring by now transferring their binary


odings.

Unfortunately, this improvement did not have the expe
ted e�e
t. After some investiga-

tions, it appeared that the next bottlene
k was the inversion of n! in 1
n!
. In fa
t, in FTA, the

division is not a binary operator a/b but an ternary operator a/b//h, where h is a non-nullity

proof for b. And as we have already mentioned previously, the 
omputational 
ontent of h

is indeed used for 
onstru
ting the division. In the 
ase whi
h interests us, the non-nullity

proof of n! was given by a term (fa


_

ap

_

zero n), and the stru
ture of this term was ini-

tially isomorph to n! 
oded in unary. But these proofs were of the form 0 < 1 < . . . < n!.
The utilization of the previously mentioned te
hniques allows us to pass to a proof of the

form 0 < 1 ≤ . . . ≤ n!. The new estimated 
omplexity of the 
omputation of

1
n!
is then 
lose

to the size of the writing in base two of n!, that is to say ln(n!) ∼∞ n ln(n). And indeed,

this version allows to obtain in a few hours all the fra
tions presented above, whi
h was

impossible beforehand.

During these experiments, we noted that the 
omputation of the approximation of rank

k + 1 requests approximately ten times longer than the 
omputation for the rank k. In the
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same time, the a

ura
y is also in
reased by a ten fa
tor: on average, a new 
orre
t de
imal

digit is obtained at ea
h step. This shows that the extra
tion is able to handle fra
tions of


onsequent size, but that the speed is still not perfe
t: at that pa
e, one should be ready for

a 
omputation of several month in order to obtain ten 
orre
t digits.

The issue of the 
omputation dupli
ations

In order to more �nely understand these 
omputations, we have then used some �pro�-

ling� te
hniques on the exe
utions. And we noted a few 
urious things. For example, the 
om-

putation for the approximation of rank 7 generated 14 
alls to a fun
tion named e

_

series,

whi
h 
omputes for a given n the value of

1
n!
. As the required approximation was only suppo-

sed to use the �rst 7 terms of the series, we dedu
e that the 
omputations of these terms were

dupli
ated. At �rst, we suspe
ted that this 
omputation redundan
y was 
oming from the

use of e

_

series in the fun
tion e

_

series

_


onv: (
onvergent e

_

series), whi
h proves

the 
onvergen
e of the series whose terms are given by e

_

series. But this was a false tra
k,

sin
e e

_

series

_


onv only appears in a re
ord �eld that is never used. In fa
t, we �nally

identi�ed the dupli
ation origin, lo
ated in the following de�nition:

Definition LimR_Cau
hySeq (a:Cau
hySeq R_COrdField') :=

Build_Cau
hySeq F

(fun m ⇒ CS_seq F (CS_seq _ a m) (T (CS_seq _ a m) m))

(CS_seq_diagonal a).

The type R

_

COrdField' is the set of Cau
hy sequen
e built on an ar
himedian ordered

�eld. And the 
onstru
tion LimR

_

Cau
hySeq allows to build the limit of a Cau
hy sequen
e

of su
h sequen
es, by means of an diagonal argument. The problem here is the repetition

of (CS

_

seq

_

a m). If one wants to avoid a double 
omputation when the sequen
e a is

instantiated by e

_

series, it is ne
essary to perform a fa
torization:

Definition LimR_Cau
hySeq (a:Cau
hySeq R_COrdField') :=

Build_Cau
hySeq F

(fun m ⇒ let b := CS_seq a m in CS_seq F b (T b m))

(CS_seq_diagonal a).

Here, the two o

urren
es of this dupli
ated subterm were in the same 
ontext. One 
an

thus imagine an automati
 tool able to identify this redundan
y and to fa
torize it. But in

addition to its 
ost, su
h a fa
torization stage will have to take di�
ult de
isions in more


omplex situations. For example, when these multiple o

urren
es 
an perfe
tly not been

evaluated, must one then risk to 
ause additional 
omputations by 
reating a �let-in�?.

In FTA, one also meets very frequent dupli
ations due to the dependent types. For

example, to build the fra
tion

1
5
in a �eld F, one uses the ternary division One/(pring R

5)//(pring

_

ap

_

zero F 5). However the proof part of non-nullity, (pring

_

ap

_

zero F 5),

of type (pring F 5)6=Zero almost undoubtedly 
ontains the term (pring F 5), whi
h is

thus at least 
omputed twi
e during this division. Similarly, our new proof of fa


_

ap

_

zero

in the previous se
tion still 
ontains an o

urren
e of n!, even if this proof is now of the form

0 < 1 ≤ . . . ≤ n!.
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This situation is really 
ommon in FTA, whereas in a more standard development the

proof part would be purely logi
al, and would disappear without 
ausing redundant 
ompu-

tations. Sometimes, fortunately, the dupli
ation is potentially present in FTA, but skipped,

as for e

_

series above. But these dupli
ations 
an also 
hange dramati
ally the 
omplexity,

as soon as they intervene within re
ursive fun
tions. This probably explains to a large extend

the ine�
ien
y of the program extra
ted from FTA. And 
orre
ting automati
ally this kind of

redundan
ies during the the extra
tion would be really deli
ate, be
ause the problem 
an be

distributed between several fun
tions, as with the division, pring and pring

_

ap

_

zero. Cur-

rently, the only answer to these dupli
ations is a manual analysis a posteriori, by profiling,

whi
h is long and painful, and only allows to lo
ate the most obvious problems.

A too 
onstraining axiomatization of reals

When we think of it, it is really dis
on
erting to have to devote so many e�orts in order

to obtain an e�e
tive solution for 
omputing a real number like

1
n!
, whi
h is after all only a

rational. Why not make dire
tly this 
omputation in the stru
ture of rational numbers, and

inje
t it into the reals only in a se
ond time ?

Unfortunately for the extra
tion, it is not possible to dire
tly do so. The problem is

lo
ated at the distin
tion in FTA between the abstra
t stru
ture of the real numbers and

its 
on
rete 
ounterpart. In fa
t, all the parts using real numbers, su
h as for example the

proof of FTA itself, use an abstra
t real stru
ture, axiomatized:

Axiom IR : CReals.

And this type CReals is only spe
i�ed as being an ar
himedian ordered �eld where all

Cau
hy sequen
e admit a limit. In this framework, one has only a

ess to a minimal number

of primitive obje
ts and basi
 properties, resulting from the underlying stru
tures.

In parti
ular, the only known primitive reals are 0 and 1, whi
h are respe
tively the

elements 
sg

_

unit and 
r

_

one of the semi-group and ring stru
tures IR. Instead of inje
ting

dire
tly rational numbers in IR, one must rebuild them by using 0, 1 and the operations

+, ∗ and /, this last operation requiring moreover a proof of non-nullity as third argument.

Su
h proofs often involve in fa
t some proofs of stri
t positivity or negativity, whi
h one

must also build from a restri
ted 
ore of basi
 properties. Here 
ome for example the only

properties known initially 
on
erning the order < over IR:

• the antisymmetry

• the transitivity

• the 
ompatibility with respe
t to the addition: x < y implies x + z < y + z

• the 
onservation of positivity by multipli
ation: 0 < x and 0 < y imply 0 < x ∗ y

• the di
hotomy: x 6= y implies x < y or y < x

• the ar
himedian property, stipulating that any real number 
an be bounded by the

inje
tion in IR of an adequate integer.

A property as basi
 as 0 < 1 is hen
e not primitive, but derived from the pre
eding proper-

ties. And it is obviously the same for more 
omplex proofs as 0 < n!.
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On the other hand, FTA also provides a 
on
rete model named Con
rete

_

R of the real

numbers, built on the Cau
hy sequen
es of rational numbers. And in this model, it is imme-

diate to inje
t a rational q into Con
rete

_

R via a fun
tion inje
t

_

Q : Q→Con
rete

_

R. It

is indeed enough to take the Cau
hy sequen
e where all the terms are worth q. In the same

way, a proof of the form a<b 
an be mu
h more dire
t in Con
rete

_

R, sin
e we 
an a

ess

now the de�nition of <, that 
laims the existen
e of a stri
tly positive rational ∆ and a rank

N su
h that all terms of rank greater than N in the two Cau
hy sequen
es being 
ompared are

always apart by more than ∆. In parti
ular, for two rational q<q', we immediately obtain

(inje
t

_

Q q)<(inje
t

_

Q q') in Con
rete

_

R, by taking ∆=q'-q and N=0.

This separation between abstra
t reals and 
on
rete reals is without doubt bene�
ial

at the mathemati
al level, be
ause it ensures that a proof made at the abstra
t level is

independent of the parti
ular representation sele
ted at the 
on
rete level. One 
an later on


hange this 
on
rete model with no risk for the abstra
t proofs. On the other hand, from

the programming point of view, we are here in the presen
e of two modules intera
ting via

an interfa
e way too minimalist, whi
h obliges the upper level module to frequently reinvent

the wheel, and moreover in an ine�e
tive way. What would be said of an integer arithmeti


module whose interfa
e would not export the multipli
ation, under the justi�
ation that one


an simulate it by repeated additions?

To 
on�rm that this distin
tion between the 
on
rete and abstra
t levels 
onstituted

indeed a bottlene
k for program extra
tion, we have added to the abstra
t level a few

axioms, whi
h we then realized at the 
on
rete level. Then we ordered the extra
tion to

repla
e the axioms by their 
on
rete realizations. This experiment had a spe
ta
ular e�e
t

on the test 
omputing the approximations of Euler's 
onstant. Instead of painfully obtaining

the approximation of rank 11 in more than one hour, we 
an now 
ompute that of rank 100

in 77 se
onds. The fra
tion obtained �lls two s
reens, and gives 157 
orre
t digits. As for


omplexity, it seems only to double every ten ranks, instead of being multiplied by ten for

ea
h additional rank. Here 
ome some details on the 
ode allowing that. First of all, we add

a 
ertain number of de�nitions at the 
on
rete level:

(* Dire
t inje
tion of fa
torial in Con
rete_R via inje
t_Q *)

Definition 
on
rete_fa
t (n:nat) : Con
rete_R :=

inje
t_Q Q_as_COrdField (inje
t_Z (pos_fa
t n)).

Lemma 
on
rete_fa
t_ap_zero : ∀n:nat, (
on
rete_fa
t n)[#℄Zero.

intros; red; simpl; unfold R_ap. (* ba
k to the definition of 6= *)

right; unfold R_lt. (* ba
k to the definition of < *)

exists O. (* the rank N *)

exists (inje
t_Z 1). (* a str. positive rational between 0 and n! *)

.... (* the rest is in Prop *)

(* The link between the old fa
torial and the new one *)

Lemma 
on
rete_fa
t_pos_fa
t :

∀n:nat, (pring Con
rete_R (pos_fa
t n))[=℄(
on
rete_fa
t n).

Then, we add some axioms at the abstra
t level, the one of IR:
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Axiom 
on
rete_fa
t' : nat → IR.

Axiom 
on
rete_fa
t_ap_zero' : ∀n:nat, (
on
rete_fa
t' n)[#℄Zero.

Axiom 
on
rete_fa
t_pos_fa
t' :

∀n:nat, (pring IR (pos_fa
t n))[=℄(
on
rete_fa
t' n).

