
Certi�ed funtional programming

Program extration within Coq proof assistant

Pierre Letouzey

July 2004

Summary

Aknowledgments vii

Introdution 1

Syntati onventions 13

1 A presentation of Coq 15

1.1 An introdution via examples . 15

1.1.1 Coq as a logial system . 15

1.1.2 Coq as a programming language . 18

1.1.3 The universes of Ci . 22

1.1.4 Prop/Set mixed terms . 27

1.1.5 Coq extensions . 31

1.2 A formal presentation of the Ci . 32

1.2.1 Syntax . 32

1.2.2 Redutions . 33

1.2.3 Typing . 34

1.2.4 Properties . 37

1.2.5 Cim : an Ci variant adapted to the semanti study 40

2 The extration of Coq terms 45

2.1 The di�ulties in the removal of logial parts 45

2.2 The new extration funtion E . 47

2.3 Syntati study of the redution of extrated terms 48

2.3.1 Strong redution in a restrition of Ci✷ 48

2.3.2 Weak redution in the omplete Ci✷ 50

2.4 Semanti study of extration orretness . 61

2.4.1 The logial framework . 61

2.4.2 The simulation prediates . 62

2.4.3 The transformation J.K . 64

2.4.4 One example . 66

2.4.5 Substitution properties of the transformation J.K 67

2.4.6 Redution properties of the transformation J.K 68

iv Certi�ed funtional programming

2.4.7 Validity of terms produed by the transformation J.K 69

2.4.8 Corretness of E with respet to the transformation J.K 73

2.5 Summary of the orretness results . 78

2.6 Toward a more realisti extration . 79

2.6.1 The empty indutive types . 79

2.6.2 The elimination of logial singleton indutive types 80

2.6.3 The elimination of the possible arguments of ✷ 81

2.6.4 Toward a usual redution of �xpoints 83

3 Typing the extrated terms 87

3.1 Analysis of the typing problems . 88

3.1.1 The type �integer or boolean� . 89

3.1.2 A more realisti version . 90

3.1.3 The type of integer funtions with arity n 91

3.1.4 Untranslatable indutive types . 92

3.1.5 Dependent types and polymorphism 93

3.1.6 Contraditory ase and typing . 93

3.2 An arti�ial orretion of typing errors . 94

3.2.1 Obj.magi and unsafeCoere . 94

3.2.2 A �rst attempt at orreting the types 95

3.2.3 The algorithmM . 99

3.3 The extration of Coq types . 102

3.3.1 A approximation of Coq types . 102

3.3.2 The type of logial residues . 103

3.3.3 The border between types and terms 103

3.3.4 The Coq types, from simple to omplex 104

3.3.5 The funtion Ê of extration of types 109

3.4 Extration, typing and orretness . 111

3.5 Di�erenes with the implemented extration of types 111

3.5.1 Dealing with type parameters . 111

3.5.2 Dealing with the nonparametri arguments of indutive types 111

3.5.3 Redution of some types onstants 112

3.5.4 Speial treatment of head produts 112

4 Extration in pratie: re�nements and implementation 113

4.1 Extration of the new Coq modules . 113

4.1.1 The Oaml modules . 114

4.1.2 The Coq modules . 116

4.1.3 The extration of modules . 117

4.1.4 Current limitations of the extration of modules 119

4.2 Co-indutive types and extration . 123

4.2.1 From indutive types to o-indutive types 123

4.2.2 The extration of o-indutive types 125

4.3 Extration and ode optimizations . 127

Summary v

4.3.1 Removal of some logial arguments 128

4.3.2 Optimizations of indutive types . 130

4.3.3 Unfolding the body of some funtions 133

4.3.4 Code improvements: optimization or deeleration? 136

4.4 Current state of the atual implementation 139

4.4.1 Desription of the ode . 139

4.4.2 Small user's manual . 140

4.5 A �rst omplete example . 142

5 Examples of extration 145

5.1 The standard library of Coq . 145

5.2 The user ontributions . 146

5.3 Exeptions by ontinuations in Coq . 148

5.3.1 Formalization of the exeptions in Coq 148

5.3.2 Imprediativity and typing of the extrated funtions 149

5.3.3 The extration of this development 149

5.3.4 Usage of these exeptions . 150

5.4 Higman's lemma . 153

5.4.1 Higman and the imprediativity . 154

5.4.2 The extration of Higman . 155

5.4.3 The new proof of Higman . 157

6 Construtive reals and extration 161

6.1 The extration of the C-CoRN projet . 161

6.1.1 Desription of the FTA/C-CoRN projet 161

6.1.2 The �rst extration attempts . 163

6.1.3 Distintion between logial parts and informative parts 165

6.1.4 Compilation of the extrated ode . 166

6.1.5 The exeution of the extrated program 167

6.2 Some alternative reals dediated to the extration 173

6.2.1 The development method . 174

6.2.2 The rational numbers . 175

6.2.3 The Cauhy sequenes . 176

6.2.4 The ontinuous funtions . 177

6.2.5 The intermediate value theorem . 177

6.3 Conlusion . 178

7 A formalization of �nite sets 181

7.1 The Coq interfae . 183

7.1.1 The ordered types . 183

7.1.2 The signature of the sets . 184

7.1.3 The ase of higher order funtions . 187

7.1.4 A alternate signature ontaining dependent types 188

7.1.5 Two funtors to hoose the signature style 189

vi Certi�ed funtional programming

7.1.6 Extration of the set signatures . 189

7.2 A implementation based on sorted lists . 192

7.2.1 Desription of the module FSetList 192

7.2.2 Extration of FSetList . 194

7.2.3 The tail reursivity . 194

7.3 A implementation based on Red-Blak trees 195

7.4 A implementation based on AVL trees . 198

7.5 An example of use in a mathematial ontext 199

7.6 A �nal word . 200

Conlusion 201

Appendix 205

A User ontributions using extration . 205

Bibliography 207

Aknowledgments

At the time of making the last adjustments to this manusript, I'm tempted to just

thank the whole world. Sine that would risk to lengthen a doument already extremely

bulky, I will try to be a little more seletive, with the risk to forget some people. May those

forgotten ones forgive my ingratitude.

First, I would like to express my deep gratitude to Christine Paulin. During all these

years, her supervision has really be exemplary. I was permanently impressed by her ompe-

tene, her patiene and her kindness. Lastly, she has always remained ready to listen to me

in spite of her many obligations.

I then would like to thank the �ve other members ordially of the jury. I am very

honored that they agreed to examine my work. Let's �rst thank Xavier Leroy: after being a

teaher of mine during DEA, he is today the president of my jury. A big thank you also to

the rapporteurs Stefano Berardi and Jean-François Monin for their attentive readings and

their onstrutive omments. Thank you also to Véronique Benzaken, who aepted here to

deviate from her prediletion �eld. And a �nal thanks to Helmut Shwihtenberg, for having

agreed to prolong our disussions on the extration by this partiipation in my jury.

My gratitude also goes to all the members of the teams of researh I belong or used to be-

long. Eah one ontributed to make my working environment quite exeptional, partiularly

pleasant and stimulating. That onerns of ourse the Démons team of the LRI, with (in

disorder) Jean-Christophe, Ralf, Claude, Evelyne, Judiaël, Xavier, Julien, Sylvain, Pierre,

Niolas, Benjamin, Jaek, Daria, Laurene, Jean-Pierre, Délia and Frédéri. Then omes the

team Logial from INRIA Roquenourt, around people like Hugo Herbelin and Bruno

Barras. In a broader way, I will like to greet the members of the LRI with who I have worked,

with a speial mention for Marwan Burelle. Lastly, I do not forget the team where I wrote

my �rst Coq lines, namely the Croap team (now Lemma) from INRIA Sophia-Antipolis:

a big thank you to Laurent, Yves, Laurene, Franis, Loï and their olleagues.

In addition to the members of these teams, I would also like to thank the researhers

having endure the initial youth problems of my new implementation of the Coq extra-

tion. Some have ontributed simple bugs reports, some others funtionalities requests, some

�nally engaged more advaned disussions, anyway this new extration owes them muh.

I think here for example the members of FT-R&D at Lannion, like Jean-François Monin,

Laurent Gottely, and Cuihtlaua Alvarado. I am also deeply indebted with the group of

Henk Barendregt in Nijmegen, in partiular Milad Niqui, Bas Spitters and Luís Cruz-Filipe.

viii Certi�ed funtional programming

In the foreword of his thesis, Jean-Christophe Filliâtre thanked in partiular some key

proponents of free software: Linus Torvalds for Linux, Rihard Stallman for Emas, Donald

Knuth for T

E

X, and Xavier Leroy for Objetive Caml. The least whih I an do is to thank

them again. How indeed ould I live without these tools? I add just here a huge thank you

to Jean-Christophe for having familiarized me with quantity of suh tools, and also provided

a L

A

T

E

X style for this doument. By the way, thanks also to Vinent Zoonekynd, who is at

the origin of the style for the boxes framing the examples of this manusript.

If I look bak in time, a ertain number of people had a determining in�uene on my

ourse until this thesis. I would like to greet here a ertain number of my old professors of

mathematis and omputer siene: Jean-Lu Ybert, André Lehault, Guy Méheut, Herve

Gianella, Jaques Chevallet, Laurent Chéno and Roberto Di Cosmo. In partiular, thank

you Laurent Chéno for having taught at the same time the Caml language and the onept

of proof of programs.

To �nish, thanks to all my friends, Yann, Sandra, Gaël, Nathaëlle, Mylène, Niolas, Eri,

Mathilde, Louis, Lionel, Dimitri, Barbara and others, for their good mood, their touhes of

madness, and all their projets �foireux, but only halfway�. Thanks in�nitely to my family

and espeially to my parents. What would I be without them? My gratitude is quite di�ult

to translate into words. In addition, I wish the best to my sister Catherine, just aepted as

�professeur agrégé�. Lastly, thank you Antigone for all, and more than that.

Introdution

The need for erti�ed programs

Today, it is obvious to say that software oupies a dominating plae in our modern

soieties, inluding in ritial roles. The list of these missions of on�dene now �lled by

programs lengthens uneasingly. It an be a matter of ontrolling high-risk equipments like

planes or nulear thermal power stations, but it an also be more prosai operations like

the management of eletroni payments. In any ase, whether human lives or money are in

questions, the stakes are huge.

Unfortunately, it is also a banality to note the perfetibility of these programs whih

surround us. Without yielding to atastrophism, we annot but note that software failures

regularly �ll news headlines. The example the more frequently mentioned remains the ex-

plosion of the Ariane 5 roket in 1996. More reently, one an quote the desription by S.

Humpih of a vulnerability in the redit ards system. More alarming, the software editor

that urrently dominates the PC market propose softwares that are repeatedly a�eted by

safety faults, whih open the door to all kinds of virus, worms or trojans. Finally, here is a

testimony read in a disussion forum, answering an intervention opposing the low quality of

PC software with the great reliability of those intended for aeronautis:

I will bring however one small nuane onerning your parallel with airliners.

Their omputer systems are not as solid as you say, I know something of it,

I am pilot on A320! In fat we regularly have one or more alulators whih

fail. This is even normal, the software is regularly modi�ed to answer the new

legal or operational requirements, and so is also the hardware, without taking in

aount that the whole must undergo the attak of tens of eletri transfers per

day! Fortunately, all systems are doubled, tripled and even quintupled in some

ertain ases, with the result that while one reboots quietly and arries out its

autotests, the other takes over, and safety is never ompromised ...

There either, the situation is thus not perfet

1

, sine the empirial solution of redundany

is not foolproof.

This unsatisfatory pratial situation ontrasts in a startling way with the point of view

of sientists. �Computer siene is an exat siene�, wrote C. A. R. Hoare [45℄ in 1969. He

and others like R. W. Floyd or E. W. Dijkstra have indeed build a preise mathematial

framework for programming, speifying in the 1970s a onept of proof of program, as

1

Even if in pratial the great majority of air rashes are due to human errors...

2 Certi�ed funtional programming

rigorous as a proof of theorem. Alas, the programming is still too often approahed like an

experimental art: repetitions of tests, tests, errors and orretions. It is true that establishing

formally a program's orretness asks urrently very signi�ant e�orts, whereas it is often

very easy to arry out tests. But these tests ould �nally prove to be quite expensive, and

they an only rarely be exhaustive...

In any ase, whether one wants to ertify a program or simply to test it, the �rst step

is to produe a spei�ation, desribing the awaited behavior of this program. The mathe-

matial result to be proved in the ase of a formal erti�ation is that the program satis�es

its spei�ation. Obviously, this spei�ation step is a key moment: if the spei�ation is

inomplete or inorret, nothing will prevent a program that is erti�ed to be orret with

respet to this spei�ation to behave badly at the time of its exeution.

The previously mentioned works of C. A. R. Hoare, R. W. Floyd and E. W. Dijkstra

are originally intended for imperative programs. For example, the Hoare logi is it made

of assertions relating the values of the program variables. And a spei�ation of a portion

of ode C has the form {P}C{Q}: if the pre-ondition P is valid before the exeution of the

ode C, then the post-ondition Q will be valid after the ation of C on the ontents of the

variables. In the same way, most tools for formal erti�ation that are widespread in industry,

like the B method [1℄, are foused on proof of imperative programs. This is undoubtedly

explained simply by the omnipresene of imperative paradigm in industry, to the detriment

of funtional languages. The main exeption to date is the reation and the use of Erlang

at Erisson. Nevertheless, we now will see that the funtional languages are partiularly well

suited for the reation of erti�ed programs.

The Curry-Howard isomorphism

All the funtional languages have a ommon theoretial ore, namely the λ-alulus. This
is true of Lisp, Sheme, the members of the ML family like Oaml, or Haskell. However in

[26℄, H. Curry notied in 1958 that in the simply typed λ-alulus, any well-typed term has

neessarily a type that is a tautology in propositional intuitionisti logi

2

, as soon as one

assimilates funtional type A→B and impliation A⇒B.

In addition to this isomorphism between types and propositions, H. Curry also establishes

a orrespondene between terms and demonstrations. In partiular, the onstrutive proof

of an impliation A⇒B is a method whih allows to transform any demonstration a of the

property A into a proof b of the property B. Via the isomorphism, this proof of A⇒B an

thus be seen like a funtion whih for any objet a of type A assoiates an objet b of type

B.

In 1969, W A. Howard proposed a λ-alulus with dependent types that extends the

isomorphism to �rst-order intuitionisti logi [46℄. For example, a onstrutive proof ∃x,P(x)
stipulating the existene of an objet satisfying the property P, gives via this isomorphism

a funtional program building indeed this objet. More preisely, this program will return a

ouple (x,p) in whih x is the sought objet, and p is a erti�ate showing that we indeed

have P(x).

2

For more details on intuitionisti and onstrutive logis, one may onsult [10℄ or [80℄.

Introdution 3

Thereafter, this isomorphism was extended to all kinds of intuitionisti logial systems

with inreasing expressivity, like for example the types theory of Martin-Löf [58℄ or the

Calulation of Indutive Construtions (Ci) whih is used in the Coq proof assistant [78℄.

And extration, that is the possibility of deriving a program from a proof, was used in

pratie in many systems, like PX [44℄, Nuprl [50℄, Coq, Minlog [30℄ or more reently Isabelle

[13, 14℄.

One an make here a omparison with the Hoare method. If we wish to build a program

erti�ed taking as input an objet x satisfying a pre-ondition P(x) and then returning

another objet y satisfying a post-ondition Q(x,y), we only have to prove in a intuitionis-

ti formalism the proposition ∀x,P(x)→∃y,Q(x,y). The Curry-Howard isomorphism then

allows us to automatially derive from our proof a funtional program that is orret by

onstrution.

In fat, the program obtained by a diret use of this isomorphism is not ompletely

the one expeted. Instead of a program taking a x and returning a y, one obtains rather a

program with two arguments x and p and with two results y and q. And p and q are then

two erti�ates orresponding respetively to the proofs of P(x) and Q(x,y). The role of

the extration is then to generate the natural program, i.e. without logial erti�ates, and

to justify this deletion of erti�ates. We �rst see how that is done in Coq, then we evoke

the ase of the other proof assistants.

The extration in Coq

This thesis was thus devoted to the study of the extration in Coq. In fat, it ould have

been entitled �Fifteen years of extration in Coq�, sine it intervenes �fteen years after a

�rst thesis on this same subjet by C. Paulin [66, 67, 69℄. We thus start by realling what

has been made at the time and then explaining why that has left the possibility of a new

work in this �eld.

First of all, we should mentioned that Coq is built diretly on top of Curry-Howard

isomorphism: in partiular a proof is diretly represented internally by a λ-term. One is then

tempted to say that a Coq proof is preisely a funtional program, and that the extration

has only a reopy to make. But this approah, although orret, is too naive. Indeed, if

one takes again the example of an existential proposition ∃x,P(x), a intuitionisti proof of

this proposition ontains indeed the onstrution method for the witness x, but also logial

justi�ations ensuring that x is appropriate, that is satis�es P(x). From the programming

point of view, the onstrutive skeleton will give us the wanted program, whereas the logial

justi�ations are in general non-desirable in a program. The role of extration is then to

derive from one term t of type T a program p ontaining only the omputational ontents

of t. And usually, orretness of this program p is guaranteed by a realizability relation r

onneting p and the initial type T. This onept of realizability was initially introdued by

S. C. Kleene in 1945 in [49℄. The extration funtion, whih we will note E , will be then

orret if one an establish that a typing relation t:T implies the realizability relation E(t)
r T after extration.

In her thesis, C. Paulin de�nes a realizability adapted to the Calulation of Cons-

4 Certi�ed funtional programming

trutions

3

, and an assoiated extration. A �rst version of this realizability is based on

the semanti riterion of �pre-realized formulas�. Then in a seond step, C. Paulin proposes

to replae this semanti riterion by one syntati riterion, namely an objet annotation

by the user, to mark its omputational nature or onversely its logial nature. For that pur-

pose, instead of using only one Prop type of all propositions, one doubles this type with a

Set type of informative propositions

4

, whereas the propositions remaining in Prop are being

onsidered as purely logial.

This theoretial extration presented and proved orret by C. Paulin outputs extrated

programs belonging to a restrition of the Calulation of Construtions, namely Fω. This

work were implemented in the assistant Coq thereafter, initially by C. Paulin for the extra-

tion part towards Fω, then by going B. Werner for the part going from Fω to ML

5

(see [69℄).

Later on, J.-C. Filliâtre maintained and improved this implementation.

The ontributions of this thesis

This initial work on the extration Coq su�ers from several limitations, some of them

present at the reation of Coq extration, others appeared during evolutions of the Coq

system. Our work has primarily onsisted in solving these limitations, whih led us, as we

will see, to an almost omplete redesign of this extration mehanism. At the same time, we

made an e�ort to maintain as muh as possible a ompatibility with the previous extration.

And this new implementation of the extration was gradually integrated in versions 7.0 and

following of Coq.

Complete support of the universes

A �rst limitation relates to the question of Coquniverse or sorts. We have already evoked

the division of Prop, the universe of propositions, in two universes, one named Set for the

omputational propositions, the other, Prop, for the logial propositions. But these two

universes Prop and Set are themselves parts of a higher level universe named Type. However

Coq treats these universes like all other terms of the system. One an thus form a universal

quanti�ation on Type, whih will onerns in partiular Set and Prop. The extration C.

Paulin was not able to work with suh terms that inludes reasoning on universes. Any

term where the higher universe Type was appearing was quite simply onsidered as not-

extratable. And this was not an arti�ial restrition, but indeed an intrinsi limitation of

this extration method. A theoretial study as well as a pratial study of the Type level

extration thus remained to be made, whih appeared to be not-obvious. This limitation

was beoming quite awkward as the use of the universe Type tends now to to spread in

Coq developments. For example, this universe allows to write data types ompatible at the

same time with Set and with Prop. In addition, Type is also frequently used in assoiation

with strong elimination in developments based on re�exion (or two levels approahes, see

3

These Construtions were not yet Indutive at this moment...

4

In the thesis of C. Paulin, Set was named Spe

5

The various languages �spoken� by the extration were Caml (Lourd then Light), LazyML and now

Oaml, Haskell and Sheme.

Introdution 5

for example [16℄). These developments were thus at the origin out of �eld of appliation for

Coq extration.

Solving the typing problems

A seond problem appears in the translation step from Fω to one of the onrete ML-

like funtional languages. This step, present in the implementation, is not dealt with by

C. Paulin's thesis. However the Fω type system is muh riher than that ML's one. The

extration an then produe a extrated term not typable in ML. In pratie, suh a on�it

of typing seldom ours, but ours nonetheless. And the inreasingly frequent use of the

Type universe tends to multiply these situations. Moreover, this low frequeny of the typing

on�its an be also explained by a form of user's self-ensorship, not very inlined to use

Type if he knows beforehand that this will leads to a not-extratable development. We have

developed a method onsisting in identifying the loations of these typing on�its, then in

solving them via the use of low-level funtions in�uening types. This way, the extrated

ode is always usable with standard ompiler for the target language. For the moment this

method was only implemented for the Oaml language.

Corretness of strit evaluation

The prinipal problem of the old extration is its lak of safety onerning the exeution

of extrated terms via a strit strategy, as in Oaml. In fat, exeution of some extrated

terms in Coq version 5.x and 6.x an �nish abnormally on several fatal errors, or quite to the

ontrary loop and never �nish. For a good understanding of the problem, let's �rst ome bak

to the original extration towards Fω. In her thesis, C. Paulin has proved that her extration

produes well-typed terms in Fω. This system satisfying the strong normalization property,

the redution of these extrated terms is thus ensured to proeed orretly, whatever strategy

is employed, either strit or lazy.

But let's now add an axiom A in Coq. When one extrats a proof that uses this axiom,

the extrated program will be inomplete unless one provide manually a program p orres-

pondent with this axiom A, that is realizing it: p r A. When this program p is typable in

Fω, the preeding result of orretness still holds, and any redution will proeed without

problem. Unfortunately, three axioms that are partiularly natural and signi�ant for the

expressivity of the system do not have typable realizations in Fω. Any extrated program

using the realizations of these axioms an then theoretially see its exeution fail, and that

ours indeed in some ases, at least when evaluation strategy is strit. Here are these three

axioms:

⊥
A

x = y P (x)
P (y)

WF(R) ∀X, (∀y, R(y, x)→ P (y))→ P (y)
∀X, P (x)

• the �rst axiom is the ontradition elimination, whih allows to treat the impossible

ases of proofs and programs. This axiom orresponds naturally to a funtion raising an

exeption. But suh a realization leads sometimes to evaluations �nishing abnormally

on an unaught exeption.

6 Certi�ed funtional programming

• the seond axiom is the equality elimination. With the most general version of this

axiom, an equality between types makes it possible to modify the apparent typing of a

term. That does not pose any problems in Coq, but on the other hand after extration

one an have all kinds of exeution failures related to typing errors, for example (0

0).

• the third axiom allows to prove a property P by indution over a well-founded prediate

R. This axiom is realized easily by an �xpoint operator like Y. But when this realization

is used, the old extration an then generate terms whose strit evaluation will loop.

In fat, �nding Fω-typable realizations for these three axioms would have implied to

onsider as omputational the falsity, the equality, and the well-foundedness, ending �nally

with almost no logial parts left. Instead, these three ategories of problems, inluding the

two already evoked in [69℄, were ignored or minimized via empiri means

6

After all, if one

wished to ensure the orretness of the Oaml-extrated terms, one ould always work in a

stripped-down version of the system, without these three axioms � whih however are part

the library initially loaded by the system.

To solve these problems of exeution, we had to alter the extration funtion E signi�-

antly, and in partiular the elimination of logial λ-abstrations, in order to guarantee a

orret evaluation whatever strategy is employed.

Support of the system's evolutions

Sine the �rst work on extration, Coq evolution has aentuated the limitations of this

old extration. We have already mentioned for example the inreasingly frequent use of

the universe Type. In addition, the three axioms whih put in danger the orretness of

the exeution of the extrated terms are nevertheless essential for the expressivity of the

system. So, when it has been possible to modify Coq underlying logial system in order to

reinfore it and being able to prove these axioms, that has been done. And the extration

was then faing potentially inorret situations even without the least addition of axioms.

It thus beame ruial to orret these problems, whih was made.

Among the other evolutions of Coq whih had an impat on the extration, one an

quote of ourse the hange from the Calulation of Construtions to Calulation of Indutive

Construtions, that is the addition of the primitive indutive types, or muh more reently

the adoption of a system of modules and funtors. Among these evolutions, some are benign

for the extration. For example, the addition of the reord types basially has not hange

anything, sine they are visible only by the user and are translated internally into indutive

types. In the same way, extrating the o-indutive types does not ask any partiular work

if the target language is lazy like Haskell, and the old extration was already supporting this

ase. On the other hand, some enrihments required more substantial modi�ations of the

implementation, but without impat on the extration theory. This is the ase for example

of the support by B. Werner of the indutive types extration or even of our adaptation of

the extration for the new modules system.

6

The funtion False

_

re, raising an exeption assoiated with the ontradition elimination, was in

partiular always unfolded, sine its de�nition itself was raising an exeption.

Introdution 7

Modules and interfaes

Let's stop for a seond at this last extension of extration in order to support the new Coq

modules, at least for Oaml extration, as well as the generation of an interfae for any ode

extrated towards this language. These two new features may seem minors in omparison

with the solving of �aws that were endangering the orretness of extrated ode. But we

onsider as really essential that the extrated ode an be integrated easily in a broader

development. The generation of the interfaes is in fat only one positive side-e�et of the

evoked solving of typing problems, but it now allows to predit the type of a extrated

funtion only by inspeting the Coq type of the initial objet.

Our ontribution in brief

Finally, our new extration is thus haraterized by the three following points:

1. It endeavors to manage any Coq term.

2. It ensures that the exeution of the extrated terms will be orret, both with a lazy

or strit strategy.

3. It guarantees the good typing of the extrated ode and provides an interfae with

this ode (in Oaml only for the moment).

In �fteen years, the Coq extration has been transformed from a still experimental tool to

a mature framework for development of erti�ed ode. In partiular this tool is now able

to treat signi�ant and realisti examples, like for example the library of �nite sets used in

pratial by Oaml developers, based on modules and funtors (see hapter 7).

Comparison with other extration systems

We now will ompare the extration Coq with the similar tools present in other systems.

This omparison will be entered on the two essential points of Coq extration, namely

the deletion of the logial parts in proofs, and then the translation into a true funtional

programming language. For more details, one an onsider the hapter 6 of [66℄, whih

remains largely up-to-date.

Deletion of logial parts in proofs

First of all let us reonsider the distintion between logial part and omputational part

in a Coq term. In the typial example of a term whose type is ∀x,P(x)→∃y,Q(x,y), we
have seen that the Curry-Howard isomorphism gives us a funtion with two arguments x

and p and with two results y and q. If one wants to obtain a �nal funtion produing only y

from x, it is appropriate to make sure that the logial erti�ates p and q do not intervene

during this onstrution of y. If it is indeed the ase, then p and q are simple deorations

or dead ode from the point of view of the omputation of y. And normally, the deletion of

suh a dead ode brings very signi�ant pro�ts onerning the size of the �nal program and

its speed of exeution.

8 Certi�ed funtional programming

Muh work has been aomplished onerning the topi of automati ontrol of dead

ode. In the beginning, S. Berardi studied this dead ode elimination in ontext of simply

typed λ-alulus [12℄, then L. Boerio has extended these tehniques to the seond order [15℄.

Then F. Prost generalized this work with Pure Type Systems [72℄.

We have however hosen to remain ompatible with the old extration of Coq, whih

always relies on the annotation of the logial parts by the user. In pratie this is not so

muh a onstraint, sine it is enough to annotate only eah new de�nition of objet. One

has only to determine in advane, and one for all, the role of eah objet. By the way, these

annotations via the universes Prop, Set or Type also ful�ll a another role apart from helping

the extration: see the question of the imprediativity in the following hapter.

Let us reall that Prop is mainly a opy of Set, but with one logial meaning, whereas

any objet plaed in universe Set and Type will be onsidered informative. We will see later

that Coq typing system ensures that omputations on informative objets do not depend

on the omputation results in logial parts. This prevents for example an unwanted use of

a auxiliary logial onstrution at a omputational loation, and thus justi�es the deletion

during extration of the objets having Prop as universe.

In fat, this method and the automati dead ode analysis are relatively orthogonal:

although the extration annot eliminate dead ode plaed in an informative universe, it

an on the ontrary simplifying subterms whih do not satisfy the dead ode riteria (see in

partiular the elimination of logial singleton indutive in setion 2.3.2). Besides, it would not

be absurd to ombine these two tehniques, by applying for example a dead ode analysis to

extrated ode. The extration, syntati proess, would then remove at low ost the broad

logial parts while a more omplex and expensive dead ode analysis ould then work better

on the small extrated terms.

If we study now the PX system [44℄, we note that the elimination of the logial parts

relies in this system on a syntati onept of formulas without omputational ontents

(known as of rank 0). One �nds in partiular among these formulas to eliminate the Harrop

formulas

7

, but also manual annotations ⋄A, whih are the formulas A whih omputational

ontents is deliberately hidden.

In Nuprl [50℄, one �rst �nds a ertain number of formulas preset as being of null ontents.

This onerns in partiular equality and inequality, falsity and the relation a∈A whih express
that a is a proof of A. Beside that, in a type subset {x:A|B(x) }, the role of B is rather

similar to the one of a Coq objet in Prop : one an make use of it only for establishing a

formula of null ontents or another property on the right-hand side of a subset type.

Conerning Minlog, one �nds in [30℄ distintion between Harrop formulas and other

formulas that are onsidered informative. Moreover, H. Shwihtenberg told us during a

private ommuniation its interest for the use of two kinds quanti�ers ∀ and ∀nc, the seond

one binding a variable without omputational ontents. By the way, let us mention here

many works around Minlog that aim at extrating programs from lassial proofs.

Lastly, in Isabelle, S. Berghofer also arries out an automati analysis of omputational

ontents for the terms being extrated, that amounts to eliminate the Harrop formulas. On

7

This is a well-known lass of formulas without omputational ontents, gathering the formulas without

disjuntion or existential quanti�ation in positive loation.

Introdution 9

the other hand the status of prediate variables is not deided as long as these variables are

not instantiated. For a initial theorem with n prediate variables, it may be neessary to

generate at worst 2n
alternative extrations to manage all the situations during the later use

of this theorem (see p.64 [14℄). On another side, in the ase of Isabelle/HOL, the extration

relies on a manual annotation onerning the omputational ontents of indutive prediates

(see p.84 [14℄). It should be noted that Isabelle is based on a lassial logi. In fat, unlike

Minlog, the extration only identi�es the onstrutive parts of the terms, without seeking to

work on the lassial parts.

Translation to a true funtional language

Sine the beginning, the suessive versions of the extration in Coq have all aimed at

produing soure ode for widespread funtional languages, and not just outputting the raw

λ-terms. Currently, our implementation supports three target languages: Oaml [53℄, Haskell

[31℄ and Sheme [48℄. Among these three languages, the extration towards Oaml is most

omplete and mature, whereas on the ontrary the one towards Sheme is still experimental.

There are three prinipal reasons for the use of suh external target languages:

• First of all, the erti�ed ode produes an more easily be integrated in broader de-

velopments. This is made possible by the prodution of readable interfaes

8

. One an

for example obtain one autonomous program by adding to extrated ode a manually-

written part for managing inputs and outputs (see examples of hapter 5). It is also

possible to develop a erti�ed extrated library, whih an be re-used thereafter in

multiple projets. For example, the hapter 7 presents the formalization of a library of

�nite sets. This way, a broad ommunity of programmers an pro�t from the extra-

tion, inluding Coq non-users.

• Seondly, the use of suh external languages allows substantial speed gains. As it

was previously said, one Coq proof an be diretly seen as a program. And its diret

exeution in Coq is possible via βδιζ-redution (f. for example the ommand Eval

ompute). But during this exeution, Coq behaves primarily like an interpreter. And it

is well known that this is muh less e�ient than the use of a ompiler. A natural idea is

then to use already existing and widespread ompilers, like those for Oaml or Haskell.

It should be noted however that the internal redution in Coq is urrently improving:

B. Grégoire worked at the implementation a ompiler for the Coq terms [39, 40℄. But

this ompiler annot ignore as muh logial parts as the extration, beause it must

be able to to work with unlosed terms and to redue under lambdas. And this, mixed

with elimination with ertain logial parts, an lead to not-termination (see part 2.3.2).

• Lastly, a pragmati reason for this hoie in favor of external target languages is the

impossibility of writing bak some extrated terms in Coq. We saw that in the be-

ginning, the work of C. Paulin on Coq extration was using a internal intermediary

step This idea is also found in internal extration of P. Severi & N Szasz [76℄. But

the theoretial system urrently used in Coq di�ers appreiably of those used in these

8

In pratie, we even try to also produe soure ode that is as readable as possible.

10 Certi�ed funtional programming

studies. And the same enrihments that we have seen alling into question the orret-

ness of the old extration, also prevent from realizing heneforth a omplete internal

extration. In partiular, Coq now aepts the de�nition of informative �xpoints based

on a logial dereasing measure. So is de�ned for example the the aessibility relation

A and of its assoiated �xpoints A

_

re and A

_

iter that we will study later.

An internal extration of these terms would then lead to �xpoints without dereasing

measure, and thus potentially to non-strongly normalizing terms (see an example in

setion 2.3.2). However suh objets with in�nite redution are prosribed in Coq.

A ontrario, it is obvious that the use of a target internal language simpli�es greatly the

justi�ation of the extration orretness. Indeed, starting from a (not neessarily formal)

proof of orretness by realizability of an internal extration, one an then easily implement

a proedure whih builds expliitly, in addition to the extrated term, the proof that this

partiular extrated term realize indeed its spei�ation. Suh tools of automati generation

for partiular orretness proofs have been implemented in partiular in Minlog and Isabelle.

Of ourse, having a external extration does not exlude the reation of a formal orretness

proof. But a stage should then be added to the proess, namely a formalization of our target

language semantis, in order to be able to express the adequay between the extrated term,

this semantis and the initial spei�ation. For lak of time, this orretness proof have only

be made on paper during this work, and is the subjet of hapter 2.

It should be noted that these two systems are not onfronted with the problems oming

from the rihness of Coq logi. In partiular, the extrated funtions in Minlog are typable

in Gödel's system T, and one annot obtain by extration any non-strutural (but well-

founded) indutions or any other objet that prevent an Coq internal extration. One must

hoose between a rih logi and a omplex but expressive extration on the one hand, and

a more minimal logi and a simple extration on the other hand.

Moreover, S. Berghofer also mentions in [14℄ the possibility of generating true ML ode

starting from its internally extrated terms. This step, even if it may seem obvious beause

of the proximity between his internal terms and the ML syntax, must nevertheless be made

with the greatest aution. One an indeed make a parallel with the generation of Fω internal

terms in the old Coq extration, and their later translation towards ML in an informal step.

We have indeed just seen that this ould end with extrated terms whose strit evaluation

fails, in spite of one result of orretness on the Fω level.

Finally, in Nuprl, the extration also produed an internal λ-term, that an be redued

by using an internal redution mahine inside Nuprl. But it does not seem urrently that the

orretness proof of an extrated λ-term an be obtained automatially.

Summary

This work begins with a progressive introdution to the Coq proof assistant. The �rst

part of the hapter 1 presents via examples the prinipal features of this system, and in

partiular those whih in�uene the extration. The seond part of this hapter exposes

more formally the Ci, whih is Coq's underlying theoretial system.

After this brief review of Coq and Ci, we start a �rst half of this manusript dediated

Introdution 11

to the presentation of our new extration. The hapter 2 �rst of all present our redesign of

the extration funtion E for terms, and omplementary two proofs of its orretness. The

�rst proof is a syntati proof stating that redution of extrated terms annot not fail, the

seond proof is a semanti proof ensuring the orretness of extrated terms with respet to

theirs spei�ations.

The hapter 3 is then dediated to the typing of the extrated terms. We start by studying

in detail whih kind of non-typability the extrated terms may presents in a ML-like typing

system, then we propose a solution for skirting these di�ulties.

Lastly, the hapter 4 supplements the desription of our new extration by presenting

the last aspets of our work: extration of modules, of o-indutive types, of reord types,

and lastly optimization of the extrated ode. Finally we brie�y present the implementation

arried out, from both developer's and user's point of view.

The hapter 5 starts the seond half of the manusript, devoted to ase studies. In this

hapter, we �rst review the users ontributions from the point of view of extration, these

users ontributions forming an already onsequent library of examples of Coq developments.

Then we detail the ase of two of these ontributions, whih put at fault the old extration:

the �rst on exeptions by ontinuations, due to J.-F. Monin, and the seond on Higman's

lemma, by H. Herbelin.

The hapter 6 gives a progress report on an ambitious projet onsisting in developing a

library of arithmeti real exat by extration of a development of onstrutive real analysis.

The development in question is the C-CoRN projet at the university of Nijmegen. We will

see that one is still far from the goal, but that at the same time enormous progress were

already aomplished. In addition, we present a small alternative experimentation around

onstrutive reals made in ollaboration with H. Shwihtenberg.

Lastly, the hapter 7 presents the erti�ation of the Oaml library of �nite sets whih we

arried out in ollaboration with J.-C. Filliâtre. This development is one of �rst to ombine

modules, funtors and extration.

12 Certi�ed funtional programming

Syntati onventions

Throughout this doument, fragments of soure ode given in example will be highlighted

as follows:

Definition zero := 0.

The ontents of these fragments ould be in Coq, Oaml or Haskell aording to the example.

The short examples will be mentioned with only font hange, suh as (plus 0 0).

Some examples will also show user's interations with Coq :

Coq < Eval ompute in 1+1.

= 2

: nat

We reuse here the syntax of the old oqtop text interfae: the lines preeded by the prompt

�Coq <� orrespond to user's inputs, whereas the other lines are Coq outputs. In the same

way, the examples of use of Oaml interative loop will be presented as follows, with the

harater �#� as prompt:

1+1;;

- : int = 2

The Coq examples are intended to be used with Coq version 8.0 or later [78℄. It should

be noted that this version inaugurates a new syntax, muh more pleasant. Beyond the use

of this new syntax, we also have improved the readability of examples using some reent

advaned features of the system:

• Some original ASCII keywords were replaed by theirs Uniode equivalents

9

:

forall exists -> <-> <> ~ /\ \/ <=

∀ ∃ → ↔ 6= ¬ ∧ ∨ ≤

• We used the most readable syntax for arithmeti expressions, for example 0+1 instead

of (plus O (S O)), as allowed by the Sope mehanism.

• When the type of a quanti�ation an be dedued from the ontext, Coq now authorizes

its omission. We sometimes use this possibility.

9

This an indeed be done in Coq, via the Notation ommand and the use of an Uniode-ompatible

interfae, suh as CoqIDE [78℄ for example.

14 Certi�ed funtional programming

Chapitre 1

A presentation of Coq

This hapter has a double goal:

• First of all, the reader disovering the Coq proof assistant will �nd here a quik des-

ription of this system, and more partiularly its underlying logial system, namely

the Calulus of Indutive Construtions (Ci in summary). Ideally, the only require-

ment for reading this part is a basi knowledge in type theory and in λ-alulus. Of
ourse, this hapter does not intend to replae the doumentation oming with Coq.

The reader may thus onsult as well:

� the Tutorial [47℄ for a more gradual introdution,

� the Referene Manual [78℄, and in partiular its hapter 4 on the Ci, for an

exhaustive formal desription of Coq.

• At the same time, this presentation of Coq is of ourse entered on the extration.

Even if this extration is introdued only in the following hapter, we will detail here

all the features the Ci logial system that will in�uene the extration.

1.1 An introdution via examples

1.1.1 Coq as a logial system

The objetive goal of Coq is to be an proof assistant, and thus to allow the formalization

of mathematial reasoning. Let us take an obvious statement: A → A, where A is one

unspei�ed proposition. Here is a proof in natural dedution (f [71℄):

A ⊢ A
(Ax)

⊢ A→ A
(→I)

This proof an be diretly transribed in the Coq system. First, one is given a proposi-

tional variable.

Parameter A : Prop.

We will detail later this Prop, but here one an onsider it simply as the set of all logial

propositions.

16 Certi�ed funtional programming

Lemma easy : A → A.

Proof.

intro.

assumption.

Qed.

This portion of Coq sript starts with the name and the statement of our lemma. Then

between the keywords Proof and Qed is the proof of this statement, made of diretives or

tatis. These tatis re�et here the struture of the natural dedution proof. The intro

tati orresponds to the use of introdution rule for the arrow (→I). And the assumption

tati orresponds to the axiom rule (Ax).

The sript presented here is omplete, but the system Coq, by its interative nature,

allows to build this proof step by step. Thus, if one stops after the order intro, the system

prints the urrent state of the goal(s) to prove:

1 subgoal

H : A

============================

A

Here we have to �nd a proof of A under the assumption A (this assumption being named H).

Many interfaes exist to failitate this interation with the Coq system, suh as Proof-general

[4℄, Poq [3℄, or more reently CoqIDE [78℄. Sine the extration works on �nished proof, we

will not detail more this onept of interation.

It should also be noted that Coq provides to the user a large variety of tatis. Here for

example, for a statement that simple, the automati researh tati auto would have been

able to build the proof diretly. There again, we will not detail these tatis. Indeed, the

extration does not depend on the way followed during the proof building, but only on the

�nal form of the proof. In fat, auto builds here the same internal proof that intro followed

by assumption.