Definition 
on
rete_e_series :=

fun n ⇒ One[/℄?[//℄(
on
rete_fa
t_ap_zero' n).

Lemma 
on
rete_e_series_
onv : 
onvergent 
on
rete_e_series.

...

(* The proof is done as before, by using the equality


on
rete_fa
t_pos_fa
t' for going ba
k to the previous 
ase. *)

Definition 
on
rete_E := series_sum ? 
on
rete_e_series_
onv.

Lastly, it is ne
essary to announ
e to the extra
tion what it should do with these axioms:

Extra
t Constant 
on
rete_fa
t' ⇒ 
on
rete_fa
t.

Extra
t Constant 
on
rete_fa
t_ap_zero' ⇒ 
on
rete_fa
t_ap_zero.

And there is no need to de
lare the third axiom, sin
e it is logi
al.

It is interesting to note by the way that our formalization of Q as Z*positive pairs

works 
orre
tly, at least for our 
urrent needs. Of 
ourse, one 
an to still �nd better, sin
e

Maple or Mathemati
a is able to return even the big fra
tion of rank 100 in a few tenths of

a se
ond. But these rational 
omputations are 
ertainly not a bottlene
k for FTA.

Let us announ
e �nally a last experimentation, whi
h tried to �nd a third way between

doing everything in IR and doing everything in Con
rete

_

R. Indeed, as we have already

mentioned, this distin
tion between IR and Con
rete

_

R has its own interests, and anyway

swit
hing 
ompletely to Con
rete

_

R would qui
kly be
ome painful. We thus tried to repla
e

only 
ertain 
riti
al proof of IR by an equivalent in Con
rete

_

R. But our attempts on

fa


_

ap

_

zero brought only tiny gains 
ompared to the initial (la
k of) speeds, without


ommon measurement with the gains brought by 
on
rete

_

E.

6.2 Some alternative reals dedi
ated to the extra
tion

Our last attempt at improving the extra
tion of FTA has 
onsisted in analyzing the


omputational behavior of

√
2 seen as re
ipro
al of 2 via the square fun
tion. But due to

la
k of time, we have only determine that ine�
ien
y 
omes from 
ertain sub-fun
tions

dealing with polynomials. We will detail that later, but �rst let us present how a small

formalization of 
onstru
tive reals, independent of FTA, has enabled us to identify some


riti
al points explaining the e�
ien
y or ine�
ien
y of su
h a 
omputation of

√
2.

This small formalization of 
onstru
tive reals was realized in 
ollaboration with H.

S
hwi
htenberg, after some long dis
ussions we had during the summer s
hool of Mark-

toberdorf 2003, about his le
ture of 
onstru
tive analysis [73℄ and about Coq extra
tion.

This study was then prolonged by a visit of week in Muni
h in September 2003.
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Without being made to 
ompete with FTA/C-CoRN, this study aims at 
onsidering


onstru
tive reals immediately from the point of view of the extra
tion, unlike FTA where

this idea of extra
tion 
ame a posteriori. To justify this new study, here 
omes immediately

its main result:

185073852193103815370647998607276856607447488995292267341249508862803707849

82122579258920081860060842211719751859243538935296074829527 / 1308669759060

604982435085250362633629384375727808179217478381261103282433564486174203616

9574998713491171057585998608659296292858913867

This long fra
tion is an approximation of

√
2 with more than 140 
orre
t binary digits,

or 42 
orre
t de
imal digits. And we obtained this result in approximately 3 minutes, by

using the same prin
iple than during our unfruitful tests with FTA, namely the seek of a

re
ipro
al value of 2 via the square fun
tion.

It should be spe
i�ed immediately that this small development does not establish any

general results like FTA, but on the 
ontrary is spe
ialized on the 
omputation of

√
2.

Moreover, as we will see, some parts remains un�nished and posed as axioms. This is thus

not a 
omplete formalization, but rather a proof of 
on
ept This being said, these few

hundreds of lines are quite full of lessons for the extra
tion of reals.

6.2.1 The development method

The goal was 
learly to be able to test as fast as possible the the extra
ted 
ode. We thus

formalized the �rst pages of the 
ourse notes of H. S
hwi
htenberg [73℄, or more pre
isely

the exa
t 
on
epts needed to the de�nition of

√
2. Here for example the de�nition of the

real numbers:

(* First, the Cau
hy property. *)

Definition Is_Cau
hy (f : nat → Q) (mo : nat → nat) :=

∀k m n, mo k ≤ m → mo k ≤ n → let e:=(f m - f n)*2^k in -1≤e≤1.
(* A real is given by a Cau
hy sequen
e, a modulus sequen
e *)

(* and a proof of the Cau
hy property of these sequen
es. *)

Re
ord R : Set := {


au
hy : nat → Q;

modulus : nat → nat;

is_
au
hy : Is_Cau
hy 
au
hy modulus }.

In fa
t, even by limiting ourself to the �useful� 
on
epts, this would have needed more

than one week or two of work. We have then 
hosen to fo
us only on the informative portions

of the terms being de�ned. And the required logi
al parts were then systemati
ally posed as

axioms, waiting for a later 
ompletion. A
tually, rather than posing multiple axioms, whi
h

is tiresome, we have in fa
t �
heated�, by posing only one:

Axiom Falsum: False.

...

/

...
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...

/

...

Lta
 fed_up := elim Falsum.

And the use of the ta
ti
 fed

_

up then allows us to get rid of any �boring� end of proof. Here

is for example the initial de�nition of the addition for two real numbers:

Definition Rplus : R → R → R.

intros x y.

apply (Build_R (fun n ⇒ 
au
hy x n + 
au
hy y n)

(fun k ⇒ max (modulus x (S k)) (modulus y (S k)))).

fed_up.

Defined.

In this 
ase, the use of the fed

_

up allows to avoid the 
omplete proof that our new sequen
e

representing x+y is indeed a Cau
hy sequen
e. In this parti
ular 
ase, this fed

_

up have been

later on repla
ed by a Coq s
ript of about thirty lines.

Of 
ourse, as long as there remain some fed

_

up in our development, we 
annot a�rm

for sure that the big fra
tion above is indeed an approximation of

√
2 with the previously

mentioned a

ura
y. On the other hand, the extra
tion of a proof 
ontaining fed

_

up is

exa
tly identi
al to the extra
tion of the same 
omplete proof, as long as these fed

_

up are

used in portions of sort Prop. We must nevertheless be very 
areful with this �magi
� ta
ti
:

• If we use it in an informative part, then an ex
eption is pla
ed in the program (see

the extra
tion of False

_

re
 page 79).

• If we use it to for
e the proof of an erroneous logi
al proposition, this 
an lead the

extra
ted program to a false result but also possibly to exe
ution errors or to not-

termination (see the examples of 
hapter 2).

6.2.2 The rational numbers

As we were already knowing quite well the rational numbers de�ned in FTA, we reused

again these rationals. But we added two improvements. The �rst of these improvements

relates to the proofs 
on
erning these rationals. When we started with to repla
e the several

fed

_

up by true proofs, we have indeed noted that the proofs of rational arithmeti
 are ex-

tremely painful. The problem 
omes from the 
hosen representation, whi
h is not 
anoni
al:

the fra
tion

1

2

is not equal to the fra
tion

2

4

when using the usual equality of Coq. One must

then de�ne an ad ho
 equality for this datatype, and this forbids us a priori to use a 
ertain

number of tools that work only with the equality of Coq, su
h as for example of the ta
ti
s

rewrite or ring

8

. Fortunately Coq has re
ently been extended by a me
hanism due to C.

Renard, that allows to work more easily on su
h stru
tures, known as �setoids� (see [78℄).

We have thus equipped our type Q with su
h a stru
ture of setoid, whi
h gives us a

ess

to ta
ti
s like setoid

_

rewrite. And in addition, we have helped to �nalize the extension

of the ta
ti
 ring to support these setoids. This way, the rational numbers start to be of

8

This automati
 ta
ti
 is able to solve in a ring the equalities dedu
ible from asso
iativity, 
ommutation

and distributivity of + and *.
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a reasonably pra
ti
al use in proofs, even if a 
ertain number of automati
 tools are still

missing, su
h as for example the ta
ti
s field and fourier.

The se
ond improvement relates more dire
tly to the extra
tion. We have indeed noti
ed

that the operations on Q were never redu
ing the fra
tions in 
anoni
al forms. Consequently,

during our 
omputations of Euler's 
onstant in FTA, the fra
tions obtained were growing

very qui
kly, while for example �nishing by a 
ertain number of zeros in the numerator and

in the denominator. And the approximation of rank 100, whi
h �lls out initially two s
reens,


an in fa
t be redu
ed to an irredu
ible fra
tion of only four lines. We were at �rst quite

relu
tant to the idea of frequently simplifying the fra
tions, be
ause this has also a 
ost.

But pla
ing some simpli�
ations in this experimental development showed without possible

ambiguity the enormous 
omputation speed-up indu
ed by these simpli�
ations: instead of

three qui
kly a

essible de
imal digits, we 
an know rea
h several hundreds. In details, this

addition of simpli�
ation was done via a fun
tion Qred: Q→Q, whi
h 
omputes the g
d of

the numerator and denominator, before dividing them by this g
d. We have also proved

that any fra
tion returned by Qred is indeed equivalent to the input fra
tion. We have then

inserted a Qred in the prin
ipal loop of 
omputation for

√
2. Perhaps would it be better

to pla
e some at ea
h elementary operation, or on the 
ontrary less frequently? Only more


omplete tests 
an answer that question. In any 
ase, it seems obvious that the 
omputation

of FTA would also gain to integrate su
h simpli�
ations. Finally, this improved library of

rational numbers was gathered in a new 
ontribution Orsay/Qarith.

6.2.3 The Cau
hy sequen
es

Let us return one moment to the de�nition of R given previously. This de�nition follows

the formulation of H. S
hwi
htenberg [73℄, whi
h di�ers slightly from the formulation used

in FTA. The latter, more usual, is ∀k, ∃N, ∀n>N, ∀n>N,|f(n)-f(m)|≤ 2-k, whereas in [73℄

the bound N is given expli
itly as a fun
tion over k, this last fun
tion being named modulus

of the Cau
hy sequen
e. These two formulations are in fa
t equivalent from the 
onstru
tive

point of view, sin
e one 
an �nd the modulus N(k) starting from the proof of ∀k, ∃N,...
Nevertheless, the more expli
it formulation of the modulus en
ourages to 
hoose it 
arefully,

and we endeavored to 
hoose it as a

urately as possible. As a 
onsequen
e, during the


omputation of an approximation of

√
2 by the extra
ted program, one dire
tly obtains

an upper error margin for the result: it is enough to ask (sqrt2.
au
hy (sqrt2.modulus

140)) to be sure to obtain a result within 2−140
of the limit whi
h is

√
2 or, said otherwise, to

get 140 
orre
t binary digits. In pra
ti
e, we even get some additional 
orre
t digits be
ause

of approximations in the 
omputation of the modulus for the sequen
e, but the order of

magnitude is the 
orre
t. In 
omparison, during the 
omputations of the e approximations

in FTA, it is experimentally 
lear that the approximation of rank k, that is the k-th term

of the Cau
hy sequen
e, will provide us n 
orre
t de
imal digit, but the relation between k

and n is not expli
it. And even if it would be made expli
it, it is not sure that this relation

would be very a

urate, due to the 
hoi
es sometimes naive in the bounds N in FTA. The

errors estimates for 
omputations in FTA were thus 
arried out a posteriori with Maple.
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6.2.4 The 
ontinuous fun
tions

The way of de�ning the 
ontinuous fun
tions di�er also appre
iably between [73℄ and

FTA. In FTA, a 
ontinuous fun
tion is a fun
tion R → R plus some asso
iated properties.

A

ording to the de�nition of R as set of of Cau
hy sequen
es, a 
ontinuous fun
tion in

FTA thus 
orresponds mainly to a fun
tion of type (N → Q) → N → Q. This fun
tion as

argument is in fa
t not desirable, be
ause it makes the extra
ted 
ode more 
omplex, more

deli
ate to analyze and potentially less e�e
tive. The alternative is then to use a family of

rational fun
tions whi
h 
onverge to the desired real fun
tion:

Re
ord 
ontinuous [i:itvl℄ : Set := {


ont_h : Q → nat → Q;


ont_α : nat → nat;


ont_w : nat → nat;


ont_
au
hy: ∀a:Q, Is_Cau
hy (
ont_h a) 
ont_α;

ont_unif : ∀a b n k, n≤(
ont_α k) → a∈i → b∈i →

-1 ≤ (a-b)*2^((
ont_w k)-1) ≤ 1 →
-1 ≤ (
ont_h a n - 
ont_h b n)*2^k ≤ 1 }.

In this de�nition, itvl is the type of the intervals delimited by two rationals. The true

fun
tion in this de�nition is 
ont

_

h, of type Q→ N→ Q. Then follow two modulus fun
tions

and their properties:

• �pointwise� Cau
hy property when the �rst argument of 
ont

_

h is �xed.

• �uniform� 
ontinuity when one �xes the se
ond argument of 
ont

_

h.

In parti
ular, for the fun
tion X 7→ X2−2 whi
h interests us, we take the following values:

Definition sqr2_h := fun (x:Q)(_:nat) ⇒ x*x-2.

Definition sqr2_α := fun _:nat ⇒ 0.

Definition sqr2_w := fun k:nat ⇒ 2+k.

6.2.5 The intermediate value theorem

Finally, the last major di�eren
e between this development and FTA relates to the me-

thod used to �nd the re
ipro
al of a given value via a fun
tion. There are indeed two possible

versions for the intermediate value theorem (IVT):

• The �rst version is the theorem 3.12 of [73℄. This is the most general version of the two,

the only 
ondition on the 
onsidered fun
tion is to be 
ontinuous. But the ransom of

su
h a wide s
ope is an expensive algorithm whi
h divides the 
urrent interval into a

multitude of su�
iently small subintervals, and whi
h are inspe
ted sequentially before

stopping in one of them. In
identally, it is also noti
eable that this version allows to

�nd re
ipro
al as �nely approximate as one wants, but not exa
t.

• The se
ond version is proposition 3.13 of [73℄. This version requires an additional as-

sumption on our fun
tion, whi
h must be lo
ally not-
onstant: for any subinterval and

any value, one should be able to exhibit a point where the fun
tion di�ers from this
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value. Equipped with this additional information, one 
an then pro
eed by �tri
ho-

tomy�, an alternative of the di
hotomy adapted to 
onstru
tive logi
. And an exa
t

re
ipro
al is obtained this time.

Taking into a

ount the advantages of the se
ond version in term of e�e
tiveness and exa
-

titude, both FTA and our development use it. On the other hand, a distin
tion is done


on
erning the proof of lo
al not-
onstan
y. FTA shows in fa
t that any polynomial of non-

null degree is lo
ally not-
onstant, via a general proof based on 
omplex fa
torizations of

the polynomials. But for a parti
ular 
ase like ours, one 
an pro
eed way simpler: the stri
t

growth of X 7→ X2 − 2 on the interval whi
h interests us is enough to imply that this

fun
tion is lo
ally not-
onstant. And this algorithm using the stri
t monotony produ
es the

goods results whi
h we have seen above.

On the opposite, L. Cruz-Filipe has identi�ed later on that the bad 
omputational beha-

vior of

√
2 using the IVT in FTA was due to the phase of 
omputation of lo
al not-
onstan
y

via polynomials. By also using stri
t monotony, he managed obtain a 
omputation of

√
2

that terminates. But the e�e
tiveness of this 
omputation is still far from the one of the small

experimentation presented here. This fa
t is 
ertainly due to fra
tions not being fa
torized

and 
omputations on terms of proof made in the abstra
t part of FTA reals.

6.3 Con
lusion

Arrived at this point, it is quite di�
ult to be satis�ed by the 
urrent state of the program

extra
ted from FTA. Truly, we have su

eeded with L. Cruz-Filipe with to understand and

optimize some 
omputations of series limits using the FTA formalism, but this study has

highlighted many limitations in the initial extra
ted program, and these limitations were

removed only by some manual interventions, sometimes very 
omplex, in the initial Coq


ode.

A mathemati
al development like FTA, not thought at the origin in term of extra
tion,


an thus indu
e a huge amount of rewriting work before being able to generate a reasonable

program. The extra
tion is thus not a magi
 button undoubtedly 
reating interesting pro-

grams starting from any proof. The situation is not so di�erent from the more usual software

development methods: a program ful�lling its spe
i�
ation is not ne
essarily thought a good

program. There are just here two additional di�
ulties:

• An analysis a posteriori as the one done here for FTA is very deli
ate. In parti
ular

the extra
tion indu
es an additional distan
e between the initial 
ode to modify and

the program to to analyze, for example by pro�ling.

• The 
on
ept of �good proof� is less pre
ise than the one of �good program�. From the

point of view of the extra
tion, a good proof is obviously a proof whose extra
tion is

e�e
tive. On the other hand, for the user, a good proof 
an be simply a 
ompletely

�nished proof. And for the mathemati
ian, a good proof 
an be an elegant or very

abstra
t proof as those done in IR. Conversely, a very spe
ialized development, made

for the extra
tion as the one we have outlined, will undoubtedly be des
ribed as less

elegant.
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The use of the 
ode extra
ted from the prin
ipal theorem of FTA is 
ertainly a failure for

the moment. But �rst of all, it is not a �nal failure, sin
e the understanding of this extra
ted


ode has enormously progressed, and that many ideas of improvements exist, su
h as for

example the simpli�
ation of the fra
tions in FTA. Then, it is advisable to relativize this

failure, and in parti
ular to not see that as the failure of the extra
tion as a methodology.

The example of FTA is indeed hardly generalizable:

• First, it is a premiere: no developments of 
omparable size have ever been extra
ted.

And as with a lot of premieres, it is hardly astonishing to have to endure initial

problems. FTA 
onstitutes 
urrently a kind of Mount Everest for the extra
tion.

• It is also an ex
eption: FTA is the only development met by the extra
tion that have

su
h an atypi
al use of the logi
 of Coq.

Finally, it is rather reassuring to see that one 
an obtain qui
kly e�e
tive extra
ted

programs in the same domain as FTA, even if that supposes to go ba
k really far away, and

espe
ially to work from the beginning with the extra
tion as ultimate goal.
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Chapitre 7

A formalization of �nite sets

The development presented in this 
hapter has been realized in 
ollaboration with J.-C.

Filliâtre. All �les of this development, both the the Coq sour
es and the extra
ted �les, are

available on the site http://www.lri.fr/~filliatr/fsets. These �les 
onstitute now the


ontribution named Orsay/FSets. This development is also des
ribed in the joint arti
le

[34℄, with a slightly di�erent point of view, less 
entered on the extra
tion.

When a programmer wishes to obtain 
erti�ed non-trivial programs by using the metho-

dology of the program extra
tion, the �rst need is the existen
e of a 
erti�ed basi
 library,

su�
iently ri
h not to have to reinvent the wheel at ea
h program line. For that purpose,

we have 
hosen to inspe
t the standard library 
oming with O
aml. Is it possible to develop

a 
erti�ed version of it?

Unfortunately, this standard library of O
aml 
ontains only a few purely fun
tional data

stru
tures. And in our extra
tion paradigm, the study of the imperative modules like Array

is not feasible. To treat these imperative 
ases, one should rather turn to tools like Why [33℄

developed by J.-C. Filliâtre, whi
h supersedes the old ta
ti
 Corre
tness [32℄. Some other

modules, without being imperative, would be deli
ate to formalize su
h as for example those

using the hardware integers.

It thus only remains in our s
ope the modules List, Set, Map and to a lesser extent Sort

and Stream. Our study was �nally limited to the module Set of the �nite sets in O
aml.

At the same time, this 
hoi
e of Set is far from being an uninteresting 
hoi
e. This module

presents indeed the following 
hara
teristi
s:

• The need for its use is felt very frequently, obviously by the programmer, but also

by mathemati
ian. We will see for example how these sets 
an be used to establish a

result of graph theory.

• Its interfa
e, relatively simple, allows to highlight the new 
apa
ities of Coq in term

of modular organization. (see se
tion 4.1).

• The library Set thus allows to build modules ful�lling this interfa
e, thanks to a fun
tor

Make taking as input a module 
ontaining at least a type and a 
omparison fun
tion on

this type. However there exist numerous manners of 
oding this fun
tor Make, ranging

from the most naive to the most advan
ed one. For example, the implementation


urrently used by O
aml is based on AVL trees [2℄. During this formalization, we
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arried out a �rst implementation using of sorted lists, and J.-C. Filliâtre has built

two others more e�e
tive implementation based on AVL trees and on Red-Bla
k trees

[41℄.

The general outline of our development is as follows:

Coq

Caml

interfa
e OrderedType interfa
e OrderedType

extra
tion

interfa
e S for sets interfa
e S for sets

fun
tor Make : OrderedType → S fun
tor Make : OrderedType → S

A simple manner to obtain the Coq interfa
es 
onsists in taking the O
aml interfa
es

OrderedType and S, and adding in it only the spe
i�
ation part for the fun
tions. Ideally,

the extra
tion of these Coq interfa
es would then give again the initial O
aml interfa
es. We

have �rst followed this approa
h, in spite of one 
ertain number of di�
ulties that we detail

in the following se
tion:

• First of all, some in
ompatibilities between the O
aml types and Coq one prevents

the interfa
e produ
ed by the extra
tion to be exa
tly equal to the initial interfa
e of

O
aml.

• Then, the spe
i�
ation of higher order fun
tionals as fold appeared parti
ularly deli-


ate, and several versions were ne
essary before 
oming to a satisfa
tory result.

• Finally this �rst approa
h in whi
h spe
i�
ations are separated from the signature

of the fun
tions is not inevitably the the most natural style in Coq. Indeed Coq also

allows to in
orporate the spe
i�
ation in the type, via the use of dependent types.

In fa
t, we propose our Coq interfa
e under these two versions, as well as translation

fun
tors between these versions.