Proofs as λ-terms

What is this internal representation of the proof? The system uses in fat λ-terms,

following the Curry-Howard isomorphism. The underlying logial system of Coq, the Ci,

is indeed a λ-alulus with a powerful type system. And always in appliation of the Curry-

Howard isomorphism [46, 7, 38℄, the statements that an be expressed in Coq are the Ci

types. Lastly, to hek if t is indeed a valid proof of the statement T, we only have to

heking if the type T is a legal type of the λ-term t.

Let us ask Coq whih is the internal representation of the lemma easy:

Coq < Print easy.

easy = fun H : A ⇒ H

...

/

...

1.1. An introdution via examples 17

...

/

...

: A → A

The syntax fun x:X ⇒ T is the Coq notation for the typed λ-abstration λx:X.t. This
abstration is here the e�et of the intro tati. As for assumption, its e�et is the use

of a variable in the ontext, here H. In a more general way, any tati ontributes to build

piee by piee the omplete λ-term of the proof. And �nally, it is lear that fun H:A ⇒ H

is indeed of type A→A.

These proofs in the form of λ-terms are usually handled only by the system. But nothing

prevents the user to provide whole or part of its proof in this form, for example via the

exat tati.

Lemma easy : A → A.

Proof.

exat (fun a ⇒ a).

Qed.

One an notie here that Coq is able to infer the type of a, whih is neessarily A. It is
hene optional to write this type. We will frequently use this possibility thereafter.

Finally, if the omplete λ-term is known in advane, we an write it diretly in the form

of a Definition:

Definition easy : A → A := fun a ⇒ a.

Alternatively, one an also use a de�nition style where arguments are named during the

delaration of the type, making useless the writing of the head λ-abstrations :

Definition easy (a:A) : A := a.

This style is ertainly more onise, but not neessarily more readable. We will thus avoid

it, exept in the ase of the reursive funtions where it is essential (f. lower).

The higher order

Up to now, the only basi type A we met had been �xed as a parameter, and the statement

of the lemma easy related to this partiular A. But one an also onsider in Coq statements

(that is types) speaking of sets of types. For example ∀A:Prop, A→A is a statement (i.e. a

Coq type) that reads: �for any proposition A (that is objet A belonging to the type Prop), A

implies A�. Suh a universal typed quanti�ation ∀x:X, T is also named produt in Coq. This

quanti�ation not being restrited, the Ci is thus a higher order logi. One also speaks of

dependent types, sine generally the body T of the produt depends on the variable x in the

head of the produt.

What an be the proof of the statement ∀A:Prop, A→A? The introdution of the �forall�

onsists in piking an unspei�ed objet in the domain, and then arrying out the rest of the

proof with this objet. On the λ-alulus level, this results in one λ-abstration: in response

to a statement ∀A:Prop, ..., the proof will thus begin with fun A:Prop ⇒.... The rest

of the proof is then the same one as the one of our easy lemma, whih �nally gives us the

omplete λ-term fun A:Prop ⇒ fun a:A ⇒ a, or simply fun (A:Prop)(a:A) ⇒ a.

18 Certi�ed funtional programming

It is notieable that the λ-abstrations are used at the same time for building the proof

of produts and arrow types. This is no oinidene, one an indeed see a arrow type A→B as

a non-dependent produt ∀x:A, B for whih x does not appear in B. In fat, in Coq, syntax

A→B is diretly syntati sugar for ∀_:A, B.

1.1.2 Coq as a programming language

One an also approah Coq via the other side of Curry-Howard isomorphism, and look at

the Ci not as a logial system, but more as a λ-alulus, that is a programming language.

For example, with this vision, our easy lemma is the identity funtion on the type A.

Some standard indutive datatypes

For onsidering Coq as a programming language, it is neessary for us to be able to

de�ne the datatypes that one usually meet in other programming languages. The de�nition

of these datatypes an be made easily in Coq via the use of indutive types. All indutive

types that we present in this hapter belong to the standard library of Coq.

The boolean type is obtained via the following delaration:

Indutive bool : Set := true : bool | false : bool.

This delaration reates a new type, named bool, with two onstrutors true and false of

type bool. The Set annotation indiates what should be the type of the bool type. We will

reonsider this point thereafter; meanwhile Set an be seen as the set of all datatypes. In

the same way, one de�nes the Peano integers this way:

Indutive nat : Set := O : nat | S : nat → nat.

The onstrutor O odes for zero, and S odes the suessor funtion. A last usual example

is the one of parametri lists:

Indutive list (A:Set) : Set :=

| nil : list A

| ons : A → list A → list A.

Here, the syntax (A:Set) expresses the fat that list depends on one parameter A. And

for eah use of this data struture, the parameter will be provided as an argument, a list of

integers being for example list nat.

It should be noted that the system refuses ertain indutive types whose de�nition is

syntatially valid. These restritions, whih ensure the oherene of the system from the

logial point of view, onsist mainly in a positivity ondition. The interested reader may

onsult the hapter 4 of [78℄ or even [68℄.

Pattern mathing over indutive terms

To take advantage of these indutive types, the Ci is equipped with a primitive operator

allowing pattern mathing, whose syntax is math... with.... This allows for example to

1.1. An introdution via examples 19

de�ne the predeessor of an integer.

Definition pred : nat → nat :=

fun n ⇒
math n with

| O ⇒ O

| S m ⇒ m

end.

The primitive mathing of Coq is a simple, �rst level only mathing:

• Eah branh orresponds to a onstrutor and only one.

• In the branh orresponding to the onstrutor C, the pattern mathed is inevitably

the appliation of C to variables.

In addition to this primitive mathing, we an also in Coq de�ne more omplex mathings,

as in this double predeessor:

Definition predpred : nat → nat :=

fun n ⇒
math n with

| S (S m) ⇒ m

| _ ⇒ O

end.

We will not detail these omplex mathings, whih are in fat translated at the internal Coq

level into a suession of primitive mathings. Our double predeessor is thus the ombination

of two simple predeessors.

Lastly, let us mention to be omplete that the syntax math... with aepts additional

annotations via the keywords as, in and return. These annotations are almost always

optional. But in ertain situations Coq does not know how to infer automatially a type for

the whole mathing, or does it badly. These additional annotations allow to provide expliitly

this type. We will enounter this situation later on, for example in the term A

_

inv (see

setion 1.1.4).

The strutural indution

The last primitive onstrution of the Ci is the possibility of to de�ne a term by

strutural indution on an indutive objet. In its simplest version, this strutural indution

orresponds to the Fixpoint syntax. Let us de�ne for example the addition of two unary

integers:

Fixpoint plus (n m:nat) {strut n} : nat :=

math n with

| O ⇒ m

| S n' ⇒ S (plus n' m)

...

/

...

20 Certi�ed funtional programming

...

/

...

end.

The omplete type nat→nat→nat of plus is here divided between two named arguments n

and m on a side of the �:� and one result nat of the other. This makes it possible to speify

via strut on whih indutive argument will be made the indution. One speaks then of

�guard� indutive argument, or �dereasing� indutive argument. Another possible hoie of

presentation would have been to draw aside only the �rst argument, whih is then impliitly

the �guard� argument, and to leave as result type nat→nat:

Fixpoint plus (n:nat) : nat → nat := fun m ⇒
math n with

| O ⇒ m

| S n' ⇒ S (plus n' m)

end.

A reursive de�nition is aepted only if any internal reursive all is done on a reursive

argument whih is struturally smaller that the initial reursive argument. Here for example

n' is indeed a subterm of n. One will �nd a more preise de�nition of this �struturally

smaller� in [78℄. The reason for this onstraint is, there again, the logial oherene. Without

this ondition on reursive alls, it would be very easy to build terms of any type A:

Fixpoint loop (n:nat) : A := loop n.

Definition impossible : A := loop 0.

The logial system would be then inoherent.

In fat, the syntax Fixpoint is not the most general one, beause it delares the name

of the funtion immediately, and does not allow reursive anonymous funtion. In partiular

one annot imbriate one Fixpoint in another. Suh a anonymous �xpoint an be de�ned

in Coq via the syntax fix. Here an alternative de�nition of plus using this syntax:

Definition plus :=

fix plusre (n m:nat) {strut n} : nat :=

math n with

| O ⇒ m

| S n' ⇒ S (plusre n' m)

end.

On Coq internal level, these two de�nitions of plus are idential. In fat, Fixpoint is only

syntati sugar for a Definition followed by a fix, as a Print plus an show. A typial

example of use for an anonymous fix is the merge of two sorted lists, that an be found for

example p.193 in one of the implementations of �nite sets.

The term redution

The prinipal interest of a programming language is to be able to exeute the programs.

This is possible with Coq. Its logial system Ci is indeed equipped with redutions rules:

1.1. An introdution via examples 21

(beta) Ci being basially a λ-alulus, one obviously �nds the β-redution

(delta) As this system authorizes the addition of new onstants (via Definition, Lemma, et),

a rule of redution named δ allows to replae a onstant name by the body of this

onstant.

(zeta) Coq now inludes primitive �let-in�, that is loal abbreviations let x:=t in U. A sys-

tem rule named ζ allows to unfold these abbreviations, by replaing x by t everywhere

in u.

(iota) The system also inludes two rules dediated to indutive types, both named ι. The
�rst rule allows to redue a mathing, if the mathed term starts with a onstrutor.

By example, math S N with O ⇒ O|S m ⇒ m end an be redued to n. The other

rule related to indutive is the one an redue a reursive funtion, as soon as its guard

reursive argument is present and that it starts with a onstrutor.

These redutions an be used in Coq at any time, for example via the ommand Eval

ompute

1

:

Coq < Eval ompute in pred (plus 2 2).

= 3

: nat

These omputations in Coq have very strong properties in omparison with exeutions

in more usual programming languages:

(i) First of all, the Coq redution is a strong redution, that is allowed at any plae, even

under a lambda or in the body of a reursive funtion. For example:

Coq < Eval ompute in fun n ⇒ plus 1 n.

= fun n : nat ⇒ S n

: nat→nat

In omparison, the majority of usual languages freeze the body of funtions, to redue

them only when all waited arguments are present.

(ii) Then, any redution Coq is �nite. This property is named strong normalization. Star-

ting with a given term, any hain of redutions thus leads in a �nite number of steps to

a normal form, that is a non-reduible term. This results from the multiple onstraints

required before a term is aepted as valid in the Ci, as well as the former onstraints

on ι-redutions. On the ontrary, in the immense majority of languages, it is very simple

to write a not-terminating program.

(iii) In addition, Coq also satis�es the on�uene property: if one onsiders two redued

of the same term, there exist two derivations of these two terms towards a ommon

redued term. This, assoiated with (ii), allows to show that for eah initial term there

exists in fat one and only one normal form. One is thus sure to obtain it in �nite

time, in whatever order the omputations are made. This property is for example not

1

The syntax 2 is by default translated into S (S O), and so on for the other numbers. The new Sope

mehanism [78℄ allows to hange this translation aording to needs (Z, R...).

22 Certi�ed funtional programming

satis�ed by languages with side e�ets, in whih evaluation order an in�uene the

result.

The ounterpart of these strong meta-theoretial properties is a ertain lak of expres-

sivity of Ci onsidered as a programming language. It is indeed impossible to speak there

diretly of partial funtions, that is non everywhere de�ned. It is also impossible to de�ne

diretly a general, non-strutural, reursive funtion. In fat we will see later how to ir-

umvent these two limitations, respetively via the use of pre-onditions and well-founded

indution operators.

1.1.3 The universes of Ci

We now approah the mysteries of Coq that form the ore of the extration mehanism,

namely the univers or sorts of Coq. It should be known that there is no Coq syntati

distintion between the basi terms (like 0) and the types (like nat). In both ases, they

are terms of the Ci. However any term of the Ci has a type, whih is again a term of the

Ci. One an thus wonder how looks a type of a type, or a type of a type of a type. Let us

ask the system:

Coq < Chek 0.

0

: nat

Coq < Chek nat.

nat

: Set

Coq < Chek Set.

Set

: Type

Coq < Chek Type.

Type

: Type

Here appear Set and Type, whih with Prop are three speial objets of Coq named sorts.

And these sorts will have a lose relationship with types of types in the system:

• First of all, it is lear that Set and Type are types of types (of 0 and nat respetively).

As for Prop, it is enough to de�ne an indutive type in Prop, whih an be done

similarly to de�nition (already seen) of indutive types in Set :

Indutive True : Prop := I : True.

Prop is then the type of the type of the onstrutor I.

• In addition, a property of the Ci states that all type of type an be redued towards

Set, Prop or Type.

Lastly, to be omplete, let us note that the type of Prop is Type.

1.1. An introdution via examples 23

The Type universe

Let us �rst examine the Type sort. It is a strange objet who seems to be his own type.

If a set-theoreti vision is taken, that orresponds to a set of sets ontaining itself, whih

leads to Russel paradox. Even if this set-theoreti vision is here imperfet, it is nevertheless

true that Type:Type allows to prove the inonsisteny of the system [20℄. A remedy is then

to take an in�nite hierarhy of sorts. In Coq, the Type sorts are impliitly subsripted by an

integer, and for any index i one has: Typei :Typei+1. From the point of view the extration,

we will not need to distinguish among this in�nity of sorts, and we will thus remain on the

level of the approximation Type:Type.

Classi�ation of universes

One an then ask for the reason of the presene of three sorts when only one, Type, ould

have been enough. Two independent riteria allow in fat to distinguish these three sorts:

• the prediative or imprediative nature

• the logial or omputational nature (we will also say informative).

We now detail these two riteria suessively. But before that, here how the Coq sorts are

loated with respet to these two riteria. Until version 7.4 of Coq, the situation ould be

summarized by the following diagram:

imprédiatif prediative

alulative Set Type

logi Prop

As from version 8.0, the Set sort is now by default prediative, whih gives us the new

following diagram:

imprédiatif prediative

alulative Set, Type

logi Prop

Imprediativity

Even if the (im)prediative nature does not in�uene diretly the extration, we never-

theless will try to illustrate this onept. For an imprediative sort like Prop, one authorizes

the reation of an element of Prop via an universal quanti�ation on all elements of Prop

(and thus in partiular on this new element urrently being de�ned). For example, we have

already met the identity type on Prop :

Definition typeId : Prop := ∀A:Prop, A → A.

On the other hand, it is not possible to de�ne the same term with prediative sort Type

instead of Prop. That apparently works, but this is only an appearane, sine the impliit

indies of the two Type ourrenes are in fat di�erent:

Definition typeId' : Typei+1 := ∀A:Typei, A → A.

24 Certi�ed funtional programming

The problem is even more obvious with Set and Coq 8.0. The following de�nition:

Definition typeId'' : Set := ∀A:Set, A → A.

generates an error explaining that typeId'' is of type Type and not Set.

As mentioned previously, version 8.0 of Coq now has by default a prediative Set sort.

In fat, a ommand line option for Coq 8.0 allows to return to the previous situation. In

all the following, we use the default situation for Coq 8.0, namely with prediative Set,

exept otherwise mentioned (see by example the study of Higman's lemma in setion 5.4).

Anyway, the theoretial study of extration that follows is independent of this question of

imprediativity. We will thus keep on speaking of Ci for one or the other logial system

obtained with or without the imprediativity of Set, even if the o�ial name for the system

without imprediativity is now pCi (for �Prediative Calulus of Indutive Construtions�).

Logial and informative universes

The other distintion between sorts relates to their logial or omputational nature.

First, we have initially a simple usage onvention onerning Prop and Set :

• Set is intended to ontain all the objets having omputational ontents, in partiular

the previously onsidered examples of usual datatypes for the programmer.

• The role of Prop, on the ontrary, is to ontain everything related with pure logi,

suh as for example the various justi�ations, pre- and post-onditions, in other words

everything that an be ignored during omputations.

The user thus hooses at the time of the de�nition of an objet whether to plae it in Prop

or another sort. And this hoie will be used by the extration, whih will ignore the logial

parts plaed in Prop.

With respet to the logi/omputational duality, Type plays an ambiguous role. In par-

tiular, Ci ontains a umulativity priniple, whih allows to state that if t:Set, then one

also has t:Type, and similarly if t:Prop, then one also has t:Type. Let us onsider the

identity on Type :

Definition id : ∀X:Type, X → X := fun (X:Type) (x:X) ⇒ x.

The umulativity ensures that the following terms are well-typed: (id Set nat) or (id nat

O) or (id Prop True) or �nally (id True I). By the umulativity, ertain terms of sort

Type are thus in fat logial beause originally belonging to Prop, and others are omputa-

tional. In doubt, we must then onsider that the objets in Type an have omputational

ontents. This explains that on the extration level, Set and Type will not be distinguished.

The logial indutive types

Conerning the logial operations, we have only presented yet the impliation and the

universal quanti�ation. Let us now see how to de�ne the other usual logial operators via

indutive types in Prop. We have already met True, with its single onstrutor I. At the

logial level the statement True admits thus an immediate proof, whih is simply I. On

1.1. An introdution via examples 25

the ontrary, False is an indutive type without onstrutor, and is thus not provable in a

empty ontext (the opposite would have as a onsequene the inonsisteny of the system).

Indutive False : Prop := .

The negation ¬A is then de�ned as A→False.

The logial onnetors or and and are de�ned as follows:

Indutive or (A B:Prop) : Prop :=

| or_introl : A → or A B

| or_intror : B → or A B.

Indutive and (A B:Prop) : Prop := onj : A → B → and A B.

One will meet these two indutive with Coq syntaxes ∧ and ∨.
Here is now the existential quanti�ation:

Indutive ex (A:Type)(P:A→Prop) : Prop :=

ex_intro : ∀x:A, P x → ex A P.

The Coq syntax for this existential is ∃x:A, P (or ∃x, P if A an be infered).

Finally the equality orresponds to indutive having only one onstrutor that simulates

the re�exivity:

Indutive eq (A:Type)(x:A) : A → Prop := refl_equal : eq A x x.

The equality will be noted =, and the di�erene (that is the negation of the equality) will

be noted 6= .

Thanks to pattern mathing, one an prove the usual (intuitionisti) properties of all

these logial operators. Here is one example:

Definition proj1 : ∀A B:Prop, A∧B → A :=

fun (A B:Prop)(ab:A∧B) ⇒ math ab with (onj a b) ⇒ a end.

The elimination rules for indutive types

In fat, the dihotomy between Prop used as logial sort and Set used as omputational

sort is more than just a matter of usage onvention. Rules authorizing or not the elimination

of an indutive term (that is a mathing on this term) di�er indeed aording to the sort

of this indutive term. If it is Prop, then this elimination an only be used to build a

term in Prop. On the other hand, one authorizes eliminations of indutive on Set and

Type to build terms of all sortes

2

. the idea is that a logial indutive, therefore without

omputational ontents, annot in�uene a omputation in Set or Type. And the Ci typing

system guarantees this property. Let us examine the following example:

2

When Set is imprediative, there exists however a restrition on the elimination of ertain indutive in

Set : they must be small before being authorized to build a term of sort Type (f setion 4.7 of [78℄)

26 Certi�ed funtional programming

Definition or_ara : ∀A B:Prop, A∨B → nat :=

fun A B ab ⇒
math ab with

| or_introl _ ⇒ 0

| or_intror _ ⇒ 1

end.

If this example were legal, to know if an appliation of or

_

ara is redued into 0 or 1, the

ontents of the logial proof A∨B would have to be alulated, whih one wants preisely to

avoid. The response of the system to this de�nition attempt is:

Error: Inorret elimination of ab in the indutive type or.

The elimination prediate fun _:A∨B ⇒ nat has type A∨B → Set.

It should be one of : Prop.

Elimination of an indutive objet of sort : Prop

is not allowed on a prediate in sort : Set

beause non-informative objets may not onstrut informative ones.

There are nevertheless two exeptions allowing the elimination of one indutive on Prop

in order to build an informative term. In these two ases, the form of indutive ensure that

its mathing brings no omputational information.

• The �rst ase is the one of an empty logial indutive, that is without onstrutor, like

False. This elimination of False orresponds to the �ex-falso quodlibet� priniple: if

we have one term of type False, this implies that we are in a ontraditory ontext,

and we are then authorized to onstrut a term of any type.

Definition False_ret: ∀A:Type, False → A :=

fun (A:Type) (f:False) ⇒ math f with end.

• The seond exeption deals with the logial singleton indutive. They are logial in-

dutive with only one onstrutor, and this only onstrutor does not have informative

arguments. One an give as example and, and espeially eq. Having a term in suh

indutive types does not bring any omputational ontent, sine one knows inevitably

whih is the onstrutor of this term, and the arguments of this onstrutor are again

without omputational ontents. Here follows for example the informative indution

priniple assoiated with eq, whih in fat desribes how to get from (P y) to (P x)

when it is known that x=y:

Definition eq_ret: ∀A:Type, ∀x:A, ∀P:A→Type, P x → ∀y:A, x=y → P y

:= fun (A:Type)(x:A)(P:A→Type)(f:P x)(y:A)(e:x=y) ⇒
math e with refl_equal ⇒ f end.

This priniple and its logial sibling eq

_

ind are the basis of the rewrite tati of

replaement of terms by equal terms. By the way, it should be noted that these in-

1.1. An introdution via examples 27

dution priniples ...

_

ret and ...

_

ind are generated automatially by Coq when

the orresponding indutive type is de�ned.

1.1.4 Prop/Set mixed terms

Until now, we have seen how to use the Ci as a programming language, and how to

alulate with terms written with this Ci. One may wonder then why we need an automati

mehanism for extration of programs starting from Ci terms, sine we now that suh a

term is already a program? It is indeed true that the extration of purely alulative terms

is only one problem of translation

3

of a soure language (Ci) towards target languages

(Oaml or Haskell). But the things get more omplex (and more intersting) when we onsider

mixed terms, with logial and informative parts interlaed. The use of this style of terms,

allowed by the Ci, is very onvenient in many situations. One an in partiular enrih a

informative term with pre- and post-onditions, or use a well-founded indution for justifying

the derease of a measure at eah reursive all of a �xpoint.

Pre-onditions

In addition to the natural need to express a spei�ation of funtions in the pre- and

post-onditions form, the logial pre-onditions also bring a solution to the problem of partial

funtions de�nition. Let us onsider, for example, an integer division funtion div of type

nat→nat→nat, whih is not de�ned when its seond argument is zero. There are then (at

least) three ways of proeeding:

(i) One an nonetheless de�ne (div N O), using one arbitrary value, for example O. The

problem is that a integer division an return O either as a legitimate result, or as mark

of an abnormal situation. One annot thus prove the following lemma any more:

Lemma div_gives_zero : ∀n m:nat, (div n m)=0 → n<m.

(ii) the seond solution is to simulate a exeptions mehanism. That an be done by exten-

ding the output domain nat into a nat⊥, as is domain theory. Rather than modifying

all the types used, there is one generi method, namely the use of an indutive option:

Indutive option (A:Set) : Set :=

| Some : A → option A

| None : option A.

Thus, div will turn over None if its seond argument is O, and (Some r) if not, r

being then the true result of the omputation. The disadvantage of this method is the

heaviness of this enoding: for eah use of a division, it will be neessary to arry out

one mathing for either reahing the true result, or again to turn over None.

3

We will see in fat that even this translation is not so simple, sine the type system of Ci is muh

more powerful than the ones of the funtional target languages.

28 Certi�ed funtional programming

(iii) the last possibility is to express the fat that the seond argument must be non-null

via a logial pre-ondition. The type of div then beomes nat→∀n:nat, n6=O→nat.

The type of the seond argument is not given any more via an arrow type, that is an

anonymous produt, but by a named produt (by n) in order to be able to refer to

it in the logial assertion. It is the method whih approahes the most the onept of

partial de�nition. Indeed the funtion div is not de�ned outside the validity domain

of the logial assertion. The ounterpart is that one must now provide a logial proof

of non-nullity as third argument during eah all to div.

Coq < Lemma two_non_zero : 2 6=0. auto. Qed.

two_non_zero is defined

Coq < Eval Compute in (div 3 2 two_non_zero).

= 1

: nat

Post-onditions

In addition to pre-onditions, it is also possible to express logial post-onditions, and

hene ombining both pre- and post-onditions allows to give the spei�ation of a funtion

in a Hoare-like style [45℄. Thus a funtion of type A → B, pre-ondition P and of post-

ondition Q orresponds to a onstrutive proof of the formula:

∀x:A, (P x)→ ∃y:B, (Q x y)

We will not transribe this formula in Coq by using its already enountered existential

quanti�er ex on Prop. Indeed, that would amount to regard the result of the funtion as

being not-informative. We rather use a informative existential quanti�ation, named sig.

Indutive sig (A:Set)(P:A→Prop) : Set :=

exist : ∀x:A, P x → sig A P.

It should be noted that sig A (fun x ⇒ P x), whih expresses the existene of one

informative objet x heking the logial property (P x), is also written {x:A|(P x)}. This

thus gives us the following general form for a funtion with pre- and post-onditions:

∀x:A, (P x) → { y:B | Q x y }

For example a version with post-ondition of our integer division funtion an be spei�ed

as follows:

Definition div : ∀a b:nat, b6=O → { q:nat | q*b ≤ a ∧ a < (S q)*b }.

One an then �nd the alulative result of div via one mathing

4

4

The syntax let...:=... in... of this example is a shortut for a mathing on an indutive type

with only one onstrutor. In the same way a syntax if... then... else... exists as a shortut for any

mathing on indutive types with two onstrutors.

1.1. An introdution via examples 29

Coq < Eval ompute in let (q,_) := div 3 2 two_non_zero in q.

= 1

: nat

This indutive sig an be also used to solve the partial funtion problem in a fourth way,

via a restrition of the starting domain. One an indeed express the type of the non-null

integers by { n:nat | n6=O }. This approah is equivalent to the one via by pre-onditions,

and as it is slightly less natural in Coq, we will not use it.

Informative disjuntion

Beside sig, another type is frequently used that ombines informative and logial parts.

This is sumbool, whih is a ounterpart of the logial disjuntion or, exept that it is plaed

in the Set universe:

Indutive sumbool (A B: Prop) : Set :=

| left : A → sumbool A B

| right : B → sumbool A B.

The type (sumbool A B) is also noted {A}+{B}. The onsequene of the use of Set in the

de�nition of sumbool is that one an test if an objet of type sumbool starts with left or

right, even if one is in an informative part. In omparison, that would be illegal with an

objet of type or. On the ontrary, the arguments of left and right remain logial, whih

prevent to analyze it for onstrutive ends. From a omputational point of view, sumbool

is thus a type that is really similar to bool, it simply ontains in addition some logial

annotations. This type is primarily used to express results of deidability, and an be read

�there exists an algorithm to determine if A or B�. For example:

Theorem eq_nat_de : ∀n m, {n = m} + {n 6= m}.

Or:

Lemma le_lt_de : ∀n m, {n ≤ m} + {m < n}.

Well-founded indution

The de�nitions by well-founded indution onstitute a last example of use of logial

parts in a omputational funtion. First, we need to formalize the fat for a relation of being

well-founded.

Setion Well_Founded.

Variable A : Set.

Variable R : A→A→Prop.

Indutive A : A→Prop :=

...

/

...

30 Certi�ed funtional programming

...

/

...

A_intro : ∀x:A, (∀y:A, R y x → A y) → A x.

Definition Well_founded := ∀a:A, A a.

The use of a Setion and Variable allows to fatorize the ommon dependenies, here

over a type A and over a logial relation R on this type. An element is known as aessible

(A x) with respet to A and R i� all predeessors of x by R are themselves aessible.

This indutive de�nition may seem strange, beause of the lak of basi ase. In fat, the

universal quanti�ation ensures that an initial element (without predeessor by R) is diretly

aessible. The �niteness of the indutive objets implies that one an interpret A as

follows: we have (A x) if all the sequenes of suessive predeessors by R starting from x

are �nite. Finally the relation R is said to be well-founded if all the points in A are aessible

by R.

We then need an inversion of the A indutive: if one point x is aessible, then all its

predeessors are aessible. This is obtained by pattern mathing on (A x):

Definition A_inv : ∀x:A, A x → ∀y:A, R y x → A y :=

fun x a ⇒
math a in A x return ∀y, R y x → A y with

| A_intro x' f ⇒ f end.

The two annotations �in A x� and �return ∀y, R y x → A y� an be ignored during

�rst reading. They are needed to speify whih must be the type of the math ... with...

subterm. These annotations are optional in the many simple situations where the system

an infer a suitable type. It is thus the ase of all mathings enountered until now, sine

they produe objets of obvious types like nat. But here, the type of the seond argument f

of A

_

intro depends on the �rst argument x', whih is not visible outside of the term. In

fat, x' is neessarily x, but the system urrently does not know how to disover that, hene

the need for a manual annotation. For a more general disussion on the need for annotations,

see page 84 of [68℄.

We now show that if an informative prediate P is propagated by R, then P is valid in

any aessible point.

Setion A_iter.

Variable P : A→Type.

Variable F : ∀x, (∀y, R y x → P y) → P x.

Fixpoint A_iter (x:A)(a:A x) {strut a} : P x :=

F x (fun y h ⇒ A_iter y (A_inv x a y h)).

End A_iter.

End Well_founded.

There are two astonishing things in this A

_

iter de�nition:

• First of all we build an informative term (sine its sort is Type) by indution over a,

whih is a logial indutive objet. This is legal in Coq, but an seem to be a violation

of the priniple of the Prop/Set duality, aording to whih a logial part should not

in�uene a informative omputation. In fat this in�uene is limited to just provide

1.1. An introdution via examples 31

the insurane that this reursion will terminate. True omputation is in fat arried

out in the funtion F, whih annot use the ontents of a beause of the restritions

on sorts in pattern mathings.

• the seond shoking point is that the reursive all in (A

_

iter X a) is done on the

reursive argument (A

_

inv x a y H), whih does not seem struturally smaller

than the initial reursive argument a. But if a is of form (A

_

intro

_

F), then

(A

_

inv x a y H) an be redued in (f y H). As f is the funtion ontained in a,

this de�nition satis�es indeed the struturally dereasing riterion of Coq.

Let us mention a last funtion related to well-foundedness:

Coq < Chek well_founded_indution.

well_founded_indution

: ∀(A:Set) (R:A→A→Prop),

well_founded R →
∀P:A→Set,

(∀x:A, (∀y:A, R y x → P y) → P x) →
∀a:A, P a

This is an alternative to A

_

iter, in with the relation R is supposed well-founded, and that

allows us to obtain (P x) for all x without any restrition.

As an appliation, this well-founded indution allow us to de�ne funtions. Let us onsi-

der for example A = nat and R = lt, that is the strit order on nat. The standard library of

Coq ontains a proof named lt

_

wf stating that this order is well-founded. We an then de�ne

our integer division div by suessive subtrations rather than by strutural indution:

Definition div : ∀a b:nat, b6=0 → { q:nat | q*b ≤ a ∧ a < (S q)*b }.

Proof.

intro a; pattern a; apply (well_founded_indution lt_wf); lear a.

intros a Hre b Hb.

elim (le_lt_de b a); intros Hab.

assert (H : a-b < a). omega.

elim (Hre (a-b) H b Hb); simpl; intros q (Hq,Hq').

exists (S q); simpl; omega.

exists 0; omega.

Qed.

1.1.5 Coq extensions

A ertain number of Coq extensions were voluntarily not presented here. They will be

the subjet of spei� studies in hapter 4. This onerns in partiular:

• the new system of modules of Coq (setion 4.1)

• the o-indutive types (setion 4.2)

32 Certi�ed funtional programming

1.2 A formal presentation of the Ci

We now will give a more formal presentation of the Ci. This formalism will be used in

the theoretial hapter whih omes next. The notations used here orrespond as muh as

possible to those of hapter 4 of the Referene Manual [78℄. The prinipal exeption onerns

the environments and the ontexts. For simpliity reasons, we will merge these two onepts.

First, let us speify the terms syntax of the Ci.

1.2.1 Syntax

De�nition 1 (terms) Terms of the Ci are given by the following grammar:

T ::= s
| x | c | C | I
| ∀x : t, t | λx : t, t | let x := t in t | (t t)
| ase(t, t, t . . . t)
| fix xi {x1/k1 : t := t . . . xn/kn : t := t}

where:

� s indiates a sort, among Set, Prop or Typei. We will omit the index of Typei as long

as it does not intervene expliitly.

� x, c, C, I are identi�ers, that respetively refer to variables, onstants, indutive ons-

trutors and indutive types.

� for the �xpoint, the ki are integers that orrespond to the number of arguments awaited

by the xi omponents.

To lighten syntati expressions, we sometimes use vetorial notations:

• (f −→x) for (f x1 . . . xn)

• ∀−−−→x : X, T for ∀x1 : X1, . . .∀xn : Xn, T

• λ
−−−→
x : X, t for λx1 : Xn, . . . λxn : Xn, t

And we use the notation |−→x | to speify the size of vetor

−→x , when this size is signi�ant

and non-obvious.

It should be notied that the syntax hosen here di�ers somewhat from the onrete

syntax Coq :

• the λ is more onise than the keyword fun.

• the math... with syntax, even if it is a improvement with respet to usage omfort,

is hardly adapted to theoretial reasoning, espeially in the presene of additional

annotations as, in and return. We use instead a ase(P, e,
−→
f) syntax in whih e is

the mathed objet, P is the elimination prediate and the

−→
f funtions orrespond to

the branhes put in fontional form

5

: the equation (C x y z)⇒ t beomes the funtion

λx, λy, λz, t. By the way, let us mention that a pattern mathing an perfetly have

5

In fat, this syntax is similar to the one used in versions 5.x of Coq. It was still usable in versions 7.x

via the keyword Case... of.

1.2. A formal presentation of the Ci 33

zero branh, in whih ase we will note it ase(e, P, ∅). Conerning the prediate P ,

if e is an indutive objet of type (I −→q −→u), then the typing rules that follow fore P
to be of the form λ−→u , λx : (I −→q −→u), P0. The equivalent in Coq onrete syntax is

then:

math E have X in (I −→_ −→u) return P0 with ... end

• The Coq onrete syntax allows the de�nition of a blok of mutually reursive anony-

mous funtions via:

fix f1:Ti:=ti with ... with fn:Tn:=tn in fi

We will use following shortened syntax here:

fix fi {f1/k1 :T1 := t1 . . . fn/kn :Tn := tn}
where for eah fi omponent, the integer ki indiates the rank of the indutive ar-

gument on whih indution is performed. This integer orresponds to the strut

annotation of Coq onrete syntax. We will name this indutive argument the �guard�,

beause it will be used to ontrol the �xpoint redution (see redutions below). This

is then alled guarded indution.

De�nition 2 (ontexts) A ontext Γ is a list that an ontain the following elements:

� assumptions (x : t)

� de�nitions (c := t : t′)

� indutive delarations Indn(ΓI := ΓC), where n is the number of parameters, and

ΓI and ΓC are two ontexts respetively ontaining some indutive types and theirs

onstrutors.

Compared to the notations of the Referene Manual, we have hosen not to plae the

parameters in a speialized ontext, but to let them appear at the same time in ΓI and ΓC .

the n annotation allows to emphasize that the n �rst produts in all the elements of ΓI

and ΓC orrespond to parameters. Besides, this is loser to the atual Coq implementation.

For example, let us write the delarations of unary integers and of polymorphi lists in this

syntax:

Ind0(nat : Set := O : nat; S : nat→ nat)
Ind1(list :Set→Set :=

nil : ∀A :Set, list A; ons : ∀A :Set, A → list A → list A)

1.2.2 Redutions

De�nition 3 (redutions) The redutions of the Ci are as follows:

(beta) ((λx : X, t) u)→β t{x←u}
(delta) c→δ t if urrent ontext Γ ontains (c := t : T).

(zeta) let x := t in u→ζ u{x← t}
(iota) ase(Ci

−→p −→u , P, f1 . . . fn)→ι fi
−→u

when Ci is the i-th onstrutor of an indutive type having |−→p | parameters.

34 Certi�ed funtional programming

(iota) if F is the reursive blok f1/k1 :A1 := t1 . . . fn/kn :An := tn, then:
(fix fi {F} u1 . . . uki

)→ι (ti{fj←fix fj {F}}∀J u1 . . . uki
)

if the �guard� argument uki
starts with a onstrutor.

These redutions are strong: they are authorized at any position inside a term, via the

usual ompatibility rules. On the ontrary, we will also have to onsider later weak redutions,

that is redutions that an only happen at the top of the term, or either on the left or on

the right of an appliation or at the head of a Case. Said otherwise, redutions that an only

happen outside any binder. We will use→r to indiate a step of any of the strong redutions

→β, →δ, →ι or →ζ .

Starting from these redutions, one then de�nes the onvertibility relation =βδιζ and the

umulativity order ≤βδιζ whih are used below in the typing rule (Conv).

De�nition 4 (onvertibility) Two terms u and v are onvertible (noted u =βδιζ v) if they
have a ommon redued form w, that is suh as u→∗

r w and v →∗
r w.

De�nition 5 (umulativity) The umulativity order ≤βδιζ is reursively de�ned by:

� If u =βδιζ v then u ≤βδιζ v

� Typei ≤βδιζ Typej as soon as i ≤ j

� Set ≤βδιζ Type

� Prop ≤βδιζ Type

� If T =βδιζ T ′
and U ≤βδιζ U ′

then ∀x : T, U ≤βδιζ ∀x : T ′, U ′

It is notieable that due to the δ-redution, these two onepts depend impliitly on a

ontext.

De�nition 6 (arity) An arity is a term onvertible to a sort or a produt ∀x : T, U with U
being again a arity. After redution an arity an thus be written as ∀x1 : X1, . . .∀xn : Xn, s.
One then speaks of an arity of sort s.

1.2.3 Typing

We now give a ondensed de�nition of the typing rules of the Ci. One again, we refer

to the Referene Manual [78℄ for a detailed version of these rules and their explanations.

De�nition 7 (typing rules) The typing judgement Γ ⊢ t : T , whih means that T is one

valid type for t in the ontext Γ, is de�ned simultaneously with the propertyWF(Γ) of ontext
good formation, via the rules of �gure 1.1.

Let us now give the side onditions of the typing rules for indutive types:

1. In rule (Prod), the ondition P(s1, s2, s3) on sorts is:

(s2 = s3 = Prop) ∨
(s2 = s3 = Set ∧ s1 6= Type) ∨
(s1 = Typei ∧ s2 = Typej ∧ s3 = Typek ∧ i ≤ K ∧ j ≤ k)

By the way, to let Set be imprediative (again), it is enough to remove the ondition

s1 6= Type on the seond line.

1.2. A formal presentation of the Ci 35

WF(∅)
Γ ⊢ T : s x 6∈ Γ
WF(Γ; (x : T))

Γ ⊢ t : T c 6∈ Γ
WF(Γ; (c := t : T))

(WF)

WF(Γ)
Γ ⊢ Set : Typei

WF(Γ)
Γ ⊢ Prop : Typei

WF(Γ) i < j
Γ ⊢ Typei : Typej

(Ax)

WF(Γ) (x : T) ∈ Γ
Γ ⊢ x : T

WF(Γ) (c := t : T) ∈ Γ
Γ ⊢ c : T

(Var)(Cst)

Γ ⊢ T : s1 Γ; (x : T) ⊢ U : s2 P(s1, s2, s3)
Γ ⊢ ∀x : T, U : s3

(Prod)

Γ ⊢ ∀x : U, T : s Γ; (x : U) ⊢ t : T
Γ ⊢ λx : U, t : ∀x : U, T

Γ ⊢ t : ∀x : U, T Γ ⊢ u : U
Γ ⊢ (t u) : T{x←u} (Lam)(App)

Γ ⊢ t : T Γ; (x := t : T) ⊢ u : U
Γ ⊢ let x := t in u : U{x←u} (Let)

Γ ⊢ U : s Γ ⊢ t : T T ≤βδιζ U
Γ ⊢ t : U

(Conv)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (I : A) ∈ ΓI

Γ ⊢ I : A
(I-Type)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T) ∈ ΓC

Γ ⊢ C : T
(I-Cons)

for all (I : A) ∈ ΓI , Γ ⊢ A : s
for all (C : T) ∈ ΓC , Γ; ΓI ⊢ T : sC

In(ΓI , ΓC)

WF(Γ; Indn(ΓI := ΓC))
(I-WF)

Indn(ΓI = ΓC) ∈ Γ (I : ∀−−→p : T , A) ∈ ΓI σ = {−→p ←−→q }
|−→p | = n Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : Aσ; B)

for all onstrutor Ci : ∀−−→p : T , ∀−−−→x : X, I −→p −→y ,

Γ ⊢ fi : ∀−−−−→x : Xσ, P −→yσ (Ci
−→q −→x)

Γ ⊢ ase(e, P, f1 . . . fm) : P −→u e
(Case)

∀i, Γ ⊢ Ai : si ∀i, Γ;
−−−−→
(f : A) ⊢ ti : Ai F(

−→
f ,
−→
A,
−→
k ,
−→
t)

Γ ⊢ fix fj {f1/k1 :A1 := t1 . . . fn/kn :An := tn} : Aj

(Fix)

Fig. 1.1: Typing rules for Ci

36 Certi�ed funtional programming

2. In rule (I-WF) of good formation for an indutive de�nition, In(ΓI , ΓC) gathers all

the side onditions that must be ful�lled for this de�nition to be valid:

• All the names ontained in ΓI and ΓC must be new and distint.

• As we have not made expliit the parameters, but only their number n, it should
be heked that all the delarations of ΓI and ΓC start with the same n produts

∀−−→p : P, and that all ourrenes of the indutive type I in ΓC is applied to at

least

−→p .