In the same way, one 
an imagine to import

1

into Coq the 
urrent 
ode of the fun
tor

Make of O
aml, and in a se
ond time prove that these purely informative fun
tions ful�ll

indeed their separate spe
i�
ations. We followed this approa
h for the 
erti�
ation of a

naive version of Make based on sorted lists. On the other hand J.-C. Filliâtre preferred to

follow the interfa
e based on dependent types, and dire
tly de�ned the algorithms and their

justi�
ations interleaved together. The same methodology was used to obtain an 
erti�ed

implementation of Make based on Red-Bla
k trees.

Finally, the programmer has now four O
aml implementations 
ompatible with the ex-

tra
tion of our Coq interfa
e for �nite sets:

• the non-
erti�ed initial implementation using AVL, via a slight wrapping for pre
isely


orresponding to our interfa
e;

1

For la
k of better me
hanism, this importation is 
urrently to be done manually.
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• a simple and 
erti�ed but ine�e
tive implementation based on sorted lists;

• two implementation 
erti�ed and e�e
tive, via Red-Bla
k trees and AVL trees.

7.1 The Coq interfa
e

This interfa
e 
orresponds to the �le FSetInterfa
e.v. Let us see now more in details

the points that Coq allows to import dire
tly from O
aml, and those that need an adaptation.

7.1.1 The ordered types

First of all, the O
aml interfa
e of Set starts by the de�nition of a signature representing

a type equipped with an order relation, this type being meant to be
ome the support type

for the future sets.

module type OrderedType =

sig

type t

(* The type of the set elements. *)

val 
ompare : t → t → int

(* A total ordering fun
tion over the set elements.

This is a two-argument fun
tion [f℄ su
h that

[f e1 e2℄ is zero if the elements [e1℄ and [e2℄ are equal,

[f e1 e2℄ is stri
tly negative if [e1℄ is smaller than [e2℄, and

[f e1 e2℄ is stri
tly positive if [e1℄ is greater than [e2℄.

end

A �rst problem appears immediately: for e�
ien
y reasons, the 
omparison of O
aml returns

an hardware integer int. However these integers do not exist in Coq, and even though, would

not be 
onvenient to perform logi
al reasoning. More in a

ordan
e with the use in Coq, our

interfa
e is based on logi
al relations, i.e. on fun
tions of type t→t→Prop. These logi
al

relations are the equality eq and the stri
t order lt. They 
ome together with �ve Axiom

that require that eq and lt ful�ll theirs usual elementary properties.

Indu
tive Compare (X : Set) (lt eq : X → X → Prop) (x y : X) : Set :=

| Lt : lt x y → Compare lt eq x y

| Eq : eq x y → Compare lt eq x y

| Gt : lt y x → Compare lt eq x y.

Module Type OrderedType.

Parameter t : Set.

Parameter eq : t → t → Prop.

Parameter lt : t → t → Prop.

Axiom eq_refl : ∀x, eq x x.

...

/

...
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...

/

...

Axiom eq_sym : ∀x y, eq x y → eq y x.

Axiom eq_trans : ∀x y z, eq x y → eq y z → eq x z.

Axiom lt_trans : ∀x y z, lt x y → lt y z → lt x z.

Axiom lt_not_eq : ∀x y, lt x y → ¬ eq x y.

Parameter 
ompare : ∀x y, Compare lt eq x y.

End OrderedType.

In fa
t, the O
aml and Coq versions are not so di�erent, at least from an informative

point of view, the one of the extra
tion. Indeed, eq and lt are ignored by the extra
tion sin
e

pla
ed in sort Prop, the one of logi
al propositions. In the same way, the �ve properties of eq

and lt are also in Prop, thus ignored by the extra
tion. Thus the only remaining parts after

extra
tion are the informative parts pla
ed in Set, here the type t and the fun
tion 
ompare.

The latter fun
tion, similar to the 
ompare of O
aml, allows to dis
riminate a

ording to the

respe
tive positions of two elements of type t, and returns a result in the ternary indu
tive

type Compare. From the logi
al point of view, 
ompare states the de
idability of eq and lt.

It should indeed be noti
ed that 
ompare returns not only the desired position information

(via the used 
onstru
tor Lt, Eq, or Gt), but also a logi
al proof 
ertifying the 
urrent

situation. This logi
al part is also forgotten by the extra
tion, and that gives us for this

signature OrderedType the following extra
ted version:

type 'x 
ompare =

| Lt

| Eq

| Gt

module type OrderedType =

sig

type t

val 
ompare : t → t → t 
ompare

end

It should be noted that we 
an easily write manually wrappers between this type 
ompare

and the type int used in the initial O
aml interfa
e as a three-value type. One 
an thus

adapt the fun
tor Make provided by O
aml in order that it works with our interfa
e.

7.1.2 The signature of the sets

Now, in O
aml, an set stru
ture is 
reated via the following fun
tor:

module Make (Ord : OrderedType) : S with type elt = Ord.t

(* Fun
tor building an implementation of the set stru
ture

given a totally ordered type. *)

And here 
omes now the beginning of this signature S of the set stru
ture:
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module type S =

sig

type elt

(* The type of the set elements. *)

type t

(* The type of sets. *)

val empty: t

(* The empty set. *)

val is_empty: t → bool

(* Test whether a set is empty or not. *)

val mem: elt → t → bool

(* [mem x s℄ tests whether [x℄ belongs to the set [s℄. *)

val add: elt → t → t

(* [add x s℄ returns a set 
ontaining all elements of [s℄,

plus [x℄. If [x℄ was already in [s℄, [s℄ is returned un
hanged. *)

[...℄

end

One �nds there, in addition to the types elt and t and the 
onstant empty, 22 ele-

mentary fun
tions over sets. It should be noted that ea
h fun
tion 
omes with an informal

spe
i�
ation in 
omment. It is in fa
t starting from these informal spe
i�
ations that we

have built our formalization. Our Coq signature thus begin in the same manner as the O
aml

signature, namely by the type de
laration for the set operators:

Module Type S.

De
lare Module E : OrderedType.

Definition elt := E.t.

Parameter t : Set.

Parameter empty : t.

Parameter is_empty : t → bool.

Parameter mem : elt → t → bool.

Parameter add : elt → t → t.

[...℄

End S.

Some fun
tion signatures are not adaptable so simply:

• 
ompare : t → t → int

One �nds again the same problem as with OrderedType: what to do with int? The

answer is similar. First, we add in the signature S two relations eq and lt on sets, of
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type t→t→Prop, without equivalents in O
aml, and ignored by the extra
tion. And

beside that, S requires the presen
e of an informative fun
tion 
ompare of type ∀s∀s',
(Compare eq lt s s'). This way, we still have in Coq the following interesting pro-

perty of O
aml : a module ful�lling S 
an also be seen as a OrderedType, whi
h allows

to build sets of sets.

• iter: (elt → unit) → t → unit

This is the only o

urren
e of an imperative fun
tion in all the module, untranslatable

in a purely fun
tional world, and thus omitted.

• 
ardinal: t → int

On
e again, int is not dire
tly usable in Coq. We have 
hosen to de
lare 
ardinal: t

→ nat, where nat is the Coq type of Peano integers. This debatable 
hoi
e has only

the interest of providing simple indu
tion prin
iples over the size of a set. But this is

done at the detriment of the e�
ien
y. Among the other alternatives, one 
an also use

the binary integers Z of Coq, or an axiomatized abstra
t type, whi
h one then extra
ts

manually to int (see se
tion 4.4.2). In any 
ase, the other versions of 
ardinal 
an

easily be written thanks to the generi
 fun
tion fold.

• min

_

elt, max

_

elt and 
hoose: t → elt

All these three fun
tions are supposed to raise the ex
eption Not

_

found if their argu-

ment is empty. A natural manner of en
oding this behavior in Coq is the use of the

type option.

At the head of the Coq interfa
e, one 
an noti
e the presen
e of a de
laration E:

OrderedType. This de
laration, la
king in O
aml, allows in parti
ular to name E.t, E.lt

and E.eq in the spe
i�
ations. The Coq type of the Make modules will then be:

Module Make (X:OrderedType) : S with Module E := X.

It is possible to avoid the use of this internal sub-module E by repla
ing it with two

Parameter eq and lt in S, and by providing three �with Definition...� instead of only

one �with Module...�.

The spe
i�
ation part, with is the se
ond half of the signature S of Coq, is 
entered

around a logi
al membership relation In : elt→t→Prop. This relation is abstra
t: ea
h

module implementing our �nite set interfa
e should provide one. The only property required

for this In is the 
ompatibility with respe
t to the equality of E:

Parameter In_1: E.eq x y → In x s → In y s.

This property must be understood with a impli
it universal quanti�
ation over the variables

x, y and s, as authorizes by the me
hanism of Se
tion (see page 29). The same is true in

the following examples.

All the set fun
tion spe
i�
ations are now expressed with respe
t to this predi
ate In.

One writes for example:

(** Spe
ifi
ation of [mem℄ *)

...

/

...
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...

/

...

Parameter mem_1: In x s → mem x s = true.

Parameter mem_2: mem x s = true → In x s.

(** Spe
ifi
ation of [add℄ *)

Parameter add_1: In x (add x s).

Parameter add_2: In y s → In y (add x s).

Parameter add_3: ¬ E.eq x y → In y (add x s) → In y s.

7.1.3 The 
ase of higher order fun
tions

Among these set fun
tions, those taking a fun
tion as argument require a little more

attention. This 
on
erns fold, filter, for_all, exists and partition. For example the

abstra
t spe
i�
ation of fold is:

val fold: (elt → 'a → 'a) → t → 'a → 'a

(* [fold f s a℄ 
omputes [(f xN ... (f x2 (f x1 a))...)℄, where

[x1 ... xN℄ are the elements of [s℄. The order in whi
h elements

of [s℄ are presented to [f℄ is unspe
ified. *)

Our �rst attempts at spe
ifying fold were based on the formalization of the two following

equations:

fold f empty i = i

fold f (add x s) i = f x (fold f s i)

But this approa
h appeared to be extremely hard to �nalize. Two problems have arisen in

parti
ular:

• To take in a

ount the unspe
i�ed 
hara
ter of the order of 
omputations, while spea-

king of a meaningful �nal result, it was ne
essary to add assumptions on f, like the


ommutativity: f x (f y a) = f y (f x a).

• Moreover, what happens if f returns two distin
t values for two elements x and y that

are equal modulo E.eq? In a preliminary version, we did not treat this 
ase 
orre
tly,

whi
h would have allowed to prove false = true starting from a hypotheti
al module

having for interfa
e this version S.

• Finally the use of the usual equality �=� of Coq in these equations is too restri
tive

for 
ertain uses. For example if one wishes to rebuild a set via a fold, one would

then write (fold add s empty). But the usual equality is not appropriate with our

sets parameterized by an equality E.eq. We 
an then a

ept this 
ase by using an

additional equality eqA over the output type, but that be
omes really heavy.