• For all (I : A) ∈ ΓI , A must be an arity of a sort sI .

• For all (C : T) ∈ ΓC , T must be a type of onstrutor for one of the indutive

types I de�ned in ΓI , i.e. T must be of the form ∀−−→p : P , ∀−−−→x : X, I −→p −→y . Moreover

the sC sort in the typing premise of T must be sI .

• T must also hek the positivity ondition with respet to all the types of ΓI . This

ondition is essential to guarantee strong normalization, but does not intervene

in the extration. We will thus not detail it.

3. In rule (Case), the σ substitution replaes the n formal parameters

−→p by n onrete

parameters

−→q . And the ondition C(I −→q : Aσ; B) expresses the fat that the arrival

type of the ase must be ompatible with the indutive I whih is mathed:

• One has C(I : (∀x : X, A); (∀x : X, B)) i� for all x, one has C(I x : A; B).

• One has C(I : Prop; I → Prop)

• One has C(I : Prop; I → s) for a s 6= Prop sort i� I is an empty or singleton

logial indutive type.

• One has C(I : Set; I → s) for any s sort.

• One has C(I : Type; I → s) for any s sort.

In the previous de�nition:

• An empty logial indutive type is an indutive of sort Prop with zero onstrutor.

• An singleton logial indutive type is an indutive of sort Prop with only one

onstrutor whose non-parametri arguments are all of sort Prop.

Let us note that if Set is taken imprediative, one should aept C(I : Set; I → Type)
only when I is a small indutive, that is one whose onstrutors annot have not-

parametri argument of sort Type.

4. In rule (Fix), the ondition F(
−→
f ,
−→
A,
−→
k ,
−→
t) requires:

• for all i, Ai must be of the form ∀−−−→x : X, A′
i, with at least ki produts, and the

Xki
type of the ki-th produt must be indutive.

• moreover ti an only ontain dereasing reursive alls: if fj appears in ti, then
it must have at least kj arguments, and its kj-th argument must be struturally

smaller than the initial indutive argument xki
. The exat de�nition of this �stru-

turally smaller� an be found in the Referene Manual. Informally, it is equivalent

to say that any subterm of an indutive term obtained by going through at least

one onstrutor is struturally smaller than the starting term.

1.2. A formal presentation of the Ci 37

1.2.4 Properties

A �rst property of Ci states that if there is Γ ⊢ t : T , then there is a sort s ∈
{Prop, Set, Type} suh as Γ ⊢ T : s. Any t well-typed term thus admits at least a sort s.

In fat, one annot speak rigorously of �the� type and of �the� sort of a t term, beause

there is no uniity of types in the Ci. For example an objet of type Prop also admits the

type Type via the rule (Conv) and umulativity.

However, a term annot admit at the same time Prop and Set as a sort. One an thus

speak about the smallest sort of a term, with respet to the umulativity order (Prop ≤ Type

and Set ≤ Type). This smallest sort will also be named prinipal sort.

In the same way, all types of a term are omparable via the umulativity order. One an

even show that there exists a type, unique modulo onversion, whih is smaller than all the

other types with respet to the onversion order. It will be named prinipal type. In fat,

this onept has only interest for types whih are arities. In the other ases, all the possible

types are equal modulo onversion. And we will then speak sometimes, by abuse, of �the�

type.

With respet to a ontext Γ, a term T is a type if it admits for type a sort s in this

ontext. In fat, rather than these Coq types, it is a superset of those whih will play a

ruial role for the extration:

De�nition 8 (type sheme) A type sheme is a well-typed term whih admits at least one

arity as type, that is has the form ∀x1 : X1, . . .∀xn : Xn, s with s being a sort.

In other words, a type sheme is a term whih will beome a type as soon as it is applied to

su�iently many arguments. For example λX : Type, X → X is a type sheme: one applied

to a type, one obtains the orresponding arrow type. On the ontrary, λX : Type, λx : X, x
is not a type sheme: it may happen that a type is obtained by applying it (for example

with Set and nat), but one an also not obtain a type (for example by the appliation to

nat and O).

Lemma 1 (stability) the Ci admits the following results:

1. (Subjet Redution) Let t be a term that redues to u. Then any type T of t is also a

type of u. And any s sort of t is also a sort of u.

2. During the substitution of a variable in a term, the type of this term an obviously

hange. More preisely, if T is a type of t, then T{x←u} is a type of t{x←u}. But
the following properties are nonetheless preserved:

� If t has as a Prop sort, it is the same for t{x←u}
� If t is a type sheme, it is the same for t{x←u}
� If t has an indutive type, it is the same for t{x←u}

3. Lastly, onerning the appliations, if t has Prop as sort, it is also true for (t u), and
if t is a type sheme, so is (t u).

Proof.We will admit these results here. Please refer to theoretial studies of the Ci, suh

as for example [83℄. ✷

It should be noted that for eah stability property above, the reiproal is false:

38 Certi�ed funtional programming

1. Let us take an unspei�ed type in Prop, say True. Then ((λX : Type, X) True) an
be redued to True. However this last term aepts Prop as type, and not the �rst

one. And in this example, Type0 is a sort of True, but not of the initial term, whih

has only Type1 as prinipal sort.

2. • Let us use the ontext Γ = (X : Type). Then (λx : X, x){X ← True} admits

Prop as sort whereas λx : X, x has Type for prinipal sort.

• In this same ontext, (λx : X, x){X←Set} is one type sheme whereas λx : X, x
was not one originally.

• Let us take now Γ = (b : bool). If T = ase(b, Type, nat, bool), then the term

t = ase(b, T, O, true) does not admit an indutive type, whereas t{b← true}
admits as a type T{b←true} whih is onvertible to nat.

3. Let us take Id = λX : Type, λx : X, x. It is not a term of sort Prop, nor a type

sheme. Yet (Id True) has sort Prop, and (Id Set) is a type sheme.

In all the ases, the ounterexamples make use of the sort Type, whih thus illustrates

the preautions to be taken for in order to oneive an extration able to manage Type. This

being said, it is nevertheless neessary to relativize the importane of the problems implied

by the possible hange of the prinipal type during redution:

Lemma 2 Let t be a well-typed term of Ci that redues to u, and let T and U be respe-

tively prinipal types of t and u.

(i) One has U ≤βδιζ T .

(ii) If t is not a type sheme, T =βδιζ U .

(iii) t is a type sheme i� u is a type sheme.

(iv) t and u have the same prinipal sort (if we onsider the various Typei sorts as only

one sort Type).

Proof.

(i) It is enough to point out that by �subjet redution�, T is always a type of u. Conse-
quently, the property of prinipality of U gives us the desired result.

(ii) If t is not a type sheme, that means that T is not an arity. However, if we have

U ≤βδιζ T without U =βδιζ T , it means that these two types are arities with �nal sorts

sU < sT .

(iii) U ≤βδιζ T implies that:

• eiher U and T are equal modulos βδιζ , and in partiular are jointly arities or not.

• either U and T are distint modulos βδιζ , both of them being arities, with �nal

sorts sU < sT .

(iv) There are two ases: if t and u are type shemes, then they have Type as prinipal

sort. If they are not, then they share exatly the same types (modulo βδιζ), and thus

the same sorts.

1.2. A formal presentation of the Ci 39

✷

The onservation of the prinipal sorts during redution (iv) seem to be invalidated by

the �rst of the preeding ounterexamples. Is this onservation indeed true ? With Normandy

as native ountry, it is normal to answer yes and no. Yes, if one is interested just in the

distintion Set/Prop/Type, and forgets the indies of Typei. And no, in the opposite ase,

as shown by the ounterexample. In fat the point of view of the extration will be it �rst.

One thus �nds again a border between the logial terms and the informative ones: a

logial term (i.e. of prinipal sort Prop) annot beome informative (i.e. of prinipal sort

Set or Type) during a redution, and reiproally.

We will also have to study the possible forms of the Ci terms that are losed and in

normal form.

Lemma 3 Let t be a well-typed term of Ci, losed and in normal form modulo βδιζ.

1. If t has an indutive type (I −→v), it starts with a onstrutor of this I type.

2. If t has a produt type, it is either:

a. a partially applied indutive onstrutor

b. an indutive type whih an be alone or applied to arguments, inluding partially.

. an λ-abstration

d. a �xpoint (fix fi {. . .} −→u). And in this ase, if the �guard� argument is the ki-th,

then |−→u | < ki.

3. If t has a sort s as type (i.e. t is a type), it is either:

a. a sort

b. a totally applied indutive type

. a produt

Proof. We proeed by indution on the typing of t, and by ase on last rule:

• First of all, the rule (VAr) annot produe losed term, and the rules (Cst) and (Let)

build not-normal terms.

• The rule (Ax) orresponds to the ase (3a).

• The rule (Prod) orresponds to the ase (3b).

• (Lam): One annot be in the parts (1) or (3) of the statement, and the part (2) is

learly heked.

• (App): Let us take t = (t′ u). The indution hypothesis on Γ ⊢ t′ : ∀x : U, T leave us

four ases:

a. t′ = (C −→v). Then t = (C −→v u). If C is still partially applied in t, then t have a
produt type, and we are in part (2a) of the statement. And when C is ompletely

applied, t has an indutive type: the ase (1) of the statement is ful�lled.

b. t′ = (I −→v). Then t is only an indutive type with more arguments. If this indutive

type is now ompletely applied, it has a sort as type, and one is in ase (3b). If

not, its type is still a produt, and one is in ase (2b).

40 Certi�ed funtional programming

. t′ annot be an λ-abstration, otherwise (t′ u) would be reduible.

d. t′ is then a �xpoint with missing arguments. Let us suppose that u is the �guard�

argument awaited by this �xpoint. This u is then an indutive term, and the

indution hypothesis orresponding to Γ ⊢ u : U shows that it starts with one

onstrutor. The �xpoint is thus reduible, whih is ontraditory with the initial

assumptions. One is thus still in the situation of a �xpoint missing some argu-

ments. Lastly, this lak of arguments neessarily implies that this �xed point has

a produt type. The parts (1) and (3) of the statement are thus exluded, and

the part (2) is orret via the ase (2d).

• (Conv): We diretly use the indution hypothesis.

• (I-Type): If Γ ⊢ I : A and arity A has at least one produt, then the situation (2b) is

heked. And if A is diretly a sort, we are in ase (3b).

• (I-Cons): We are in the situation (1) if the onstrutor awaits no argument, and other-

wise in the situation (2a) .

• (Box): The indution hypothesis onerning the head of the ase, whih is an indutive

term, shows that this term starts by a onstrutor. The ase is thus reduible, and

that ontradits the original assumption.

• (Fix): A �xpoint without argument always expets at least one (the guard argument).

One annot thus be in parts (1) and (3) of the statement. On the other hand, the part

(2d) of the statement is learly valid.

✷

Curiously, the statement itself of this lemma shows that there are not other ases to

study for the type T of t. Indeed, T an also be piked as losed and in normal form. The

part (3) of the statement then a�rms that it is either a sort, a produt or an indutive type.

Let us also notie that the proof of this result only requires the absene of redex at

preise plaes, namely at the top, on the left and right handside of an appliation and at

the head of a ase. This result will then remain perfetly valid when we will study the weak

redution of the Ci.

1.2.5 Cim : an Ci variant adapted to the semanti study

The presentation of the Ci given above is appropriate for the more syntati part of

the theoretial study we will make onerning extration. On the other hand, in the seond

time, we will make a more semanti study of the extration orretness in the setion 2.4.

And for that, the Ci as formulated here will be slightly unsuited. Let us present here the

alternative Cim that we will then use.

The prinipal onern in this part 2.4 will be that Ci authorize the silent promotion of

a proposition to the rank of informative type. For example True, originally of Prop type, an

be also seen as having the type Type, via the typing rule (Conv). This will be awkward later

one, sine one will wish to give a di�erent semantis to a proposition and an informative

type, and this without having to look at prinipal type derivation to know in whih ase we

are.

1.2. A formal presentation of the Ci 41

A solution is then to use a mark on the syntax level to announe the use of a umulativity

Prop ≤ Type. Thus True

†
will indiate the True objet promoted to the Type level. This

marking tehnique dates bak to our DEA work [54℄, itself reusing the idea of [28℄. For

similar reasons, though less fundamental, it will be also interesting to mark the promotion

of a Set objet to the Type level. Thus nat

‡
will indiate the nat type seen at Type level.

On the syntax level of Coq, these marks would translate into expliit �asts�; True

†
and nat

‡

would be written (Prop

_

Type True) and (Set

_

Type nat), with:

Definition Prop_Type (t:Prop) : Type := t.

Definition Set_Type (t:Set) : Type := t.

Before ontinuing the presentation of this system Cim with marks, let us announe �rst

that we will somewhat restrit the power of umulativity in this system, for simplifying the

presentation. For example, the initial (Conv) rule authorizes to write:

Γ ⊢ t : nat→ Set (nat→ Set) ≤βι (nat→ Type)
Γ ⊢ t : nat→ Type

(Conv)

From now on, we will authorize the use of the umulativity only on types and not on

type shemes: Set ≤ Type is aepted but not nat → Set ≤ nat → Type any more.

This prohibits in partiular the preeding example, but one an approximate it via one

η-expansion: η-expansion:

Γ ⊢ t : nat→ Set

Γ; (x : nat) ⊢ (t x) : Set
(App)

Γ; (x : nat) ⊢ (t x) : Type
(Conv)

Γ ⊢ λx : nat, (t x) : nat→ Type

(Lam)

For a more detailed study on the umulativity in higher order type theories, one an look

at [57℄.

Let us now return to our marks

†
and

‡
. They are annotations that an be applied to

any term of Ci. And we now replae the rule (Conv) by four new rules (Conv) (CumT)

(CumS) (CumP), in order to make ompulsory the presene of marks after the use of the

umulativity Prop ≤ Type or Set ≤ Type:

Γ ⊢ U : s Γ ⊢ t : T T =βιδζ U
Γ ⊢ t : U

(Conv)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej

(CumT)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type

(CumS)

Γ ⊢ t : Prop
Γ ⊢ t† : Type

(CumP)

The umulativity of Typei towards Typej, with no onsequene for the extration, remains

impliit. It should also be notied that a well-typed marked term annot have two suessive

marks: t† being of Type type, it is impossible to form t†
†
.

Let us stress the fat that are ignored by typing rules when they appear on the right of

a judgement. We only are about the in�uene of marks inside the term being typed. For

example the following appliation is quite legal:

Γ ⊢ t : ∀x : U †, T Γ ⊢ u : U
Γ ⊢ t u : T{x←u} (App)

42 Certi�ed funtional programming

It would be possible to make formal this aspet of typing, by adding the following four rules:

Γ ⊢ t : T
Γ ⊢ t : T †

Γ ⊢ t : T †

Γ ⊢ t : T
Γ ⊢ t : T
Γ ⊢ t : T ‡

Γ ⊢ t : T ‡

Γ ⊢ t : T

In pratie, these rules will remain impliit throughout our study.

We now speify the status of these marks (for example

†
) with respet to substitution:

• A substitution without e�et does not hange anything onerning the marks, for

example y{x← t†} = y

• Of ourse, a substitution without mark does not reate any: x{x← t} = t

• A variable replaed by a marked term gives a marked term: x{x← t†} = t†

• A marked variable gives a marked term after substitution: x†{x← t} = t†

• Lastly, the ase x†{x← t†} is prohibited by typing. Indeed, x†
is neessarily of type

Type, and x has the type Prop. However the t† that one wants to substitute for it is

also in Type, so the substitution is impossible.

Conerning the redutions, they will in�uene the marks only via substitutions. A priori,

one ould need to speify what beomes a mark partially overing a redex, as in (λx : U, t)‡ u.
But in fat, this ase is exluded beause a marked term is inevitably a type, whih annot

begin with one λ-abstration. In the same way, the head of a ι-redex annot be marked

beause it has an indutive type. It is thus not a type.

We must now justify again a ertain number of properties that our marking ould have

modi�ed. Let us start with the property of �subjet redution�, and before that by the

onservation of typing by substitution.

Lemma 4 Let t and u be two terms of Cim admitting for respetive types T and U . If x
is a free variable of t of type U , then t{x←u} admits T{x←u} for type in the Cim.

Proof. By indution on the typing derivation of t. ✷

Lemma 5 Let t be a term of Cim admitting T as type, and u a redued form of t. Then
u also admits T as type.

Proof. It is the same proof as for Ci, but with the previous lemma instead of the initial

subtitution lemma. ✷

Now, the prinipal e�et of the marks presene is the uniity of types:

Lemma 6 Let t be a term of Cim admitting T and U as types. Then T =βδιζ U , as soon

as you aggregate all the the di�erent sorts Typei into only one, and you ignore the marks

inside types T and U .

Proof. In Ci, the non-uniity of the types omes from the possibility to use the umulati-

vity part of rule (Conv) at any time. But with the presene of the marks, the rules (CumS)

and (CumP) are now rules whose use is ontrolled by the term syntax, like the majority of

other rules. And the rule (CumT) does not really modify the types, at least aording to

the point of view that we hoose here.

1.2. A formal presentation of the Ci 43

One this is said, one proeeds by indution on typing derivation t : T , and then ompares

this derivation with the one of t : U . Exept for βδιζ-onversions (Conv) that we an ignore

here, these two derivations have neessarily the same form. ✷

In partiular the onept of prinipal type beomes now a ommonplae. Let us look

again at the ounterexample whih shows that a prinipal type in Ci is not neessarily

preserved during redution: ((λX : Type, X) True). It is now badly typed in Cim. To

make a valid term from it, a mark would have to be added: ((λX : Type, X) True

†). But
then its redued form True

†
admits only type Type, and not Prop any longer.

To �nish this presentation of Cim, we will larify the possible translations between Ci

and Cim. In the more simple diretion, it is immediate to take a t term of type T in Cim

and to obtain a orresponding well-typed term in Ci : it is enough to remove the marks.

And T (without its marks) then remains a valid type for it in Ci. In the opposite diretion,

starting form a term t in Ci having for prinipal type T , one an obtain a orresponding

well-typed term in Cim that di�ers from t only by the presene of marks (and possibly of

η-expansion, f. restrition on the umulativity). Introduing these marks is easy: we just

look at a typing derivation of t : T , and adapt all the uses of the rule (Conv) from top to

bottom. This way, the type of the Cim obtained term is still T (or rather the version of T
with marks).

44 Certi�ed funtional programming

Chapitre 2

The extration of Coq terms

This hapter is devoted to the presentation of our extration funtion E over Ci terms.

For the moment, this funtion will return terms in an intermediate theoretial language

named Ci✷, untyped, whih will play here a role similar to the one of Fω in the old

extration. The next hapter then deals with the translation into the �nal language, and in

partiular with the problem of typing the ode extrated in this language.

In addition to the presentation of this funtion E , this hapter also ontains the orret-

ness proof of E , or rather the orretness proofs, sine this theoretial study is divided into

two parts:

• a �rst rather syntati study enables us to guarantee that any redution of extrated

terms will sueed, regardless of the strit or lazy evaluation strategy used. This part

is a revised version of the results presented in [55℄, themselves inspired by [54℄.

• In a seond time, we will establish in setion 2.4 the orretness of these extrated

terms with respet to the original Coq spei�ations, by using a semanti approah

inspired by realizability.

Let us start �rst by detailing the limitations of the old funtion E of C. Paulin, whih led

us to build the urrent version of E .

2.1 The di�ulties in the removal of logial parts

A potential danger indued by removal of logial parts is that this removal an modify the

evaluation order. Let us take for example a funtion of type ∀x:A,(P x)→ B, with A and B

being informative types, and P a logial property. Our funtion f thus awaits an informative

argument x and a proof that this argument satis�es the pre-ondition P x. If one also has

a term t of type A and a proof p of type (P t), one an then form the two well-typed Coq

terms (f t) and (f t p). On the Coq level, these two terms have appreiably di�erent

nature. For example, the evaluation of (f t) will probably be quikly bloked by the lak

of the seond argument p, whereas (f t p) is a total appliation whih an normally be

redued towards a value of type B (when for example these terms f, t and p are losed).

Now let us examine the ation of a extration funtion E that ompletely removes the

logial parts, like the old extration does. The two preeding terms (f t) and (f t p) are

46 Certi�ed funtional programming

then extrated into the same term (E(f) E(t)), beause p, logial, disappears. Sine the

type of E(f) is then of form E(A)→E(B), the extrated term (E(f) E(t)), being a total

appliation, behaves rather like (f t p), and thus an be redued ompletely. Of ourse,

this behavior is quite di�erent from the one of (f t).

This modi�ation of the order of evaluation has, of ourse, an in�uene on the e�ieny

when exeuting extrated terms. But it an even be fatal to the good progress of this

exeution. The old extration ould in partiular generate extrated terms whose evaluation

stopped prematurely on an unaught exeption, or on similar other exeution error. And

onversely one ould also meet terms whose evaluation did not �nish.

The typial example of ode that an raise an exeption in ase of naive extration

involves the onstant False_re. This Coq term of type ∀P:Set, False→P is used to treat

the ontraditory sub-ases of a proof. For example, the Coq tati ontradition generates

proof terms that use this onstant. When one de�nes a funtion f of the type ∀x:nat,
(x6=0)→nat, it an thus be useful to use this onstant when x=0. During the extration,

this False_re is translated into an exeption, whih means that the exeution must never

reah this absurd sub-ase. Now, let us onsider again a partial appliation, (f 0), legal

in Coq, that will normally never reeive its seond argument of type 06=0. The extration

(E(f) 0) an then be exeuted without waiting for the removed logial argument, and thus

raise the exeption assoiated with False_re. Our new extration solves this problem by

giving bak to the extration of (E(f) 0) its status of losure. For that, we leave arti�ial

abstrations fun _ → ... eah time that it is neessary.

We will see thereafter in part 2.3.2 that it is also possible to generate other types of

errors with the old exeution, by ombining extration, partial appliation and some Coq

onstants like eq

_

re. There also exists examples of extrated ode that were not terminating

with the old extration. These examples are based on the onstant A

_

re, whih o�ers

the possibility in Coq of de�ning an informative �xpoint justi�ed by a dereasing logial

measure. It is then possible, under an ontraditory ontext, to provide one false logial

justi�ation. The extrated �xpoint, without its logial justi�ation, may then loop forever.

A family of limitations of the old extration relates to the Coq universes. Indeed, distin-

tion in Coq between the informative and logial parts is made fuzzy by the presene of the

Type universe. One an, indeed, form hybrid terms like if B then nat else True, where

b is a boolean. This term will be either informative or logial aording to value of this boo-

lean b. This onstrution is allowed by the existene of rules known as umulativity rules,

whih express that Type ontains at least Set and Prop. In our example, nat:Set thus imply

also nat:Type and similarly True:Prop imply True:Type. And �nally, our hybrid term is

well-typed with the Type type. The preeding extration simply refused to extrat suh a

type, and more generally any term using diretly or indiretly the Type sort. This drasti

restrition allowed a omplete elimination of logial parts (at least in a system prohibiting

False_re, eq

_

re and A

_

re). On the ontrary, the goal of our work is to be able to

treat any Coq term. We then have to use one ad-ho onstant (denoted ✷) to mark the sites

previously oupied by logial parts, like the True above. Our approah is thus similar to

the pruning methods [12, 15℄.

2.2. The new extration funtion E 47

2.2 The new extration funtion E
This funtion E of extration will eliminate any subterm of sort Prop, beause these

subterms orrespond to logial parts, as explained in the previous hapter. But in addition

to that, we also eliminate the subterms orresponding to types, and more generally to type

shemes. Why remove these type shemes? This hoie is less natural than the one leading

to the elimination of the Prop parts. In partiular, there exists at least one Coq development

whose prinipal result is the onstrution of a type representing a partiular lattie [62℄. The

extration of suh a development will then produe only one arbitrary onstant replaing

this type. But this situation is exeptional. In usual developments, the results onern only

datatypes, suh as for example indutive types like bool, nat or Z. And in these ases, we will

show that the type shemes orrespond to dead ode from the point of view of omputation.

Another justi�ation of this hoie of elimination is that unlike Coq, our target languages

(Oaml and Haskell) make a lear distintion between the level of types and the level of

terms, and in partiular do not allow the use of types like ordinary terms.

We de�ne Ci✷ starting from the same language as Ci, with in addition one speial

onstant ✷. On the other hand the terms of Ci✷ will not be typed. Indeed, we will not

adapt the typing relation of Ci to Ci✷. Lastly, the redutions in Ci✷ are de�ned as

being exatly those of Ci, with ✷ seen like a non-reduible onstant.

Let us now de�ne our extration funtion of Ci towards Ci✷.

De�nition 9 (funtion E) The extration funtion E is de�ned by strutural indution on

any term t typable in a ontext Γ:

(✷) If t is a type sheme or admits Prop as sort in the ontext Γ, then EΓ(t) = ✷

If not, one proeeds aording to the struture of t:

(id) EΓ(a) = a if a is a variable x, a onstant c or a onstrutor C.

(lam) EΓ(λx : T, t) = λx : ✷, EΓ′(t) where Γ′ = Γ; (x : T)

(let) EΓ(let x := t in u) = let x := EΓ(t) in EΓ′(u) where Γ′ = Γ; (x := t : T)
and T is a type of t

(app) EΓ(u v) = (EΓ(u) EΓ(v))

(cases) EΓ(ase(e, P, f1 . . . fn)) = ase(EΓ(e), ✷, EΓ(f1) . . . EΓ(fn))

(fix) EΓ(fix fi {f1/k1 :A1 := t1 . . . fn/kn :An := tn}) =
fix fi {f1/k1 :✷ :=EΓ′(t1) . . . fn/kn :✷ :=EΓ′(tn)}
where Γ′ = Γ; (f1 : A1); . . . ; (fn : An)

And the extration of a ontext is de�ned by:

(nil) E(∅) = ∅

(def) E(Γ; (c := t : T)) = E(Γ); (c := EΓ(t) : ✷)

(ax) E(Γ; (x : T)) = E(Γ); (x : ✷)

(ind) E(Γ; Indn(ΓI := ΓC)) = E(Γ); Indn(E(ΓI) := E(ΓC))

48 Certi�ed funtional programming

Clearly, E is a �pruning� funtion: its only task is to replae ertain subterms by ✷.

In partiular there is no modi�ation of the struture. In the urrently implemented Coq

extration, a seond phase is dediated to some strutural modi�ations. This phase will be

desribed in the hapter 4. This �pruning� is di�erent from what the previous extrations

were doing, sine they were in partiular not withdrawing the types, and were removing

ompletely the logial λ-abstrations, via a rule like:

(lam′) E(λx : P, t) = E(t) if P admits Prop for type.

In term of realizability, this last rule (lam′) orresponds to modi�ed realizability, whereas

our new rule (lam) orresponds more to reursive realizability. But as we have explained in

the previous setion, the rule (lam′) is not orret if one ombines it with strit evaluation

à la Oaml.

The reader may also have notied the lak of an expliit rule dediated to produts. But

a produt is always a type, and thus a fortiori a type sheme. The rule (✷) thus applies.

2.3 Syntati study of the redution of extrated terms

Initially, we study the redution of extrated terms, and we prove in partiular that this

redution neessarily terminates in a �nite amount of time. This will be done by means of

a syntati method: we will simulate the derivations of the extrated terms by those of the

Coq initial terms.

But this �rst approah, relatively simple, is not very suitable to establish more semanti

properties of orretness, in partiular when funtional values and/or unlosed terms are

onerned. The setion 2.4 is then devoted to a omplementary study, based on an extension

of the onept of realizability.

The syntati study whih follows now is split in two parts. The setion 2.3.1 leads to

theorem 1 whih establishes the strong normalization of the extrated terms, but only in a

slightly weaker version of Ci. Then the setion 2.3.2 treats the omplete Ci, whih on

the other hand obliges to restrited oneself to weak redutions for the extrated terms. In

this situation, the main result of orretness is the theorem 5.

2.3.1 Strong redution in a restrition of Ci✷

We wish here to establish that the evaluation of an extrated term �nishes, and that the

result of this evaluation has a orret meaning, for example true or false for an original

term in Ci of the bool type. And of ourse, we also wish this result to be oherent with

answer what would give the evaluation of the original term in Ci.

We will thus proeed by simulation in Ci of derivations possible in Ci✷, and vie

versa. The problem is that this simulation an lead to terms that still omprise Ci redex,

whereas their analogues in Ci✷ are not reduible any more. In fat, there are three potential

ategories of Ci redex orresponding to non-redex zones of Ci✷ :

1. a β-redex (λx : X, t) u orresponding to a non-redex ✷ u′

2. a ι-redex ase(e, . . . , . . .) orresponding to a non-redex ase(✷, . . . , . . .)

2.3. Syntati study of the redution of extrated terms 49

3. a ι-redex (fix fi {. . .} u1 . . . un) orresponding to a non-redex, whih an be:

a. either (✷ u′
1 . . . u′

n)

b. either (fix fi {. . .} u1 . . . ✷) (the �guard� is now a ✷ bloking the redution)

In ase 1, we would like to have (λx : X, t) u diretly orresponding to ✷ instead of

✷ u. Indeed the stability lemma laims that the appliation preserves the fat of being of

Prop sort or of being a type sheme. If λx : X, t ould beome ✷, then it should thus be

�morally� the same with (λx : X, t) u. This �lak of preision� of an extrated term an in

fat appears after some steps of redution, as shown by the following example:

Example 1

t = (λX : Type, λf : nat→X, λg : X → nat, (g (f O))) Prop (λ_, True)
E(t) = (λX : ✷, λf : ✷, λg : ✷, (g (f O))) ✷ ✷

→∗
β λg : ✷, (g (✷ O))

We will solve this problem of ase 1 (and at the same time the ase 3a) thanks to an ad-ho

redution:

De�nition 10 (✷-redution) The ✷-redution is de�ned by the rule (✷ u)→✷ ✷

The situation of ase 2 is rather di�erent. Unlike the the previous example where a

lambda beame logial after a redution, a pattern mathing annot hange the indutive

type on whih it is performed. And E eliminates all pattern mathings that produe objets

of sort Prop. Sine a mathing on an indutive type in Prop an normally only build an

objet in Prop, ase 2 should normally not our. But this restrition on logial mathings

has two exeptions, onerning logial empty indutive types and logial singleton indutive

types (see the previous hapter). For example Ci authorizes the following derivations:

p : False : Prop T : Set

ase(p, T, ∅) : T

p : x = y : Prop q : P x : Set

ase(p, P, q) : P y : Set

The �rst derivation orresponds to the Coq onstant named False_re, while the seond

orresponds to eq_re.

More generally, a logial elimination ase an produe something informative if the

elimination is arried out on a term whose indutive type whih:

1. has zero onstrutor (empty indutive, like False in Coq)

2. has only one onstrutor whose arguments are all logial, put aside possible parameters

(indutive singleton logial, like eq)

This is in fat a �rst exeption to the slogan: �logial objets are never taken into onsi-

deration during omputations of informative objets�. The seond distortion to this priniple

is the ase 3b: the �guard� of a �xpoint an be a logial indutive term whereas the omplete

�xpoint is informative.

Let us suppose one moment that these harateristis of typing Coq are deativated.

Until the end of this setion 2.3.1, we will onsider two systems Ci

−
and Ci

−
✷
whih are

respetively Ci and Ci✷ with the following restritions:

(i) The elimination of logial empty indutive terms annot produe informative terms.

50 Certi�ed funtional programming

(ii) It is the same for elimination the logial singleton indutive terms.

(iii) For any omponent fi of a �xpoint, its �guard� annot be logial unless the type of fi

is also logial.

We now ompare the respetive results of redutions in Ci

−
✷
and Ci

−
. To simplify this

omparison, we will speak here only about types without logial ontents:

De�nition 11 A T type of Ci is said to have no logial ontent if for any losed normal

form t of type T we have E(t) = t.

The usual datatypes, like bool or nat ful�ll this ondition. Of ourse, a objet in a

non-redued form in suh a type an ontain logial parts, but they will disappear during

redution to �nish on true or (S (S O)) for example. We then have the following result

onerning the strong redution of terms extrated in these types without logial ontents:

Theorem 1 Let t be a losed term, well-typed in Ci

−
, whose T type has no logial ontents.

Then any redution of E(t) terminates on the normal form (in Ci

−
) of t.

We will not prove this result, beause it has less importane that the theorem 5 of the

following setion, while the proofs of the two theorems are similar. Similarly, it is possible to

establish a more general version of this result, dealing also of types whih are not without

logial ontents. But as the normal form of E(t) an then ontain ✷, we need new tools to

ompare it with the normal form of t. There again, this is not done here, but rather in the

following setion.

Lastly, let us note that the use of ✷-redutions is not neessary in this partiular result.

This is explained by the onjuntion of the restritions (i), (ii) and (iii) and the assumption

that T is not-logi. On the other hand the results of the following setion will have to use

this ✷-redution.

2.3.2 Weak redution in the omplete Ci✷

As our objetive is a extration mehanism aepting all the Coq terms, we must from

now on remove these restritions (i), (ii) and (iii). The restrition (i) onerning empty

indutives is in fat easy to remove, sine a ι-redution on one empty indutive in fat

annot our, for lak of onstrutor to start the redution. We an thus just ignore these

ase, and translate them later into exeptions (see the study of False_re in setion 2.1).

On the other hand deletion of the restritions (ii) and (iii) will oblige us to adapt authorized

redutions on the extrated terms: we must give up strong redution (i.e. redution under

the lambdas) and restrain to weak redution. In any event, our funtional languages target

do not authorize strong redution. To enter our study on weak redution is thus perfetly

legitimate.

Singleton elimination

If H is an equality (hene logial), ase(H, nat, O) an be redued and give O even

without knowing the exat value of H , hidden behind a ✷. In a similar way, we an redue

systematially all elimination of logial singleton indutive. But that is dangerous when

2.3. Syntati study of the redution of extrated terms 51

ombined with strong redution, and an lead to exeution errors. Let us onsider for example

the following funtion ast that transforms an integer into a boolean on the ondition of

being able to prove that boolean and integers are idential

1

:

Definition ast : (nat=bool) → nat → bool :=

fun (H:nat=bool)(n:nat) ⇒
math H in (_=bool) return bool with

| refl_equal ⇒ n

end.

Let us take then the following example:

Definition example :=

fun (H:nat=bool) ⇒
let b : bool := ast H 0 in

math b with

| true ⇒ 0

| false ⇒ 1

end.

If now one arries out the a priori redution of the ase in this example, the subterm (ast

H 0) would be redued to integer 0, whereas the math whih follows awaits a boolean, and

that will result in an exeution error.

A similar example an also lead the integer 0 to be onsidered as being a funtion if one

has in assumption the equality nat = (nat→nat). And if one applies this �funtion� 0, we

an end with an exeution error (0 0), in the event of strong redution of the extrated

terms

Clearly, if one prohibits the redution under lambdas, these problems disappear. Indeed,

an singleton indutive term out of the lambdas is inevitably losed, and an thus be always

redued to a onstrutor, whih legitimates our redution of logial singleton eliminations

out of any lambda.

Fixpoint with logial �guards�

The problem is now to redue informative �xpoint whose argument being used as �guard�

is logial. Of ourse, the immediate temptation is to remove this �guard� ondition, at least

for this ategory of �xpoint. But this, ombined with strong redution, an lead to an

evaluation that does not terminate. The following funtion loop is built on the model of

A_iter (see the previous hapter). It expets an hypothetial proof of the false statement

laiming the aessibility of 0 by the relation gt (that is > on the natural numbers of Coq).

If this proof were provided, loop would then go into an in�nity of reursive alls: F N would

all F (S N) and so on.

1

We will use here Coq syntax, more readable. The equivalent in our theoretial syntax of this math with

annotations is ase(H, (λt : Set, λH : (eq Set nat t), t), n)

52 Certi�ed funtional programming

Definition loop :=

fun (Ax:A gt 0) ⇒
(fix F (n:nat)(a:A gt n) {strut a} : nat :=

F (S n) (A_inv a (S n) (gt_Sn_n n)))

0 Ax.

The (A

_

inv a...) subterm is a proof of aessibility for (S N), using the onstants

A_inv and gt_Sn_n provided by the standard library of Coq. The extration E gives then:
E(loop) = λAx : ✷,

fix F {F/2 : ✷ :=
λn : nat, λa : ✷, (F (S n) ✷)}

O ✷

And if one withdraws here the �guard� ondition, then this term an be strongly redued

even without being applied, and then give λAx : ✷, fix F {. . .} (S O) ✷, and so on...

Modi�ation of redution

To manage these exeptional ases of ι-redution on logial terms, we must �rst of all

add an additional annotation on the Ci terms. The math bearing on indutive types with

only one onstrutor are normally written this way in Coq :

math e with C

−→x ⇒ t end

With the �funtional syntax� used in this theoretial study, this beomes:

ase(e, . . . , (λ−→x , t))

The latter form presents the disadvantage of losing trak of the number of the arguments

−→x for the single onstrutor C of our indutive type. In partiular, with this syntax, it is

not orret to ount the number of lambdas, beause t an ontain additional ones. We will

ure this problem by marking this number of arguments in index for these ase with single

branh:

asen(e, . . . , (λ−→x , t))

And of ourse, the extration funtion E will keep these annotations. To avoid obsuring

(more) the notations, we will omit sometimes these annotations in situations where they are

not used.

Here now ome the modi�ations to be made to the redutions Ci✷ in order to be able

to manage these ✷ that may blok ι-redutions.

De�nition 12 (new ι-redution) The ι-redution on Ci✷ terms is from now on:

(iota) ase(Ci
−→p −→u , P, f1 . . . fm)→ι fi

−→u
(iota) asen(✷, P, f)→ι f ✷ . . . ✷︸ ︷︷ ︸

n

(iota) Let F be the reursive blok f1/k1 :A1 := t1 . . . fn/kn :An := tn. Then:
(fix fi {F} u1 . . . uki

)→ι (ti{fj/fix fj {F}}∀j u1 . . . uki
)

2.3. Syntati study of the redution of extrated terms 53

when uki
is ✷ or starts with a onstrutor.

We also restrit the redutions and prohibit strong redution: for eah possible redution,

one assoiates to it a weak redution.

De�nition 13 (weak redutions) The redutions →βw
, →ιw , →δw

, →ζw
and →✷w

are

de�ned from the same basi rules as respetively →β, →ι, →δ, →ζ, →✷, but with restraining

the ompatibility rules to only the following ones:

u→? v

(u t)→? (v t)

u→? v

(t u)→? (t v)

u→? v

ase(u, P, . . .)→? ase(v, P, . . .)

Lastly, as for →r, the omplete weak redution →rw
is →βw

∪ →ιw ∪ →δw
∪ →ζw

.

In fat, this redution →rw
an be seen as a ommon generalization of the strategies of

alls per value and all by name of Oaml and Haskell. The last step towards the redutions

atually implemented in these languages is to �x an evaluation order. To redue the argu-

ments initially will give us strit strategy of Oaml. And on the ontrary reduing �rst of

all the head of the term orresponds to the lazy strategy of Haskell.

A signi�ant point to mention is that all this theoretial study is to be done in axiom-

free ontexts. Indeed, to study redution in the presene of axioms is equivalent to study

the strong redution under the lambdas orresponding to these axioms, whih we wish to

preisely avoid. In partiular, we will use on several oasions the fundamental property

aording to whih an indutive term losed in a axiom-free ontext redues inevitably

towards a term starting with a onstrutor. Clearly, the presene of an axiom an invalidate

this property. Of ourse, all axioms do not have this e�et, but for reasons of simpliity, we

prohibit them all.

To study the evaluation of the extrated terms, we will ompare it with the evaluation

of the initial terms. We hene need an invariant relating initial terms and extrated terms

that will be stable by redution. Of ourse, one an try to diretly use the funtion E for this
invariant. Unfortunately, that is not a good hoie, beause E behaves badly with respet to

redution: if t→r u, one may not have E(t)→r E(u) in some ases

2

. Instead of E , we de�ne
and use a non-deterministi relation →E whih will have good invariane properties.

De�nition 14 (relation →E) The non-deterministi relation→E relating a Ci term and

a Ci✷ term, and depending impliitly on one ontext Γ, is de�ned by the following rules:

2

The term t in example 1 is a ounterexample to that. Indeed, E(t) an be redued into one term

ontaining (✷ O), whereas E never produes suh subterm, but diretly ✷.

54 Certi�ed funtional programming

Γ ⊢ t : ∀−−−→x : X, s
t→E ✷

(E−✷1)
Γ ⊢ t : T : Prop

t→E ✷
(E−✷2)

a = x or a = c or a = C
a→E a

(E−id)
t→E t′

λx : T, t→E λx : ✷, t′
(E−lam)

t→E t′ u→E u′

let x := t in u→E let x := t′ in u′ (E−let) t→E t′ u→E u′

(t u)→E (t′ u′)
(E−app)

e→E e′ ∀i, fi →E f ′
i Info(e)

ase(e, P, f1 . . . fn)→E ase(e′, ✷, f ′
1 . . . f ′

n)
(E−case)

∀i, ti →E t′i
fix fi {f1/k1 :A1 := t1. . .fn/kn :An := tn} →E fix fi {f1/k1 :✷ := t′1. . .fn/kn :✷ := t′n}

(E−fix)

The ondition Info(e) requires e to be of an informative indutive type (or empty logial or

singleton logial). One naturally extends →E to extrat the ontexts.

The non-determinism omes from the two rules (E−✷1) and (E−✷2). When these rules

an be applied, one an indeed use them, or instead use one of the other strutural rules.

For example, if a variable x has sort Prop, one have both x→E ✷ and x→E x. Obviously,
the funtion E is just a way to make this relation deterministi, by always hoosing to prune

as soon as possible:

Lemma 7 If t is a Ci term typable in a ontext Γ, then T →E E(t).
Proof. One only have to hoose the rules extrating towards ✷ as soon as a type sheme

or a logial term is reahed. One must only hek the auxiliary ondition Info(e) of the

rule (E−case): If a omplete term ase is not of sort Prop, then the mathed e term is

neessarily of an informative indutive type (or logial empty or logial singleton). The

ondition Info(e) is thus ful�lled. ✷

Lemma 8 Let t be a Ci term typable in a ontext Γ, and t′ a Ci✷ term suh as t→E t′.
We have the following immediate properties:

1. t and t′ di�er only at positions where t′ ontains ✷.

2. any subterm of

′t orresponding to a ✷ in t is of sort Prop or is a type sheme.

3. all the ase remaining in t′ relate to indutive types that are informative or logial

singleton or logial empty types.

This relation →E has the advantage of being stable by substitution, ontrary to the

funtion E :
Lemma 9 Let t, u, T , U be four terms of Ci and Γ a ontext suh that:{

Γ; (x : U) ⊢ t : T
Γ ⊢ u : U

Let also t′, u′
be Ci✷ terms suh that t→E t′ and u→E u′

. One then has:

t{x←u} →E t′{x←u′}

2.3. Syntati study of the redution of extrated terms 55

Proof. By indution on the derivation of t →E t′, and by ase analysis aording to the

last rule used in this derivation:

• (E−✷1) or (E−✷2): if t is a type sheme or has sort Prop, then it is the same for t{x←u}
aording to the stability lemma 1. We then have indeed t{x←u} →E ✷ by the same

rule.

• (E−id): the ase where t is not the variable x is obvious, sine there is then nothing to

substitute. On the opposite, if t = x = t′, then x{x←u} = u→E u′ = x{x←u′}.
• (E−lam): we have t = λy : Y, t0 and t′ = λy : ✷, t′0 with t0 →E t′0. The indution

hypothesis gives us t0{x← u} →E t′0{x← u′}. However (λy : Y, t0){x← u} = λy :
Y {x← u}, t0{x← u} and (λy : ✷, t′0){x← u′} = λy : ✷, t′0{x← u′}. These two last

terms are indeed related by →E , thanks to the rule (E−lam).

• (E−case): as for the rule (E−lam), one obtains as indution hypothesis the good behavior
of eah sub-expression of the ase term with respet to substitution. Before using rule

(E−case) on the whole substituted ase, it is just neessary to make sure that the

ondition Info (e) remains true after substitution of the term e mathed in the ase.

However this is obvious, beause an indutive term does not hange its indutive type

by substitution.

• the remaining strutural rules are treated like (E−lam).

✷

The following theorem expresses that one an simulate on the Coq level all weak redution

of an extrated term.

Theorem 2 Let t be a Ci losed well-typed term and t′, u′
two Ci✷ terms suh that

t→E t′ and t′ →rw
u′
. There exists then a Ci term u suh as u→E u′

and t→rw+ u.

t
rw+

✲ u

t′

→E

❄

rw

✲ u′

→E

❄

Proof. One proeeds by ase analysis aording to the redution employed between t′ and
u′
. We will start with the two di�ult ases:

• the redution arried out is a ιw singleton redution like

asen(✷, . . . , f ′)→ι (f ′ ✷ . . . ✷).

The ompatibility rules for the ιw-redution implies that this redution ours out

of any binder. Moreover axioms have been prohibited, so the a subterm of t whih

orresponds to the eliminated ✷ is thus typable in a ontext without assumption. As

a is an indutive term, it an then be redued to a term having a onstrutor at the

head: (C −→p −→v).

56 Certi�ed funtional programming

It is even possible to arry out this redution to a onstrutor in a weak way. In fat, C
is the single onstrutor of this singleton logial indutive type, and C have exatly n
arguments apart from the parameters: |−→v | = n. Thus in t the subterm asen(a, . . . , f)
an be redued to (f v1 . . . vn) via at least one step of rw-redution. So we an take

for u the term resulting from t by these redutions. To hek that u →E u′
, we need

only hek that (f v1 . . . vn) →E (f ′ ✷ . . . ✷). And that is obvious, beause all the

vi have sort Prop sine they are arguments of the onstrutor of a logial singleton

indutive type.

• the redution arried out is a ιw-redution of a �xpoint whose �guard� argument in t′

is ✷. Then the �guard� argument g orresponding to this ✷ in t has an indutive type.

Moreover, as in the previous ase, g is typable in one ontext without assumption, and

an thus be redued to a term h beginning with a onstrutor. One an then redue

the �xpoint in t. And �nally the terms obtained this way in Ci and in Ci✷ are still

related by →E .

The other ases are muh easier. Let us onsider for example the ase where the redution

arried out is a βw-redution. Aording to the de�nition of the extration relation, the

β-redex in t′ neessarily have a ounterpart β-redex in t. We then just have to redue this

redex t in order to obtain a suitable u. And one has indeed u →E u′
, using the previous

substitution lemma for→E . Finally, all remaining ases (→δw
,→ζw

and the end of→ιw) are

similar to this ase →βw
. ✷

Corollaire 1 Let t be a losed well-typed Ci term and t′ a Ci✷ term suh that t →E t′.
Then any sequene of derivations →rw

starting from t′ is �nite.

Proof. Thanks to repeated appliations of the previous theorem, one an in fat build a

orresponding suession of derivations in Ci starting from t, with at least as many steps.

However the strong normalization of Ci implies that this last sequene is �nite. ✷

This termination is obviously a good property, but is not enough to ensure that the weak

redution of an extrated term proeeds without problems. Indeed a redution with a with a

premature, abnormal end is no more desirable that a redution with no end. Could we �nish

on a normal term whih is not a value, suh as (O true) or math (fun x⇒ x) with ...?

For these two extreme examples, it is lear that the answer is no: otherwise the previous

theorem would show that these two terms ould be related by →E with well-typed terms of

Ci, whih is here impossible.

On the other hand a perfetly possible normal form is the appliation (✷ O). For example,

we may start with a prediate P : ∀n : nat, True. We then have (P O)→E (✷ O), the former

being normal with respet to rw. Of ourse, we also have (P O)→E ✷, and this is the hoie

made by the funtion E . But we have already seen with the example 1 that this (✷ O) an
appear as subterm during a redution. And with a strategy à la Oaml whih requires to

�rst evaluate arguments, one then �nds oneself to seek a value for (✷ O). At the theoretial
level, the answer is the ad-ho redution →✷ already evoked. We will see in setions 2.6.3

and 3.3.2 how to deal with this ad-ho redution in pratie.

Lemma 10 In Ci✷, any sequene of redutions →✷w
is �nite.

2.3. Syntati study of the redution of extrated terms 57

Proof. A redution →✷w
stritly dereases the size of the term. ✷

Lemma 11 Let t be well-typed Ci term and t′, t′′ be Ci✷ terms suh that t →E t′ and
t′ →✷w

t′′. Then t→E t′′.

Proof. It is enough to onsider the redex (✷ v′) of t′ that one redues to get t′′. This redex
orresponds to a (u v) subterm of t. One knows that u is either a type sheme or has sort

Prop. (f lemma 8). However this fat being stable by appliation, it is thus the same for

the subterm (v u). We an then onlude by applying (E−✷1) or (E−✷2) a level earlier in t.
✷

Theorem 3 Let t be a losed well-typed Ci term and t′ suh that t →E t′. then any

sequene of derivations →(rw|✷w) starting from t′ is �nite.

Proof. Let us all t′0 . . . t′n . . . this sequene in Ci✷. One an then build a sequene tn in

Ci verifying at eah that tn →E t′n:

• if t′n →✷w
t′n+1, we take tn+1 = tn and the invariant orresponds to the previous lemma.

• if t′n →rw
t′n+1, we use the theorem 2, and obtain tn+1 suh that tn →rw

tn+1.

First of all, in this Ci sequene, there an be only be a �nite number of suessive steps

equality, beause they orrespond to suessive redutions→✷w
on the Ci✷ level. This Ci

sequene thus onsists of redution steps possibly mixed with a �nite number of step of

equality at eah time. However, beause of the strong normalization, there must be only a

�nite number of suh redution step. The sequene in Ci is thus �nite, just as the initial

sequene. ✷

The integration of this redution→✷w
does not a�et termination during the evaluation

of an extrated term. One an now takle the question of the shape of normal forms with

respet to the redution→(rw|✷w). To answer this question, we will need a result dual to the

theorem 2:

Theorem 4 Let t, u be Ci well-typed terms (not neessarily losed) and t′ a Ci✷ term

suh that t→E t′ and t→rw
u. Then it exists a Ci✷ term u′

suh that u→E u′
and verifying

t′ →rw
u′

or t′ →∗
✷w

u′
.

t
rw

✲ u

t′

→E

❄

rw|✷w∗
✲ u′

→E

❄

Proof.

• If the redex r redued in t orresponds to a similar redex in t′ whih is omplete, then

we just have to redue this redex of t′ to obtain a u′
whih is appropriate.

58 Certi�ed funtional programming

• If r is ompletely ontained in a subterm of t orresponding to a ✷ of t′, it is enough
to take u′ = t′.

• We now will onsider the intermediate ases where r orresponds to a redex of t′ that
is inomplete beause partly hidden by a ✷. These situations orrespond to ases 1,

2, 3a and 3b of setion 2.3.1.

� If r is a β-redex, the only situation to be onsidered is r = (λx : X, a) b in t
orresponding to (✷ b′) in t′. One an then simulate the β-redution of t by one

✷-redution in t′.

� If r is a δ- or ζ-redex, there is no problemati situation to onsider.

� If r is a ι-redex for a ase, the only remaining ase is

ase(e, P, . . .)

in t orresponding in t′ to

ase(✷, P ′, . . .).

The properties of →E (lemma 8) ensure that e is either of sort Prop or is a type

sheme. As e is an indutive term, whih thus annot be a type sheme, e is

neessarily of sort Prop. In addition, the ondition Info states that this ase in

t onerns one indutive type that is either informative, logial empty, or logial

singleton. Taking into aount the sort of e, the informative ase is impossible.

The empty indutive ase is also impossible, sine the lak of onstrutor prevents

any redution to our. So we are in presene of a logial singleton elimination,

whih we an now to redue at the Ci✷ level thanks to the new ι-redution.

� If r is a ι-redex for a fix, there are two sub-ases. If the fix disappears in t′

but not all the arguments omposing the initial redex (ase 3a), then one an

simulate the ι-redution of t by some ✷-redutions in t′. And if the fix is present

in t′, it means that the �guard� argument has beome ✷ (ase 3b). We an then

redue it thanks to the news ι-redution for fix.

✷

Theorem 5 Let t be a losed well-typed Ci term and t′ a Ci✷ term suh that t →E t′.
Then any normal form t′0 of t′ modulo →(rw|✷w) orresponds via →E to a weak normal form

t0 of t. More preisely, we are in one of the four following ases:

(i) t′0 = ✷

(ii) t′0 = C −→v where the arguments

−→v are also in normal form modulo →(rw|✷w).

(iii) t′0 starts with an λ-abstration.

(iv) t′0 = fix fi {. . .} −→v . If the guard argument is ki-th, then |−→v | < ki and
−→v is also in

normal form modulo →(rw|✷w).

Proof. As in the proof of theorem 3, we build a sequene of derivations starting from t
and orresponding on the Ci level to the derivation sequene leading from t′ to t′0. This
gives us a Ci term t1 suh that t→∗

rw
t1. If we now ontinue to apply weak redutions to

2.3. Syntati study of the redution of extrated terms 59

t1, we end up with a Ci term t0 in weak normal form. One an then re�et this derivation

t1 →∗
rw

t0 on the Ci✷ level via the theorem 4, what gives us a sequene of derivations

→(rw✷w)∗ starting from t′0. But this t′0 is in normal form with respet to these redutions,

therefore does not hange. Finally, we have the following diagram:

t
rw∗

✲ t1
rw∗

✲ t0

t′

→E

❄

(rw✷w)∗
✲ t′0

→E

❄

=
✲ t′0

→E

❄

The remainder of the statement omes diretly from the study of the possible shape of

a losed weak normal form in Ci (f lemma 3). Indeed t0 an be:

• a sort, an applied indutive type or a produt, whih an only give ✷ aording to the

rules of →E .

• a applied indutive onstrutor, that gives by →E either ✷ or the same onstrutor

applied to extrated arguments.

• a λ-abstration, whih gives by →E either ✷ or another λ-abstration.

• a �xpoint laking some arguments, whih gives by →E either ✷ or a orresponding

�xpoint.

✷

Even if it mentions only the general redution→rw
, this theorem is also interesting from

the point of view of the partiular evaluation strategies, strit (à la Oaml) or lazy (à la

Haskell). Indeed, it was already mentioned previously that these two strategies an be seen

like restritions of →rw
, with the additional ondition that the right part (resp. left) of an

appliation should be in normal form before being able to redue the other side. In all the

ases, the returned term at the end of a strit evaluation is learly normal with respet to

→rw
, and in the same way for a lazy evaluation. To be able to use the previous theorem,

it is just needed that these strit or lazy evaluations also integrate the redution →✷w
. In

setion 2.6, we will see how to reonile our requirements in term of redution rules with

the redution mehanism implemented in Oaml and Haskell.

It is also possible to give some more preise details onerning the four ase of the

previous theorem. If t′0 = ✷ then t0 is a type sheme or has a Prop sort. The lemma 2 shows

that it in is then also the same for t. Said di�erently (by ontraposition): if t is informative

and is not a type sheme, then the redution of its extration annot �nish on ✷.

Reiproally, we would like to have that t′0 = ✷ as soon as t is logial or is a type

sheme. That is inaurate, beause of the non-determinism of→E , as shown by the example

λx : True, x→E λx : ✷, ✷. But of ourse, we only have to speialize the previous theorem

with t′ = E(t) instead of T →E t′ to ensure this property. Anyway,→E has no interest exept

as intermediate invariant.

Conerning the other ases of the result:

60 Certi�ed funtional programming

• For (ii): if t′0 starts with a onstrutor, then t has an indutive type if the onstrutor

is ompletely applied, and otherwise a produt type if not.

• Reiproally: if t′ = E(t), and if t has an informative indutive type, then the redution

will neessarily ends in in ase (ii).

• If we are in ase (iii) or (iv), this implies that t had initially a produt type.

• On the other hand if we just know that t has a produt type, we an end in any ase

(i) (ii) (iii) or (iv).

The main result of this study is that the redution of extrated terms an be done without

problems. If the redution mehanism must arry out an appliation, it well will �nd at the

head a value aepting one argument: losure, �xpoint or ✷ (or an indutive onstrutor as

long as one keeps their urry�ed notation). And if the redution mehanism must arry out

a pattern mathing, the mathed objet will be indeed reduible towards one onstrutor

totally applied to arguments, exept in the speial ase of logial singleton mathings.

The question is now to know if the �nal result of the redution of an extrated term is

indeed orret with respet to the initial term. Obviously, the work makes up to now will

allow to give a �rst answer, at least in simple ases, suh as for example the partiular ase

of terms belonging to a datatype:

De�nition 15 a datatype is an indutive type D whose onstrutors have as arguments

only objets of type D or of type another datatype.

For example, an indutive type I with a onstrutor of type (nat → I) → I (i.e.

enapsulating a funtion) is not a datatype. On the other hand usual types like bool, nat or

Z are datatypes in this sense. One an then speialize our previous result for this partiular

ase:

Theorem 6 Let t be a losed well-typed Ci term whose type T is a datatype without logial

ontents. Then all derivations of E(t) via →∗
rw✷w

ends on the normal form Ci of t.

Proof. We just have to onsider again the proof of the previous theorem, exept that now

t0 is in normal form and not only in weak normal form. This omes from the fat that T is

a datatype: a losed weak normal form in this type, not being able to ontain losures, is

thus also in normal form. And onsequently, the de�nition of being without logial ontents

shows that E(t0) = t0. There is thus nothing to extrat in t0, and we have t′0 = t0. ✷

For example, if we build in Coq an arbitrarily omplex term answering true or false

to a partiular question, one is sure that its extration will redue to the same answer as

in Coq. The same applies if our term returns the hundredth Fibonai number or the list of

the �rst thousand π digits.

This result, although interesting, is in fat strongly limited. In partiular, it says nothing

about the orretness of non-losed terms or funtions (whih is in fat the same, modulo

λ-abstrations). To treat these ases, it is �rst of all neessary to speify what one means by

orret funtions, and then establish this orretness. The simple idea is to show that if all

the arguments are orret in a ertain way, then so is output omputed by the funtion. The

formalization of this idea and its proof turned out to be muh more di�ult than initially

planned. This is the objet of all the following setion.

2.4. Semanti study of extration orretness 61

2.4 Semanti study of extration orretness

In the following study, we fous on larifying what it mean for an extrated term to

be orret, and we do it by means of semanti onsiderations. Up to now we indeed used

a purely syntati orretness property, namely the omparison between the strutures of

an extrated term and of the initial term. But suh an approah does not allow to treat

funtions in a satisfatory way.

This study is intended in the long term to allow the generation in Coq of the orretness

proof of extrated objets. This aim in�uenes largely this study, �rst in the hoie of the

logial framework, then in the de�nitions and the proofs that follow, made in the most

detailed and mehanial possible manner.

We �rst of all will de�ne a transformation J.K, that will give us in partiular, one applied

to a type T , the orretness prediate that must veri�ed by any extrated term E(t) from

an objet t of type T . Then we will establish suessively:

• the preservation of this transformation J.K by substitution;

• the preservation of J.K via redution;

• the fat that the objets built by J.K are orretly typed;

• the fat that the extrated terms verify indeed the orretness prediates given by J.K.

Warning: to try to simplify this study, we do not treat the ases of �let-in� or onstants or

�xpoint with more than one omponent. Anyway, these ases are not the ritial ones, and

taking them into aount would be a tedious but a priori straightforward job. On the other

hand the prinipal hange ompared with the previous setion is the use of the modi�ed

system Cim with expliit marking of umulativities, introdued in setion 1.2.5.

2.4.1 The logial framework

We use here a point of view as lose as possible to a real formalization in Coq of the

extration orretness. Even if this formalization has remained a paper one during this thesis,

it is possible that we try in the future to make a true development Coq of it. The logial

system in whih we will express our orretness properties is here the Cim.

We already evoked in page 9 of introdution the fat that it is not not possible in general

to be able to type-hek the extrated terms in Cim. Amongst other reasons, we an

mention here the possible disappearane of logial dereasing erti�ates in �xpoints. It will

thus be neessary to embed these extrated terms into one datatype, like:

Indutive expr : Set :=

| Var : identifier → expr

| Lam : identifier → expr → expr

| App : expr → expr → expr

| ...

We suppose from now on that we have in Cim suh a onrete type, that we will name Λ
thereafter, internalizing the syntax of untyped Cim terms (or pre-terms), plus one onstant

62 Certi�ed funtional programming

✷. Generally, we will note tΛ the objet t internalized in Λ. With a slight abuse of notation,

we will ontinue to use the Cim syntax for these internalized objets. Thus we will write

(SΛ OΛ) rather than (App SΛ OΛ).
Just as two onvertible objets of Cim have the same properties, and in partiular are

equal via the standard equality eq, we require two onvertible Λ objets to be equal. In

partiular, we will use the fat that ((λx:X, t) x) and t are the same objet. We do not

speify more preisely, for the moment, whih notion of onvertibility is neessary on the Λ
level, leaving that to be lari�ed later on.

This logial framework being �xed, the funtion E extration seen at the beginning of

this hapter is now a meta-level funtion, transforming any Cim term into an objet in the

onrete type Λ.

2.4.2 The simulation prediates

In similar works on extration orretness, the usual method is to de�ne the orretness

of the extrated terms with respet to the initial type of extrated objet. Theses works

exhibit a realizability prediate p r T , whih is read as follows: �the program p realize the

type T �. And the goal is then to show that E(t) r T when t : T . The ritial point is the

realization of funtions. The natural rule to realize a funtional type is as follows:

p r A→B i� ∀a, a r A⇒ (p a) r B

If one wants to generalize this to the dependent produt type ∀x : A, B, it is neessary

to take into aount the possible appearane of x in B, that we underline by the notation

B(x). Let us try:

p r ∀x:A,B(x) i� ∀a, a r A⇒ (p a) r B(a)

In a system allowing an internal extration, this may be appropriate, although a r A does

not neessarily imply that a : A, and hene B(a) may be badly typed. In any ase, like the

extrated parts have here the type Λ, there is no hane that this rule is well typed. One

an then try to be rely on an element x of type A:

p r ∀x:A,B(x) i� ∀x :A, ∀a, a r A⇒ (p a) r B(x)

In this formulation, the annoying point is now that x and a are not orrelated, although

they must morally orrespond respetively to a Cim term and to a possible extration of

this term. To express this orrelation, we have hosen to introdue a simulation prediate

T ∼ p relating a Cim term t and an extrated term p. More preisely, we de�ne a family

of prediates ∼T indexed by Cim types T :

∼T : T → Λ→ Prop

The realization rule for a produt now beomes:

f ∼∀x:A, B(x) p i� ∀x :A, ∀a, x ∼A a ⇒ (f x) ∼B(x) (p a)

2.4. Semanti study of extration orretness 63

In fat, we will enter everything on these prediates ∼T , and relegate to the bakground

the realizability prediate r, whih will be in fat de�ned via the simulation prediates:

p r T i� ∃t :T, t ∼T p

And to ahieve the initial goal, whih was to establish E(t) r T , one now need to prove that

t ∼T E(t), whih is more preise.

At the tehnial level, these prediates ∼T for T : s are not yet general enough to be

de�ned and handled diretly. We indeed need to extend them for type shemes T : K. As

in general, these prediates will not be binary relations anymore, we will not keep the in�x

notation ∼, and will speak instead of prediates T̂ . When T is a type, t ∼T p will then be

just an abbreviation for (T̂ t p).

In pratie, we will not be able to de�ne diretly these prediates T̂ , but rather some

dependent pairs JT K whih will have these prediates T̂ as seond omponents, and an

enrihed alternative T for T as �rst omponents. We will thus use three types of dependent

pairs adapted to our needs:

Reord Type

+
: Type := mk_Type

{ type_Type :> Type;

pred_Type : type_Type → Λ → Prop }.

Reord Set

+
: Type := mk_Set

{ type_Set :> Set;

pred_Set : type_Set → Λ → Prop }.

Reord Prop

+
: Type := mk_Prop

{ type_Prop :> Prop;

pred_Prop : type_Prop → Λ → Prop := fun _ _ ⇒ True }.

If s is one of the three sort Set, Prop or Type, the onstrutor of a dependent pair of type s+

is mk

_s, and the two projetions are type

_s and pred

_s. These two projetions respetively

give again the type ontained in s+
and the prediate of simulation assoiated with this

type. Let us look at the types of theses projetions now. The type of the �rst is very simple:

type_s : s+ → s.

The one of the seond presents a dependeny:

pred_s : ∀T:s+
, (type_s T) → Λ → Prop.

In addition, the �rst projetion an be seen as a oerion of s+
into s, whih is announed

by the Coq syntax :> instead of the usual : syntax. In Coq, this oerion allow to avoid

writing the �rst projetion expliitly. In the theoretial study that follows, we will ontinue

to larify these projetions. On the other hand, we will do it using a lighter syntax:

• T.1 for (type_s T)

• T.2 for (pred_s T)

64 Certi�ed funtional programming

These abbreviations are voluntarily ambiguous, beause they do not speify the initial type

Type

+
, Set

+
or Prop

+
. When needed, typing the expression T allows to solve this ambiguity.

It should be noted that the ase of Prop

+
is a little partiular. We have indeed de�nitively

�xed the ontents of the �eld pred

_

Prop during the de�nition of the Prop

+
type. Thus

the prediate assoiated with an objet in Prop

+
is neessarily the trivial prediate, always

equivalent to True. The idea is that the extration of a logial part an be hosen arbitrarily,

without that having reperussion over the orretness of the extrated term. At the pratial

level, the only di�erene between the Prop

+
type and the Type

+
types and Set

+
is that it

onstrutor mk

_

Prop awaits one argument instead of two. On the other hand two projetions

type

_

Prop and pred

_

Prop exist and operate as desribed previously.

The homogeneity between the s+
will allow us to plunge Set

+
and Prop

+
in Type

+
in

order to mimi umulativities Set < Type and Prop < Type. In Cim, these umulativities

are announed by the marks

‡
and

†
. These marks will here be mirrored by the two following

funtions:

Definition Set

+
_Type

+
:= fun T:Set

+ ⇒ let (t,p):=T in mk_Type t

‡
p.

Definition Prop

+
_Type

+
:= fun T:Prop

+ ⇒ let (t,p):=T in mk_Type t

†
p.

2.4.3 The transformation J.K

We now de�ne a transformation J.K for all objet ofCim. In fat, only the transformation

of types really imports. But these types an be found on any positions, for example in the

arguments of an indutive onstrutor, and then re-appear during a pattern mathing. And

a type an also be in fat the appliation of a type sheme to arguments. In short, J.K needs
to deal with any Cim term.

In the partiular ase of a type T : s, JT K will be a dependent pair whose seond om-

ponent JT K.2 is the expeted simulation prediate. In this preise ase, we will shorten

JT K.1 in JT K
1

and JT K.2 in JT K
2

. To help the reading, it an be interesting to note that this

meta-theoretial transformation J.K preserve typing judgments: if t : T , then JtK : JT K
1

. Here

omes now the de�nition of J.K by strutural indution:

� JxK = x

� Jt t′K = JtK Jt′K

� Jλx : T, tK = λx : JT K
1

, JtK

� J∀x : T, T ′K =

mk

_s ∀x : JT K
1

, JT ′K
1

λt, λp, ∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′ → JT ′K
2

(t x) (p x′)

if the type

3

of ∀x : T, T ′
is s 6= Prop. The type of the two shortened abstrations

are respetively ∀x : JT K
1

, JT ′K
1

and Λ. And if s = Prop, one removes the seond

argument of mk

_s.

� JsK = mk

_

Type s+ λ_, λ_, True

� Jt‡K = Set

+
_

Type

+ JtK

3

Notie: in Cim, we have uniqueness of types modulo onversion.

2.4. Semanti study of extration orretness 65

� Jt†K = Prop

+
_

Type

+ JtK

� JIK = λ
−−−−−→
u : JUK

1

, (mk_s (I −→u) (Î −→u))

when the indutive type I admits ∀−−−→u : U, s as arity, with s 6= Prop. See the ontext

transformation for the de�nition of I and Î. And if s is Prop, we just remove the

seond argument of mk

_s.

� JCK = C for a onstrutor C of the indutive type I. And C is then a onstrutor of

the indutive I. See the ontext transformation for the de�nition of I.

� Jase(e, P,
−→
fi)K = ase(JeK, P ,

−−→
JfiK)

Here, for P of form λ−→u , λx : (I −→q −→u), T , one notes P = λ−→u , λx : (I
−→
JqK −→u), JT K

1

.

� Jfix x : T := tK = fix x : JT K
1

:= JtK

Finally this transformation J.K extends to ontexts as follows:

� JΓ; (x : T)K = JΓK; (x : JT K
1

)

� Eah delaration of indutive a I of arity K = ∀−−−→u : U, s and of onstrutors Ci : Ti is

replaed by two indutive I and Î, the seond being useful only if s 6= Prop.

1. I is simply the propagation of J.K
1

to I. Its arity is K = ∀−−−−−→u : JUK
1

, s and its

onstrutors Ci has type JTiK1.

2. Î is used as simulation prediate for I. Its arity is K̂ = ∀−−−−−→u : JUK
1

, (I −→u)→ Λ→
Prop. And its onstrutors Ĉi have type (JTiK2 Ci Ci

Λ), with Ci
Λ being the i-th

onstrutor of the indutive E(I) extrated from I and internalized in Λ.

Let us reonsider one moment the de�nitions of I and Î. It an to seem indeed surprising

that JTiK1 on the one hand and (JTiK2 Ci Ci
Λ) on the other hand are valid types of onstru-

tors. In fat if Ti is form ∀
−−−→
v : V , (I −→w), one then has:

JTiK1 = ∀−−−−−→v : JV K
1

, (I
−→
JwK)

and also:

(JTiK2 Ci Ci
Λ) = ∀J−−−→v : V K, (Î

−−−→
S(w) (Ci

−→v) (Ci
Λ
−→v Λ))

We used here two new notations:

• ∀J−−→x : T K, . . . whih denotes ∀−−−−−→x : JT K
1

, . . . plus one additional program variable x′
as-

soiated with eah variable initial x, and the proof Hx of orretness onneting x and

x′
. More preisely:

∀J(x : T)
−−−−→
(vi : Vi)K, . . . = ∀x : JT K

1

, ∀x′ : Λ, ∀Hx : (JT K
2

x x′), ∀J−−−→vi : ViK, . . .

• −→u Λ
is the extrated version of the variables: eah variable x is replaed by its assoiated

extrated variable x′
.

For a ontext Γ, one will need later to handle an even riher alternative for JΓK, in whih

a delaration (x : T) generates, in addition to (x : JT K
1

), the delaration of a assoiated

program variable (x′ : Λ) and a proof Hx onneting x and x′
, of type (JT K

2

x x′). We will

note this extended ontext JΓK+.

66 Certi�ed funtional programming

2.4.4 One example

It is now time to test all this pretty formalism on one example. We will seek to know

whih orretness ondition must satisfy a program extrated E(div) when the original term

div is an integer division:

div : ∀a b:nat, b6=0 → { q:nat | q*b ≤ a ∧ a < (S q)*b }

First of all, as the arity of nat is diretly Set, one has JnatK = mk

_

Set nat n̂at, and

thus JnatK
1

= nat. Types of new onstrutors O and S of nat are then respetively nat and

nat → nat, with the result that nat is exatly isomorphi with nat. We will thus identify

them. And onerning n̂at, one has:

Indutive n̂at : nat → Λ → Prop :=

| Ô : n̂at O OΛ

| Ŝ : ∀n:nat, ∀n':Λ, n̂at n n' → n̂at (S n) (SΛ n').

This indutive prediate expresses simply the fat that n':Λ is a orret extration of (S

(S ... (S O)...)) i� n' = (SΛ (SΛ ... (SΛ OΛ)...)). Another indutive type used in

the type of div is sig :

Indutive sig (A:Set

+
)(P:A.1 → Prop

+
) : Set :=

| exist : ∀x:A.1, (P x).1 → sig A P.

This de�nition is not, in fat, so di�erent from that of sig, in partiular if one omits the

oerions .1 inferable by Coq. There is even the following relation:

sig A P ↔ sig A.1 λx, ((P x).1)

Here is now the de�nition of the indutive ŝig:

Indutive ŝig (A:Set

+
)(P:A.1 → Prop

+
) : sig A P → Λ → Prop :=

| êxist : ∀x:A.1, ∀x':Λ, A.2 x x' →
∀h:(P x).1, ∀h':Λ, (P x).2 h h' →
ŝig A P (exist x h) (existΛ x' h')).

Let us name Div the type of div and let P be (fun a b q ⇒ q*b ≤ a ∧ a < (S q)*b).

We obtain then that JDivK
1

is isomorphi with Div, and that JDivK
2

has for type Div →
Λ→ Prop and is:

JDivK
2

= fun (f:Div)(p:Λ) ⇒
∀a:nat, ∀a':Λ, n̂at a a' →
∀b:nat, ∀b':Λ, n̂at b b' →
∀h:b 6=O, ∀h':Λ, Jb6=OK

2

h h' →
(ŝig JnatK (JPK a b) (f a b h) (p a' b' h')).

However, sine b 6=O is a logial proposition, the prediate Jb6=OK
2

whih is assoiated for

him is the trivial prediate. And similarly, for any triplet of integer a, b and q, the prediate

(JPK a b q).2 is also λ_, λ_, True. Finally, JDivK
2

is equivalent to:

2.4. Semanti study of extration orretness 67

fun (f:Div)(p:Λ) ⇒
∀a:nat, ∀a':Λ, n̂at a a' →
∀b:nat, ∀b':Λ, n̂at b b' →
∀h:b 6=O, ∀h':Λ,
∃q, ∃q', (f a b h) = (exist q _) ∧ (p a' b' h') = (existΛ q' _) ∧

n̂at q q' ∧ P a b q.

Our extrated funtion div will thus be orret i� for two arguments orresponding to Coq

integers (the seond being non-null) and a third unspei�ed argument, it returns a onstru-

tor existΛ whose �rst argument has a Coq ounterpart that hek the post-ondition P.

Despite all the delays resulting of the formalism omplexity, the informal meaning of pre-

and post-onditions is indeed there.

2.4.5 Substitution properties of the transformation J.K

The �rst step on the way to the orretness proof for the extration is to establish the

substitution properties what veri�es the transformation J.K. This will onern here only the

substitution of the last variable of a ontext, whih in partiular does not in�uene indutive

types de�ned previously.

Lemma 12 The transformation J.K preserves substitutions: Jt{x←r}K = JtK{x←JrK}
Proof. This proof is done by strutural indution, and is purely syntati. Beause of the

important number of ases, we will not treat them all. Here a typial ase:

J(t t′){x←r}K subst.
= Jt{x←r} t′{x←r}K

def. J.K
= Jt{x←r}K Jt′{x←r}K

hyp. rec.
= JtK{x←JrK} Jt′K{x←JrK}

subst.
= (JtK Jt′K){x←JrK}

def. J.K
= Jt t′K{x←JrK}

All the ases other than the basi ases follow this sheme:

1. propagation of substitution

2. use of J.K de�nition

3. repeated uses of the indution hypothesis

4. fatorization of substitution

5. reversed use of J.K de�nition

There is nevertheless a deliate point: nothing guarantees a priori that the same de�nition

rule for J.K will apply before (point 5) and after (point 2) the propagation of substitution.

Fortunately a substitution does not upset the struture: a substituted appliation remains

68 Certi�ed funtional programming

an appliation, a substituted mathing remains a mathing, et. Of ourse, a substituted

variable an give anything else, but this ase is orretly managed:

Jx{x←r}K subst.
= JrK

subst.
= JxK{x←JrK}

Lastly, even if the same de�nition rule for J.K is used before and after substitution, it is still

neessary that this rule produes similar objets. In partiular, the transformation JIK of one
indutive type and the transformation J∀x : T, T ′K of a produt type use both a onstrutor

mk

_s that depend on a sort s. This sort is respetively the sort at the end of the arity of I
and the type of the produt. It is thus essential for the validity of the present lemma that a

substitution annot modify this sort s. This is a ommonplae in the indutive ase: the sort

at the end of the arity of I annot hange via substitution. On the other hand this is muh

less obvious in the produt ase. In the initial Ci system, they is even false: if x : Type,
then ∀y : Y, x has type Type, whereas (∀y : Y, x){x← True} has type Prop. What about

Cim now? If one onsider again this example, one obtain:

J∀y : Y, xK = mk

_

Type ∀y : JY K
1

, JxK
1

. . .

To be legal, the substitution must now be {x←True

†}. One then has:

J∀y : Y, x{x←True

†}K
= J∀y : Y, True†K
= mk

_

Type ∀y : JY K
1

, (Prop+
_

Type

+ JTrueK).1 . . .

On the other side, the substitution to be applied after transformation is {x← JTrue†K} =
{x←Prop

+
_

Type

+ JTrueK}. And we �nally have the same �nal term.

In a general way, our modi�ed system Cim always veri�es the onservation of the type

of produt by substitution. Indeed, if s is the initial type, then s{x← r} = s is learly a

type of the substituted produt aording to the lemma 4. We an then onlude using the

uniqueness of types in Cim. ✷

2.4.6 Redution properties of the transformation J.K

As we exluded from our study the onstants and the �let-in�, we onsider here only the

redutions β and ι.

Theorem 7 The transformation J.K preserves the redution: t→βι t′ ⇒ JtK→βι Jt′K

Proof. Let us start �rst with the ases where the redution is performed at the top:

• t = (λu : U, a) b being redued by β in t′ = a{u←b}. Then JtK is (λu : JUK
1

, JaK) JbK
and an be indeed redued to JaK{u← JbK}. And the former is equal via the previous

lemma of substitution to Ja{u←b}K = Jt′K.

• If a β-redution ours at the head of a type sheme, we proeed in the same way.

• t = ase(Ci
−→p −→u , P, fj) being redued by ι in t′ = (fi

−→u). Then JtK is in fat

ase(Ci

−→
JpK
−→
JuK, P ,

−−→
JfjK) whih an be indeed redued to (JfiK

−→
JuK) = Jt′K.

2.4. Semanti study of extration orretness 69

• t = (fix x : T := t0)
−→u being redued by ι in t′ = t0{x← (fix x : T := t0)} −→u .

Then JtK = (fix x : JT K
1

:= Jt0K)
−→
JuK. In partiular the indutive guard argument,

whih started with one indutive onstrutor, preserves his head struture. One an

thus redue JtK in Jt0K{x← (fix x : JT K
1

:= Jt0K)}
−→
JuK. The previous substitution

lemma shows that this term is indeed equal to Jt′K.

• If a ι-redution ours at the head of a type sheme, we proeeds in the same way.

When the redution takes plae deep inside a term, one proeeds by indution over the

struture of the initial objet t. As these ases bring no surprises, we will not detail them.

✷

2.4.7 Validity of terms produed by the transformation J.K

Theorem 8 The transformation J.K preserves typing judgment: Γ ⊢ t : T ⇒ JΓK ⊢ JtK :
JT K

1

Proof. By indution over the initial typing derivation, and at the same time over the good

formation of transformed ontexts JΓK.

(WF) WF(∅) ⇒ WF(J∅K)

(WF)

Γ ⊢ U : s u 6∈ Γ
WF(Γ; (u : U))

⇒
JΓK ⊢ JUK : JsK

1

JΓK ⊢ JUK
1

: s
u 6∈ JΓK

WF(JΓK; (u : JUK
1

))

Indeed JsK
1

= s+
and thus the �rst projetion of JUK has type s.

(Ax)

WF(Γ) s ∈ {Set, Prop, Typei} i < j
Γ ⊢ s : Typej

⇒ WF(JΓK) s ∈ {Set, Prop, Typei} i < j
JΓK ⊢ JsK : JTypejK1

Indeed JsK = mk

_

Type s+ λ_, λ_, True and JTypejK1 = Type

+
.

(Var)

WF(Γ) (u : U) ∈ Γ
Γ ⊢ U : U

⇒ WF(JΓK) (u : JUK
1

) ∈ JΓK
JΓK ⊢ JuK : JUK

1

First of all, the variables are invariant by J.K, therefore JuK = u. And in addition, types

present in environment JΓK have indeed the form JUK
1

(f. rule (WF)).

(Prod)

Γ ⊢ T : s1 Γ; (x : T) ⊢ T ′ : s2 P(s1, s2, s3)
Γ ⊢ ∀x : T, T ′ : s3⇒

JΓK ⊢ JT K : Js1K1 JΓK; (x : JT K
1

) ⊢ JT ′K : Js2K1 PROD(s1, s2, s3)
. . .

JΓK ⊢ mk

_s3 ∀x : T , T ′ λt, λp, ∀x : T , ∀x′ : Λ, (T̂ x x′)→ (T̂ ′ (t x) (p x′)) : Js3K1

With T = JT K
1

and T̂ = JT K
2

and idem for T ′
.

70 Certi�ed funtional programming

The derivation outlined here is the one for s3 6= Prop. Instead of writing all the

details, we will just desribe the general sheme. Js1K1 = s+
1 and Js2K1 = s+

2 . Thus

T and T ′
have as respetive types s1 and s2, and T̂ and T̂ ′

have as respetive types

T → Λ → Prop and T ′ → Λ→ Prop. A use of the typing rule for the produt allows

us then to a�rm that ∀x : T , T ′
admits s3 for type. It is then easy to see that the

prediate part of the dependent pair is indeed of type ∀x : T , T ′ → Λ → Prop. It is

then quite legal to form this dependent pair, whih has thus type Js3K1 = s+
3 .

The ase s3 = Prop is a simpli�ed version of what preedes, sine mk

_s3 only has one

argument.

(Lam)

Γ ⊢ ∀u : U, V : s Γ; (u : U) ⊢ v : V
Γ ⊢ λu : U, v : ∀u : U, V⇒

JΓK ⊢ J∀u : U, V K : JsK
1

JΓK ⊢ ∀u : JUK
1

, JV K
1

: s
JΓK; (u : JUK

1

) ⊢ JvK : JV K
1

JΓK ⊢ λu : JUK
1

, JvK : J∀u : U, V K
1

Using the indution hypothesis for J∀u : U, V K, one dedues via the �rst projetion that
J∀u : U, V K

1

= ∀u : JUK
1

, JV K
1

has type s. This plus the other indution hypothesis

for JvK allows us to apply the rule (Lam) and to onlude.

(App)

Γ ⊢ v : ∀u : U, V Γ ⊢ w : U
Γ ⊢ (v w) : V {u←w} ⇒ JΓK ⊢ JvK : J∀u : U, V K

1

JΓK ⊢ JwK : JUK
1

JΓK ⊢ (JvK JwK) : JV K
1

{u←JwK}
As previously, one use the equality J∀u : U, V K

1

= ∀u : JUK
1

, JV K
1

. Lastly, one has

indeed JV K
1

{u←JwK} = JV {u←w}K
1

via the previous substitution lemma.