Finally, we have 
hosen a spe
i�
ation at the same time simpler and more expressive,

by relying on a previously de�ned datatype, namely the lists, and more pre
isely on the

fun
tion fold

_

right de�ned on these lists. The �nal spe
i�
ation is rather 
lose to the

informal version given in 
omment above. Instead of saying �x1... xN is the elements of

the set s�, we a�rm �l is a list without redundan
y 
ontaining all the elements of s and only

those�. Of 
ourse, the membership of our list and the not-redundan
y are expressed modulo
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E.eq. For that we have de�ned two spe
ialized predi
ates InList and Unique parameterized

by one equality. Here 
ome this �nal spe
i�
ation of fold:

Parameter fold_1 : ∀(A : Set)(i : A)(f : elt → A → A), ∃l : list elt,

Unique E.eq l ∧
(∀x, In x s ↔ InList E.eq x l) ∧
fold f s i = fold_right f i l.

This formulation does in parti
ular not assume any pre-
ondition on the fun
tion f. If

this fun
tion f does not 
he
k the 
ommutativity of 
omputations, or is not invariant with

respe
t to E.eq, then several lists 
ontaining the elements of s will produ
e di�erent results

by fold

_

right. But at least one of these lists ends in the same result as the fold. In fa
t,

if we adds these pre-
onditions on f, one 
an repla
e ∃l by ∀l in the spe
i�
ation.

For spe
ifying the other higher order fun
tions, that is filter, for_all, exists and

partition, we 
ould also have established a parallel with the versions of these fun
tions

working on lists. In fa
t, these 
ases are appre
iably simpler than the example of fold, sin
e

there is no problem of 
omputations order or equality on the output type. We have thus

used a dire
t spe
i�
ation, su
h as for example:

Parameter filter_1 : 
ompat E.eq f → In x (filter f s) → In x s.

Parameter filter_2 : 
ompat E.eq f → In x (filter f s) → f x = true.

Parameter filter_3 :


ompat E.eq f → In x s → f x = true → In x (filter f s).

The 
ondition 
ompat then requires the invarian
e of f with respe
t to E.eq.

7.1.4 A alternate signature 
ontaining dependent types

Our signature is thus divided into two, with one one side the purely informative fun
tions,

and on the other side the spe
i�
ations in the form of purely logi
al axioms. This approa
h

is not the only possible one in Coq. Thanks to the dependent types, one 
an indeed gather

both parts in only one expression, whose general outline is, for a fun
tion with an argument,

∀x,P(x)→∃y,Q(x,y) with P and Q logi
al predi
ates expressing respe
tively the pre- and

post-
onditions.

We have then written a se
ond version of the set signature, named Sdep, by using this

style of �dependent types�. Here 
omes an ex
erpt:

Module Type Sdep.

De
lare Module E : OrderedType.

Definition elt := E.t.

Parameter t : Set.

Parameter In : elt → t → Prop.

Definition Empty s := ∀a, ¬ In a s.

...

/

...
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...

/

...

Definition Add (x:elt)(s s':t) := ∀y, In y s' ↔ E.eq y x ∨ In y s.

[...℄

Parameter empty : {s : t | Empty s}.

Parameter is_empty : ∀s, {Empty s}+{¬ Empty s}.

Parameter mem : ∀x s, {In x s}+{¬ In x s}.

Parameter add : ∀x s, {s' : t | Add x s s'}.

[...℄

End Sdep

The parameter In is now needed at the very beginning to express the spe
i�
ations. Then

follow a 
ertain number of short
uts su
h as Empty and Add, expressing logi
al properties

based on In. The fun
tion add is now build on the pre- and post-
ondition model: the pre-


ondition is here always true, and the post-
ondition (Add x s s') expresses the fa
t that

the new set s' 
ontains the same elements as the old s, plus x. The 
ase of the fun
tions

is_empty and mem is slightly di�erent: instead of saying �there exists a boolean su
h that...�,

we dire
tly use an indu
tive type with two values, sort of enri
hed boolean type, allowing

to express what happens in both 
ases. This type is sumbool, presented p. 29.

On
e again, the fun
tions that are the most di�
ult to spe
ify are the higher order

fun
tions. Here is for example fold, whi
h now 
ontains the property fold

_

1 in post-


ondition:

Parameter fold : ∀(A : Set)(f : elt → A → A)(s : t)(i : A),

{r : A | ∃l : list elt,

Unique E.eq l ∧
(∀x, In x s ↔ InList E.eq x l) ∧
r = fold_right f i l}.

7.1.5 Two fun
tors to 
hoose the signature style

The new system of module of Coq then allows us to avoid a 
hoi
e between the two

possible signatures. Indeed one 
an easily write a fun
tor whi
h transforms a module of

type S into a new module of type Sdep and another fun
tor doing the 
onverse work. This

is a
tually done in the �le FSetBridge.v. This way, all new implementation of the sets

only needs to be done for one version, whi
hever one is 
hosen. A

ording to the taste of

the programmer, the two implementations based on sorted lists and on red-bla
k trees were

build over di�erent signature, one in a

ordan
e to S, the other in a

ordan
e to Sdep. And


onversely, any user has the 
hoi
e of the version whi
h he prefers to use. He 
an even, and

it is really appre
iable in pra
ti
e, use the two interfa
es simultaneously.

7.1.6 Extra
tion of the set signatures

What happen to the extra
ted versions from these two interfa
es? They are in fa
t

extremely 
lose, and 
an even be made equal.
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Con
erning the interfa
e S, the extra
tion is quite simple. Indeed, the pure signatures do

not 
ontain any logi
al part, and there is no use of advan
ed Coq types like sorts, pattern

mat
hings or �xpoints. The extra
tion is then a simple translation to O
aml. Con
erning the

spe
i�
ations, sin
e they are 
ompletely logi
al, they are just forgotten. We just go ba
k to

the initial O
aml interfa
e modulo the slight adaptations mentioned previously. Here 
omes

its beginning:

module type S =

sig

module E : OrderedType

type elt = E.t

type t

val empty : t

val is_empty : t → bool

val mem : elt → t → bool

val add : elt → t → t

[...℄

end

Things get more 
ompli
ated in the 
ase of the interfa
e Sdep. First of all, the possible

logi
al arguments 
orresponding to pre-
onditions are eliminated. Then the indu
tive type


orresponding to the post-
onditions of the form {y: Y| ... }, that is sig, is re
ognized

as being a �singleton informative� type (see p. 131), and is thus translated into the identity:

type 'a sig0 = 'a. The type extra
ted from the dependent version of add is thus elt

→ t → t sig0, whi
h is then 
onvertible to the expe
ted elt → t → t. In the other

possible situation, namely the use of sumbool as in is_empty or mem, the extra
tion of

sumbool 
onsists in forgetting the logi
al de
orations of this indu
tive, whi
h gives:

type sumbool =

| Left

| Right

This extra
ted type sumbool is isomorph with the boolean type, but not equal. If one wishes

to for
e the equality, in order to really obtain the same signature in both 
ases, it is enough

to use the repla
ement me
hanism for the extra
ted indu
tive (see p. 142):

Extra
t Indu
tive sumbool ⇒ bool [true false℄.

Here is the beginning of the interfa
e extra
ted from Sdep, with no repla
ement of sumbool

by bool:

module type Sdep =

sig

...

/

...
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...

/

...

module E : OrderedType

type elt = E.t

type t

val empty : t sig0

val is_empty : t → sumbool

val mem : elt → t → sumbool

val add : elt → t → t sig0

[...℄

end

At this point, we have a formal interfa
e in Coq, as well as an extra
tion of this interfa
e

in O
aml. We 
an then right now provide a not-formal implementation of this extra
ted

interfa
e thanks to the module Set of O
aml, with the help of a manual en
apsulation of


ertain fun
tions, in parti
ular the 
omparisons.

(* 
2i : 't 
ompare → int *)

let 
2i = fun
tion Lt → -1 | Eq → 0 | Gt → 1

(* i2
 : int → 't 
ompare *)

let i2
 i = if i<0 then Lt else if i=0 then Eq else Gt

(* i2n : int → nat, tail re
ursive *)

let i2n =

let re
 a

 p = fun
tion 0 → p | n → a

 (S p) (n-1)

in a

 O

module Make(X:OrderedType) : S with module E = X and type elt = X.t =

stru
t

module E = X

module M = Set.Make(stru
t

type t = X.t

let 
ompare x y = 
2i (X.
ompare x y)

end)

in
lude M

let 
ompare s s' = i2
 (
ompare s s')

let 
ardinal s = i2n (
ardinal s)

let max_elt s = try Some (max_elt s) with Not_found → None

let min_elt s = try Some (min_elt s) with Not_found → None

let 
hoose s = try Some (
hoose s) with Not_found → None

end

Please note that this only works if we have repla
ed beforehand 
ertain extra
ted indu
-

tive types by their primitive equivalent in O
aml. This 
on
erns the boolean, the pairs and

the lists. For boolean, that 
an be done via an Extra
t Indu
tive, but the two other 
ases
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require an external intervention, for example the use of a synta
ti
 s
ript of improvement

of the extra
ted 
ode. This s
ript, written in Camlp4, is available at the following address:

http://www.lri.fr/~letouzey/download/pp_extra
t.ml.

7.2 A implementation based on sorted lists

Before going further, one may wonder why do we really need to 
ode in Coq an imple-

mentation of our set interfa
es. After all, using a pragmati
 attitude, one 
an indeed 
hoose

to regard the module Set of O
aml as being su�
iently tested to be 
orre
t with respe
t to

its informal spe
i�
ation written in 
omments. And 
on
erning our small manual wrapping

fun
tor Make in the previous paragraph, its small size and its simpli
ity leave little pla
e to

errors. If we a

ept these two points, then we 
an perfe
tly 
arry out a 
erti�ed development

in Coq using our sets only via their interfa
e, and obtain nevertheless a 
omplete program

thanks to this fun
tor Make.

In fa
t, we will see later in the des
ription of our implementation based on AVL trees

that the original implementation of O
aml was not so 
orre
t after all, sin
e we have found

there an error. The formalization of this implementation was thus not vain.

And from the point of view of a Coq user interested in our �nite set library, stopping

this library with only the Coq interfa
e presents two disadvantages. First of all, su
h an

abstra
t vision ex
ludes any 
omputation in Coq. In parti
ular, one 
an build a proof that

(is_empty empty) is worth true, but not 
ompute/exe
ute/simplify (is_empty empty)

into true. This is only possible for a parti
ular implementation of the sets. Maybe a future

introdu
tion of primitive rewriting in Coq will one day 
hange this fa
t. And providing an

e�e
tive Coq implementation in whi
h we 
an 
ompute 
an also lead to the use of these sets

in ta
ti
s based on re�exion (see for example [16℄).

The other disadvantage is the risk of in
onsisten
y of our interfa
e, whi
h is by itself only

an axiomatization. This risk is to be taken seriously. For example we have already mentioned

the fa
t that an earlier version of FSetInterfa
e.v was allowing to dedu
e False from some

parti
ular OrderedType, due to a bad spe
i�
ation of the higher order fun
tions like fold.

This nasty surprise 
annot happen any more, sin
e at least an implementation allows, from

any OrderedType, to build a module ful�lling S, and this without using any axiom.