(Conv)

Γ ⊢ U : s Γ ⊢ t : T T =βι U
Γ ⊢ t : U⇒

JΓK ⊢ JUK : JsK
1

JΓK ⊢ JUK
1

: s
JΓK ⊢ JtK : JT K

1

JT K
1

=βι JUK
1

JΓK ⊢ JtK : JUK
1

Note that T =βι U implies indeed JT K
1

=βι JUK
1

, beause of the previous theorem of

redution preservation for J.K.

(CumT)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej⇒

JΓK ⊢ JtK : JTypeiK1 i < j
JΓK ⊢ JtK : JTypejK1

This is immediate, sine JTypeiK1 = JTypejK1 = Type

+
.

2.4. Semanti study of extration orretness 71

(CumP)

Γ ⊢ t : Prop
Γ ⊢ t† : Type⇒
JΓK ⊢ JtK : JPropK

1

JΓK ⊢ Jt†K : JTypeK
1

Here Jt†K = Prop

+
_

Type

+ JtK, whih is then indeed of type JTypeK
1

= Type

+
.

(CumS)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type⇒
JΓK ⊢ JtK : JSetK

1

JΓK ⊢ Jt‡K : JTypeK
1

Here Jt‡K = Set

+
_

Type

+ JtK, whih is then indeed of type JTypeK
1

= Type

+
.

(I-Type) For an arity K = ∀−−−→u : Us, with s 6= Prop, one has:

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (I : K) ∈ ΓI

Γ ⊢ I : K⇒
WF(JΓK) Indn(Γ

I,bI
:= Γ

C, bC
) ∈ JΓK (I : K) ∈ ΓI (Î : K̂) ∈ ΓI

. . .

JΓK ⊢ λ
−−−−−→
u : JUK

1

, (mk_s (I −→u) (Î −→u)) : JKK
1

with the abbreviations K = ∀−−−−−→u : JUK
1

, s and K̂ = ∀−−−−−→u : JUK
1

, (I −→u) → Λ → Prop.

And one has JKK
1

= ∀−−−−−→u : JUK
1

, s+
. The dotted lines in the derivation tree orrespond

to a double uses of the rule (I-Type), to dedue that I and Î have respetive type K

and K̂, and then of the typing of the lambdas and of the dependent pair.

Lastly, the ase s = Prop is only one simpli�ation of what preede, beause mk

_s has

then only one argument.

(I-Cons)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T) ∈ ΓC

Γ ⊢ C : T⇒
WF(JΓK) Indn(ΓI,bI := ΓC, bC) ∈ JΓK (C : JT K

1

) ∈ ΓC

JΓK ⊢ C : JT K
1

(I-WF) Conerning the delaration of an indutive I, of arity K = ∀−−−→u : U, sI and onstrutors

Ci : Ti, if we pose ΓI = (I : K) and ΓC = (C1 : T1); . . . ; (Ck : Tk), we then originally

have :

Γ ⊢ K : s Γ; ΓI ⊢ Ti : sI In(ΓI , ΓC)
WF(Γ; Indn(ΓI := ΓC))

72 Certi�ed funtional programming

Let us �rst examine the de�nition of I. Its arity is ∀−−−−−→u : JUK
1

, sI . However one has :

JΓK ⊢ J∀−−−→u : U, sIK : JsK
1

indution hypothesis for K

JΓK ⊢ ∀−−−−−→u : JUK
1

, s+
I : s via the �rst projetion, sine JsK

1

= s+

JΓK ⊢ ∀−−−−−→u : JUK
1

, sI : s sine s+
I has a larger type than sI .

And onerning the new types JTiK1 of the onstrutors Ci, we have:

JΓK; JΓIK ⊢ JTiK : JsIK1 indution hypothesis for Ti

JΓK; JΓIK ⊢ JTiK1 : sI via the �rst projetion

In fat, JΓIK = (I : ∀−−−−−→u : JUK
1

, s+
I) and not (I : ∀−−−−−→u : JUK

1

, sI). But I will appear in

JTiK1 only behind the �rst projetion, in a form like (I −→w).1. One an then hange

these ourrenes into (I −→w) and replae JΓIK by (I : ∀−−−−−→u : JUK
1

, sI).

Finally the side onditions In are indeed satis�ed for I. In partiular the JTiK1 are

always types of onstrutors for sorts sI . As for the ondition of positivity, without

going into to muh details, the intuition is that J.K
1

preserve the struture of the Ti,

and in partiular positivity.

Let us pass now to the de�nition of Q̂. Its arity is ∀−−−−−→u : JUK
1

, (I −→u) → Λ → Prop,

whih is indeed typable of type Type. As for onstrutors Ĉ, the hosen de�nition

ensures that they are types of onstrutors for Î of sort Prop. And one more time, we

will not detail the positivity veri�ation, but here again it does not seem to pose any

problem.

(Case) Let us now look at the ase of a mathing on an objet of indutive type I, whose

arity is K = ∀−−→p : P, K ′
with K ′ = ∀−−−→u : U, s and whose onstrutors are Ci : Ti. We

note Ti = ∀−−→p : P, ∀−−−→v : V , (I −→p −→w) the types of onstrutors Ci. Let �nally σ be the

substitution of formal parameters

−→p by onrete parameters q.

Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : K ′
σ; B) ∀i, Γ ⊢ fi : ∀−−−→v : Vσ, P −→wσ (Ci

−→q −→v)
Γ ⊢ ase(e, P, f1 . . . fk) : P −→u e⇒

JΓK ⊢ JeK : I
−→
JqK
−→
JuK JΓK ⊢ JP K : JBK

1

C(I −→JqK : ∀−−−−−−→u : JUσK
1

, s; B)

∀i, JΓK ⊢ JfiK : ∀−−−−−→v : JVσK1, JP −→wσ (Ci
−→q −→v)K

1

JΓK ⊢ ase(JeK, P , Jf1K . . . JfkK) : JP −→u eK
1

The transformed version above is not diretly a legal appliation of the rule (Case):

there are some adjustments to be made. First of all let us study the prediate P , whih

form is λ
−−−→
u : U, λx : (I −→q −→u), T . Its type B is of the form ∀−−−→u : U, (I −→q −→u) → sP .

Thus JBK
1

= ∀−−−−−→u : JUK
1

, (I
−→
JqK
−→
JuK)→ s+

P . And JP K = λ
−−−−−→
u : JUK

1

, λx : (I
−→
JqK
−→
JuK), JT K.

This implies that our new prediate P = λ
−−−−−→
u : JUK

1

, λx : (I
−→
JqK −→u), JT K

1

is well typed,

of type ∀−−−−−→u : JUK
1

, (I
−→
JqK
−→
JuK) → sP . Let us note B this last type. Sine ∀−−−−−−→u : JUσK1, s

and B are arities on the same sort than their original versions, the ondition C is

2.4. Semanti study of extration orretness 73

always heked afterward transformation. Finally the following equalities hold:

JP −→u eK
1

= (JP K
−→
JuK JeK).1 = (P

−→
JuK JeK)

and similarly:

JP −→wσ (Ci
−→q −→v)K

1

= (P
−−→
JwσK (Ci

−→
JqK
−→
JvK))

This now allows a legal appliation of the rule (Case), modulo some permutations

between substitution J.K and σ.

(Fix)

Γ ⊢ T : s Γ; (x : T) ⊢ t : T F(x, T, k, t)
Γ ⊢ (fix x/k : T := t) : T⇒

JΓK ⊢ JT K : JsK
1

JΓK ⊢ JT K
1

: s
JΓK; (x : JT K

1

) ⊢ JtK : JT K
1

F(x, JT K
1

, k, JtK)

JΓK ⊢ (fix x/k : JT K
1

:= JtK) : JT K
1

Conerning side onditions F(x, JT K
1

, K, JtK):

� the argument number awaited by JtK is the same one as the one of t, and the k-th
argument of JtK still has an indutive type, whih is now I instead of I.

� For eah reursive all (x −→u) in t there exists a orrespond one (or several)

reursive all(s) (x
−→
JuK) in JtK. The important point is that the �guard� argument

uk undergoes only the transformation J.K to beome JukK, whih does not hange

the fat that it is struturally smaller than the initial indutive argument, sine

J.K preserve the struture of t.

✷

2.4.8 Corretness of E with respet to the transformation J.K

Let us start with two auxiliary results, whih on�rm that the elimination ases of the

extration are quite valid with respet to J.K.

Lemma 13 For any Cim arity K, well-typed in a ontext Γ, one an prove ∀x : JKK
1

, ∀x′ :
Λ, JKK

2

x x′
in the ontext JΓK.

Proof. This is shown by indution on the struture of K:

• If K = s, then JKK
2

is diretly λx : JKK
1

, λx′ : Λ, True. The term λ_, λ_, I is then

appropriate as proof of the required property.

• If now K is a produt ∀x : T, K ′
, we have:

JKK
2

= λt : JKK
1

, λp : Λ, ∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′ → JK ′K
2

(t x) (p x′)

However the indution hypothesis for K ′
gives us a term Hr whose type is ∀y :

JK ′K
1

, ∀y′ : Λ, JK ′K
2

y y′
in the ontext JΓK; (x : JT K

1

). The following term is then

appropriate:

λz : JKK
1

, λz′ : Λ, λx : JT K
1

, λx′ : Λ, λ_, Hr{x←x} (z x) (z′ x′)

74 Certi�ed funtional programming

✷

Lemma 14 For any Cim type T admitting Prop like sort in a ontext Γ, one an prove

∀x : JT K
1

, ∀x′ : Λ, JT K
2

x x′
in the ontext JΓK.

Proof. Aording to theorem 8, JT K has type Prop+
. Considering the de�nition of Prop

+
,

the prediate JT K
2

is thus λ_, λ_, True. ✷

We now will state and prove the prinipal result of this semanti study: the extration

E is orret with respet to the simulation prediates obtained via the transformation J.K :

Theorem 9 For any well-typed Cim objet t, if Γ ⊢ t : T , then (JT K
2

JtK E(t)) is provable

in the ontext JΓK+.

Proof. First of all, the basi ases, whih are arities and logial parts, are treated using

the two previous lemmas. The remainder of the proof is done by indution over the typing

derivation Γ ⊢ t : T .

(Ax) In this rule that allow the typing of sorts, T is a sort, and thus a fortiori an arity. We

thus use lemma 13.

(Prod) Here T is again a sort, hene the use of lemma 13.

(Var)

WF(Γ) (x : T) ∈ Γ
Γ ⊢ x : T

If T admits Prop as type or is an arity, then E(x) = ✷ and we use lemma 14 or lemma

13. If not, E(x) is the program variable assoiated with x in the ontext JΓK+, namely

x′
. And this ontext also ontains a proof Hx of type (JT K

2

x x′), whih gives us the

laimed (JT K
1

JxK E(x)).

(Lam)

Γ ⊢ ∀x : T0, T ′ : S Γ; (x : T0) ⊢ t′ : T ′

Γ ⊢ λx : T0, t′ : ∀x : T0, T ′

If T = ∀x : T0, T ′
is an arity or has type Prop, we apply one of the previous lemmas.

If not, the indution hypothesis for t′ states that:

JΓK+; (x : JT0K1); (x
′ : Λ); (Hx : JT0K2 x x′) ⊢ HR : JT ′K

2

Jt′K E(t′)
However we have:

JT K
2

= λz : JT K
1

, λz′ : Λ, ∀x : JT0K1, ∀x′ : Λ, ∀Hx : JT0K2 x x′, JT ′K
2

(z x) (z′ x′)

The desired property is then:

∀x : JT0K1, ∀x′ : Λ, ∀Hx : JT0K2 x x′, JT ′K
2

((λx : JT0K1, Jt′K) x) ((λx′ : ✷, E(t′)) x′)

And this an be simpli�ed using (λx : JT0K1, Jt′K) x = Jt′K and (λx′ : ✷, E(t′)) x′ =
E(t′). Finally, the following term is a orret proof of the wanted property:

λx : JT0K1, λx′ : Λ, λHx : JT0K2 x x′, Hr{x, x′, Hx←x, x′, Hx}

(App)

Γ ⊢ t′ : ∀x : T0, T ′ Γ ⊢ t0 : T0

Γ ⊢ (t′ t0) : T ′{x← t0}

2.4. Semanti study of extration orretness 75

If T ′{x← t0} is an arity or has type Prop, one applies one of the previous lemmas. If

not, one will use the two indution hypothesis:

JΓK+ ⊢ H1
r : ∀x : JT0K1, ∀x′ : Λ, JT0K2 x x′ → JT ′K

2

(Jt′K x) (E(t′) x′)

JΓK+ ⊢ H2
r : JT0K2 Jt0K E(t0)

However the desired property is:

JT ′{x← t0}K2 Jt′ t0K E(t′ t0) = JT ′K
2

{x←Jt0K1} (Jt′K Jt0K) (E(t′) E(t0))
It is then enough to take as proof:

H1
r Jt0K E(t0) H2

r

(Conv)

Γ ⊢ T : S Γ ⊢ T : T ′ T ′ =βι T
Γ ⊢ T : T

We have JT ′K =βι JT K, and in partiular the seond projetions are onvertible. It is

thus enough to use exatly the proof term oming from the indution hypothesis for

t : T ′
.

(CumT)

Γ ⊢ t : Typei i < j
Γ ⊢ t : Typej

Typej is a sort thus a fortiori an arity. We use lemma 13.

(CumP)

Γ ⊢ t : Prop
Γ ⊢ t† : Type

Prop is a sort thus a fortiori an arity. We use lemma 13.

(CumS)

Γ ⊢ t : Set
Γ ⊢ t‡ : Type

Set is a sort thus a fortiori an arity. We use lemma 13.

(I-Type) An indutive type neessarily has an arity as type. We use lemma 13.

(I-Cons)

WF(Γ) Indn(ΓI := ΓC) ∈ Γ (C : T) ∈ ΓC

Γ ⊢ C : T

If the onstrutor belongs to a logial indutive type, the lemma 14 is used. If not, an

unfolding of (JT K
2

JCK E(C)) show that it is exatly the type of the onstrutor Ĉ of

the indutive Î. It is then enough to take this Ĉ as proof term.

(Case) Let us now look at the ase of a pattern mathing on an objet of indutive type I

whose arity is K = ∀−−→p : P , K ′
with K ′ = ∀−−−→u : U, s and whose onstrutors are Ci : Ti.

We note Ti = ∀−−→p : P, ∀−−−→vi : Vi, (I −→p −→wi) the types of the onstrutors Ci. Let �nally σ
be the substitution of formal parameters

−→p by onrete parameters q.

76 Certi�ed funtional programming

Γ ⊢ e : I −→q −→u Γ ⊢ P : B C(I −→q : K ′
σ; B) ∀i, Γ ⊢ fi : ∀−−−−→vi : Viσ, P −→wiσ (Ci

−→q −→vi)
Γ ⊢ ase(e, P, f1 . . . fk) : P −→u e

First of all, if T = (P −→u e) admits Prop as type, or is an arity, we use one of the

previous lemmas. Let us suppose now that this mathing is informative. The indution

hypothesis give us:

JΓK+ ⊢ Hr : JIK
2

−→
JqK
−→
JuK JeK E(e) with JIK

2

= I if s 6= Prop or λ
−→
_, True

otherwise

JΓK+ ⊢ H i
r : J∀−−−−→vi : Viσ, P −→wiσ (Ci

−→q −→vi)K2 JfiK E(fi) for all i

Said otherwise, with the notations of page 65:

JΓK+ ⊢ H i
r : ∀J−−−−→vi : ViσK, (JP K

−−−→
JwiσK (Ci

−→
JqK −→vi)).2 (JfiK

−→v) (E(fi)
−→vi

Λ)

On the other hand, one wishes to prove:

(JP K
−→
JuK JeK).2 ase(JeK, P ,

−−→
JfiK) ase(E(e), ✷,

−−−→E(fi))

The head e of this mathing is then in one of the three following ases:

• Its indutive type I is an logial empty indutive. We are then in a situation

similar to a proof of False : we an just eliminate this proof e via a pattern

mathing to be able to prove anything. And the post-transformation version JeK
has still an empty indutive type, whih is now I. The proof will be thus of the
form ase(JeK, . . . ,) with the good head prediate.

• Its type indutive I is a logial singleton indutive. There is thus only one

onstrutor C1 for I, and all the non-parametri arguments of C1 are logial.

Let n be the number of suh arguments. The expression ase(E(e), ✷,
−−−→E(f1)) is

in fat asen(✷, ✷, E(f1)), whih an be redued to (E(f1)
−→
✷).

We then de�ne a new prediate P̂ whose body is:

λ
−−−−→
u : JUK, λx : I

−→
JqK −→u , (JP K −→u x).2 ase(x, P,

−−→
JfiK) (E(fi) ✷ . . . ✷)

The proof to be built then starts with a mathing on JeK aording to this predi-

ate P̂ . This mathing have then only one branh, whose type must be:

∀−−−−−−−→v1 : JV1KJσK, P̂
−−−−→
Jw1KJσK (C1

−→
JqK −→v1) =

∀−−−−−−→v1 : JV1σK, (JP K
−−−→
Jw1σK (C1

−→
JqK −→v1)).2 (Jf1K

−→v1) (E(f1)
−→
✷)

modulo a ι-redution and some permutations between J.K and σ. Now, for eah
variable v1j of the sequene

−→v1 , one knows that it is a logial variable. By using

repeatedly the lemma 14, one builds for eah j a term Hj of type (JV1jσK2 v1j ✷).
The required branh of the mathing is then:

λ
−−−−−−→
v1 : JV1σK, (H1

r v11 ✷ H1 . . . v1n ✷ Hn)

• Its indutive type I is informative. There again, we proeed by pattern mathing

on JeK, but we need to destrut Hr during mathing. One thus starts with a

generalization (Generalize in Coq) with respet to the type of Hr. On the level

of the �nal proof term, this orresponds to an appliation to Hr. And the head

of this appliation now will be a pattern mathing on JeK aording to following

2.4. Semanti study of extration orretness 77

prediate P̂ :

λ
−−−−→
u : JUK, λx : I

−→
JqK −→u , Î

−→
JqK −→u x E(e)→

(JP K −→u x).2 ase(x, P,
−−→
JfiK) ase(E(e), ✷,

−−−→E(fi))

The j-th branh of this mathing must then have for type:

∀−−−−−−−→vj : JVjKJσK, P̂
−−−−→
JwjKJσK (Cj

−→
JqK −→vj) =

∀−−−−−−→vj : JVjσ
K, Î
−→
JqK
−−−→
Jwjσ

K (Cj

−→
JqK −→vj) E(e)→

(JP K
−−−→
Jwjσ

K (Cj

−→
JqK −→vj)).2 (JfiK

−→vi) (ase(E(e), ✷,
−−−→E(fj)))

This mathing branh is then built as follows:

1. We starts by introduing the variables

−→vj .

2. We introdue the speialized version of Hr, where JeK has beome (Cj

−→
JqK −→vj).

3. It is then possible to inverse this new Hr (Inversion in Coq). And aording

to the form of its type, we then obtain the existene of variables v′
jk assoiated

to eah variable vjk of

−→vj , as well as proof Hk of type (JVjkσK2 vjk v′
jk), and

�nally we also obtain the fat that E(e) is equal to (Cj
Λ
−→vj

Λ).

4. We an then rewrite E(e) in the urrent goal, in whih the part onerning

E beomes onvertible then with (E(fj)
−→vj

Λ).

5. The only remaining step is to apply Hj
r to the good arguments vjk, v′

jk and

Hk.

(Fix)

Γ ⊢ T : s Γ; (f : T) ⊢ t : T F(f, T, k, t)
Γ ⊢ (fix f/k : T := t) : T

If T is of type Prop or is an arity, we use one of the previous lemmas. If not, we use

the indution hypothesis:

JΓK+; (f : JT K
1

; (f ′ : Λ); (Hf : JT K
2

f f ′) ⊢ Hr : JT K
2

JtK E(t)
However one wishes to establish the following statement:

JT K
2

(fix f : JT K
1

:= JtK) (fix f ′ : ✷ := E(t))
Thereafter, we note fix and fixΛ the respetive �xpoints (fix f : JT K

1

:= JtK) and

(fix f ′ : ✷ := E(t)). The idea is then to make a proof by �xpoint, something like:

fix F : JT K
2

fix fixΛ := Hr{f←fix}{f ′←fixΛ}{Hf←F}
Unfortunately, this term is slightly inaurate. The type of Hr after substitution is

indeed (JT K
2

JtK{f ← fix} E(t){f ′ ← fixΛ}) instead of (JT K
2

fix fixΛ). However
unfolded versions of �xpoint fix and fixΛ are onvertible with their initial versions

only when a guard argument is present and starts with a onstrutor. It is in fat

possible to orret these inauraies. To simplify the writing, we will proeed only

in the situation where the guard argument is in the �rst position. But of ourse,

78 Certi�ed funtional programming

this method extends to the general ase. We thus suppose that T an be written

∀x : I −→u , T ′
. The type (JT K

2

JtK E(t)) of Hr rewrites to:

∀x : I
−→
JuK, ∀x′ : Λ, ∀Hx : Î

−→
JuK x x′, JT ′K

2

(JtK x) (E(t) x′)

However one an prove that:

∀x : I
−→
JuK, JtK{f←fix} x = fix x

To establish that, we an just reason by ase over x, and in eah ase x is then

replaed by a onstrutor, whih implies that the equality beomes trivial thanks to a

ι-onversion. And we an also prove similarly that:

∀x : I
−→
JuK, ∀x′ : Λ, ∀Hx : Î

−→
JuK x x′, E(t){f ′←fixΛ} x′ = fixΛ x′

There again one proeeds by mathing on x. Then, in order to dedue the form of x′
,

we �inverse� Hx as in the previous sub-ase for (ase). This shows us that x′
starts

with one onstrutor, and there again the required equality beomes trivial after a

ι-onversion. The next step is to use these two equalities to rewrite the type of the

substituted version of Hr, so that its type beomes indeed (JT K
2

fix fixΛ).

Finally, it should be heked that this �xpoint proof that we have just built is indeed

legal: are its reursive alls struturally dereasing? It is a matter of loating the uses

of Hf in Hr. However the ourrenes of f in the t term initial are applied to dereasing

arguments. And the onstrution of Hr respets the struture of t: a ase produes a

ase, one appliation generates an appliation, et. To eah appliation (f y) in t will
orrespond an appliation (Hf JyK E(y) . . .) in Hr, whih relies (f JyK) and (f ′ E(y)).
And if y was struturally smaller than the initial indutive argument, it is indeed the

same for JyK.

✷

2.5 Summary of the orretness results

At the end of this double study of orretness, it is time to make an assessment of the

properties of orretness whih we have proved. In fat, the syntati part (setion 2.3) and

the semanti part (setion 2.4) are quite omplementary.

• the syntati study allows to establish the termination without anomaly of any weak

redution of a losed extrated term. On the other hand if the extrated term is a

funtion, this is not very instruting. This part is a relatively simple methodology,

obtained early during this thesis works.

• Suh as we formulated it, our semanti analysis does not allow to prove by itself the

termination of our extrated programs. Perhaps that would be it possible by adding

termination onditions among the de�nitions of JK, but we do not have pushed further

in this diretion for lak of time. Indeed, this semanti analysis has required an impor-

tant quantity of e�orts to be ahieved. In partiular, issues like umulativity of Ci

have been quite hard to deal with, and that has only be done in the last months of this

thesis. In any ase, this analysis allows to give a meaning to extrated funtions, and

2.6. Toward a more realisti extration 79

a�rms that they preserve the properties of the initial Coq funtions. This analysis also

opens the door to one study of the extration in the presene of axioms, something

exluded by our �rst study.

2.6 Toward a more realisti extration

We have seen before that the redution rw studied in setion 2.3.2 orresponded to the

respetive redution strategies of Haskell and Oaml, depending on whether one redued

initially the head or the argument of the appliations.

There remain nevertheless four substantial di�erenes between our theoretial model and

the redutions atually used by Haskell and Oaml :

1. empty indutive types and their eliminations

2. the ad-ho rule →i of elimination of logial singleton indutive types

3. the ad-ho rule →✷ eliminating the arguments of onstants ✷

4. the rule →i onerning the �xpoints and their onept of �guard�

2.6.1 The empty indutive types

Our target languages do not authorize the de�nition of empty indutive types, and a

fortiori the mathing over suh an indutive. But in fat, if one handles an objet having an

empty indutive type, that means that we are in some impossible situation. A mathing on

suh an objet is in partiular a portion of ode that will never be exeuted.

More preisely, let us suppose that the evaluation of an extrated objet meet a term

of the form ase(e, P, ∅). The theorem 2 enables us to obtain a orresponding well-typed

Ci term ase(e0, P0, ∅). In partiular e0 is an objet having an empty indutive has type.

We an then ontinue with a reasoning similar to the one used during the proof of theorem

2: sine these redutions are done in a weak manner, i.e. in an empty ontext and outside

all lambdas, the indutive objet e0 is thus losed. It an then to be redued to a term

having a onstrutor as head. This is obviously impossible, beause an empty indutive has

by de�nition no onstrutor.

One an thus freely replae any pattern mathing on an empty indutive objet by

arbitrary ode. In pratie, a natural hoie is to replae this mathing by the raising of

an exeption. This allows to underline the inaessible harater of this position of the

ode, while giving the most general type to this portion of ode. We thus use in Oaml the

onstrution assert false, and error in Haskell.

One may note that this treatment of empty indutives is ompletely independent of the

logial or informative harater of this indutive type. Whether we deal with the logial

indutive False or with its dual in Set named empty, their two eliminations False

_

re and

empty

_

re result in the raising of an exeption.

80 Certi�ed funtional programming

2.6.2 The elimination of logial singleton indutive types

In the study of setion 2.3.2, we used one ι-redution rule adapted to treat the elimination

of logial singleton indutive types:

asen(✷, P, f)→ι f ✷ . . . ✷︸ ︷︷ ︸
n

The reason for suh an ad-ho rule is to allow the funtion E to disturb as less as

possible the struture of the terms, whih simplify its study. This redution thus does not

have anything fundamental, so muh so that it is perfetly possible to integrate it into the

extration: rather than to enode this speial rule in our languages targets, we an �pre-

ompile� during the extration all these eliminations of logial singleton indutive, without

losing orretness of extration.

Justifying suh an optimization of the extrated terms is not ompletely immediate.

Indeed this trik implies to redue all the eliminations of logial singleton, inluding those

loated under lambdas, whereas our orretness results of the setion 2.3.2 are valid only

with the use of the weak version of this ι-redution.
It an seem paradoxial besides to want to arry out strong redutions after having war-

ned against the dangers of suh redutions in the examples of the beginning of setion 2.3.2.

But let us onsider again the funtion ast of page 51, whih translated into a mathing on

a logial singleton indutive. It is not the ι-redution itself of the body of (ast H 0) to

0 that generate an error in the exeution of the funtion example, but rather the following

mathing where 0 is seen as a boolean. And this seond non-singleton mathing will remain

quite prohibited beause it is done under a lambda.

We will note→ιs the strong version of this ad-ho ι-redution, usable even under lambdas,

ontrary to the weak version→ιw . From one extrated term t, we now justify the orretness

of one term t′ obtained via t→∗
ιs

t′, using a simulation of t′ by t.

Theorem 10 Let t, t′ and u′
be three terms of Ci✷ suh that t→∗

ιs
t′ and t′ →rw

u′
. There

exists a Ci✷ term u suh that u→∗
ιs

u′
and t→rw+ u.

t
rw+

✲ u

t′

ιs∗
❄

rw

✲ u′

is∗
❄

Proof. Taking into aount the rule →ι for logial singleton indutive, the terms t and t′

have extremely lose strutures. It is enough then to ompare the position of the redex r
whih is redued in t′ with the orresponding position in t.

• If this position is apart from any branh of pattern mathing on a logial singleton

indutive, then the same redution an be arried out in t, whih gives us a suitable

term u.

2.6. Toward a more realisti extration 81

• Suppose now that this position in t is under one or more pattern mathing(s) over

logial singleton indutives. First of all let us onsider the ase of a single mathing

on the way to the redex orresponding to r in t. The redution whih one arries out

in t′ is weak. In t, that mean that our logial mathing singleton is a fortiori loated

outside any binder, these binder being lambdas or mathings. One an then start by

using →ιw to redue this mathing over a logial singleton indutive, before reduing

the redex orresponding to r. And in the ase of multiple mathings, the argument is

the same: the most external mathing an be redued in a weak way, then the seond,

and so on, before �nishing by the redex orresponding to r.

✷

Theorem 11 Let t, t′ and u be three terms of Ci✷ suh that t→∗
ιs

t′ and t→rw
u. There

exists a Ci✷ term u′
suh that u→∗

ιs
u′

and verifying t′ →rw
u′

or t′ = u′
.

t
rw

✲ u

t′

ιs∗
❄

rw|ǫ
✲ u′

ιs∗
❄

Proof. First of all, if the redution of t to u is a ι-redution of a logial singleton term

already arried out between t and t′, then taking u′ = t′ is appropriate. If not, the weak

redution between t and u is done outside of any mathing, inluding mathing on logial

singleton. There is thus one exatly idential redex in t′, that one an redue for getting a

suitable u′
. ✷

In addition to the redutions →rw
, the redutions →✷ an also be simulated between

the initial extrated term t and its optimized version t′. Finally, any sequene of redutions

starting from t′ is �nite, otherwise the theorem 10 would allow us to build an in�nite sequene

redutions for the extrated term t. And by ombining the two previous theorems it an be

shown that the weak normal forms of t and t′ are related by →ιs, and in partiular equal if

they ontain no more λ-abstrations.
During the extration, we are indeed in right to arry out all the ι-redutions of logial

singleton indutive, even strongly, on the raw extrated term generated by E . Moreover the

head of a mathing over a logial singleton is inevitably Prop as sort, and thus is extrated

by E into ✷. This thus implies that all mathings over logial singletons asen are indeed

redued by →ιs and disappear ompletely.

2.6.3 The elimination of the possible arguments of ✷

Let us now onsider the ad-ho redution (✷ x)→✷. Unlike the previous ad-ho redution

on logial singleton indutive types, it will not be possible to avoid it ompletely after

extration. Of ourse, the extration E never generates itself suh (✷ x) terms, sine the

82 Certi�ed funtional programming

whole initial term (f x) is then identi�ed as worth eliminating, and gives diretly ✷. On the

other hand, the example 1 of page 49 shows that suh a subterms an appear after some

redutions inside an extrated term.

Oaml

If one evaluates à la Oaml the extrated terms, i.e. with a strit strategy, it is then

neessary to be sure that this (✷ x) appliation will not fail. In pratie that an be done by

hoosing arefully the onrete term whih will implement ✷. Usually, one hooses the term

() of type unit to replae an arbitrary onstant like our ✷, but that is thus not appropriate

here. One an then try try to rather use fun

_ → (), or fun

_ _ → () when it is known

that ✷ an reeive up to two arguments, and so on. Unfortunately, we have been unable to

simply determine the maximum number of arguments that an reeive a partiular ✷ term.

We thus have hosen a more general though less elegant solution, namely one �xpoint that

absorbs its arguments. In Oaml, that an be written as follows:

let re f x = f

Of ourse, this de�nition is badly typed, and we will see in the next hapter how to ir-

umvent this problem. In any ase, from the point of view of the exeution, a onstant ✷

implemented this way an indeed reeive an arbitrary number of arguments without failing.

Haskell

In the ase of a lazy evaluation to the Haskell, one ould perfetly reuse this idea of a

�xpoint absorbing its arguments. But that is in fat not neessary. If one studies again the

example 1, the extrated objet is after redution λg : ✷, (g (✷ O)). The (✷ O) subterm do

not appear at the head, and the funtion g may ompletely not use its argument, in whih

ase the (✷ O) appliation will never be omputed. This situation is in fat quite ommon,

and one will in fat never need to use the rule →✷ with lazy strategy. This lazy strategy

implies that the head of terms will always be redued �rst, aording to the two following

ompatibility rules (see de�nition 13):

u→? v

(u t)→? (v t)

u→? v

ase(u, P, . . .)→? ase(v, P, . . .)

Let us take a initial losed term t0, well-typed in the Ci, and t = E(t0). Let also u be

one of the suessive redued forms of t by the lazy strategy. If a redution (✷ x) →✷ ✷

an intervene in u at a position permitted by these two ompatibility rules, there are two

possible situations:

• the ✷ an be at the top of u, whih is then of the form (✷ −→a). Aording to the

theorem 2, this term orresponds to a term u0 = (f0
−→a0) of Ci, whih is a redued

form of the initial term t0. And f0 is then either of sort Prop sort or is a type sheme.

Aording to the stability lemma 1, it is the same for the whole term u0 = (f0
−→a0).

Then the lemma 2 shows that the initial term t0 is also of sort Prop or is a type sheme.

And thus E(t0) = ✷, whih show that the ase onsidered here is impossible.

2.6. Toward a more realisti extration 83

• the ✷ an be at the beginning of the head of a mathing, that is u ontains a subterm of

the form ase(✷ −→a , . . . , . . .). A similar reasoning to the one of the previous ase shows

that the indutive term orresponding in Ci to (✷ −→a) is of sort Prop. But in the ex-

trated term t = E(t0), all ase on logial indutive inevitably has ✷ as head, whether

this logial indutive is empty or singleton. And that annot hange under redution,

whih ontradits the presene in u of the subterm of the form ase(✷ −→a , . . . , . . .).

The rule →✷ is thus never used in a redution with Haskell. ✷ an thus always be imple-

mented by an arbitrary term.

In fat one an even go further and onsider that ✷ is an abnormal �nal result during

the evaluation of an extrated term. Indeed, the omputation of an extrated term only

have interest when its result is . . . informative, suh as for example true, 3, or fun x⇒x.

This result an of ourse ontain residues ✷ of logial parts or type shemes, for example

inside a funtion. But the whole result being ✷ is abnormal. We thus made the hoie to

implement ✷ by the raising of an exeption. And that does not disturb the omputations

on informative parts of terms:

• We have just seen that ✷ annot be evaluated as the head of an appliation.

• ✷ will never be evaluated either like head of a mathing on a logial indutive term,

sine we saw in the two previous setions how to make disappear these mathings over

the logial empty of singleton indutive.

2.6.4 Toward a usual redution of �xpoints

The redution of �xpoint is the last major di�erene between the redutions in our system

Ci✷ and those in the target languages. Indeed in these target languages there is obviously

no onept of �guard� argument, that should start with a onstrutor for the redution to

be possible.

Oaml

In the ase of Oaml, the di�erene is not so important. Indeed one �xpoint with two

arguments let re f x y = t will only be redued when it reeives its two arguments.

And in the ase of an indutive argument, Oaml will evaluate ompletely this argument,

whose value will thus start indeed with one onstrutor, before ontinuing the evaluation of

the �xpoint. We an then just simply translate the fix f {f/2 : ✷ := λx, λy, t} example

into let re f x y = t in f. And it is not abusive to suppose that the body of a �xpoint

starts with enough λ-abstrations, here at least two. In fat, the onrete Coq syntax for

the Fixpoint and the fix obliges us to delare the arguments at least up to the guard

argument. Lastly, dealing with mutual �xpoints brings no more di�ulties. There is no

additional onerns about logial guard argument, sine the ondition �being ✷� has been

substituted to the original ondition �starting by one onstrutor� in our new ι-redution.
And the omplete evaluation of a logial argument annot indeed �nish on anything else

than ✷.

84 Certi�ed funtional programming

Haskell

On the other hand, for Haskell, the situation is more deliate. Unfolding of a �xpoint f is

done when f omes to the head of the term to be evaluated, and this is done with no initial

redution on the arguments. The onstraint on the (at least partial) evaluation of the guard

argument, prior to any unfolding, has no partiular reason to be ful�lled. It is thus not sure

that the order of the redutions in Haskell an be re�eted on the Ci level in the spirit of

the theorem 2.

Let us try to informally show that everything work orretly nonetheless. The dereasing

onstraints that the Ci imposes imply that the following reursive all is done with a

�smaller� guard argument. And to obtain suh a �smaller� argument, it is neessary to

destrut at least one level of the initial argument. The evaluation of the guard argument is

thus simply pushed bak from one reursive all to the next one.

The previous justi�ation is unsatisfatory. First, suh a modi�ation of the evaluation

order is not neessarily safe. Moreover our reasoning assumes that the analysis of the guard

argument, that produes the new reursive argument, is made at the head of term, and hene

that Haskell will arry out it without additional delay. Usually, it is true that the body of one

�xpoint starts immediately with a math. But that is not a general rule, as the example of

A

_

iter shows (see page 29). In this ase, the analysis of the argument of guard is pushed

bak in the term being used as following argument. A

_

iter is in fat a bad example,

beause its guard argument is logial, and thus disappears with the extration. But we an

imagine a similar example with an informative guard argument, and this argument ould

indeed never be evaluated by Haskell.

We now will outline a rigorous justi�ation of the simple translation of Ci✷ �xpoints

into Haskell �xpoints. For that, we show that the omputation order during a redution of

a �xpoint in Haskell an be simulated in Ci using a modi�ed version of the initial �xpoint.

For that we will use a remark that C. Paulin made p. 103 of [68℄: every strutural �xpoint

on an indutive I an be transformed into a de�nition by well-founded indution over an

order <I , that is in a strutural �xpoint over the indutive A having for parameter <I .

The interest of suh a translation is to add an argument of logial aessibility whih will

serve as new guard argument. This way, there is not need anymore in Ci to evaluate the

old guard argument even partially before an unfolding, sine the onstraints are now being

onentrated on the new logial argument.

We will not propose here a proof of C. Paulin's remark, already justi�ed in [68℄. Instead,

we try to illustrate this mehanism on a simple example, that is the addition of Peano

integers. For I = nat, an appropriate order <I is the standard order lt (or <) over integers.

We also use the large version le (or ≤) of this order. Here ome a version of plus in

whih the guard argument is not one of the two main arguments, but a third argument of

logial aessibility:

2.6. Toward a more realisti extration 85

Definition plus (n m:nat) : nat :=

(fix plusre (n m:nat) (a:A lt n) {strut a} : nat :=

math n as n0 return n0≤n → nat with

| 0 ⇒ fun h ⇒ m

| (S n') ⇒ fun h ⇒ S (plusre n' m (A_inv a n' h))

end (le_refl n))

n m (lt_wf n).

Let us ompare with the last version of plus presented page 20:

• One added an additional aessibility argument a, that is used as dereasing argument.

And for eah reursive all, its new aessibility argument is obtained via the funtion

A

_

inv already met page 29.

• the true �xpoint, plusre, awaits now three arguments. The funtion plus is thus a

enapsulation of this plusre in whih one provides the proof (lt

_

wf n) stating that

n is indeed aessible as third argument.

• Lastly, the typing of the math is muh more omplex than in the initial plusre, and

requires speial annotations, as well as an arti�ial abstration on a variable h of type

n≤n. And a proof of this n≤n is provided immediately after the math via the term

(le

_

refl N).

To be onvined that this new plus allows to simulate on the Ci level any redution

made at the Haskell level with the extration of the initial plus, it is enough to ompare the

extrations of both plus. Here in partiular is what E gives for our new plus

4

:

Definition plus (n m:✷) : ✷ :=

(fix plusre (n m:✷) (_:✷) : ✷ :=

math n with

| 0 ⇒ fun _ ⇒ m

| (S n') ⇒ fun _ ⇒ S (plusre n' m ✷)

end ✷)

n m ✷.

One notes the presene of residues of logial parts, whih di�erentiate this extration from

that of the plus initial. But these residues do not have an in�uene on the order of om-

putations. For example, anonymous abstrations present in the branhes of math reeives

immediately their argument ✷ loated after the math. Any omputation in Haskell with the

initial extration thus orresponds to a omputation with this news extration, omputation

that �nally be simulated on the Ci level, whih guarantees the orretness of the initial

extration.

Finally let us note that in the extration of new the plus, all these logial, onstant

residues ✷ and anonymous abstrations, are in pratie deteted and removed by extration

optimizations that we desribe in setion 4.3. And �nally the extrated term from this plus

is exatly the same as that extrated from the old plus.

4

We use here a syntax à la Coq, more readable, instead of our Ci✷ syntax.

86 Certi�ed funtional programming

Chapitre 3

Typing the extrated terms

We have built in the previous hapter an extration from Coq terms to raw, untyped,

λ-terms. We have in partiular shown that the exeution of these extrated terms was

neessarily �nite and without error. It now remains to study the �nal translation towards a

true funtional language, and that is the subjet of this hapter.

As we mentioned in introdution, we wish that extrated ode an be integrated into

a broader development. It is thus neessary to be able at least to inlude/understand the

signature of the extrated objets. Two hoies arise then: one an generate soure ode for

a partiular language, or diretly some byte-ode or even assembly ode assoiated with a

readable interfae. But in addition to the di�ulty of generating binary ode, this would

lead to a � blak box� solution, without possibility of a posteriori ontrol. We preferred to

produe soure ode, whih leaves the user the possibility of reading this ode, and whih

also allows to pro�t from the optimizing ompilers already existing. The �open soure�

movement showed in partiular that aessibility and readability of soures largely inrease

the on�dene in a program.

This �rst hoie rises a new question: whih language should we use as target of the

extration? All we need is a λ-alulus with indutive types. This explains the hoie of

languages derived from ML, namely Oaml and Haskell. But these languages are typed, and

their typing systems a la Hindley-Milner [59, 27℄ are appreiably di�erent from that of Coq.

In partiular one annot express in these languages any dependent types nor universes. As

already mentioned previously, the old extration made the pragmati hoie of refusing any

Coq term using the Type sort. But even this restrition was not su�ient to be ertain to

obtain well-typed ML terms. For example, the onept of polymorphism di�ers between ML

and Coq. It is thus lear that a simplisti translation of λ-terms Coq into ML λ-terms an

lead to non-typable terms.

We should thus adapt our terms if we want to use the standard ompilers like the ones

of Oaml or Haskell, not modi�ed for the extration. At the same time, we would wish to

remain as lose as possible of a diret translation, and this for several reasons. First, within

the ordinary examples of Coq terms, a large majority have indeed a ML ounterpart that is

orretly typed. Seondly, the need for an interfae to the extrated ode also militates in

favor of a simple and natural translation. Lastly, any e�ort aiming at irumventing these

typing problems by an ad-ho enoding seems to lead to a stage of preompilation whih

we preisely wish to avoid. An partiular enoding was tested by L. Pottier [70℄, but this

88 Certi�ed funtional programming

oding may still produe ML non-typable terms.

How then an we use ompilers for typed languages when extrated terms are potentially

non-typable? Conerning Oaml, we use now, just like L. Pottier, an undoumented features

of this language, alled Obj.magi. This funtion allows to give a generi type 'a to any

term. By using this funtion, one an thus loally irumvent the type heking done by

Oaml ompiler. We will see in a seond time how the urrent extration allows to auto-

matially generate Obj.magi in the extrated ode. And onerning Haskell, some of the

implementations of this language propose a undoumented funtion unsafeCoere whih

seems equivalent to Obj.magi. It should then be possible in the future to extend to Haskell

this automati generation of arti�ially well-typed terms.

Let us mention by the way the realization of an experimental extration towards the

language Sheme. Like this funtional language derived from Lisp is untyped, it seemed to

us one for a moment that it ould be an promising target language for the extration, sine

it allow to avoid the problem of non-typable terms. Unfortunately, Sheme does not have

natively any indutive types nor pattern mathing over suh types. It is thus neessary to

enode them using maros, exept in the partiular ase of the Bigloo implementation [75℄.

In addition to that, preliminary tests showed a signi�ant di�erene in e�ieny of extrated

ode, learly in favor of Haskell/Oaml to the detriment of Sheme. The e�ort in favor of

this Sheme extration thus have not been ontinued.

In addition, we should emphasize that it is not even su�ient to simply ensure the

existene of a orret type for eah extrated term if we annot determine this type in

advane. Indeed, as we want to allow an easy integration of the extrated ode in broader

developments, we must be able to envisage whih will be the types of the extrated terms,

and to produe �les interfaes. Moreover, if one wants to be able to extrat modules and

funtors of Coq (f setion 4.1), it will be neessary to be able to do suh type predition.

This study of the typing of extrated terms is organized as follows. First of all, we

desribe the typing errors that our extration on the terms an produe. Then we present

an automati method for bypassing these errors, via insertion in the ode of type-hanging

primitives, for making this ode arti�ially typable. To guide this insertion, we �rst ompute

a �reasonable� extrated type starting from the Coq initial type of the onsidered objet.

We desribe this extration Ê of types. Then, we fore this desired extrated type to really

beome the type of the extrated raw term, initially untyped :

t : T ⇒ E(t) : Ê(T)

This is done via an alternative of the algorithmM of type heking/inferring, modi�ed so

that eah deteted typing error produes an insertion of a type-hanging primitive.

3.1 Analysis of the typing problems

The problems start with types delarations, that is delarations of indutive types or of

type abbreviations. Coq inludes indeed typing features without ounterparts in Oaml or

Haskell, and in partiular the following ones:

• mathings on the type level (math)

3.1. Analysis of the typing problems 89

• �xpoint on the type level (fix)

• polymorphism by universal quanti�ations at non-prenexe positions or in the types of

indutive onstrutors.

The rest of this setion details eah of these situations. In versions 6.x and earlier of Coq,

these delarations of untranslatable types were refused by the extration, with message of

the kind: Error: is not an ML type.

The situation of terms is di�erent. The use of an untranslatable type in a Coq term does

not prevent, a priori, its typability in Haskell or Oaml, sine these languages do not inlude

type annotations on the lambdas and mathings: there is so no expliit referenes to the

untranslatable types. The old extration then generated ode without being onerned with

its typability. The type inferene on this extrated term ould then either �nd a simpler

type, aeptable in Haskell or Oaml, or fail.

In fat, it should be said that the frequeny of the typing errors in pratial in the

extrated ode is low. For example, there is not a single one in the extration of Coq

standard library. And in all the ontributions Coq studied from the extration point of

view (see hapter 5), only 4 ontributions present some errors: Lyon/Ciruits, Lannion,

Roq/Higman, and Nijmegen/C-CoRN. We will examine the three last in more details in

hapters 5 and 6. This sarity an be explained by the fat that, most of the time, the users

write theirs informative funtions as they would have written them in Oaml or Haskell. Thus

the dependent types are generally used only as a form of polymorphism, or to express logial

properties (pre/post-onditions for example). One an also see a form of self-ensorship there:

the majority of these examples date bak to before this renewal of the extration, hene the

use of too advaned features gave at that time the insurane of not being able to extrat

the development.

Let us see now more in detail several typial situations that generate typing errors during

extration.

3.1.1 The type �integer or boolean�

Let us take for example a prediate P that depends on a boolean, whose value is either

nat or bool:

Definition P (b:bool) : Set := if b then nat else bool.

This prediate now allows to aggregate two values of di�erent types:

Definition p (b:bool) : P b :=

math b return P b with

| true ⇒ O

| false ⇒ true

end.

The type of p hene depends on b, beause (p true) has for type (P true) = nat, while

(p false) has for type (P false) = bool. The extration of the previous hapter then

proposes for p an non-typable extrated term:

90 Certi�ed funtional programming

let p = funtion

| True → O

| False → True

There is obviously no equivalent neither in Oaml nor in Haskell of one suh dependent type

over a boolean. A possibility is then to forget this dependene by using an approximation

of P as being a disjoint union of nat and bool:

type approx_P = Nat of nat | Bool of bool

let p = funtion

| True → Nat O

| False → Bool True

It would then be neessary to also allow the return to nat or bool as soon as the �rst

argument is known. That implies to loate eah plae in Coq where the onversion typing

rule (P true) → nat is used. One would insert there the following unwrapping during

extration:

let nat_of_P = funtion (Nat n) → n | _ → assert false

And idem with false and bool. Suh a transformation presents several disadvantages.

First, it denatures the initial program by introduing wrappings/unwrappings whih involve

omputations without equivalents in the original term. And seondly addition, the automati

generation of these unwrappings is far from being obvious. Indeed, the use of onversion (P

true) → nat is transparent for Coq, and is reorded nowhere. As it thereafter will be seen,

it is thus not this method whih was seleted to treat this example.

3.1.2 A more realisti version

It should be noted than even if the previous example is so simpli�ed that it may look

useless and unrealisti, it is nonetheless inspired by real developments. For example, let us

try to formalize the semantis of an imperative mini-language à la Pasal, using a memory

model. If our language has only integers as basi type, the aess funtion to a storage ell

will have a very simple type:

Parameter get_value : memory → address → nat.

with memory representing a state of the memory and address the address of a memory

loation. Now let us add other basi types, and referenes. One an write for example:

Indutive types : Set :=

| Nat : types

| Bool : types

| Address : types → types. (* type of a referene to another type *)

Whih type ould now have our get_value funtion ? Of ourse, we an represent the values

with a sum type:

3.1. Analysis of the typing problems 91

Indutive values : Set :=

| Val_nat : nat → values

| Val_bool : bool → values

| Val_ref : address → values.

Parameter get_value : memory → address → values.

The problem of suh a representation is that it implies to ontinuously reason by ase on

this type values, even if it is already known that we are in one of the situations.

If we now use dependent types, muh of these ase reasoning will beome simple om-

putation. For that, let us assoiate to a memory loation the type of its ontent:

Parameter get_type : memory → address → types.

And let us use a funtion returning the domain assoiated with eah type name:

Definition domain (t:types) : Set :=

math t with Nat ⇒ nat | Bool ⇒ bool | Address _ ⇒ address end.

One an then give the following signature to get_value:

Parameter get_value : ∀m:memory, ∀a:address, domain (get_type m a).

This way, if one really implements the funtion get_type in a omputable way, then the

type (domain (get_type m a)) an be redued to nat, bool or address aording to the

ase via a simple onversion.

During its extration, an implementation of this get_value will then present exatly the

same kind of typing di�ulty that our simplisti example p.

3.1.3 The type of integer funtions with arity n

The situation is even worse when the dependent type may be redued to an in�nity of

di�erent types, depending of the input value. For example the following prediate F assoiates

to the integer n the type of the integer funtions with n arguments:

Fixpoint F (n:nat) : Set :=

math n with

| O ⇒ nat

| S n ⇒ nat → F n

end.

One an then build a funtion whose arity depends on its �rst argument:

Fixpoint f (n:nat) : F n :=

math n return F n with

| O ⇒ O

...

/

...

92 Certi�ed funtional programming

...

/

...

| S n ⇒ fun _ ⇒ f n

end.

There again, the raw extration of f is untypable:

let re f = funtion

| O → O

| S n → (fun x → f n)

One an still propose a typable version via the use of an union type designed to simulate

the struture of F, but that beomes really di�ult to desribe this workaround in the most

generi ase of a Fixpoint on types. Moreover, it is possible to hide this �xpoint behind a

onstant. Indeed, F an be also written as:

Definition F := nat_ret (fun _ ⇒ Set) nat (fun _ t ⇒ nat → t).

3.1.4 Untranslatable indutive types

The indutive types also raise problems, beause Coq allows to write types without

equivalent in Oaml or Haskell. For example, we an write in Coq an indutive type being

able to ontain objets of any type:

Indutive any : Type := Any : ∀A:Type, A → any.

A naive typed extration type 'a any = Any of 'a would be unsatisfatory. One would

indeed propagate a type variable 'a with no ounterpart in Coq. An initial version of our ex-

tration implementation was proeeding of the kind, and was sometimes produing indutive

types with hundredths of type variables, beause of this propagation of variables.

In the same spirit, one an obtain a non-homogeneous list:

Indutive anyList : Type :=

| AnyNil : anyList

| AnyCons : ∀A:Type, A → anyList → anyList.

Definition my_anyList := AnyCons bool true (AnyCons nat O AnyNil).

Here, a naive translation (whih would here give in fat the usual polymorphi lists) would

be not only unsatisfatory, but even worse, ompletely inorret from the point of view of

types. This example does not seem to be adaptable into Oaml ode that would be typable

and equivalent. The only solution here is then the one presented in the following setion.

To show that these lists are perfetly usable in Coq, here omes for example the funtion

returning the head of a non-empty list, or an objet of type unit in the ase of an empty

list. The type of this funtion uses a prediate that depends on the list:

Definition getHeadType (l:anyList) : Type :=

math l with

...

/

...

3.1. Analysis of the typing problems 93

...

/

...

| AnyNil ⇒ unit

| AnyCons A _ _ ⇒ A

end.

Definition getHead (l:anyList) : getHeadType l :=

math l return getHeadType l with

| AnyNil ⇒ tt

| AnyCons _ a _ ⇒ a

end.

The extration of getHead presents typing problems lose to those of the initial example p.

3.1.5 Dependent types and polymorphism

Even when dependent types are used to express simple polymorphism, one an have

nasty surprises. The lassial example is a derived form of the distr_pair property:

Definition distr_pair : (∀X:Set, X → X) → nat*bool :=

fun f ⇒ (f nat O, f bool true).

It is known that fun f → (f O, f true) is untypable in ML. And there again, no simple

adaptation into an equivalent typable ode.

3.1.6 Contraditory ase and typing

A last example, partiularly awkward, is the use of an ontraditory assumption for

hanging types. Let us suppose for example that an axiom makes the assumption that nat

= bool

Setion Strange.

Variable absurd : nat = bool.

We an then use this false equality to show that O is a boolean.

Definition O_as_bool : bool.

rewrite <- absurd; exat O.

Defined.

And onsequently, nothing prohibits to de�ne a term by ase on O being either true or

false!

Definition strange := if O_as_bool then O else (S O).

End Strange.

It should be noted that internally, O_as_bool is a simple all to eq_re, the indution

priniple for the equality.

94 Certi�ed funtional programming

Coq < Print O_as_bool.

O_as_bool =

fun absurd : nat = bool ⇒ eq_re nat (fun P : Set ⇒ P) 0 bool absurd

: nat = bool → bool

As explained in the previous hapter, eq is the emblemati example of logial singleton

indutive types, it thus disappears during extration, leaving for eq_re only the identity.

Moreover, the logial argument nat=bool is ignored and beomes a _. the extration of

O_as_bool is then:

let O_as_bool _ = O

Conerning strange, it gives (as soon as we replae O_as_bool by its de�nition

1

):

let strange _ =

math O with

| True → O

| False → S O

It should be noted that even if a term extrated from a Coq proof an ontain a all

to strange, this all will never be fully evaluated, beause of the lak of the argument

that would start the evaluation of the mathing. The body of strange is here in fat dead

ode. But even if the extration of strange is safe from the point of view of exeution, it is

undeniable that this extrated term leads to typing problems.

3.2 An arti�ial orretion of typing errors

3.2.1 Obj.magi and unsafeCoere

We have seen that some of these typing errors ould be solve if required by rewriting

the produed ode. But some other situations annot be treated this way, whih is anyway

quite di�ult to automatize and moreover undesirable. This is why we followed a uniform

approah onsisting in the use of low-level and not-doumented primitives whih allow to

arti�ially hange the type of an expression. For example, in Oaml, we use Obj.magi : 'a

→ 'b. Suh a primitive, implemented internally as the identity, is obviously not normally

de�nable in Oaml, and its use voids the vast majority of theoretial results onerning

Oaml : in partiular, an Oaml well-typed term with Obj.magi is not anymore guaranteed

to be exeutable without error.

Some implementations of Haskell ontain a primitive named unsafeCoere, whih should

be usable exatly in the same way that Obj.magi. Beause of lak of time, we did not

implemented the automati generation of unsafeCoere in the Haskell extrated ode. But

this generation is a priori no more di�ult than the generation of Obj.magi. The rest of

this hapter is thus devoted to Oaml.

1

See later in setion 4.3.3 the study of suh replaements.

3.2. An arti�ial orretion of typing errors 95

Let us make for example transform a boolean into an integer via Obj.magi.

(Obj.magi true) + 1;;

- : int = 2

The fat that this omputation sueeds is here a onsequene of the internal representation

of objets in Oaml : true being oded by 1, one obtains 2 as �nal result. On the other

hand, if the himera reated by the use of Obj.magi is not ompatible with the internal

representation of objets, the santion is immediate:

(Obj.magi 1) 2;;

Segmentation fault

Indeed, one tries here to use 1 as pointer to the ode of a funtion, whih generates a memory

error.

The use of Obj.magi by the programmer, without being prohibited, is thus in any ase

strongly not reommended, and must be done with great aution. But one should not either

disregard these Obj.magi, that are quite pratial in some situations. For example there

are some in the urrent implementation of the Queue module of the Oaml standard library,

or in the Dyn module of dynami typing in the soures of Coq.

Within the extration framework, fortunately, we already know that an exeution error

is not possible. We then have the freedom to plae as many plae Obj.magi as neessary

in order to ensure typing. A orreted extration of the example p of setion 3.1.1 an for

example be:

let p = funtion

| True → Obj.magi O

| False → Obj.magi True

How to plae these Obj.magi ? A possibility is obviously to put some at eah node of

the program. But that presents two disadvantages:

• the ode beomes ompletely unreadable, whih ontradits one of our objetives.

• more serious, the performanes are dereased, as showed by L. Pottier [70℄. This is

explained (at least partly) by the fat that the Oaml ompiler skips a ertain number

of optimizations around the Obj.magi.

Sine we have seen that the typing errors generally remain very marginal in extrated

ode, it is thus really interesting to �nely loate these error loations in order to insert as

less Obj.magi as possible.

3.2.2 A �rst attempt at orreting the types

We thus have embedded in our extration an type-heker that also behaves as a type-

orretor: for eah deteted error, it inserts a Obj.magi that solves it. First, we present a

relatively simple way of doing that. Sine this �rst manner is also little satisfatory, we then

desribe another method, more omplex, used in pratie in the extration implementation.

96 Certi�ed funtional programming

The algorithms W and W'

The simplest way to detet and orret the typing errors is to proeed in a lazy way. For

that we use one algorithm for inferene/veri�ation of types, suh as the W algorithm of

Damas-Milner [27℄. The type of this algorithm is the following:

W : env * expr → type * subst

And its orretness is expressed by W(Γ, t) = (T, σ) ⇒ σ(Γ) ⊢ T : σ(T).
This algorithm an fail to type a term only through a failure of the type uni�ation

subproess mgu. All that remains to be done is to ath these uni�ation errors and transform

them into suess thanks to new Obj.magi. For that we adapt W so that it also returns

modi�ations made under the terms. Its type is now:

W' : env * expr → type * subst * expr

And the desired property is now W ′(Γ, t) = (T, σ, T ′) ⇒ σ(Γ) ⊢ t′ : σ(T) and t′ ∼ t.
The W algorithm being now more than famous, we just give here a presentation of W'

entered on our modi�ations. A more formal presentation of W an be found in [51℄. The

presentation given here has been inspired by a ourse of X. Leroy.

First of all, let us point out the mehanisms of instantiation and of generalization, that

allow to go from a type sheme to an Oaml type and reiproally:

Inst(∀−→αi .τ) = τ [−→αi/
−→
βi], with

−→
βi fresh variable.

Gen(τ, Γ) = ∀−→αi .τ , with
−→αi being the variables of τ free in Γ

The �gure 3.1 ontains the de�nition of a minimalist version of W', parameterized by

an environment E of delarations of onstants provided with their types. This presentation

does voluntarily inlude no reursivity: on the typing level, we an present reursivity via

an �xpoint operator fix having for signature ∀α, (α→ α)→ α.

The enoding of indutive types

The indutive types will also be represented by enoding via onstants, in order to leave

the entral algorithm as simple as possible. Consider an indutive type Oaml t de�ned by:

type (α1, . . . , α2) t = C1 of τ1,1 ∗ . . . ∗ τ1,n1
| . . . | Cp of τp,1 ∗ . . . ∗ τp,np

We represent the onstrutors of t by onstants C1 . . .Cp having for types:

Ci : ∀α1, . . . , αn.τi,1 → . . .→ τi,ni
→ (α1, . . . , αn) t

And we represent pattern mathing on t by an operator Ft with the following type:

Ft : ∀α1, . . . , αn, β.(α1, . . . , αn) t→
(τ1,1 → . . .→ τ1,n1

→ β)→ . . .→ (τp,1 → . . .→ τp,np
→ β)→ β

A simpli�ation to be avoided

At �rst sight, it may seem that our algorithmW' inludes an overly omplex generation

mehanism for Obj.magi. Indeed, for an appliation (a1 a2), we distinguish two ases:

3.2. An arti�ial orretion of typing errors 97

W ′(Γ, x) = (Inst(Γ(x)), id, x) for a variable x

W ′(Γ, c) = (Inst(E(x)), id, c) for a onstant c

W ′(Γ, fun x→ a) =
let (τ1, φ1, ã) =W ′(Γ + {x : β}, a) in with β fresh variable

(φ1(β)→ τ1, φ1, fun x → ã)

W ′(Γ, a1 a2) =
let (τ1, φ1, ã1) =W ′(Γ, a1) in
let (τ2, φ2, ã2) =W ′(φ1(Γ), a2) in
let σ = mgu(φ2(τ1), α→ β) in with α and β fresh

if σ = error then

(γ, φ2 · φ1, (Obj.magi ã1) ã2) with γ fresh

else

let µ = mgu(τ2, σ(α)) in
if µ = error then

(σ(β), φ · φ2 · φ1, ã1 (Obj.magi ã2))
else

(µ(β), µ · σ · φ2 · φ1, ã1 ã2)

W ′(Γ, let x = a1 in a2) =
let (τ1, φ1, ã1) =W ′(Γ, a1) in
let (τ2, φ2, ã2) =W ′(φ1(Γ) + {x : Gen(τ1, φ1(Γ))}, a2) in
(τ2, φ2 · φ1, let x = ã1 in ã2)

Fig. 3.1: De�nition of W'

• if the head a1 does not have an arrow type, we surround it by an Obj.magi.

• if the argument a2 does not have a type ompatible with the beginning of the arrow

type, then we plae an Obj.magi around this argument.

If an Obj.magi is neessary, an simpler solution, also orret, is to always plae the

Obj.magi around the head of the appliation. The problem is that the onstants Ci and

Ft that enode indutive terms an then be surrounded by Obj.magi, and this forbids

their transformation bak to Oaml syntax. Our solution with two uni�ations avoids this

problem.

Corretness of W'

This W' algorithm satis�es the property W ′(Γ, t) = (T, σ, t′) ⇒ σ(Γ) ⊢ t′ : σ(T).
The proof is similar to the one of the unmodi�ed W algorithm. It is just neessary to

hek in addition the two ases that generate Obj.magi. However we have by indution

98 Certi�ed funtional programming

hypothesis φ1(Γ) ⊢ ã1 : τ1 and φ2(φ1(Γ)) ⊢ ã2 : τ2. From the �rst relation we obtain

φ2(φ1(Γ)) ⊢ ã1 : φ2(τ1).

• The �rst ase generating Obj.magi is the simplest: the type sheme ∀αβ.α → β
allows to give any type to (Obj.magi ã1), and in partiular τ2 → γ. The appliation
((Obj.magi ã1) ã2) thus aepts γ as type in the environment φ2(φ1(Γ))

• In the seond ase, we have σ(φ2(φ1(Γ))) ⊢ ã1 : σ(φ2(τ1)). Taking into aount the

de�nition of σ, this rewrites into σ(φ2(phi1(Γ))) ⊢ ã1 : σ(α) → σ(β). It is now

(Obj.magi ã2) that an aept any type and in partiular σ(α), and �nally the term

(ã1 (Obj.magi ã2) thus aepts σ(β) as type in the environment σ(φ2(φ1(Γ))).

Behavior of W' on an example

Let us now test our W' algorithm on the extration of the example p. In our enoding,

the body of p is written: fun b→ Fbool b O True. The suessive alls to W' are then, from

the more internal to the most external:

W ′({b : α}, Fbool) = (bool→ β → β → β, id, Fbool)

W ′({b : α}, Fbool b) = (β → β → β, {α← bool}, Fbool b)

W ′({b : α}, Fbool b O) = (nat→ nat, {α← bool; β ← nat}, Fbool b O)

W ′({b : α}, Fbool b O True) = (nat, {α← bool; β ← nat}, Fbool b O (Obj.magi True))

W ′(∅, fun b→ Fbool b O True) = (bool→ nat, . . . , fun b→ Fbool b O (Obj.magi True))

On the fourth line, True annot have the type nat that would be neessary for a orret

appliation. It is then surrounded by an Obj.magi. Finally, the orreted term is thus (in

Oaml syntax):

let p = funtion

| True → O

| False → Obj.magi True

The limitations of W'

If this method works indeed and produe typable terms, it is nevertheless not very

satisfatory. In fat, the inferred Oaml types are sometimes strange and asymmetrial, the

order of uni�ation playing a signi�ant role in the �nal result. In our example p the typing

problem is in partiular disovered only on the seond branh of math, and it is thus only

this seond branh that arries an Obj.magi. This implies that the type of p is bool→
nat, and that the ourrenes of (p false) will be surrounded by Obj.magi, whereas the

ourrenes of (p true) will not.

This asymmetry forbids to guess a priori what type will be inferred for a given extrated

term. The only way of alulating this type is to apply the W' algorithm. In partiular two

Coq terms with the same type will not neessarily have the same Oaml type one extrated.

To illustrate that point, it is enough to onsider p and its following alternative, where one

�lters in the other diretion by using the opposite boolean:

3.2. An arti�ial orretion of typing errors 99

Definition p' :=

fun b: bool ⇒
math negb b as b' return P (negb b') with

| true ⇒ true

| false ⇒ O

end.

The extration of p' via W' gives then:

let p' b =

math negb b with

| True → Obj.magi True

| False → O

And this term extrats has as a type bool→bool instead of bool→nat of p. A slight abuse

should be noted here: the Coq type of p' is ∀b:bool, P (negb (negb b)), and that is not

exatly the type of p, whih is ∀b:bool, P b. To orret this abuse, we an for example

onsider (p true) and (p' true) instead of p and p'. In this ase the two terms have both

the type nat sine (P true) = (P (negb (negb true))) = nat. And after extration (p

true) and (p' true) will have for respetive Oaml types nat and bool

2

.

This impossibility of knowing in advane the types of the extrated terms has fored us

to stop using this method. Indeed, this lak of determinism in types is really annoying when

interfaing with extrated ode in broader developments. And even without speaking of

integration with external ode, the extration of Coq modules to Oaml modules (f. setion

4.1) is strongly ompliated by suh a property.

3.2.3 The algorithm M
To solve these di�ulties, we proeed in two stages.

• the �rst stage is to ompute a type Oaml Ê(T) awaited for the extrated term starting

from t : T . This omputation is done independently of the body of the Coq term t,
and uses only its type T , in order to remain modular. This extration stage Ê will be

detailed later on.

• one we known this awaited type, we use it as goal, and fore the extration of t to
aept indeed Ê(T) as Oaml type, always thanks to Obj.magi.

We start now by detailing this seond stage, whih is done one again by adapting an

typing algorithm. But now the stress is more laid on the heking of types that on the

inferene. And to this hange of approah orresponds a hange of algorithm: we replae

2

Another way of obtaining two adequate terms is to wrap p' into a term p'' having the same type as p.

Indeed, sine the types of p and p' are provably equal instead of being onvertible, one an pass from the

one to the other via the lemma negb_elim: ∀b:bool,negb (negb b)=b. This gives us:

Definition p'' : ∀b:bool,P b. intro b; rewrite <- negb_elim; exat (p' b). Defined.

100 Certi�ed funtional programming

W by theM algorithm. This algorithm, desribed in 1998 by O. Lee and K. Yi in [51℄, is

itself an alternative ofW. But unlike the latter,M proeeds via top-down analysis instead of

bottom-up, hene its reversed name ompared withW. For the reord, thisM algorithm has

been used until 1993 in Caml Light prior to version 0.7. And even if we will take advantage

of this property, we nevertheless note thatM detets the typing errors in a �ner way than

W. The interested reader an �nd more details on this subjet in [51℄.

The di�erene betweenM and W is already visible on the level of their types:

W : env * expr → type * subst

M : env * expr * type → subst

Instead of infer a result type,M asks rather for a type as input and heks that this type

is be appropriate, modulo possible substitution. Its orretness is expressed by:

M(Γ, t, T) = σ ⇒ σ(Γ) ⊢ t : σ(T).

In pratie, the di�erene between the two algorithms is not not so large. We an always,

indeed, use M with an initial type 'x in order to retrieve an inferene algorithm, and the

inferred type obtained at the end is σ('x). And anyway, even an algorithm entered on

type-heking likeM must make steps of inferene, for example when it meets a let-in.

To useM within the framework of the extration, we adapt it the same way we adapted

W in W':

M' : env * expr * type → subst * expr

And one wishes now thatM′(Γ, t, T) = (σ, t′) ⇒ σ(Γ) ⊢ t′ : σ(T). The �gure 3.2 gives the

de�nition ofM', whih uses the same notations as the de�nition of W'. We also reuse the

same even enoding of reursivity and indutive types.

If we ompareM' and W', we noties that the let-in ase is similar in the two algo-

rithms. This is explained by the need for inferring the type of the loal de�nition. For the

other ases, the roles are reversed onerning the use of the mgu uni�er. The appliation does

not require any uni�ation, whereas on the opposite the last ases (funtions, onstants and

variables) now ontain some.

The orretness ofM' will not be developed. Just as forW andW', this orretness relies

on the orretness ofM, whih is proved in [51℄, and on the study of the ases generating

Obj.magi.

But we still annot use M' diretly for extration. Indeed we wish, for a given type τ ,
to fore a term a to aept exatly τ as type. However M′

returns a substitution σ to be

applied on the variables of τ before getting the �nal appropriate type of a. Hene the �nal
type σ(τ) of a an be stritly less general than τ . To solve this problem, we have used two

types of variables:

• the substitutable variables, whih are those used until now, but whih will not be used

any more exept internally insideM', during reations of fresh variables.

• non-substitutable variables, only authorized in extrated types that are used as initial

arguments fromM'. If the uni�er mgu must solve an equation of the form α =? τ with

α non-substitutable variable and τ a type di�erent from α, a uni�ation error is raised

3.2. An arti�ial orretion of typing errors 101

M′(Γ, x, τ) =
let σ = mgu(τ, Inst(Γ(x))) in
if σ = error then (id, Obj.magi x) else (σ, x)

M′(Γ, c, τ) =
let σ = mgu(τ, Inst(E(c))) in
if σ = error then (id, Obj.magi c) else (σ, c)

M′(Γ, fun x→ a, τ) =
let σ = mgu(τ, α→ β) in with α and β fresh

if σ = error then

let (φ, ã) =M′(Γ + {x : α}, a, β) in
(φ, Obj.magi (fun x→ ã))

else

let (φ, ã) =M′(Γ + {x : σ(α)}, a, σ(β)) in
(φ · σ, fun x→ ã)

M′(Γ, a1 a2) =
let (φ1, ã1) =M′(Γ, a1, α→ τ) in with α fresh

let (φ2, ã2) =M′(φ1(Γ), a2, φ1(α)) in
(φ2 · φ1, ã1 ã2)

M′(Γ, let x = a1 in a2) =
let (φ1, ã1) =M′(Γ, a1, α) in with α fresh

let (φ2, ã2) =M′(φ1(Γ) + {x : Gen(φ1(α), φ1(Γ))}, a2, φ1(τ)) in
(φ2 · φ1, let x = ã1 in ã2)

Fig. 3.2: De�nition ofM'

instead of returning the substitution {α ← τ}. And this uni�ation error will make

M' generate an Obj.magi whih will allow to keep the most general type, here α.

From now on, by ensuring that the τ type provided toM' only ontains non-substitutable

variables, we thus guarantee that the substitution result σ leaves τ invariant. We ould then

ignore this substitution. Finally, starting from a Coq term t : T , the extrated typable term

tml and its type Tml are obtained by: Tml = Ê(T) and tml = snd(M′(∅, E(t), Ê(T))). And

whatever is the hoie of Ê(T), we are sure that tml has indeed Tml as type and di�ers from

E(t) only by possible insertion of Obj.magi.

102 Certi�ed funtional programming

3.3 The extration of Coq types

We now present the extration Ê of Coq types into Oaml types. This extration of

types, as we have seen, is used by ourM' algorithm. But it is anyway made neessary by

the presene of indutive types in Coq : starting from the Coq types of indutive onstrutors,

we must dedue the Oaml types that are the most faithful for the extrated onstrutors.

As long as exeution is onerned, the only onstraint onerning the indutive types is to

preserve the number of their onstrutors and the argument numbers of these onstrutors.

But ensuring only this onstraint would oblige to put far too many Obj.magi, and would

produe unreadable extrated terms and types. Moreover, this extration of types will enable

us to produe a interfae �le .mli for eah produed �le .ml, and that in a foreseeable way:

only the Coq types will in�uene this interfae, and not the ontents of the terms to be

extrated.

3.3.1 A approximation of Coq types

The previous examples showed that the rihness of the Coq types ould not always be

translated in Oaml in an faithful way. We then proeed by approximation. For that, we use

a most general Oaml type (or most unknown), that we will note T. We have implemented

3

this T type thanks to the internal Oaml type of all the objets, Obj.t. And onversions

between Obj.t and the other types are arried out via Obj.magi.

This T type allow to give a satisfatory response to the previous examples. For example,

the funtion p whih returns an integer or a boolean will have the type bool → T. And

onerning the indutive type any ontaining any objet, it beomes:

type any = Any of T

It must then be lear that the extration of types whih we propose is neessarily ar-

bitrary at ertain plaes, even if it gives good results in pratie. This �e�ieny� of the

extration of types is measured:

• by the preision of the approximation arried out. One extration of types that would

always answer T, although possible, is of ourse not interesting.

• by the low number of Obj.magi neessary to fore the orrespondene between ex-

trated terms and extrated types.

In fat, the following de�nition of Ê proeeds only by replaement of subterms by T, if

one puts aside the syntax questions. It would be then possible to give to the set of all types

with T a struture of semi-lattie upward, whose maximal element would be T. And we

would then have for any type Coq U that U ≤ Ê(U) ≤ T. This order would then onstitute

a measure of the degree of approximation made during the extration of types.

3

In the extrated ode, the ASCII notation for this T type is __. Note the absene of on�it with the

notation of the term ✷ whih is also __: in Oaml names of types and terms do not interfere

3.3. The extration of Coq types 103

3.3.2 The type of logial residues

We saw in the previous hapter that the extration of the terms was not able to omple-

tely remove logial parts from terms, and that it ould remain some the residual onstants

✷. Whih type ould we then give to these residues ✷? Ideally any onstant type with at

least a value ould be appropriate, suh as for example unit. Unfortunately, it an happen

during a redution in Oaml that a residue is found applied (see example 1 in the previous

hapter). The rule of redution to be used is then:

(✷ X)→ ✷

Implementing ✷ by () is thus inorret from the point of view of the exeution. We an

nevertheless get the good behavior in Oaml, provided we heat with the typing

4

:

let re __ x = Obj.magi __;;

val __ : 'a → 'b = <fun>

__ 1 true [℄;;

- : '_a = <poly>

The only di�ulty is that the type 'a→'b given for ✷ is harmful for the readability of

signatures, beause it multiply the useless type variables. We then deided to �ast� this

type into Obj.t. This an be done by using instead of Obj.magi its alternative Obj.repr:

'a → Obj.t. We have �nally hosen the following implementation of ✷:

let __ = let re f _ = Obj.repr f in Obj.repr f

val __ : Obj.t = <fun>

In the following de�nition of the extration Ê of types, we will use the symbol ✷ to indiate

the type of the onstant ✷. This symbol of the type is de�ned as an alias to T. In fat, one

syntatially separates these two symbols only during the extration, during whih they will

play distint roles:

• If the extration of a type gives nat→✷, one knows that all the type is logial, and it

is desirable to produe the extration ✷ for the whole.

• Conversely if a type is extrated in nat→T, one knows that it ats as the type of a

funtion with an integer argument and unknown result. And there, an approximation

of the whole type with T is not desirable beause any information would then been

lost.

3.3.3 The border between types and terms

Let us reall that Coq does not make syntati distintion between terms and types,

unlike Oaml. The extration need then to deide to plae an Coq objet in the world of

extrated terms or in the world of extrated types. In the previous hapter onerning the

4

The ASCII notation of ✷ is

__

.

104 Certi�ed funtional programming

extration of terms, we pruned all type shemes

5

into the onstant ✷. The reason of this

pruning was that a type sheme, whih will beome a type one applied to su�iently many

arguments, does not have real alulative ontent.

For extration of types, in a oherent way with the extration of terms, type shemes are

one again used as border between types and terms. In fat, the extration of types aept

any Coq term, but immediately returns the unknown type T if the input term is not a type

sheme, in the same way that the extration of terms returns ✷ in the degenerated ases.

3.3.4 The Coq types, from simple to omplex

Before entering the de�nition itself for extration of types, we try here to give an intui-

tion of its behavior. For that, we �rst present a ertain number of examples of Coq types

su�iently simple to have a faithful equivalent in Oaml. Then we ontinue with inreasingly

omplex Coq types.

The indutive types

First of all, One an obviously mention the indutive types whose onstrutors are

onstant, suh as bool.

Indutive bool : Set := true : bool | false : bool.

⇓

type bool = True | False.

More generally indutive types without parameter and whose onstrutors have simply trans-

latable types are themselves simply translatable. For example:

Indutive nat : Set := O : nat | S : nat → nat.

⇓

type nat = O | S of nat.

When we onsider parameters of type Set (or Type), the situation remains natural. One

an indeed see Set as the set of all types. The Coq parameter then beomes an Oaml type

variable. For example:

Indutive list (A:Set) : Set :=

| nil : list A

| ons : A → list A → list A.

⇓

type 'a list = Nil | Cons of 'a * 'a list

5

As a reminder, one type sheme is a term admitting a type of the form: ∀x1 : X1, ...∀xn : Xn, s

3.3. The extration of Coq types 105

Note the transformation of the onstrutor type, from a urry�ed funtional form in Coq

to a sequene of produts in Oaml. Of ourse, the appliation of suh an indutive type is

obviously translated into an Oaml appliation of types: a (list nat) of Coq beomes a

(nat list) in Oaml.

There is no reason to limit ourself to parameters, the produts present in the signature

of indutive types playing a similar role:

Indutive list2 : ∀A:Set, Type :=

| nil2 : ∀A:Set, list2 A

| ons2 : ∀A:Set, A → list2 (A*A) → list2 A.

⇓

type 'a list2 = Nil2 | Cons2 of 'a * ('a * 'a) list2

But we enter here a dangerous zone. Changing slightly the previous de�nition leads to a

problem.

Indutive list3 : ∀A:Set, Type :=

| nil3 : ∀A:Set, list3 A

| ons3 : ∀A:Set, A → list3 A → list3 (A*A).

This de�nition is the dual of the previous one, in whih the pairs will aumulate on the right

of lists. But in Oaml, for an indutive list3 with one type variable 'a, the onstrutors are

used to build a 'a list3 and no other type. There is thus no way of translating aurately

this indutive, and we need to hoose an approximation, for example

type 'a list3 = Nil3 | Cons3 of T * T list3

With these parameters or variables in the type Set, we have already reahed the whole

of de�nable indutive types in Oaml. Any indutive type Coq more omplex will thus bring

issues. For example, if a parameter is a type sheme, to represent it by a type variable is

imperfet: this variable, instead of representing a whole potential family of types, represents

only one of them. We take nevertheless this representation, beause one annot do better in

Oaml. For example:

Indutive poly (X:nat→Set) : Set := Poly : ∀n:nat, X n → poly X.

⇓

type 'x poly = Poly of nat * 'x

Finally, last ase, if a parameter or a variable is on the terms level, it will not be translatable

in Oaml. The lassial example is the lists of size n.

Indutive listn (A:Set) : nat → Set :=

| niln : listn A O

...

/

...

106 Certi�ed funtional programming

...

/

...

| onsn : ∀n:nat, A → listn A n → listn A (S n).

A solution is then to replae eah untranslatable argument by T.

type ('a,'n) listn = Niln | Consn of nat * 'a * ('a,T) listn

But we will see later than one an always loate suh dependenies with respet to terms

and ompletely remove them.

The type shemes

The type shemes orrespond rather naturally to Oaml types with type variables. Let

us take for example the ase of a type sheme having a dependeny with respet to a type:

Definition Sh1 : Set → Set := fun X:Set ⇒ X → X.

⇓

type 'x sh1 = 'x → 'x

And if one applies this type sheme in Coq, one also obtains an appliation in Oaml : (Sh1

nat) gives (nat sh1) in Oaml syntax.

As for the indutive types, as long as the dependeny is with respet to a type, everything

remains simple. Let us onsider now the ase of a dependeny with respet to a term. It is

enough to take again the onstant P of setion 3.1:

Definition P (b:bool) : Set := if b then nat else bool.

Definition Sh2 (b:bool) : Set := P b.

There is obviously no suh possible dependeny in Oaml. To remain uniform, a solution is

to produe nonetheless a type variable whih is in fat never used:

type 'b p = T

type 'b sh2 = T p

We will see later that it is in fat possible to loate suh dependenies with respet to terms

and remove them ompletely, in order to obtain:

type p = T

type sh2 = p

Lastly, let us now onsider the last ase, the one of a dependeny with respet to a new

type sheme:

Definition Sh3 : (bool → Set) → Set :=

fun (X:bool→Set) ⇒ X true → X false.

A priori, an Oaml type variable is insu�ient to represent the type sheme X. We must thus

approximate, whih an be made in several manners.

3.3. The extration of Coq types 107

• The most autious answer is to onsider (X true) and (X false) as unknown. Indeed,

if one instantiate X with the onstant P as de�ned above, one obtains for example:

Sh3 P = nat → bool

This leads us to a �rst possibility for extration: all variable whih is not a type is

seen as unknown, with its arguments. Here:

type 'x sh3 = T → T

• But this answer is in pratie too fuzzy to be interesting. Indeed, in a situation not

really dependent like (Sh3 (fun

_ ⇒ nat)), one obtains as �nal type T → T

instead of nat → nat. And this ours frequently in pratie. On the other hand, one

obtains nat → nat if one takes for extration:

type 'x sh3 = 'x → 'x

And onerning the dependent situations like (Sh3 P), this new extration behaves

orretly. Here for example, P will be regarded as an unknown type T. And one thus

still obtains T → T .

Between the �rst version, more systemati, and the seond, sharper, we have hosen the

seond.

The types themselves

The type onstrution whih is immediately translatable in Oaml is the funtional arrow,

i.e. the non-dependent produt. Clearly, nat → nat is diretly expressible both in Coq and

in Oaml.