7.2.1 Des
ription of the module FSetList

The goal of this module is to provide as qui
kly as possible an implementation to our

Coq interfa
e for sets, mainly in order to to 
he
k its 
oheren
e. E�
ien
y was hen
e not a

preo

upation during its 
reation. As a 
onsequen
e, the �rst idea was an implementation

using unspe
i�ed lists. But 
ontrary to the 
ommon ideas, the set operations for unspe
i�ed

lists are not so obvious to write. In parti
ular the fun
tion remove must parse all the list to

dete
t possible doubled items. Similarly, the fun
tion fold must deal with these dupli
ated

items. A solution is then to maintain an invariant of not-redundan
y. Sin
e an invariant is

to be maintained, it is hardly more di�
ult to require dire
tly that the lists are sorted. And

this way the e�
ien
y is mu
h better.
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For this implementation, we have followed the not-dependent interfa
e S. But it is not

that simple to work with lists asso
iated with an invariant. In parti
ular, for ea
h operation

produ
ing a list, it is immediately ne
essary to 
he
k that this invariant is preserved. We

have preferred to split the work in several phases.

A �rst fun
tor Raw, taking a OrderedType as argument, de�nes set fun
tions over the

datatype t = (list elt), impli
itly assuming that these lists are sorted Thus the union


orresponds to the 
lassi
al merge algorithm:

Fixpoint union (s : t) : t → t :=

mat
h s with

| [℄ ⇒ fun s' ⇒ s'

| x :: l ⇒
(fix union_aux (s' : t) : t :=

mat
h s' with

| [℄ ⇒ s

| x' :: l' ⇒
mat
h E.
ompare x x' with

| Lt _ ⇒ x :: union l s'

| Eq _ ⇒ x :: union l l'

| Gt _ ⇒ x' :: union_aux l'

end

end)

end.

Note here the usual tri
k 
onsisting in using an anonymous internal fix for enabling the


all (union_aux l'), not stru
turally de
reasing 
ompared to the �rst argument.

In a se
ond time, the fun
tor Raw proves the properties expe
ted by the signature S,

ex
ept that we add at the top of the lemmas the assumption that the input lists are initially

sorted.

Lemma union_1 : ∀(s s' : t)(Hs : Sort s)(Hs' : Sort s')(x : elt),

In x (union s s') → In x s ∨ In x s'.

We also prove that our operations always produ
e sorted lists when their arguments are

sorted. For example:

Lemma union_sort :

∀(s s' : t) (Hs : Sort s) (Hs' : Sort s'), Sort (union s s').

Consequently, we then have all the pie
es to de�ne a se
ond fun
tor named Make, whi
h this

time really produ
es a module of signature S. In this module, the datatype is now the well

sorted lists, de�ned by:

Re
ord sorted_list : Set := { this :> Raw.t ; sorted : sort E.lt this }.

Definition t := sorted_list.

The remainder of the module is only a long sequen
e of wrapping/unwrapping, whi
h thanks
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to the impli
it arguments and to the 
oer
ion t :> Raw.t are done without problem. For

example:

Definition union (s s' : t) :=

Build_sorted_list (Raw.union_sort (sorted s) (sorted s')).

Definition union_1 (s s' : t) := Raw.union_1 (sorted s) (sorted s').

7.2.2 Extra
tion of FSetList

The extra
tion of the whole 
annot be simpler. Con
erning the fun
tor Raw, the pure

fun
tions are extra
ted into themselves, and their properties are forgotten. Our example of

the union gives:

let re
 union s x =

mat
h s with

| Nil → x

| Cons (x0, l) →
let re
 union_aux s' = mat
h s' with

| Nil → s

| Cons (x', l') →
(mat
h E.
ompare x0 x' with

| Lt → Cons (x0, (union l s'))

| Eq → Cons (x0, (union l l'))

| Gt → Cons (x', (union_aux l')))

in union_aux x

And in the fun
tor Make, the type sorted_list is re
ognized as being isomorph to (list

elt) as soon as the logi
al part sorted is removed (one more informative singleton indu
tive

type). All the remainder is thus only de�nitions of aliases. For example:

let this s = s

let union s s' = Raw.union (this s) (this s')

7.2.3 The tail re
ursivity

It should be noted that our fun
tions on lists were written in a dire
t re
ursive style,

and are thus almost never tail re
ursive. This is a priori not a problem, be
ause this module

has no 
laim of e�e
tiveness. Ex
ept that...

It indeed appeared during the realization of the e�e
tive implementation based on Red-

Bla
k trees, that a 
ertain number of operations, su
h as for example the union and the

interse
tion, 
ould be in fa
t advantageously �sub
ontra
ted� to the module FSetList:

• On the e�
ien
y level, one 
an transform a Red-Bla
k tree, whi
h is a parti
ular form

of binary sear
h tree, into a sorted list via a simple linear traversal. And the re
ipro
al

transformation, even if less simple, 
an also be done in linear time. Finally, we obtain
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this way an union on trees whose 
omplexity is in the worst 
ase the sum of the sizes

of his arguments. This 
omplexity is theoreti
ally optimal, and quite far from being

obvious to obtain by dire
t analysis of the trees.

• On the level of the 
orre
tness proof for these �sub
ontra
ted� fun
tions, there is an

obvious gain: we only need to prove on
e and for all the 
orre
tness of the two fun
tions

of 
onversion between Red-Bla
k trees and sorted lists, and then the 
orre
tness of the

tree fun
tions done this way is obtained by dire
t translation of the results already

proved for the lists.

Consequently, it would be interesting to 
arry out an alternative of FSetList that


onsume no sta
k. A simple way to rea
h that point would be undoubtedly to de�ne the tail

re
ursive alternatives, and to prove immediately that they return the same result as their

simpler 
ounterparts.

Con
erning the implementation based on AVL tree, we made a point of being as faithful

as possible to the original O
aml 
ode of the library Set. We thus have not used this method

of �attening, merging, then rebuilding, but rather the method used in Set, more e�e
tive

in pra
ti
e.

7.3 A implementation based on Red-Bla
k trees

The 
orresponding �le is FSetRBT.v. Let us remind that Red-Bla
k trees (RBT) are

binary sear
h trees for whi
h one limits the maximum imbalan
e by asso
iating two 
olors

to the nodes, and by 
ontrolling the lo
ations of these 
olors. More pre
isely:

(i) all the paths from the root to a leaf should 
ontain exa
tly the same number of bla
k

nodes.

(ii) a red node 
annot have red 
hild.

(iii) the leaves are 
onsidered bla
k.

Our implementation of sets based on RBT is thus e�e
tive. For example, the sear
h

for an element has a logarithmi
 maximal 
ost. But this e�e
tiveness is paid during the


orre
tness proofs, whi
h are mu
h more 
omplex than in the pre
eding implementation.

For example, the 
orre
tness proof of the add 
onsists of more than 350 lines. Fortunately,

only add, remove and of_list (the building of a RBT starting from a sorted list) have

presented real di�
ulties. The other fun
tions were either simpler, or �sub
ontra
ted� to the

list fun
tor as seen in the previous paragraph.

Our intention is here not to des
ribe the details of this implementation. Moreover the

main fun
tions like add and remove having been realized by J.-C. Filliâtre. One 
an ne-

vertheless note that the interfa
e used is Sdep, the one 
ontaining dependent types. The

fun
tions are thus de�ned by ta
ti
s instead of dire
tly providing terms, and these ta
ti
s

allow to build at the same time the stru
ture of the underlying algorithm and the proofs of

the intermediate needed properties, invariants and post-
onditions. This module thus 
onsti-

tutes a good test ben
h for the extra
tion, whi
h have to distinguish informative parts from

logi
al parts. In pra
ti
al, the extra
ted fun
tions are ea
h time 
lose to what one would

have manually written, ex
ept for synta
ti
 details like the shape of pattern mat
hings.
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And as shows in a following se
tion, the e�e
tiveness of the extra
ted fun
tions is indeed as

awaited.

Let us 
onsider for example the fun
tion of_list that 
onstru
ts a RBT from a sorted

list. It relies on a fun
tion of_list_aux with three informative arguments:

• the height k of the tree to be manufa
tured, initialized in of_list with N_digits,

that is a base two logarithm.

• the size n of the tree to be manufa
tured.

• the list of the elements, that 
an be
ome larger than n during the internal re
ursive


alls. So this fun
tion of_list_aux fun
tion also returns the extra elements.

Here 
ome shortened versions of of_list_aux and of_list. We have removed all the in-

variants propagated in these fun
tions, and have only kept the treatment of the various

situations. But even this way, this Coq s
ript remains highly indigestible, and is given only

as an illustration.

Definition of_list_aux :

∀k : Z, 0 ≤ k →
∀n : Z, two_p k ≤ n + 1 ≤ two_p (Zsu

 k) →
∀l : list elt, sort E.lt l → n ≤ Zlength l →
{rl' : tree * list elt | ... }.

Proof.

intros k Hk; pattern k; apply natlike_re
3; try assumption.

intro n; 
ase (Z_eq_de
 0 n).

(* k=0 n=0 *)

intros Hn1 Hn2 l Hl1 Hl2; exists (Leaf, l); [...℄.

(* k=0 n>0 (in fa
t 1) *)

intros Hn1 Hn2.

assert (n = 1). [...℄

rewrite H.

intro l; 
ase l.

(* l = [℄, absurd 
ase. *)

intros Hl1 Hl2; unfold Zlength, Zlt in Hl2; elim Hl2; trivial.

(* l = x::l' *)

intros x l' Hl1 Hl2; exists (Node red Leaf x Leaf, l'); [...℄

(* k>0 *)


lear k Hk; intros k Hk Hre
 n Hn l Hl1 Hl2.

rewrite <- Zsu

_pred in Hre
.

generalize (power_invariant n k Hk).

elim (Zeven.Zsplit2 (n - 1)); intros (n1, n2) (A, B) C.

elim (C Hn); 
lear C; intros Hn1 Hn2.

(* 1st re
ursive 
all : (of_list_aux (Zpred k) n1 l) gives (lft,l') *)

elim (Hre
 n1 Hn1 l Hl1).

intro p; 
ase p; 
lear p; intros lft l'; 
ase l'.

...

/

...
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...

/

...

(* l' = [℄, absurd 
ase. *)

intros o; elimtype False. [...℄

(* l' = x :: l'' *)

intros x l'' o1.

(* 2nd re
. 
all : (of_list_aux (Zpred k) n2 l'') gives (rht,l''') *)

elim (Hre
 n2 Hn2 l''); 
lear Hre
.

intro p; 
ase p; 
lear p; intros rht l''' o2.

exists (Node bla
k lft x rht, l'''). [...℄

Defined.

Definition of_list : ∀l : list elt, sort E.lt l →
{s : t | ∀x : elt, In x s ↔ InList E.eq x l}.

Proof.

intros.

set (n := Zlength l) in *.

set (k := N_digits n) in *.

assert (0 ≤ n). [...℄

assert (two_p k ≤ n + 1 ≤ two_p (Zsu

 k)). [...℄

elim (of_list_aux k (ZERO_le_N_digits n) n H1 l); auto.

intros (r, l') o.

assert (∃n : nat, rbtree n r). [...℄

exists (t_intro r (olai_bst o) H2). [...℄

Defined.