On the opposite, the dependent produt is in general not expressible in Oaml. In parti-

ular, it indues a loal binding of a variable inside a type. Let us look at the type of our

distr_pair example of the setion 3.1:

((X:Set) X → X) → nat*bool

If one tries at all osts to generate a type variable for X, then this variable will be visible in

the whole type. In addition to distorting the semantis of the Coq type, that has harmful

onsequenes: eah delaration ontaining produts will see its parameter number explode.

The only reasonable translation is in fat to be unaware of the dependeny indued by the

internal produt, and to replae eah ourrene of the variable by T. One obtains here:

(T → T → T) → nat*bool

Only the produts at the head of the type an be translated slightly more faithfully (f.

setion 3.5).

To study the other ases, it should be noted that we are allowed to redue in the types

during their extration, in order to limit the number of situations that are unsupported by

Oaml types. This is new ompared to the extration of terms, during whih any redution

108 Certi�ed funtional programming

is obviously out of question. In the rest of the hapter, all is thus done modulo βιζ , in order

to be as preise as possible. The situation of the δ-redution, more omplex, will be evoked

together with the extration of type onstants. All these redutions are obviously dangerous

for the e�ieny of the extration funtion, but fortunately, in pratial, extration times

remain reasonable, even on onsequent examples.

One will thus onsider any type in its head normal form, whih has the following shape:

∀−−−−→xi : Xi, (t −→aj). It was already seen how to treat the head produts. The extration of what

remains is done aording to the struture of the head t, whih an be:

• a s sort (whih is then without argument)

• a onstant c

• an indutive type I

• a variable X

• a non-reduible math

• a non-reduible fix

If this head t is a sort, any term of type t is a type sheme, and its extration gives ✷.

In order to remain oherent with this extration of terms, the t type must be extrated to

the type ✷.

Let now us onsider the ase of an applied onstant c. One easy solution is then to

δ-redue this onstant. But this is not satisfatory beause that leads to larger and less

readable types. And in addition, this is not always feasible, sine all the onstants do not

neessarily have a usable body. Consider for example the abstrat onstants in a module

signature, or type axioms

6

We then distinguish three situations for onstants:

1. The most favorable ase is when this onstant is a type sheme. We then want, as for

(Sh1 nat), to translate the arguments and to return the appliation of the Oaml

types. But nothing fores the arguments to be types:

• If an argument is a term, the approximation by T is mandatory.

• Si now an argument a is a type sheme waiting n arguments, one an try to see

it as a true type gathering all the possible evolutions of a. For that we apply

n times T to this type sheme, exept that in pratie, instead of leave these T

arguments, we redue: this is equivalent to removing the n head lambdas

7

of a,

and replae with T the variables reated by these lambdas.

2. If now we are in the unusual situation where a type inludes at the head a onstant

whih is not a type sheme, there is little hane to translate this onstant into a type

onstant. The best approah is then to redue the onstant, if possible, and then to

extrat the redued version. The usual example (though not very realisti) illustrating

this situation is the identity.

6

In pratie the urrent extration allows realization of informative axioms by manually provided ode.

But this provided ode is not analyzed by the extration (f setion 4.4.2).

7

If there are less than n lambdas at the head of a, we adds some via η-expansion

3.3. The extration of Coq types 109

Definition id := fun (X:Type)(x:X) ⇒ x.

It is lear that to translate (id Set nat) into T only beause the head onstant is

not a type sheme is too oarse, sine a step of δ-redution leads to nat.

3. Finally for the onstants not type shemes and non-reduible, the last solution is the

approximation by T.

The ase of an applied indutive type is similar to the one of a applied onstant, just

simpler sine an indutive I has by onstrution a type of the form ∀a : A, . . . ∀z : Z, s. We

thus leave always the indutive type at the head, and we just need to extrat the arguments

as previously.

Conerning variables, everything has already been said, depending of the origin of this

variable. If this variable omes from a dependent produt, the variable and its arguments

beome T sine the dependeny disappears in Oaml. If this variable omes from the pa-

rameters of a type sheme or an indutive type, it then gives an Oaml type variable, its

arguments being ignored.

Conerning the last ases not yet evoked for a type, namely the non-reduible types built

with math or fix, they are too muh omplex for Oaml, and are thus translated into T.

3.3.5 The funtion Ê of extration of types

We now desribe again, in a formal way, the di�erent situations mentioned up to now.

De�nition 16 The funtion Ê of extration of types, from Ci to Oaml types, is de�ned

in a mutually reursive way. It uses a set v of type variables to be translated, noted in index

and initially empty.

Let us start with the types themselves, i.e. the Coq terms aepting a sort as type. The

�rst ase relates to the logial parts.

(prop) if U is of type Prop, then Êv(U) = ✷.

The other ases are done by ase on the head of the type after βιζ-redution:

(sort) Êv(s) = ✷

(prod1) if Êv(B) = ✷, then Êv(∀x : A, B) = ✷

(prod2) if Êv(B) 6= ✷, then Êv(∀x : A, B) = Êv(A)→ Êv(B)

(ase) Êv(ase(. . . , . . . , . . .) −→ai) = T

(�x) Êv((fix . . .) −→ai) = T

(var1) if X ∈ v, then Êv(X
−→ai) = ′X

(var2) if X 6∈ v, then Êv(X
−→ai) = T

(ind1) if I is an indutive type, we pose

8

: Êv(I a1 . . . an) = (Êv(a1), . . . , Êv(an)) I

8

we use as output the post�x syntax of Oaml for the type appliations

110 Certi�ed funtional programming

(st1) if the onstant c is a type sheme, then:

Êv(c a1 . . . an) = (Êv(a1), . . . , Êv(an)) c

(st2) Otherwise, and if the onstant an be redued, we do it:

if (c −→ai)→δ U then Êv(c
−→ai) = Êv(U)

(st3) Finally in the ase of a non-reduible onstant that is not a type sheme,

one uses an ultimate approximation: Êv(c
−→ai) = T

The reursive alls of Ê on the arguments of indutive or onstant type do not neessarily

apply only to Coq types. We then extend Ê in the following way:

(sh) If U is a type sheme, one an thus write it modulo η-expansion in the form:

λa : A, ...λz : Z, V , with V being a type. We then pose:

Êv(U) = Êv(V), by thus ignoring the variables.

(term) If U is not a type sheme, then Êv(U) = T.

Finally, the extration of an environment of Coq delarations is done as follows:

(nil) Ê([]) = []

(def1) For the delaration of a type sheme c whose body an be written

t =η λa : A, ...λz : Z, U , we pose v = {a, . . . , z} and
Ê(Γ; (c := t : T)) = Ê(Γ); (type (′a, . . . , ′z) c = Êv(U))

(def2) For the delaration of a onstant c that is not a type sheme, we do not

produe anything: Ê(Γ; (c := t : T)) = Ê(Γ)

(ax1) For an axiom whose type T is of the form ∀a : A, ...∀z : Z, s we produe a

delaration of abstrat type:

Ê(Γ; (ax : T)) = Ê(Γ); (type (′a, . . . , ′z) ax)

(ax2) For the other axioms we do not produe anything: Ê(Γ; (ax : T)) = Ê(Γ)

(ind2) For an indutive type I having n parameters

−→pi and whose onstrutors are−→
Ci, we pose:

Ê(Γ; Indn((I : ∀−−−→pi : Pi, ∀
−−−−→
xi : Xi, s) := (

−−−−→
Ci : Ti)))

= Ê(Γ); (type (
−→
′pi,
−→
′xi) I = C1 of π(Êv(T1)) | . . . | Cn of π(Êv(Tn)))

with v = {p1, . . . , pn}
π(τ1 → . . .→ τn → τ) = τ1 ∗ . . . ∗ τn

This algorithm terminates even if it uses the Coq redutions, thanks to the strong nor-

malization of Ci. It should also be noted that it produes well-formed Oaml types. In

partiular eah appliation of indutive or onstant type is done with the good number of

arguments. Let us take for example the ase of a onstant type c : ∀−−−→x : X, s. When we

extrat a Coq type having c at its head, we knows that c has exatly n arguments, sine it

is the only way to satisfy the ondition that (c −→ai) should have a sort as type. And eah

argument ai will give an extrated argument Ê(ai) in Oaml. In addition, the number of type

variables in the delaration of c in Oaml is indeed n. The ase of indutive type is similar.

3.4. Extration, typing and orretness 111

3.4 Extration, typing and orretness

As explained previously, the typing of extrated terms we ensure by the ation of our

algorithmM' does not brings by itself any orretness property for the exeution of these

terms, beause of the presene of the Obj.magi. On the other hand a �raw� extrated term

E(t) is modi�ed during the typing stage only via this insertion of Obj.magi. However these

Obj.magi do not have any in�uene on the exeution of a term: from the point of view

of untyped λ-alulus, they are only identity funtions. The results of orretness of the

previous hapter thus still apply to the �nal well-typed extrated term.

3.5 Di�erenes with the implemented extration of types

For reasons of simpliity and onision, the Ê de�nition is inomplete. The mutual indu-

tive types, for example, although not evoked here, are treated without more problems. And

onerning o-indutive type, the setion 4.2 is dediated to their study. A ertain number

of partiular ases are also distinguished in the implementation, like the empty indutive

types, the singleton indutive types and the reords. These ases will be evoked in setion

4.3 about optimizations.

3.5.1 Dealing with type parameters

One di�erene between the atual implementation and the previous desription of Ê
onerns the type parameters and type arguments We have seen that the arguments whih

are not type shemes are translated in T. One an in fat remove ompletely those arguments,

beause they an always be identi�ed, and only thanks to their typing. That orresponds

to the rules (ind1) and (st1). Obviously, in order to remain oherent, one must then also

�lter the variables from the types we generate, aording to whether they orrespond or not

to type shemes. The rules (def1) (ax1) and (ind2) should then be re-examined. It is this

optimized version whih has been implemented. The previous example of lists of size n is

thus extrated to:

type 'a listn = Niln | Consn of nat * 'a * 'a listn

This orresponds to the usual lists, put besides this nat argument witness of the size of the

list, whih must be preserved.

3.5.2 Dealing with the nonparametri arguments of indutive types

Then, it should be noted that for simpliity reasons, the funtion Ê manages orretly

only the parameters of the indutive types. Let us take again our example, the indutive

type list2 previously de�ned:

Indutive list2 : ∀A:Set, Type :=

...

/

...

112 Certi�ed funtional programming

...

/

...

| nil2 : ∀A:Set, list2 A

| ons2 : ∀A:Set, A → list2 (A*A) → list2 A.

If Ê is followed srupulously, the extration of list2 is the one desired, but rather:

type 'a list2 = Nil2 of T | Cons2 of T * T * (T * T) list2

In fat, Ê does not establish a link between the produt ∀A : Set, ... in the type of the

indutive and the produts ∀A : Set, ... in the onstrutors types. The �rst gives a 'a

whereas the others give T. In pratie, the extration of types urrently implemented tries

as muh as possible to loate these �pseudo-parameters�, and on this example list2 give:

type 'a list2 = Nil2 | Cons2 of 'a * ('a * 'a) list2

3.5.3 Redution of some types onstants

Another di�erene between Ê desribed above and the implementation relates to the

type onstants. The rule (st1) above always translates an applied type sheme onstant

into the same applied onstant. We have seen in the example Sh3 that (Sh3 P) gave in

Oaml the type p sh3, whih is in fat T → T when redued. But if we δ-redues (Sh3 P)

at the Coq level, we obtains nat → bool, whih is extrated to itself, and a more preise

extration than before is thus obtained The urrently implemented strategy is to test the

two. Let us onsider a Coq type t whih δ-redues to u:

• if the δ-redued form of Ê(t) in Oaml is equal to Ê(u), owe keep the most ompat

version, namely Ê(t).
• if not, the most preise version is kept, even if it is not the most ompat, namely

Ê(u).

3.5.4 Speial treatment of head produts

Finally, a last optimization of implementation deals with the head produts. Indeed, the

approximation of all variables of produts by T is sometimes too extreme. For example, the

type of the polymorphi identity id is not the expeted one:

Ê(∀X:Set, X → X) = T → T → T

instead of T→ 'x → 'x. This is partly orreted in the implementation:

• In the ase of an extration of type Ê(T), in order to determine the type of a extrated

term t : T , we authorizes the head produts of T to generate type variables. This

allows to obtain �ner types for the extrated terms In partiular, the type of id is

indeed as expeted.

• The other situation is that of an extration of type Ê(T) performed in order to trans-

form a Coq type delaration into a Oaml type delaration. In this ase, we generates no

variable, to respet the following priniple of the type shemes: as many type variables

as head lambdas.

Chapitre 4

Extration in pratie: re�nements and

implementation

In this hapter, we desribe the urrent state of the extration suh as it is implemented

in version 8.0 of Coq. This desription onsists of two parts.

First of all, we present a ertain number of features implemented in the extration tool,

but not yet evoked up to now. These features are presented only in an informal way, beause

their theoretial study is for the moment not also omplete that the one of the E funtion

of hapter 2. These re�nements are:

• the support of the new modules system of Coq,

• the support of o-indutive types,

• the addition of several optimizations intended to improve the e�ieny of the extrated

ode.

In a seond time, we present the implementation whih was done during this thesis and

desribe brie�y its internal behavior and then detail its usage from the point of view of the

user.

4.1 Extration of the new Coq modules

During this thesis, a signi�ant innovation appeared in Coq, and we adapted the extra-

tion to it. This new Coq feature is the new module system, that allows to struture the

developments in a dramatially more �exible way, as well as do some abstrat reasoning and

re-use odes and/or proofs. From the point of view of extration, this module system opens

new prospets in term of proof of programs, by failitating the design of autonomous erti-

�ed elements. Whether they are modules or funtors, these erti�ed parts an then be easily

assembled via theirs interfaes with other parts, erti�ed or not, in order to onstitute one

appliation of greater sale. The extration of modules extends in fat the e�ort desribed

in the previous hapter aiming at obtaining a interfae .mli for any extrated �le .ml. From

now on, all strutures extrated, modules and funtors, will have their interfaes.

The development that we present later in hapter 7 onstitutes indeed a �rst stone to-

wards the onstrution of a library of erti�ed modules, usable by any programmer, whether

114 Certi�ed funtional programming

he wishes to build an ompletely erti�ed appliation, or quite simply to re-use building

bloks of good quality. In this development about the strutures of �nite sets, we ertify

several implementations of funtors having the same interfae, whih allows any appliation

built on this interfae to make its hoie among various implementations, several being er-

ti�ed. In addition, we implemented many derived properties starting from the Coq interfae

of �nite sets. These properties are thus automatially shared by all the implementations of

this interfae, allowing, let us hope, to easily ertify programs using this library of �nite

sets.

Before presenting these new Coq modules and their extration, we start �rst with a rapid

overview of the module system of Oaml, whih inspired deeply the one of Coq.

4.1.1 The Oaml modules

The module system of Oaml [52℄ is itself derived from the original system of SML [42℄.

The latter has also evolved/hanged in return, and the two systems are now very lose and

known under the name of Harper-Lillibridge-Leroy module system. One an �nd a omplete

presentation of this system in the Oaml referene manual [53℄. To be short, one an say

that this module system adds three kinds of strutures above the basi delarations of the

language for types and onstants:

• A �rst additional struture is named module. It allows to group several delarations

whih an orrespond to values, types or possibly new modular substrutures.

module OneModule = strut

type 'a oneType = OneConstrutor of 'a

let oneFuntion = funtion OneConstrutor x → x

end

The signi�ant point is that the internal delarations inside the module share the same

name sope, distint from the external name sope. We then aess the internal objets

via the quali�ed notation, for example here OneModule.oneType.

• The signatures or interfaes form a seond kind of strutures. They also onsist of

a group of delarations, but these delarations relate only to types. These signatures

allow to type the preeding modules. For example, if we enter in Oaml the delaration

of the module OneModule, the system returns us a orresponding signature:

module OneModule = strut

type 'a oneType = OneConstrutor of 'a

let oneFuntion = funtion OneConstrutor x → x

end;;

module OneModule :

sig

type 'a oneType = OneConstrutor of 'a

...

/

...

4.1. Extration of the new Coq modules 115

...

/

...

val oneFuntion : 'a oneType → 'a

end

As previously the module bodies were delimited by the keywords strut...end, here

a signature is introdued by sig...end. In the partiular ase of the preeding signa-

ture, inferred by Oaml, we see that eah type delaration has been left unhanged,

whereas any value delaration is translated into a val onstrut speifying its type.

This signature is thus the most preise spei�ation possible. But other signatures are

also aeptable for typing our module:

� Compared to the most preise signature, one an remove ertain delarations.

This way, one obtains loal objets inside the module, inaessible from outside.

� One an also hide the ontents of ertain types, in order to get abstrat types,

whose objets an only be handled via the primitives provided in the module.

Here:

module type OneRestritedSignature = sig

type 'a oneType

val oneFuntion : 'a oneType → 'a

end

• Lastly, the funtors are generalizations of modules. Roughly speaking, a funtor is a

funtion taking module(s) as argument(s) and manufaturing a new module:

module OneFuntor = funtor (M:OneRestritedSignature) → strut

type 'a oneOtherType = ('a M.oneType) list

let oneOtherFuntion l = List.map M.oneFuntion l

end

The body of this funtor is thus parameterized with respet to a module variable M.

And any module admitting the signature OneRestritedSignature as type an then

be applied to OneFuntor, be substituted for this module variable M and then give a

new module:

module OneNewModule = OneFuntor(OneModule);;

module OneNewModule :

sig

type 'a oneOtherType = 'a OneModule.oneType list

val oneOtherFuntion : 'a OneModule.oneType list → 'a list

end

To onlude this short presentation of Oaml modules, we obviously need to mention

that these Oaml modules present several other subtleties that we do not desribe here,

suh as for example the with onstrut in the types of modules. Lastly, for more advaned

examples of module usage, one an onsult the hapter 7 about a formalization of �nite sets

by the means of modules.

116 Certi�ed funtional programming

4.1.2 The Coq modules

A proper module system for Coq has long been a desired but missing feature. Previously,

some existing tools were intended to organize a development in a modular way, suh as for

example the splitting into several �les, the mehanism of Setion within a �le or the use of

axioms. But these methods were quikly reahing theirs limits. For example, starting from

a development parameterized by an axiom, the only way of re-using this development in a

onrete ase was to dupliate its ode and to replae the axiom by the onrete de�nition.

One �nds this proess for example in the C-CoRN projet (see hapter 6) for the real number

struture.

The �rst study of a module system for Coq was made by J. Courant in its thesis [22℄.

But his system, more ambitious than the one of Oaml, seemed to be too omplex for

being implemented over the existing Coq ode. Instead, a system à la Oaml was �nally

implemented by J. Chrz¡szz [18, 19℄, taking as a starting point the the modular module

system of X. Leroy [52℄.

In Coq, we an now �nd modules, signatures and funtors. For example, an equivalent

of our preeding toy module an be written this way in Coq :

Module OneModule.

Indutive oneType (A:Set) : Set := OneConstrutor : A → oneType A.

Definition oneFuntion (A:Set)(a:oneType A) : A :=

math a with OneConstrutor x ⇒ x end.

End OneModule.

Unlike Oaml, the Coq modules are interative. Whereas in Oaml, a module must be

provided in one whole delaration, Coq allows to build it step by step, by suessive de-

larations between the starting ommand (Module OneModule) and the ending one (End

OneModule). This need for interativity rises from the possible presene of theorems, and

thus of proof, among the delarations present in one module. Exept for the luky ones

whose native language is λ-alulus, it is then illusory to try to diretly give a not-trivial

proof. This di�erene, even if signi�ant from the user's point of view, does not in�uene

the extration, whih always proeeds after the end of the module delarations.

The signatures and the funtors are de�ned in the same manner:

Module Type OneSignature.

Parameter oneType : Set → Set.

Parameter oneFuntion : ∀A:Set, (oneType A) → A.

End OneSignature.

Module OneFuntor (M:OneSignature).

Definition oneOtherType := fun A ⇒ list (M.oneType A).

Definition oneOtherFuntion := fun A l ⇒ List.map (M.oneFuntion A) l.

End OneFuntor.

Conerning the ontents of a signature, one moves away somewhat from the parallel with

Oaml signatures, beause of the di�erenes between the two systems, and in partiular the

lak of distintion between terms and types in Coq. Let us reall that in Oaml a term

4.1. Extration of the new Coq modules 117

is neessarily abstrat beause of the delaration val, whereas a type delaration an be

abstrat or not.

• For an abstrat delarations in a Coq interfae, the generi keyword

1

is Parameter,

and an be used for a funtion like oneFuntion or a type oneType.

• Writing a onrete type in a interfae Coq leads no surprise: we an still delare a new

indutive type via Indutive, or de�ne an alias via Definition.

• the prinipal innovation is the possibility of plaing one onrete term in an interfae.

Thus, Definition x:=0 in a interfae will oblige any implementation of this interfae

to ontain a onstant x being worth 0.

The use of Coq interfaes are made deliate by two pratial details. First of all, only

a type oneType de�ned as a onstant (via Definition for example) is aepted for rea-

lization of the parameter oneType, and not a type de�ned by Indutive. Thus, for Coq,

OneSignature is not a valid signature of OneModule. The solution is then to plae an alias

on the level of the module OneModule: we rename oneType in oneType' in the indutive

de�nition, then the following delaration is added:

Definition oneType := oneType'.

In addition, it should be noted that if a signature is imposed to our module (for example

via Module OneModule : OneSignature), and if this signature ontains abstrat delara-

tions Parameter, then the body of our funtion oneFuntion is hidden: one an never again

make use of it out of the module, for example during a omputation. That semantis dif-

fers from Oaml : the values of the onstants are atually hidden in the interfaes by the

onstrution val, but we obviously use these values during the exeution of program! The

Coq typing relation �:� between modules and interfae is then very onstraining, and we

often prefer to use instead the weaker form �<:�, that only heks if the interfae ould be a

valid signature for this module, but without setting up the assoiated restritions.

Just as for the presentation of the Oaml modules, muh remains to be said onerning

the advaned possibilities of the Coq modules. And one again, the hapter 7 presents some

more realisti examples using these modules and funtors.

4.1.3 The extration of modules

Let us now see what beomes the extration in presene of these Coq modules. First of

all, let us announe that only the extration to Oaml an urrently treat the Coq modules.

Indeed, there is no diret equivalent in Haskell of suh a module system, but rather a system

of lasses, a rather di�erent onept. Perhaps it is possible to use these lasses to express

the extrated Coq modules, but the feasibility of this translation was not explored.

We now onsider the extration of the Coq modules towards Oaml. At �rst glane,

everything works simply: a Coq signature beomes a Oaml signature, a Coqmodule beomes

a Oaml module and similarly for funtors.

1

In fat, Axiom is also appropriate, it is even a synonym here.

118 Certi�ed funtional programming

When we want to go further than these obvious points, the deliate point is the transla-

tion of the internal delarations inside these modular strutures. Indeed one wish to preserve

during the extration the typing relations between modules and signatures. To translate a

Coq delaration in a orresponding Oaml delaration, we use the extration funtions E
and Ê of hapters 2 and 3, whih respetively produes terms and types.

We now detail the various possible situations. In fat, there are only four types of possible

delarations in Coq :

• the delaration of indutive via Indutive.

• the delaration of a onstant, for example via Definition. All the delarations Lemma,

Theorem, Fixpoint are indeed only variants of Definition allowing an easier build

for the body of the onstant being de�ned.

• the spei�ation of an objet in a signature via Parameter.

• the delaration of an axiom in a module, via Axiom. We ignore this ase for the moment,

see setion 4.4.2 for the treatment of axioms by the extration.

The �rst two ases an our both inside a module (or funtor) or inside a signature.

First, all delarations of objets of sort Prop, both indutive types and onstants, will

be purely and simply removed by the extration. Indeed no extrated delaration an later

depend on suh a logial delaration. If we take for example the delaration of a onstant

logial of sort Prop, any following ourrene of will be plaed by funtion E under a

onstant ✷. And if appears in a term whih is a type and is thus treated by the funtion

Ê , then any referene to also disappears, beause is not a type. As for a logial indutive

type I, the funtion E make it disappear like all types, and the funtion Ê transforms it into

a degenerated type ✷.

Then, a simple ase is the delaration of an informative indutive type. Indeed, we then

quite simply output the assoiated delaration generated by the funtion Ê . And this is valid

both in a signature or in a module.

Let us now onsider an informative delaration Parameter x:T in a signature, whih

thus laims the existene of an objet x of type T in any module ful�lling this signature.

Oaml, unlike Coq, distinguishes types and values. This delaration an thus orrespond in

Oaml either to the delaration of a value val x:Ê(T), or either to the delaration of an

abstrat type type X. And this hoie is done aording to the shape of T: if T is a type

like nat, this leads to delaration of a onstant val x:nat. On the ontrary, if T is a sort,

or more generally an arity, x is a type (resp. a type sheme), and its natural translation is

a type delaration in Oaml.

The last ase onerns the delaration of a onstant, typially via Parameter x:T:=t.

We then re-use the distintion between type shemes and other terms. For the former, we

generate a type delaration by using the funtion Ê , and return type X = Ê(t). For the
latter, we generate a delaration of an Oaml term. And this delaration is either a onrete

form if we are inside a module or a funtor, namely let x = E(t), or either an abstrat

form val x : Ê(T) if we are in a signature.

We an summarize all these possible situations in the following table:

4.1. Extration of the new Coq modules 119

Prop sort type sheme standard ase

Indutive i := C:T ∅ ///////////// type i = C of Ê(T)
Definition x:T:=t ∅ type X = Ê(t)

{
Module: let x = E(t)
Signature: val x : Ê(T)

Parameter x:T ∅ type x val x : Ê(T)
Even if this summary table does not show it in order to remain simple, all Oaml type

delarations, both those oming from indutive types and type shemes, an ontain type

variables 'a, as we have seen in hapter 3.

One desribed this �shunting� of the Coq objets towards either Oaml terms or types,

one must then hek that this shunting is quite oherent. In fat, for any Coq objet named

 who �nds himself plaed on the term level by the extration, all the uses of in the

objets extrated later on must also be on the term level. And the same for an objet plaed

at the type level. This property is not ompletely immediate. Let us take for example the

polymorphi identity:

Definition id := fun (X:Type)(x:X) ⇒ x.

As it is not a type sheme, our extration hooses to transform it into an Oaml funtion:

let id _ x = x

But id an ertainly be also used in a Coq type:

Definition nat_bis := id Set nat.

A possible extration of this type nat

_

bis would be then the appliation nat id, with id

referring here to a type onstant id whih ould be de�ned by:

type 'x id = 'x

However our extration does not de�ne this type onstant, but only the onstant id at

the term level. In fat everything works orretly here, thanks to the rules hosen for the

extration Ê of types in setion 3.3.5. Indeed, the extration Ê(nat_bis) is not nat id, but

nat, beause id is not a type sheme. This onstant id is thus redued before extrating,

aording to the rule (st2) de�ning Ê .
More generally, our �shunting� is oherent with both funtions E and Ê beause these

three operations divide with respet to the same strati�ation riterion, namely the fat of

being or not a type sheme. Thus a type onstant annot appear in a extrated term:

sine it is a type sheme, it ends under a ✷. On the opposite, a term onstant as id annot

remain in an extrated type aording to the rules (st1) (st2) and (st3) of Ê .

4.1.4 Current limitations of the extration of modules

This extration of the modules Coq is still to be onsidered as experimental. First of all,

a thorough theoretial study has not been done yet for lak of time. This would suppose in

120 Certi�ed funtional programming

partiular the integration in our theoretial system (hapters 1 and 2) of the typing rules

spei� to Coq modules. However these rules urrently oupy 6 pages in the Referene

Manual [78℄ (hapter 5).

The implementation, whih is thus more advaned than the theory onerning these

modules, gives in pratie satisfatory results on the �rst real developments using these

modules. One an for example refer to the hapter 7 for a ase study about �nite sets. But

we have in same time identi�ed two extreme situations whih an put the urrent ode at

fault.

A �rst typing problem

As we mentioned previously, an essential property of the extration of modules is the

onservation of the typing relations between a module and a signature during the extration.

This is for example ritial in order for a funtor appliation to remain legal after extration.

At �rst sight, this property seem to be a simple onsequene of the following result onneting

the funtions E and Ê :
t : T ⇒ E(t) : Ê(T)

Unfortunately, this result speaks only about onrete types, and the presene of abstrat

types in a signature an disturb this situation. In fat, it is urrently possible to build

a module Mod and a signature Sig ontraditing our expeted onservation property for

module typing. For that, it is enough to ombine abstrat types and type shemes whose

extration will be an approximation:

Module Type Sig.

Parameter t : nat → Set.

Parameter x : t 0.

End Sig.

Module Mod : Sig.

Definition t := F.

Definition x := 0.

End Mod.

The type sheme F omes from page 91: (F N) is the type of the integer funtions of arity n,

and thus (F 0) is the type of the integer funtions with 0 arguments, that is nat. However

the extration of Mod and Sig gives:

module type Sig =

sig

type t

val x : t

end

module Mod =

strut

...

/

...

4.1. Extration of the new Coq modules 121

...

/

...

type t = T

let x = O

end

Indeed, the type sheme F de�ned by �xpoint gives the most general extrated type T,

and at the abstrat level t 0 is approximated in t sine one annot redue the abstrat type

t. It is then visible that after extration, Sig is not any more a valid signature for Mod.

To orret this problem, one ould imagine to make T really beome an universal type

for Oaml, and require that t:T for any term Oaml t, and in partiular O:T. But this

would suppose a modi�ation of the type system of Oaml. Otherwise, one solution is here

to insert a Obj.magi around the O in Mod. The problem with this insertion of Obj.magi

is that it is no longer done aording to a loal analysis (the type of x inside the module),

but aording to a global analysis, for example knowing if Mod is used later on with the

signature Sig in an funtor appliation. One ould also use a enapsulation at the time of

the funtor appliation, like:

module Mod_bis =

inlude Mod

let x = Obj.magi x

end

None of these solutions have been implemented for the moment. Anyway, it is time to mode-

rate the importane of this problem. It is ertainly one exeption in our goal of the �100% of

Coq onstrutions extratable in a well-typed way�. But until now, no realisti development

has felt into this preise ase, namely the ombination of abstrat types and type shemes

in a signature. And even if the urrently low number of suh modular developments makes

an extrapolation di�ult, it is really far from probable that the problem will our one day

in pratie.

A seond typing problem

In fat it is also possible to indue typing problems between modules and signature by

using the umulativity :

Module Type Sig2.

Parameter t:Type.

Parameter x:t.

End.

Module Mod2 : Sig2.

Definition t:Prop:=True.

Definition x:True:=I.

End.

The signature is naturally translated into:

122 Certi�ed funtional programming

module type Sig2 =

sig

type t

val x : t

end

On the other hand the extrated module Mod2 is empty, beause Mod2.t and Mod2.x are

respetively a type and a logial value. And we made previously the hoie of removing suh

delarations that are never useful in later delarations. However, here, the typing of Mod2

by Sig2 requires the presene of �elds t and x in Mod2. But this typing problem is less

awkward than it �rst appears. After all, nothing prevents us from reonsidering our hoie

and stopping the omplete elimination of logial delarations, for getting here:

module Mod2 =

strut

type t = T

let x = T

end

But the extration would then leave quantity of parasite logial delarations, never useful

exept in the event of a umulativity use between a module and its signature. It is then

better to ontinue to purge modules and signatures from the logial delarations and to ure

the highly exeptional situations of umulativity via a enapsulation similar to solution of

the previous problem. Moreover, the orretness of these two situations with problems will

be studied without doubt in a joint way.

In fat, our preoupations about module typing present large similarity with the typing

problems on the term level. In the same way that we need untyped oerion funtions

Obj.magi, it would be neessary to have oerion funtions at the module level, for example

at the time of a funtor appliation to a module. But unlike for terms, suh funtions do

not exist at the module level.

Let us �nish nonetheless this disussion about typing of extrated modules by two posi-

tive remarks:

• The urrent extration ful�lls at least a weak form of onservation for the module

typing: if a module M admits S as its most general signature (the one inferred by the

system), then the extration of M still admits the extration of S as its most general

signature. And more generally, in the absene of abstrat types and of umulativity

between module and signature, then everything works well.

• Pragmatially, if the Oaml type-heker is satis�ed by the result of an extration

ontaining modular strutures, then all is for best. In partiular the preeding or-

retness results for the exeution or the semantis of an extrated term are still valid.

After all, modules and funtors are only a way of re-using ode. And sine the fun-

tors appliations are known statially, one an obtain equivalent ode with no funtors

thanks to a proess named defuntorization. And this proess has been in partiular

implemented for Oaml by J. Signoles [77℄.

4.2. Co-indutive types and extration 123

A naming problem

Another problem, syntati this time, an also lead to extrated modules being refused

by Oaml. Coq, with its interative modules, is more tolerant than Oaml onerning the

possibilities of objet naming. In partiular one an refer to a module even during its built,

whereas this is illegal in Oaml. The following example is valid in Coq :

Module M.

Definition t := 0.

Module N.

Definition t := 1.

Definition u := M.t

End N.

End M.

On the other hand in Oaml one annot use the quali�ed name M.t inside M, and the simple

name t is inorret due to the presene in the loal name spae of the t orresponding to N.t.

Sine renaming an be di�ult beause of the possible signatures to respet, a reasonable

solution, proposed by J. Signoles, is then to add a loal renaming module:

module M =

strut

let t = O

module AdHo = strut let t = t end

module N =

strut

let t = S O

let u = AdHo.t

end

end

Deteting the need for suh modules and adding them properly in all the possible ases

(terms and types) is very omplex and is not implemented yet. But as for the preeding pro-

blems, it is a priori far from probable to fall into suh a situation in a realisti development.

4.2 Co-indutive types and extration

4.2.1 From indutive types to o-indutive types

The indutive types that we handled up to now are designed to only deal with �nite

objets. More preisely these objets annot ontain more than a �nite number of onstru-

tors of this type

2

. This �niteness, or good foundation, implies the existene of indution

2

By the way, one an note that an Oaml indutive type like list do not ful�ll the same property of

�niteness as the type list of Coq. Indeed, Oaml authorizes in�nite yli objets like let re l = 0::l.

And obviously, if one applies this list to a extrated funtion like map, omputation will never end. This

124 Certi�ed funtional programming

priniples assoiated with eah of these indutive types. These indution priniples are in

fat generated automatially by Coq, suh as for example nat

_

re for nat. Now, thanks to

the works of E. Giménez, there also exist in Coq some types similar to the indutive types,

but for whih there is no �niteness onstraint. These are the o-indutive types (see for

example [37℄). The typial example of suh a type is the stream type:

CoIndutive Stream (A:Set) : Set := Cons : A → Stream A → Stream A.

When an o-indutive type is de�ned, the �rst di�erene with delaration of an indutive

type is that Coq annot generate any assoiated indution priniple, sine these priniples

are not valid for in�nite objets.

On an o-indutive objet, the ase analysis works as for an indutive objet. Here is for

example the way to reah the head of a stream:

Definition hd (A:Set) (x:Stream A) :=

math x with

| Cons a _ ⇒ a

end.

On the other hand the indution is quite di�erent in the o-indutive world. First of all,

one speaks rather of o-indution, and the Coq keyword is CoFixpoint instead of Fixpoint

3

.

Then there is no onept of dereasing argument as for the Fixpoint. One an thus write:

CoFixpoint from (n:nat) : Stream nat := Cons n (from (S n)).

Or, without any argument:

CoFixpoint zero_stream : Stream nat := Cons 0 zero_stream.

But any de�nition is neessarily authorized, beause it is at the very least deliate to give a

meaning to a de�nition suh as:

CoFixpoint dummy : Stream nat := dummy.

The rule is to authorize only o-indutions whih indeed build a new o-indutive objet.

More preisely, any o-reursive all must be loated under at least a o-indutive onstru-

tor, and that is not the ase for our dummy example.

Conerning the redution of o-�xpoints, it also follows a partiular rule, in order not to

break the strong normalization property of the system. This redution is lazy: one o-�xpoint

an be unfolded and replaed by its body only if this o-�xpoint and its possible arguments

appear in head position of a pattern mathing. For example (from 0) is in normal form,

whereas in (hd (from 0)) it is not, sine hd ontains a pattern mathing. In the latter ase,

the from an unfold, whih gives after simpli�ation 0 for normal form.

does not invalidate the theoretial results of the hapter 2, sine l annot be put in orrespondene via l̂ist

with a list l' of Coq.

3

There exists also a ofix anonymous onstrut similar to the fix.

4.2. Co-indutive types and extration 125

4.2.2 The extration of o-indutive types

The ase of Haskell

The o-indutive types form the �rst and only feature of Coq whih was initially taken

into aount by the extration towards Haskell before being integrated into the Oaml extra-

tion. The reason is of ourse the laziness of the Haskell evaluation, whih makes obvious the

extration of o-indutive types towards this language. Thus, there is no di�erenes between

the extration of the �nite lists and that of the streams exept the presene or not of the

base ase Nil.

data List a = Nil

| Cons a (List a)

data Stream a = Cons a (Stream a)

Then the extration of a o-�xpoint gives naturally a reursive funtion:

from n =

Cons n (from (S n))

zero_stream =

Cons O zero_stream

As long as zero

_

stream is not neessary to a later omputation, this onstant will never be

unfolded. And even then, there will never be super�uous unfolding. Thus, if one asks the

printing of (hd (tl (tl zero

_

stream))), there will be only three unfoldings, leading to a

result of O.

Historially, the extration of o-indutive types towards Haskell was already usable in

the old extration. We only maintained this possibility. As an example, one an refer to the

user's ontribution named Roq/MUTUAL-EXCLUSION. E. Giménez studies in this development

the mutual exlusion of two proesses via the Petersson's algorithm. A small graphial

interfae using the Fudgets library of Haskell allows to visualize the run of the algorithm in

an interative way.

The ase of Oaml

During the implementation of our new extration, we have added the possibility of ex-

trating from o-indutive type towards Oaml. This is done via an enoding, beause a

diret and naive translation of our preeding examples would be inorret, due to the strit

evaluation of Oaml. If one takes:

type 'a stream = Cons of 'a * 'a stream

let re from n = Cons n (from (S n))

Then the omputation of (hd (from O)) starts an in�nite loop of alls to from.

Fortunately, there exists in Oaml a mehanism to introdue lazy objets. First, (lazy

x) is a stopped version of the omputation of the objet x. And if this x has a type a, then

126 Certi�ed funtional programming

(lazy x) has type a Lazy.t. Finally the funtion Lazy.fore: 'a Lazy.t → 'a makes

it possible to fore the resumption of a omputation.

We thus use this mehanism to enode the o-indutive types extrated from Coq. Eah

type t is in fat extrated into two types t and

__

t, mutually de�ned, the �rst being the

type of objets on standby, and the seond the type of freed objets. In the ase of streams,

that gives us:

type 'a stream = 'a __stream Lazy.t

and 'a __stream = Cons of 'a * 'a stream

Then we simulate the Coq redution in the following way. A o-indutive onstrutor

produes a frozen objet, and is thus surrounded by the keyword lazy. On the other hand,

a pattern mathing on a o-indutive objet needs to reah the head struture of this objet.

We thus fore a level of omputation by inserting a Lazy.fore around the mathed objet.

This gives us the following Oaml extration for our examples:

let hd x = math Lazy.fore x with

| Cons (a,s) ⇒ a

let re from n =

lazy (Cons (n, (from (S n))))

let re zero_stream =

lazy (Cons (O, zero_stream))

This enoding is inspired by the style �even, with di�ulty� presented in [81℄. The naming

�even� refers to the fat that any o-indutive onstrutor is assoiated to a lazy, thus

doubling the number of syntati onstrutions. And the �with di�ulty� announes that this

style is opposed to another style, simpler but being able to arry out super�uous evaluations

of elements in a stream. But even this hosen style for extration an pose problems of

super�uous evaluation and thus of e�etiveness, as we will see now.

o-indutive types, Oaml and e�ieny

The use of lazy and Lazy.fore onstrutions by the extration does nothing but delay

the evaluation of o-indutive onstrutions. But this is not enough for transforming Oaml

into a ompletely lazy language. In partiular, strit aspets of Oaml an re-appear, in

partiular during the evaluation of funtion arguments, and lead to signi�ant di�erenes

with the Haskell evaluation of our examples ontaining o-indutive types.

Let us onsider for example a funtion iter whih, starting from a funtion f and an

initial point a, alulates the stream made up of a, (f a), (f

2
a), et.

CoFixpoint iter (A:Set)(f:A→A)(a:A): Stream A := Cons a (iter A f (f a)).

Its extration is then:

let re iter f a = lazy (Cons (a, (iter f (f a))))

4.3. Extration and ode optimizations 127

But then asking for the evaluation of (hd (iter f a)) leads to the super�uous evaluation

of (f a), even if the reursive all (iter f (f a)) is indeed bloked by the lazy at the

head of iter. This super�uous evaluation, not very natural, an be annoying if f leads to

long omputations.

At the same time, these super�uous evaluations annot be onsidered as orretness

problem for the extration. Indeed, if the redution done in Oaml starts from (hd (iter f

a)), one an simulate this redution by a similar redution at the Coq level, in a same way

that for the theoretial results of the hapter 2. That means that Coq ould also hoose to

normalize (f a) when reduing (hd (iter f a)). In pratie Coq does not do it, sine its

strategy is rather lazy by default.

We thus enter, with this example, in the �eld of the e�ieny questions for the extrated

ode. We detail this �eld in the following setion, but we an already announe that very

often this �eld has only imperfet solutions.