And here 
omes now the extra
tion of these two fun
tions:

(** val of_list_aux : z → z → elt list → (tree, elt list) prod sig0 **)

let re
 of_list_aux x n l =

mat
h x with

| ZERO →
(mat
h z_eq_de
 ZERO n with

| Left → Pair (Leaf, l)

| Right →
(mat
h l with

| Nil → assert false (* absurd 
ase *)

| Cons (x0, l') → Pair ((Node (Coq_red, Leaf, x0,

Leaf)), l')))

| POS p →
let Pair (n1, n2) = zsplit2 (zminus n (POS XH)) in

let Pair (lft, l1) = of_list_aux (zpred (POS p)) n1 l in

(mat
h l1 with

| Nil → assert false (* absurd 
ase *)

| Cons (x0, l2) →
let Pair (rht, l3) = of_list_aux (zpred (POS p)) n2 l2 in

...

/

...



198 Certi�ed fun
tional programming

...

/

...

Pair ((Node (Coq_bla
k, lft, x0, rht)), l3))

| NEG p → assert false (* absurd 
ase *)

(** val of_list : elt list → t sig0 **)

let of_list l =

let n = zlength l in

let Pair (r, l') = of_list_aux (n_digits n) n l in

r

The proof stru
ture of of_list_aux 
an be better understood by reading the extra
ted


ode rather than the proof itself, even with the a

ompanying notes. This readability of the

extra
ted 
ode does not 
ome for free, and is the result of many optimizations (
f se
tion

4.3). Here, one noti
es an indu
tion on the integer k≥0, thanks to an ad ho
 indu
tion

prin
iple named natlike_re
2, whose type is:

Lemma natlike_re
2 : ∀P : Z → Type,

P 0 →
(∀z : Z, 0 ≤ z → P z → P (Zsu

 z)) →
∀z : Z, 0 ≤ z → P z

In the 
ase k=0, we have either n=0 and then we builds an empty tree or n=1 and then we

build a �nal node of red 
olor. And when k>0, we divide n-1 into two halves, (n1 and n2),

and we 
all re
ursively twi
e the fun
tion to build the left and right parts of the tree.

7.4 A implementation based on AVL trees

We have also realized a third implementation of a fun
tor Make taking an OrderedType

and returning a module of signature Sdep. After those based of sorted lists and on Red-

Bla
k trees, this third implementation is based on AVL trees. It has been 
arried out by

J.-C. Filliâtre by following as 
losely as possible the initial implementation of the fun
tor

Set.Make available in the standard library of O
aml. In fa
t, the 
ode whi
h we obtain by

extra
tion of this Coq implementation is su�
iently 
lose to the original manual 
ode to be

able to a�rm reasonably that we have formalized and 
erti�ed this O
aml library.

Ex
ept for the printing details, the prin
ipal di�eren
e between two 
odes 
on
erns the

arithmeti
 used. AVL Trees are indeed trees in whi
h the depth di�eren
e between any

two sub-trees does not ex
eed a 
ertain �xed

2

. quantity ∆. And it is essential to store the

depth of the tree in the 
hosen data stru
ture, otherwise we would re
ompute this depth

un
easingly. However a depth is an hardware integer int in the initial O
aml 
ode, and we

have repla
ed this in Coq by an integer of type Z.

This di�eren
e in the integer representation has an important in�uen
e on the speed of

the two 
odes, the manual O
aml version going approximately four times faster than the

extra
ted version, as shown by the �gures presented in [34℄. The Coq integers, en
oded via

2

In the literature, ∆ is often 1, whereas 2 was 
hosen in the O
aml implementation as trade-o� between

the advantages of having very balan
ed trees and the 
osts related to re-balan
ing.



7.5. An example of use in a mathemati
al 
ontext 199

indu
tive types, even in binary format, 
annot 
ompete with hardware integers. It would then

have been interesting to have a tool allowing to substitute a representation by another during

the extra
tion, generalizing the 
ommand Extra
t Indu
tive, too limited. In theory, this

repla
ement is not sure, be
ause the type int is subje
t to over�ow problems that 
annot

happen with the type Z of Coq. But this danger is here quite hypotheti
al, sin
e it would

be quite utopian to try to handle balan
ed binary trees with depth higher than 230
, sin
e

that would mean that that they would have about 2230

elements! More generally, one 
an

imagine to repla
e Z by big

_

int, whi
h gives arbitrary pre
ision while doing a maximum of


omputation via the hardware integers.

At the te
hni
al level, this implementation is �nally quite similar to the one via Red-

Bla
k trees, ex
ept for a great quantity of reasoning on the integers, and thus a strong

use of the automati
 ta
ti
 omega. Instead of giving here too many details, we refer to [34℄

for (a little) more information. The major surprise has been the dis
overy of an error in

the initial O
aml 
ode. Certain fun
tions 
ould indeed return trees whi
h were not 
orre
tly

balan
ed any more. This problem was not 
riti
al sin
e the trees were remaining 
orre
t (i.e.

still 
ontained the good elements), but on the other hand the e�
ien
y 
ould be strongly

a�e
ted. For example the logarithmi
 
omplexity for the sear
h for an element, advertised

in a 
omment, was not guaranteed any more. We informed X. Leroy of this problem, and he

immediately 
orre
ted the O
aml sour
e 
ode.

7.5 An example of use in a mathemati
al 
ontext

The example whi
h follows now is in
luded in our 
ontribution Orsay/FSets, in the

sub-dire
tory Pre
eden
eGraph. This result was initially an exer
ise posed during some

pra
ti
al sessions about theory of operating systems [9℄. Sin
e the o�
ial solution of this

exer
ise was in
orre
t, we have then sear
hed a 
orre
t proof, and formalized this proof in

Coq to be 
onvin
ed of its 
orre
tness on
e and for all. This formal proof has in fa
t been at

the origin of our interest in �nite sets in Coq. We have modi�ed it later so that it now uses

our sets à la O
aml. It is now a good example of use of these sets within a mathemati
al


ontext.

The result deals with the pre
eden
e graphs. Su
h a graph is a representation without

redundan
y of a stri
t order: more pre
isely, if < is a stri
t order, the asso
iated graph is

de�ned by a → b i� a < b and ∀c,¬(a < c < b). In pra
ti
e, we 
an also see a pre
eden
e

graph as an a
y
li
 dire
ted graph whose transitive edges have been removed (i.e. a→ ...→ b
implies ¬(a→ b)). The result then states that:

E ≤ N2

4

with E being the edge number of a pre
eden
e graph, and N its node number.

The proof is done by indu
tion over N , by removing at ea
h step a 
arefully 
hosen node

and the edges whi
h are asso
iated to this node. This proof outline has made us 
hoose to

the following representation for the graph

3

3

We have 
hosen to label our nodes with integers. In fa
t, any OrderedType 
ould have worked.
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Re
ord Graph : Set := {

nodes:> t;

to: nat → nat → bool }.

with t being a �nite set of integers. This way, when we withdraw a node, we just have to

update nodes, whereas the transition fun
tion to 
an remain invariant. Indeed, the only

edges that are 
ounted are those whose both ends are in nodes. The fun
tion filter then

allows to de�ne the sets of su

essors and prede
essors of a node, whi
h in 
ombination to


ardinal allows to de�ne the number of edges.

The proof pro
eeds then in four stages:

Theorem edges_remove : ∀G:Graph, ∀n:elt, In n G → to G n n = false →
nb_edges G = (nb_edges (node_remove G n))+(arity G n).

Theorem get_init : ∀G:A
y
li
Graph, 0 < nb_nodes G →
{p:nat| In p G ∧ nb_pred G p = 0}.

Theorem low_arity: ∀p:nat, ∀G:Pre
Graph, 0 < nb_nodes G →
nb_nodes G < 2*(p+1) →
{k:nat| In k G ∧ nb_linked G k ≤ p}.

Theorem TheBound : ∀G:Pre
Graph,
(nb_edges G)*4 ≤ (nb_nodes G)*(nb_nodes G).

The �rst theorem establishes that the edges number of G r {n} is the one of G less the

number of su

essors and prede
essors of n. Then, for an a
y
li
 graph, we show the existen
e

of an initial element. The third theorem is 
ru
ial: it a�rms that in any pre
eden
e graph

whose size is stri
tly lower than 2(p + 1), we 
an �nd a node with less than p neighbors.

And �nally this parti
ular node is adequate for our purpose: we 
an remove it and �nish

the indu
tion reasoning, whi
h enables us to establish the �nal theorem.

7.6 A �nal word

This 
ase study shows that it is perfe
tly possible to spe
ify and to implement fun
tional

and e�
ient data stru
tures in Coq, while remaining in 
onne
tion with an interfa
e and an

e�e
tive O
aml implementation by the means of the extra
tion.

This method 
an obviously be reused for other stru
tures, su
h as those presented by C.

Okasaki in [64℄. In parti
ular all the present work 
ould normally allow us to obtain a module

Map at low 
ost. One 
an, indeed, see a Map stru
ture as being a Set where the OrderedType

is a pair index * value and where the 
omparison only a

esses the �rst 
omponent. The

only new fun
tion to write is then find, whi
h is anyway only an alternative of mem.



Con
lusion

Arrived at the end of this work, it is now time for taking sto
k, by asking at least the

two following questions:

• Is this new extra
tion better than the old one? We do think so.

• Now, is our is extra
tion still perfe
tible? Of that we are sure.

The realizations

First, the 
riti
al 
orre
tness issues that we have evoked in introdu
tion have been solved.

A synta
ti
 proof, enabling to 
ompare the redu
tion of a extra
ted term with the redu
tion

of an initial Coq term, ensures indeed that potential exe
ution errors, like those from whi
h

the old extra
tion su�ered, 
annot o

ur any more at the present time, whether it is with

the stri
t evaluation à la O
aml or with the lazy evaluation à la Haskell.

In addition we have �nalized a se
ond 
orre
tness proof, inspired by realizability, whi
h

guarantees that the semanti
 properties of the initial Coq terms are indeed preserved during

extra
tion. This proof has been made in a system as 
lose as possible to the Ci
 
urrently

employed in Coq, whi
h has implied a very 
onsequent in
rease in 
omplexity for this seman-

ti
 proof when 
omparing to the original works by C. Paulin. This proof, although manual

and thus partly unsatisfa
tory, must be seen as a �rst stage towards a internal 
orre
tness

proof, formalized in Coq, that we will evoke among the prospe
ts.

Another realization of this thesis is the solution of the typing problem for the extra
ted

terms. Our solution 
onsists in the use of untyped 
oer
ion fun
tions: this is 
ertainly ad

ho
, but works very well in pra
ti
e. This allows now to explore all the range of the Coq

terms with no more fear of ending on terms without extra
tion or with untyped extra
tion.

Lastly, a substantial e�ort has been made on the implementation level, in order to make

of extra
tion a real platform of 
erti�ed 
ode generation, and not any more an experimental

tool. In parti
ular, this point, one 
an note the pro�ts in readability for the extra
ted 
ode,

and espe
ially the progresses 
on
erning the integration of extra
ted 
ode with broader

developments, thanks to the generation of interfa
es, and espe
ially thanks to the extension

of the extra
tion to the new module system of Coq.

The prospe
ts

First of all, it is obvious that one 
an still improve the safety of this me
hanism of 
ode

generation. Of 
ourse, as shown by K. Thompson in the arti
le [79℄, our �nal program will
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be worthy of 
on�den
e only if ea
h link in the produ
tion 
hain is, and in parti
ular the


ompiler O
aml or Haskell used, the operating system, the pro
essor, et


4

. In pra
ti
e su
h

a level of veri�
ation is never rea
hed. But one of the weak spot in this safety 
hain seems

to be today the 
orre
tness of our extra
tion. It is indeed hardly satisfa
tory that all this


omplex me
hanism relies only on a proof in L

A

T

E

X. There are then two possible approa
hes

to 
ure that:

• One 
an �rst add to the extra
tion me
hanism an extension that, for ea
h extra
ted

term, produ
es the Coq term proving the 
orre
tness of this extra
ted term. Conse-

quently, at ea
h extra
tion, the a

eptan
e by the type-
he
ker of Coq of this Coq

proof term will guarantee the 
orre
tness of the given extra
ted term. This approa
h


orresponds to systems like Minlog or Isabelle. And the realization of su
h an extension

of the extra
tion seems within rea
h, thanks to our study of se
tion 2.4.

• There also exists an mu
h more ambitious alternative, but also less realisti
 in the

immediate future. It would be the 
omplete formalization in Coq of our 
orre
tness

proof for the extra
tion. That would require mu
h more work than the pre
eding

approa
h, sin
e it would be a Coq formalization instead of an extension in O
aml. At

the same time we would then obtain a total guarantee, instead of building a parti
ular

proof at ea
h extra
tion. With regard to this possible 
omplete formalization, one 
an

imagine to start from the formalization of Coq in Coq by B. Barras [8℄, and also re-use

one of the works about the semanti
s of ML, as for example [29℄. And why not then try

to extra
t this formalization in order to build an extra
tion made of extra
ted 
ode,

at least for its 
entral part? This would take naturally pla
e into the utopian proje
t

of �bootstrapping� the 
ore of Coq defended by B. Barred.

Con
erning the appli
ations of the extra
tion, the work on the extra
tion of C-CoRN

deserves to be 
ontinued. Of 
ourse, many problems still persist about e�
ien
y. These

problems 
an be lo
ated at several levels. First the algorithms employed are sometimes the

most general possible, at the detriment of the e�
ien
y. In addition, the proof s
ripts are

still largely improvable, for example to avoid any redundant 
omputation. Finally the 
ode

generated by the extra
tion is 
ertainly not without defe
t. All this explains that it appears

di�
ult to hope to 
ompute approximations of roots of polynomials via the extra
tion of

FTA within the next months. At the same time, if one looks at the progress already a
hieved,

it would be a shame to stay there. Let us re
all that some time ago, even the extra
tion

stage out of FTA seemed unrealisti
...

It would be also interesting to try to extend the �eld of appli
ation of the extra
tion

methodology. Indeed, for the moment, the programs adapted as 
andidates to 
erti�
ation

by extra
tion are those for whi
h only the result of the exe
ution imports. On the other

hand, in the situations where it is of primary importan
e to terminate qui
kly or without


onsuming more than a 
ertain memory quantity, then the extra
tion is 
urrently not a good

methodology. This immediately ex
ludes any embedded program, whether real-time, or with

limited memory, or both. On the 
ontrary, the 
urrent �eld of appli
ation for the extra
tion

4

Sin
e the writing of [79℄, the situation is even more 
omplex, sin
e the majority of the modern systems

use now dynami
 libraries (.so or .dll). It is thus theoreti
ally possible to pervert the behavior of a program

after its 
reation without ever tou
hing it.
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is highlighted by the main examples: tautology 
he
kers, type 
he
kers [8℄, program analyzers

[17℄... Indeed the time and the resour
es does not matter mu
h when you 
he
k a tautology

or sear
h for a 
ounterexample, when you type
he
k or analyze a program, as long as the

result is 
orre
t. Currently begins around J.-P. Jouannaud some work on the topi
 of the

time 
omplexity evaluation of the extra
ted programs, with as referen
e some work done in

Nuprl [11℄. Let us hope that this work will allow to extend the appli
ability of the extra
tion.

Another possible extension of the �eld of appli
ation for the extra
tion would 
onsist of

an internalization of the results of extra
ted programs inside Coq. After all, if the extra
tion

is sure, why Coq would not trust a de
ision pro
edure proved and then extra
ted? There

undoubtedly matter of intera
tion with the internal 
ompiler of B. Grégoire [40℄.

A last domain 
urrently out of rea
h by the Coq extra
tion is the extra
tion of programs

starting from 
lassi
al proofs. This is an extremely a
tive �eld of resear
h, in parti
ular

around Minlog. It should be said that Coq was not, until re
ently, a good platform for su
h

studies, be
ause the addition of a 
lassi
al axiom in Prop does not 
hange anything for

the extra
tion, whereas the same addition in Set makes the system in
oherent when Set

is impredi
ative. However Set is now predi
ative by default, whi
h may allow a 
lassi
al

extra
tion in Coq in the future.

Lastly, a last topi
 of possible improvement is to make this methodology more pleasant

to use. A 
urrent la
k is, for example, the impossibility of importing in Coq some already

existing ML 
ode. Of 
ourse, one 
an always translate it by hand, prove the expe
ted proper-

ties, then extra
t, and �nally 
he
k that the di�eren
es between the original ML 
ode and

the extra
ted 
ode are tiny. We have pro
eeded this way in our 
erti�
ation of the �nite sets

of O
aml (see 
hapter 7), the original manual 
ode being in fa
t available with O
aml. This

importation of ML 
ode is related with the work by C. Parent around the ta
ti
 Program

[65℄. Unfortunately, the implementation of this ta
ti
 have not been adapted to the versions

7.0 and following of Coq. It should be stressed that this importation of ML 
ode is far from

obvious. For example the importation of a non-stru
tural re
ursive fun
tion will immedia-

tely require the proof justifying its good foundation. This would undoubtedly be interesting

to 
ombine this importation with the work of A. Balaa and Y. Bertot that fa
ilitates the

de�nition of su
h re
ursive fun
tions [6, 5℄.

It is thus 
lear that the resear
h possibilities still open at the end of this thesis are

multiple, even if mu
h have been done sin
e the beginnings of the extra
tion in Coq �fteen

years ago. Arrived at this point, let us wish that this methodology for program development

named extra
tion 
an 
ontinue its rise, in parti
ular in dire
tion of the industrial world.

May this thesis have 
ontributed to that...
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Appendix

A User 
ontributions using extra
tion

� Bordeaux/Additions

� Bordeaux/di
tionaries

� Bordeaux/EXCEPTIONS

� Bordeaux/NewSear
hTrees

� Bordeaux/Sear
hTrees

� Dyade/BDDS

� Lannion

� Lyon/CIRCUITS

� Lyon/FIRING-SQUAD

� Marseille/CIRCUITS

� Muen
hen/Higman

� Nan
y/FOUnify

� Nijmegen/C-CoRN

� Nijmegen/QArith

� Orsay/FSets

� Orsay/QArith

� Ro
q/ARITH/Chinese

� Ro
q/ARITH/ZChinese

� Ro
q/COC

� Ro
q/GRAPHS

� Ro
q/HIGMAN

� Ro
q/MUTUAL-EXCLUSION

� Sophia-Antipolis/Bu
hberger

� Sophia-Antipolis/Bertrand

� Sophia-Antipolis/Hu�man
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� Sophia-Antipolis/Re
ursiveDe�nition

� Sophia-Antipolis/Stalmar
k

� Suresnes/BDD
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Résumé

Nous nous intéressons i
i à la génération de programmes 
erti�és 
orre
ts par 
onstru
-

tion. Ces programmes sont obtenus en extrayant l'information pertinente de preuves 
ons-

tru
tives réalisées dans l'assistant de preuves Coq.

A telle tradu
tion, ou �extra
tion�, des preuves 
onstru
tives en programmes fon
-

tionnels n'est pas nouvelle, elle 
orrespond à un isomorphisme bien 
onnu sous le nom de

Curry-Howard. Et l'assistant Coq 
omporte depuis longtemps un tel outil d'extra
tion. Mais

l'outil pré
édent présentait d'importantes limitations. Certaines preuves Coq étaient ainsi

hors de son 
hamp d'appli
ation, alors que d'autres engendraient des programmes in
orre
ts.

A�n de résoudre 
es limitations, nous avons e�e
tué une refonte 
omplète de l'extra
tion

dans Coq, tant du point de vue de la théorie que de l'implantation. Au niveau théorique,


ette refonte a entraîné la réalisation de nouvelles preuves de 
orre
tness de 
e mé
anisme

d'extra
tion, preuves à la fois 
omplexes et originales. Con
ernant l'implantation, nous nous

sommes e�or
és d'engendrer du 
ode extrait e�
a
e et réaliste, pouvant en parti
ulier être

intégré dans des développement logi
iels de plus grande é
helle, par le biais de modules et

d'interfa
es.

En�n, nous présentons également plusieurs études de 
as illustrant les possibilités de

notre nouvelle extra
tion. Nous dé
rivons ainsi la 
erti�
ation d'une bibliothèque modulaire

d'ensembles �nis, et l'obtention de programmes d'arithmétique réelle exa
te à partir d'une

formalisation d'analyse réelle 
onstru
tive. Même si des progrès restent en
ore à obtenir,

surtout dans 
e dernier 
as, 
es exemples mettent en éviden
e le 
hemin déjà par
ouru.

Mots 
lés. Preuve de programmes. Programmation fon
tionnelle. Extra
tion. Théorie des

types. Isomorphisme de Curry-Howard. Cal
ul des Constru
tions Indu
tives. Système Coq.

Abstra
t

This work 
on
erns the generation of programs whi
h are 
erti�ed to be 
orre
t by


onstru
tion. These programs are obtained by extra
ting relevant information from 
onstru
-

tive proofs made with the Coq proof assistant.

Su
h a translation, named �extra
tion�, of 
onstru
tive proofs into fun
tional programs

is not new, and 
orresponds to an isomorphism known as Curry-Howard's. An extra
tion

tool has been part of Coq assistant for a long time. But this old extra
tion tool su�ered

from several limitations: in parti
ular, some Coq proofs were refused by it, whereas some

others led to in
orre
t programs.

In order to over
ome these limitations, we built a 
ompletely new extra
tion tool for Coq,

in
luding both a new theory and a new implementation. Con
erning theory, we developed

new 
orre
tness proofs for this extra
tion me
hanism. These new proofs are both 
omplex

and original. Con
erning implementation, we fo
used on the generation of e�
ient and

realisti
 
ode, whi
h 
an be integrated in large-s
ale software developments, using modules

and interfa
es.

Finally, we also present several 
ase studies illustrating the 
apabilities of our new extra
-

tion. For example, we des
ribe the 
erti�
ation of a modular library of �nite set stru
tures,

and the produ
tion of programs about real exa
t arithmeti
, starting from a formalization

of 
onstru
tive real analysis. These examples show the progress already a
hieved, even if the

situation is not perfe
t yet, in parti
ular in the last study.

Keywords. Proof of programs. Fun
tional programming. Extra
tion. Type theory. Curry-

Howard isomorphism. Cal
ulus of Indu
tive Constru
tions. Coq system.