Here, in the urrent example, one an hoose to move the lazy onstrut in order to

blok the evaluation of the arguments for the reursive all:

let re iter f a = Cons (a, lazy (iter f (f a)))

The funtion iter does not build any more a stream but a

__

stream. But in addition to

the small types adjustments that it implies, this solution orresponds to the �odd� style of

the artile [81℄. And this style also su�ers from problems of super�uous evaluation. One an

also try to blok the evaluation of iter at two plaes :

let re iter f a = lazy (Cons (a, lazy (Lazy.fore (iter f (f a)))))

In a more general way, it seems to be sometimes interesting to insert additional bloking

points lazy (Lazy.fore (...)) in the extrated ode around the sub-expressions of o-

indutive types. This is not made automatially yet, but adding suh bloking points ma-

nually an be made without risk, beause this does not modify the orretness of the ode.

A situation lose to that of the preeding iter was met during the test of the Oaml

extration upon the ontribution Roq/MUTUAL-EXCLUSION. A bloking point has been added

via one diverted use of the ommand Extrat Constant, whih will be presented at the

end of this hapter. The reader interested by more details an onsult diretly the �les of

this ontribution.

Lastly, let us remark that for supporting o-�xpoint without arguments that does not

start with a onstrutor, it would be neessary to insert a lazy (Lazy.fore (...)) around

the body of this o-�xpoint. It's true that Oaml aepts our �xpoint without argument

zero

_

stream. But it will refuse more omplex bodies, starting for example with one if.

Hiding these overly omplex bodies under a lazy would allow to irumvent the di�ulty.

4.3 Extration and ode optimizations

We now desribe a ertain number of transformations that the extration arries out

on the extrated ode in order to try to improve its e�ieny, or sometimes simply its

readability.

128 Certi�ed funtional programming

4.3.1 Removal of some logial arguments

The �rst of these transformations is intended to make disappear as muh as possible the

logial residues left by the extration funtion E of hapter 2. These residues

4

take the form

of anonymous abstrations fun

_ → ... and onstants ✷. We have already seen that in

Haskell, ✷ an be implemented by an error (see page 81). On the other hand, in Oaml, the

possibility of having to redue ✷ x into ✷ fores us to use a omplex de�nition (see page

103):

let __ = let re f _ = Obj.repr f in Obj.repr f

It is then obviously desirable to remove as muh as possible these onstants ✷, for both a

better e�ieny and readability of the extrated ode.

Let us take the example of a division div with pre-ondition, but without post-ondition,

whose Coq type is ∀a b:nat, b 6=0 → nat. The extration seen until now produes a fun-

tion div of type nat → nat → ✷ → nat . And any later use of this funtion to ompute

a division will have the form (div a b ✷).

Now, if we must keep suh a logial residue, this omes from the evaluation in Oaml

of the partial appliations that ould otherwise lead to abnormal situations (see 2.1). The

logial residual argument of div allows here to ensure that (div a b) is a losure, bloked

until it �nds its third argument.

But the large majority of the appliations met by the extration are in fat total. It

is thus preferable to treat these total appliations of funtion as simply and naturally as

possible, even if it means to weigh down the writing of partial appliations.

Let us try then to return to our extrated funtion div its natural type nat → nat →
nat. Conerning the de�nition of div, this does not pose any problem. Modulo η-expansion,
one an indeed to suppose that this de�nition of div starts with fun a b

_ →.... It is

then enough to remove the third abstration. One this de�nition of div is simpli�ed, it is

obviously neessary to also adapt the later alls to this funtion:

• Let us �rst onsider a total appliation (div a b ✷). To adapt to our new puri�ed

funtion div, it is enough to to throw the third argument ✷. In this ase, we �nd bak

the ode produed by the old extration: only informative arguments remain whereas

the logial arguments disappear ompletely. And this is not done to the detriment of

safety: if we unfolds div in this appliation before and after the transformation, it is

seen that one goes from:

(fun a b _ → ...) a b ✷

to the new form:

(fun a b → ...) a b

These two forms are learly equivalent from the point of view of evaluation.

4

In fat, these residues an also ome from type shemes and not only from logial parts, but we will

merge here these two situations by simply speaking of �residues�.

4.3. Extration and ode optimizations 129

• now Let us now take in Coq a partial appliation (div a0 b0), and thus an extration

produing originally a partial appliation like (div a b). For using our new improved

version of div, we must imperatively maintain the �bloked� aspet of this partial ap-

pliation. For that, we just adapt it in (fun

_ → (div a b)). One again, unfolding

div shows that we have not modi�ed the semantis of the appliation:

(fun a b _ → ...) a b

beomes

(fun _ → ((fun a b → ...) a b))

The only onsequene is to delay the evaluation of a and b. One ould imagine an

even more faithful adaptation, namely:

let x = a and y = b in fun _ → (div x y)

But in pratie using this version has not seemed neessary.

• In the ase of appliations that are even more partial, like (div a) and �nally div

without any argument, we proeeds in the same way: (div a) beomes (fun b

_ →
(div b)) and div only beomes (fun a b

_ → (div a b)).

Of ourse, the method desribed here for div an be generalized to the transformation of

any funtion delaration having an arbitrary number of arguments, and logial arguments

also at arbitrary positions. Thus the delaration of a funtion f of type t1 →... → tn →
t will be transform into the delaration of a funtion of type ti1 →... → tip → t where

the tik are the ti di�erent from ✷.

The only exeption to this method relate to the funtions having only logial argu-

ments, suh as for example False

_

re (see 2.1). Removing all the arguments and hene

transforming the extration of False

_

re into a onstant would not be orret, sine here

False

_

re orresponds to an abnormal situation, and thus indues the raising of an exep-

tion via assert false in Oaml. The following delaration:

let false_re = assert false

would then stop the �nal program as soon as its launh. This problem is orreted by keeping

always at least one argument to our funtions, whih gives us here:

let false_re _ = assert false

The transformation presented here does not obviously allow to remove all logial residues.

For example a pattern mathing having some of its branhes as informative and soon as

logial will ontinue to produe ✷ during the extration. In addition, this method only ats

at the �rst level: we remove or not some arguments of the treated funtions, but we do not

modify at all type of these arguments. Thus a funtion of type nat → ✷ → nat will have

as new type nat → nat, but a funtion of type (nat → ✷ → nat) → nat will remain

unhanged.

130 Certi�ed funtional programming

Extending this transformation to allow the simpli�ation of the type interior has been

onsidered for one moment, then abandoned: this would indeed imply the use of inreasingly

omplex term manipulations for eah additional treated nesting level.

In pratie, the urrently implemented transformation, although limited, allows already

to eliminate most of the logial residues. This new extration is then very frequently om-

patible with the old extration, even on quite omplex examples, whilst still keeping its

orretness property, even on the most pathologial examples.

Let us �nally announe that in Haskell this elimination ould be muh more advaned,

beause this language has no need for logial residues in order to blok redutions. For

the moment, this was not done, the Haskell and Oaml extration urrently share a broad

ommon base for simpliity reasons.

4.3.2 Optimizations of indutive types

We show now how the elimination of the logial arguments presented previously for the

funtions also apply to the onstrutors of indutive types. Then in a seond time we present

two two partiular ases of indutive types that are subjet to partiular treatments by the

extration, that is the singleton types and the reords.

Construtors and elimination of logial arguments

Just as the arguments of type ✷ for funtions, the arguments of type ✷ for indutive

onstrutors an also be removed, beause they are super�uous. Let us take for example the

informative indutive type sig initially presented page 28. As a reminder, the type (sig

A P) expresses the existene of an objet x of type A ful�lling the prediate P, a fat that

we also notes with the syntax {x:A|P x}. And the single onstrutor of sig admits four

arguments: (exist A P x p) has type (sig A P) when x is the required witness and p is

a proof of (P x). The raw version of the extration of sig is then

5

:

type 'a sig0 = Exist of ✷ * ✷ * 'a * ✷

In fat, the �rst two arguments A and P of exist are parameters of the indutive

type sig. The typing rules of Ci ensure that these parameters annot vary during the the

de�nition of sig onstrutors. These parameters thus annot bring new alulative ontents,

and are systematially removed from indutive de�nitions by the extration. Here, in fat,

that does not hange anything, beause these parameters are types, whih would thus have

been removed by the mehanism we are about to see. But even one informative parameter,

for example of type nat, would have been removed by the extration.

Sine the third argument is to be kept, it only remains to study fourth argument, whih

is a logial term. But it is in fat immediate to free the extrated de�nition from this useless

✷ :

type 'a sig0 = Exist of 'a

5

sig is renamed into sig0 by the extration sine sig is an Oaml keyword.

4.3. Extration and ode optimizations 131

One must then adapt the uses of this type:

• On the level of an appliation to the onstrutor Exist, one must suppose the presene

of the four arguments. Indeed, the unurry�ed syntax of Oaml requires it, with the

result that the extration builds when needed the missing arguments by η-expansion.
The last step is then to �lter the arguments, and here only keep the third one.

• On the level of a mathing like math e with Exists(a, p, x, q) → t, the pro-

perties of the extration ensure that a, p and q, who have all ✷ as type, will not appear

in t. We thus replaes this mathing by math e with Exists(x) → t.

And what was presented here for sig is generalized to all indutive types, whatever are

its number of onstrutors, parameters and arguments. One an notie that there is no need

here for a partiular treatment when all the arguments of a onstrutor are removed during

the proess: this onstrutor is simply a onstant one afterward.

Simpli�ation of informative singleton types

In the partiular ase of the extration of the indutive type sig, one an go one step

further in the simpli�ations. Indeed, it is notieable that there remains only one argument to

Exist after the previous transformation. Sine sig has one argument, its extrated version

is now a simple enapsulation. It is then preferable to remove this layer of enapsulation.

So we simply onvert the type (a sig0) into a, and the term Exists(t) into t. Finally

we need to represent a pattern mathing on an objet of type sig: the term math e with

Exists(x) → t orresponds now to let x = e in t.

This simpli�ation extends to the types known as informative singletons, that is having

one onstrutor, and whose single onstrutor has only one argument after extration

6

.

This treatment of informative singleton types allows to gain in memory oupation, in

omputation times and also in readability. In addition to that, we then obtain the awaited

behavior for the extration with respet to the informative existential quanti�ation: starting

with a Coq proof whose statement has the form ∀x:t, P x → ∃y:u, Q y, we now obtain

a funtion of type t → u, and not of type t → U sig0.

Reords

The other ategory of indutive types that reeives a partiular treatment during extra-

tion are the indutive types de�ned via the delaration Reord of Coq. For example:

Reord paire (A B:Set) : Set := { gauhe : A ; droite : B }.

At the internal level, these Coq reords are not primitive, but translated into indutive types.

Our example is thus stored by Coq under the form:

Indutive paire (A B:Set) : Set := Build_paire : A → B → paire A B.

6

To be ompletely aurate, one should also hek that the type of this unique remaining argument does

not mention the original indutive type, otherwise this simpli�ation is erroneous.

132 Certi�ed funtional programming

The advantage of the Reord delaration is that Coq generates automatially

7

from this

delaration two projetion funtions gauhe: (pair A B) → B and droite: (pair A B)

→ B.

During the extration, it is absolutely possible to stay unaware of the fat that the type

paire has been de�ned as a reord. This type would then be extrated like a standard

indutive type:

let ('a,'b) paire = Build_paire of 'a *'b

And the assoiated projetions would then be mathings, for example:

let gauhe = funtion

| Build_paire (x, y) → x

At the same time, it is preferable to bene�t from the possibilities of Oaml

8

, by using

its primitive syntax for the reords. This allows in partiular to reah diretly a reord �eld

via the �dotted notation�, here for example p.gauhe, whih is slightly more e�etive than

a projetion by mathing. Moreover, the readability of the extrated ode is also improved.

Let us illustrate the hange for the primitive reords of Oaml with our small example:

• The extrated type is now:

type ('a,'b) paire = { gauhe : 'a; droite: 'b }

• The projetion funtions are then provided only for ompatibility, in ase they are

used without argument:

let gauhe x = x.gauhe

• And for eah projetion oming with its argument, rather than using the funtional

form (gauhe p), we now produe p.gauhe.

• Eah use of the onstrutor Build

_

paire, as in (Build

_

paire G d), beomes a reord

{gauhe=g; droite=d }. Note that during the preeding transformations of indutive

ones, any partial appliation of this onstrutor has already been initially η-expanded.

• Lastly, any pattern mathing on a type that beomes a reord is adapted as follows:

math p with Build_paire (x,y) → ...

beomes:

math p with {gauhe=x; droite=y} → ...

7

It is neessary to note that the generation of some projetion funtions is sometimes impossible for

typing reasons.

8

There also exists in Haskell some primitive reords, but the extration does not use them yet.

4.3. Extration and ode optimizations 133

Originally, the need of an improved extration of the reords was felt during the �rst

extration tests of the C-CoRN projet (see hapter 6 for more details). Indeed, this deve-

lopment uses abundantly algebrai strutures de�ned via reords. And these strutures are

onneted by oerions whih are in fat some projetions. At the level of the Coq develop-

ment, these oerions remain impliit, thus invisible. But on the level of the extrated ode,

the least addition of two reals in this formalism makes then intervene 7 projetions. Any

pro�t of e�etiveness and readability at this level is then appreiable.

4.3.3 Unfolding the body of some funtions

The transformations presented up to now ould modify the types of the extrated ob-

jets. We now go on a seond ategory of transformations, that preserve the type of the

extrated objets. The �rst of these transformations onsists in replaing some names of

funtions by their bodies. In other words, during the extration time, we antiipate the

δ-redution of these funtions. Obviously, suh unfoldings are not to be performed systema-

tially, otherwise the returned ode would beome giganti. But we will see that in ertain

preise ases, these unfoldings are ruial for the e�ieny of the extrated ode in Oaml.

In fat there was already suh a mehanism of unfolding in the old extration. We used this

previous mehanism as inspiration whereas modifying some of its riteria. Moreover this

former mehanism has never been doumented, up to our knowledge.

Let us �rst study the indution priniple

9

bool

_

ret assoiated to the boolean type.

This funtion is automatially generated by Coq at the time of the de�nition of the type

bool. Its type is:

∀P:bool→Type, P true → P false → ∀b:bool, P b

And its extration is:

let bool_ret f f0 = funtion

| True → f

| False → f0

In this de�nition, f orresponds to the proof of (P true) and f0 to the proof of (P false).

One an naturally note that aording to the value of the third boolean argument applied

to this funtion, only one of the terms f or f0 will really be used. However any appliation

(bool

_

ret a a' b) leads in Oaml to the evaluation of a and a', beause of the strit

evaluation strategy of the arguments in this language. Of ourse, that an be trivial if a and

a ' are simple values like 0, or funtional losures whose evaluation stops immediately. But

if a and a' arry out expensive omputations, that an be annoying.

A solution to avoid these super�uous evaluations is then to replae bool

_

ret by its

de�nition, and then evaluate symbolially its arguments. This then will have for e�et of to

push the arguments a and a' under a mathing, in branhes that are mutually exluded:

9

In fat, there are normally three suh priniples, one for eah sort of Coq. But we will onsider only the

one over Type, named bool

_

ret. The two others, bool

_

re and bool

_

ind, are in fat only alias.

134 Certi�ed funtional programming

bool_ret a a' b

beomes:

(fun f f0 b = math b with True → f | False → f0) a a' b

that we immediately simplify into:

math b with True → a | False → a'

In indution priniples with more than two onstrutors, there always exists suh argu-

ments that will be redued by Oaml even if some of them are in fat useless. But one an

also meet this situation in several other loations. The strategy of the extration towards

Oaml is then the following one:

• All the priniples of indution are unfolded, even for indutive with less than two

onstrutors. Indeed, in addition to the interest in term of e�ieny, this leads experi-

mentally to an extrated ode whih is loser to what an human would have written,

and thus more readable. In partiular, the tatis elim and indution use systema-

tially the indution priniples and never the underlying �xpoint and mathings.

• For the other funtions, one arries out an unfolding when the two following onditions

are met:

� the body of the funtion is not too large, i.e. in pratie of size lower than a

arbitrary limit �xed at ten syntati onstrutions.

� ertain arguments are deteted as potentially useless, for example present under

only one branh of a mathing.

Of ourse, this is an heuristi trade-o� between opposed requirements, whih an ertainly

be still improved. Until more omplete investigation of this subjet, we have at least given

to the user the possibility of ontrolling these unfoldings more �nely:

• With the ommand Set (resp. Unset) Extration AutoInline, the user an ativate

(resp. deativate) our automati mehanism of unfolding.

• It is also possible to fore the unfolding or the non-unfolding of a partiular objet t

with Extration Inline t or Extration NoInline t.

To illustrate the ritial aspet of these unfoldings for the e�ieny, we now study a

onrete problem appeared one day where an unfortunate modi�ation in the extration

soure ode has ompletely deativated the automati unfolding. An extrated example

10

,

whih normally runs for a few seonds, was still running this partiular day even after ten

hours. The faulty funtion was a funtion omparing two Peano integers, lt

_

eq

_

lt

_

de.

At that time, this funtion was built by a double indution on its two arguments

11

. This

10

In fat the ontribution Roq/COC.

11

In fat, the seond indution is useless here and has sine been replaed by a simple ase analysis. And

this hange in the proof solves almost ompletely the problem of e�ieny of the non-unfolded extrated

version. But who is onerned by suh details when the �rst goal is to �nish a proof?

4.3. Extration and ode optimizations 135

leads after extration to a term ontaining two levels of nat

_

ret, whih is the indution

priniple assoiated with the type nat:

let lt_eq_lt_de n m =

nat_ret

(fun m0 → nat_ret (Inleft Right) (fun m1 iHm → Inleft Left) m0)

(fun n0 iHn m0 → nat_ret Inright (fun m1 iHm → iHn m1) m0)

n m

The details of this ode are not so relevant, only this double level of nat

_

ret. Here is the

same funtion after the automati unfolding of funtions:

let re lt_eq_lt_de n m =

math n with

| O → (math m with

| O → Inleft Right

| S n0 → Inleft Left)

| S n0 →
(math m with

| O → Inright

| S n1 → lt_eq_lt_de n0 n1)

If we study this unfolded version, it is lear that the omparison between two integers of

Peano n and m will involve a number of reursive alls that is min(n, m). On the other hand,

the not-unfolded previous version has a quite di�erent behavior. That an seem strange,

beause even if nat

_

ret evaluates its arguments, they are only funtions here. But if one

looks in detail the sequene of the funtion alls (with #trae by example), one realizes that

these unneessarily evaluated funtions will nevertheless meet some arguments, be redued,

and �nally make the omplexity explode.

The reursivity being hidden behind the funtion nat

_

ret, we ount here the number of

alls to this funtion. Here is the table reapitulating the number of these alls with respet

to the value of the input integers n and m:

m

n 0 1 2 3 4 5 6 7 8 9 10

0 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8 9 10 11 12

2 2 3 5 8 12 17 23 30 38 47 57

3 2 3 5 9 16 27 43 65 94 131 177

4 2 3 5 9 17 32 58 100 164 257 387

5 2 3 5 9 17 33 64 121 220 383 639

6 2 3 5 9 17 33 65 128 248 467 849

7 2 3 5 9 17 33 65 129 256 503 969

8 2 3 5 9 17 33 65 129 257 512 1014

9 2 3 5 9 17 33 65 129 257 513 1024

10 2 3 5 9 17 33 65 129 257 513 1025

One notes in partiular that to omparing an integer n with itself involve 2n + 1 alls to

136 Certi�ed funtional programming

nat

_

ret. In fat, if we name N m

n

these all numbers, one an note that N m

n

−N m-1

n

= Cm

n

.

The olumns of this table are thus partial sums of Cm

n

starting from 2, and one hene �nds

again the partiular ase of the diagonal. We do not justify more these formulas giving N m

n

,

but it is not (too muh) di�ult to establish for example N n

n

= 2n + 1 starting from the

ode of lt

_

eq

_

lt

_

de.

In any ase, omparing this way 30 and 32 generates more than one billion alls of

nat

_

ret! The unfolding of nat

_

ret transforms here an exponential funtion into a linear

one.

4.3.4 Code improvements: optimization or deeleration?

The onlusion of the preeding example is that it is very deliate to predit whih will

be the form of the extrated ode when one looks at the original proof sript made of long

sequenes of tatis like indution or auto. And very often the raw extrated ode does

not orrespond at all to what an human would have written. In addition to the readability

problem, this an implies e�ieny problems, as we have just seen. And this is partiularly

obvious with a strit language like Oaml.

In addition to its problem with nat

_

ret, the preeding funtion lt

_

eq

_

lt

_

de also

illustrates a ase of stupid extrated ode. Without one of the extration optimizations,

the extration of this funtion would ontain instead of the reursive all (lt

_

eq

_

lt

_

de

n0 n1) a subterm being worth:

math lt_eq_lt_de n0 n1 with

| Inleft x →
(math x with

| Left → Inleft Left

| Right → Inleft Right)

| Inright → Inright

Obviously, deonstruting an objet to rebuild it identially has no interest, even if it is

hardly expensive here. And no programmer will ever write suh a ode spontaneously. The

reason of these surprising mathings is to be sought in the logial parts, erased during

the extration. Indeed, the onstrutors left, right and inright of the indutive types

sumbool and sumor arry at �rst a logial argument eah. And the initial mathings in Coq

are in fat useful to modify these logial arguments. The extration then tries to simplify

suh mathings.

More generally, the extration applies a ertain number of transformations aimed at

giving the produed ode a more usual aspet. Here the detail of these transformations:

0. (ode=1) Elimination of internal logial residues.

1. (ode=2) Improvement of the printing for funtions de�ned by �xpoint.

2. (ode=4) When a mathing is at the head of another mathing, one permutes the

order of these two mathings if some simpli�ations our in all new branhes.

3. (ode=8) A mathing on bool, sumbool or sumor building again what it just has

deonstruted is removed

4.3. Extration and ode optimizations 137

4. (ode=16) This optimization extends the previous one to all types of mathings.

5. (ode=32) A mathing in whih all branhes produe the same result is replaed by

this result.

6. (ode=64) If all the branhes of mathings begin with one abstration, one moves this

abstration in front of the mathing.

7. (ode=128) One propagates the arguments of one mathing inside its branhes.

8. (ode=256) One permutes the appliations and let-in.

9. (ode=512) An abbreviation let x=u in t is unfolded if x appears at most one in

t.

10. (ode=1024) a β-redex ((fun x → t) u) is redued if x appears at most one in u.

If one wishes to deativate all these transformations, it is enough to use the ommand

Unset Extration Optimize. If one wishes on the ontrary to return to the default si-

tuation where (almost) all transformations are ativated, one an use the ommand Set

Extration Optimize. Between these two extremes, version 8.0 of Coq makes it possible

to re�ne the preferenes via the ommand Set Extration Flag N, where n is an integer

between 0 and 2047, orresponding to the sum of the binary odes of the transformations

the user wants to ativate. For example, if one wish all to be ativated exept the transfor-

mation n

o

4, of ode 16, one use n = 2047− 16 = 2031. By the way, this value orrespond in

fat to the default situation enfored by Set Extration Optimize, and we will see why

in a moment.

One an wonder why suh a mehanism �à la arte� for ontrolling the behavior of

the extration. The problem is that these transformations are not always optimizations,

sine they rely on some heuristis whih were not yet the subjet of deep studies, and an

perfetly appear harmful in ertain situations. Worse, a transformation reently turned out

to be perilous for the good typing of the extrated terms.

Let us see now in detail whih bene�t and onern one an wait from eah transformation.

0. These internal eliminations of logial residues are a priori always bene�ial.

1. This embellishment of �xpoint an sometimes alter the arguments of the internal

reursive alls, making these alls less e�etive.

2. This permutation of two mathings an inrease the size of the ode, or derease it,

depending of further simpli�ations that an be applied on eah new branh.

3&4. We delete here the previously mentioned �stupid� mathings. This is a priori benign,

but let us take the following example:

type 'a t = T

let f a = math a with T → T

It is then very tempting to hange f into let f a = a, but its type would be then

'a t →'a t and not any more 'a t →'b t. A fast remedy for this problem was to

split this transformation in two, with on one side a sure part ating only on known

types like sumbool, and on the other side a not-sure part deativated by default. In

138 Certi�ed funtional programming

pratie the optimization n

o

3 is enough for simplifying the usual situations of �stupid�

mathings. In addition, optimization n

o

4 is not so dangerous: an user ativating this

option will likely obtain orretly typed ode, whih is then ompletely orret.

5. This optimization is normally without disadvantage.

6. Moving up λ-abstration in front of a mathing an lead to multiple evaluations of

the head of this mathing, but an also improve the deletion of the logial residues by

other transformations.

7. This option dupliates ode, but an also help to propagate simpli�ations.

8. A term as ((let x = t in u) v) is little natural, and hides the fat that v is morally

an argument of u, whih prevents from possibly applying others simpli�ations. It

seems benign to permute the appliation and the let-in, in order to obtain let x

= t in (u v). Unfortunately, we have met one a situation where this permutation,

ombined with η-expansions intended to overome some limitations of Oaml, produed

in fat a permutation between a funtion and a let-in, whih orresponds to the next

ase, and is not always desirable.

9. This unfolding of a let-in, even linear, is debatable, onsidering that a omputation

initially fatorized an then be found in one funtion, and thus been arried out several

times. But this omputation an also be moved in a branh whih is never evaluated.

In addition, funtions generated by tatis ontain very often partial appliations like

let g = f x in g y. This an lead to the omputation of many useless intermediate

losures, and prevents the Oaml ompiler from optimizing the total all f x y as it

should.

10. The problems are the same as in the previous ase.

These transformations are then to be used with great preautions. All the di�ulty is that

the Coq ode to be extrated an as well ome from proof by tatis or from funtions written

diretly in the funtional language of Coq. In the �rst ase, the di�ulty in ontrolling the

preise underlying proof term implies that one has to expet many transformation before

obtaining some reasonable extrated ode. But in the seond ase, the best thing to be done

is to leave the term intat to respet the hoies of the user. In any event, it is illusory to

always hope to �nd the most e�etive ode, hene the interest in allowing the user to make

his hoies among the suggested transformations.

The extration urrently makes the hoie to privilege the improvement of ode oming

from proofs, to the possible detriment of the diretly written ode. All possible optimizations

are thus ativated, exept the one endangering the typing, that is the n

o

4.

This urrent situation of optimizations is �nally far from satisfatory:

• No orretness guarantee other than a visual inspetion of the transformation rules.

• Improvement of the e�ieny and readability on average, but presene of harmful

partiular situations.

• Possibility of a manual adjustment, but whih remains rather oarse, and on the level

of a entire �le.

4.4. Current state of the atual implementation 139

This part would thus deserve a thorough study. Finally, the extration is here only a auto-

mati generator of ode. Perhaps it is neessary to move the problem of optimization to the

level of the ompiler or or to the level of a generi tool for preproessing soure ode. At

the same time, the extrated ode has a ertain number partiular features that a generi

tool would perhaps neglet, like the absene of imperative parts, or the importane of the

partial appliations. Moreover, it would undoubtedly be interesting to apply a searh for

dead-ode in the extrated ode sine the informative parts not pruned by the extration

an still ontain some.

4.4 Current state of the atual implementation

4.4.1 Desription of the ode

The implementation of the new extration of Coq made during this thesis began in

2001 with the initial assistane of J.-C. Filliâtre. This implementation has been improved

gradually, from version 7.0 of Coq until the urrent 8.0. It is urrently in a reasonable state of

stability and of funtionality, even if for example the preeding setion shows that a ertain

number of optimizations are to be re-examined.

This implementation is loated in the sub-diretory ontrib/extration of the soures

of Coq, and is urrently omposed of 3 700 lines of Oaml. The �gure 4.1 presents the

dependeny graph of the �les ontained in this implementation. More preisely:

Table Miniml

Scheme

Ocaml Modutil

Mlutil
Haskell

Extraction

Extract_env Common

Fig. 4.1: Dependeny graph of the implementation

• The interfae Miniml de�nes the abstrat syntax trees for terms and types of a MiniML

language whih is used as ommon target by the extration.

• The module Table is the �memory� of the extration, it allows for example to �nd the

extration of indutive type already met.

• The module Mlutil is a toolbox for handling terms and types of MiniML. There

is de�ned for example the substitution over terms, or the uni�ation over types, or

various optimizations over terms.

• As for Modutil, it ontains auxiliary funtions to handle the module strutures of

MiniML

• The module Extration is the heart of the extration. It is there that a Coq term is

translated into a MiniML term or type.

140 Certi�ed funtional programming

• The three modules Oaml, Haskell and Sheme are used to translate the MiniML

objets into onrete syntax of one target languages.

• The module Common fatorizes some funtions of renaming ommon to the three target-

languages.

• Lastly, Extat

_

env allows to determine whih minimal environment of Coq objets

will have to be extrated to satisfy the request of a user.

4.4.2 Small user's manual

Naturally, this small handbook will be less detailed than the entire hapter present in the

Coq Referene Manual [78℄. But sine the present manusript is meant to be a self-ontained

and omplete review of the extration in Coq, here omes a brief outline of Coq ommands

related with extration.

The extration itself

Coq < Extration plus.

Coq < Reursive Extration plus minus.

Coq < Extration "myfile" plus minus.

The �rst order is the simplest, it only prints on the sreen the extration of an objet, here

plus. The seond, on the other hand, prints in addition every dependeny of the required

objet(s). In our example, one will also see the extration of the type nat. Finally the third

order behaves exatly as the seond, exept that it writes to a �le and not on the sreen.

Normally, sine this �le ontains all the needed dependenies, it is diretly ompilable. Let

us note that when the seleted target-language is Oaml, one obtains at the same time a �le

*.ml and an interfae *.mli. Lastly, these orders also aept one module M in the plae of an

objet like plus.

Coq < Extration Library Peano.

Coq < Reursive Extration Library Peano.

These two somewhat obsolete orders are intended to extrat in one pass the omplete

ontents of a Coq library, i.e. a �le *.v ompiled and harged via a Require. In the ase of

the library Peano.v, one obtains then peano.ml and peano.mli. In the seond alternative,

the extration produes also the *.ml and *.mli �les for all the libraries on whih Peano.v

depends.

How to ontrol the extration

One an �rst modify the target language:

Coq < Extration Language Oaml.

...

/

...

4.4. Current state of the atual implementation 141

...

/

...

Coq < Extration Language Haskell.

Coq < Extration Language Sheme.

We also enounter again the ommands ontrolling the �optimizations�, already met in

previous setion 4.3:

Coq < Set Extration Flag n.

Coq < Set Extration Optimize.

Coq < Unset Extration Optimize.

Taking into aount the urrent state of these optimizations, it is sometimes preferable to

use for the moment the Unset version.

Here �nally ome the ommands ontrolling the unfolding of funtions, also desribed

already in setion 4.3:

Coq < Unset Extration AutoInline.

Coq < Set Extration AutoInline.

Coq < Extration Inline f g.

Coq < Extration NoInline h k.

Coq < Reset Extration Inline.

The axioms

It is in fat possible to use the extration in onjuntion of axioms in a development.

If a logial axiom is used, the extration only prints a warning message realling that the

orretness of the extrated ode rely on the validity of this logial axiom. And when a

development uses an informative axiom f, the extrated ode whih depends on it then

ontains an exeption announing that some missing ode have to be �lled:

let f = failwith "AXIOM TO BE REALIZED"

The user must then provide ode indeed realizing this axiom. This an be done manually in

the extrated �le, or in Coq via a speial ommand:

Coq < Extrat Constant f ⇒ "my_realizing_ode".

This ommand is only some syntati onveniene, it does not hek the ontents of the

harater string provided in realization of the axiom, but only generates:

let f = my_realizing_ode

It may be happens that an axiom is a type sheme. By example, for t : Set → Set →
Set , the following realization:

Coq < Extrat Constant t "'a" "'b" ⇒ "'a * 'b".

generates the type delaration:

142 Certi�ed funtional programming

type ('a,'b) t = 'a * 'b

Even if it does not onerns axioms, a related feature is the possibility of replaing an in-

dutive type by another at the the extration time. For example, the Coq type sumbool with

its two onstrutors left and right, presented p.29, is isomorph to bool after extration.

One an then identify these two types as follows:

Coq < Extrat Constant sumbool ⇒ "bool" ["true" "false" ℄.

4.5 A �rst omplete example

We now give as illustration the omplete extration of the funtion div of page 31. This

funtion, with pre- and post-onditions, is de�ned by using the well-foundedness of the usual

order over the Peano integers. If we extrat the funtion named well

_

founded

_

indution

used in the de�nition by tatis for our funtion div, one obtains a �xpoint ombinator à

la Y, without trae of logial parts put aside an anonymous lambda:

let re well_founded_indution f a =

f a (fun y _ → well_founded_indution f y)

And this onstant well

_

founded

_

indution will be automatially unfolded in div, leaving

�nally the desired non-strutural �xpoint.

In addition, div uses an auxiliary funtion le

_

lt

_

de used to ompare two integers.

This funtion, lose to the funtion lt

_

eq

_

lt

_

de already met, works with objets of type

sumbool. As announed right before, it is onvenient to replae sumbool by bool:

Coq < Extrat Indutive sumbool ⇒ bool [true false ℄.

The �nal step is of ourse the extration itself:

Coq < Extration "div.ml" div.

The obtained interfae div.mli is then:

type nat =

| O

| S of nat

type 'a sig0 = 'a

(* singleton indutive, whose onstrutor was exist *)

val minus : nat → nat → nat

val le_lt_de : nat → nat → bool

...

/

...

4.5. A �rst omplete example 143

...

/

...

val div : nat → nat → nat sig0

In this signature, the sig0 is nothing more that an alias realling that the type of div

was previously �nishing by one existential type. That put aside, one obtains the type

nat→nat→nat expeted for div.

Here omes �nally the �le div.ml:

type nat =

| O

| S of nat

type 'a sig0 = 'a

(* singleton indutive, whose onstrutor was exist *)

(** val minus : nat → nat → nat **)

let re minus n m =

math n with

| O → O

| S k → (math m with

| O → S k

| S l → minus k l)

(** val le_lt_de : nat → nat → bool **)

let re le_lt_de n m =

math n with

| O → true

| S n0 → (math m with

| O → false

| S n1 → le_lt_de n0 n1)

(** val div : nat → nat → nat sig0 **)

let re div x b =

math le_lt_de b x with

| true → S (div (minus x b) b)

| false → O

144 Certi�ed funtional programming

Chapitre 5

Examples of extration

Sine the beginning of the works by C. Paulin on the extration in Coq, we must admit

that no appliation of industrial sale has been ompletely erti�ed via this method. Despite

this fat, several examples of signi�ant size have been arried out. We try here to draw up

a brief panorama of these examples. Among these examples, we have seleted four of them

who have bene�ted from our new extration or ould not exist without it. These pratial

ases that we have hosen to illustrate are:

• the ontribution Lannion of J.-F. Monin,

• the ontribution Roq/HIGMAN of H. Herbelin,

• the ontribution Nijmegen/C-CoRN by the team of H. Barendregt,

• the ontribution Roq/FSets by J.-F. Filliâtre and the author.

The �rst two ontributions are detailed in this hapter. The third is overed by the following

hapter, dediated to the extration of a onstrutive formalization of real numbers. Lastly,

the fourth ontribution is desribed in the hapter 7.

5.1 The standard library of Coq

If one searh Coq developments for proofs to extrat, the �rst aessible soure is the

standard library of Coq, whih is diretly provided with the system. A good number of

funtions given as illustration up to now ome from there or are derived from funtions

available there. We have set up a test onsisting in extrating systematially all ontents of

this standard library. This test ame be found in the diretory ontrib/extration/test

of Coq soures. One in this diretory, the ommand make tree; make allows to launh the

test.

When we look in detail at the funtions extrated from this standard library, the inter-

esting objets are sparse. First of all, the majority of the results in this library are logial

properties, and thus do not appear after extration. Then, the more signi�ant omponent

of this library, namely the Reals, are out of the �eld of the extration. This is due to the

axiomati approah followed during this formalization of the real numbers, starting with:

146 Certi�ed funtional programming

Parameter R : Set.

Parameter R0 : R. (* one *)

Parameter R1 : R. (* zero *)

Parameter Rplus : R → R → R.

This is not inevitably rippling for the extration, whih an work with axioms as we have

just seen in the previous hapter. But some of these axioms orrespond to a non-onstrutive

vision but rather lassial of the reals, and thus annot be realized aurately. For example,

this is the ase for:

Axiom total_order_T : ∀r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

It is well known indeed that no exat real arithmeti an have a deidable equality. Even

more awkward, the last of the axioms, ompleteness, requests the onstrutive existene

of a smaller upper bound for any non-empty upper-bounded set of reals. However a set is

here a logial objet of type R→Prop. This axiom is thus non-realizable.

Finally, it remains after extration only elementary funtions dealing with data strutures

like Peano natural numbers, binary lists or binary integers. The latter onstitute the most

interesting part of these examples, with divisions funtions, square roots, et. One an also

�nd a sorting algorithm for lists in the diretory theories/Sorting. Finally the diretory

theories/IntMap ontains a formalization of �nite sets indexed by integers. Amongst all

these informative funtions, one �nally �nd relatively little funtions de�ned by tatis, the

only ones really interesting from the extration point of view. And the extration behaves

reasonably well on these funtions, whih all are su�iently standard not to need Obj.magi

to type-hek.

5.2 The user ontributions

The main examples base for extration is today the developments proposed the users

of Coq. These user ontributions are gathered and lassi�ed by Coq development team (by

geographial origin and topi). They are also maintained up to date with respet to eah

modi�ation of Coq and published for eah new version of Coq. It is possible to onsult the

list of the 88 urrent ontributions on the site http://oq.inria.fr/ontribs-eng.html.

Obviously, this data base of Coq developments is ertainly not exhaustive, sine it relies

on a delaration on behalf of the users. And some extremely interesting Coq developments

with respet to the extration are urrently not part of these ontributions proposed by the

users. Among suh developments, one an quote for example a deision proedure dediated

to propositional intuitionisti logi, by K. Weih [82℄, and also a stati programs analyzer

by abstrat interpretation, by D. Cahera, T. Jensen, D. Pihardie and V. Rusu [17℄. And

there exists doubtless other works whih would deserve to be quoted here exept that we

are not aware of them.

Let us return now to these user ontributions. First, several do not onern the extration,

beause they only establish results in Prop. Nevertheless, about thirty of them are relevant

5.2. The user ontributions 147

for the extration. The omplete list of these extratable ontributions an be found in

Appendix A.

If we try to somewhat lassify these multiple examples, we an �rst distinguish a ertain

number of deision proedures. Several of them onern the boolean formulas: Dyade/BDDS,

Suresnes/BDD and Sophia-Antipolis/Stalmark [56℄. As for Roq/GRAPHS, it treats of

linear (in)equalities over Z. Nany/FOUnify and Lannion solve the problem of �rst order

term uni�ation. And Roq/COC proposes an type-heker for the alulus of onstrutions.

In addition, several ontributions are entered on data strutures, and an thus be used as

basi library for other work. We an in partiular �nd some de�nitions of rational numbers,

Nijmegen/QArith and Orsay/QArith, of onstrutive real numbers in Nijmegen/C-CoRN,

of tree strutures in Bordeaux/SearhTrees, Bordeaux/ditionnaries and Orsay/FSets.

Lastly, formalizations of already quoted BDDs an also to inluded in this ategory.

On the other hand, the large variety of the ontributions prevents from pushing muh

further suh a lassi�ation. And the subjets of study are not the only variable aspet in

these ontributions. First, the size of these ontributions an go from a simple �le of 300

lines, as for Bordeaux/Exeptions, up to more than one hundred �les and 75 000 lines for

Nijmegen/C-CoRN.

The age is also very variable. Among the oldest ontributions, one �nds Roq/Higman

made around 1992 with Coq version 5.x. On the opposite, some ontributions bene�t from

reent features of Coq, like the new module system for Bordeaux/ditionnaries and

Orsay/FSets.

The authors' attitude with respet to extration di�ers also from ontributions to ontri-

butions. In ertain ases, the authors have planned from the beginning to extrat their re-

sults. For example, B. Barras has integrated in the Makefile of Roq/COC an extration

followed by the ompilation of the extrated �le and the launh of a test for this extrated

program. On the opposite, the initial developers of Nijmegen/C-CoRN, although onsious

of the theoretial possibility of extrating their work, have not onsidered it as feasible. In

several ontributions, we have emphasized the informative aspets by adding extrations,

ompilations and automati tests in the spirit of Roq/COC. This has been done during a

manual inventory of the ontributions. Perhaps it still remains some extratable examples

not yet loated in these ontributions.

Lastly, the di�ulty of extration varies largely. For example, in Lyon/Firing-Squad, the

main extrated objet is a purely informative transition funtion, written via a Fixpoint.

The extration onsists then of a simple translation into the syntax of the target language.

The program �nally obtained is nonetheless interesting beause it allows to visualize the

evolution of the states under the ation of this transition funtion, thanks to a small graphial

interfae. But the interest is very limited from the pure extration point of view. By the way,

let us note that this ase orresponds to an indiret possible use of the extration, namely

for simulating and illustrating Coq funtions. Conerning the task of the extration, we note

that there is few extrations of funtions de�ned by tatis. In addition, the majority of the

situations were working or ould have worked with the old extration.

All the preeding points explain why there remain little ontributions allowing to study

the ontributions of our new extration. in partiular, there exist only four ontributions

148 Certi�ed funtional programming

whih are extrated into untyped ode, requiring the usage of some Obj.magi : these four

ontributions are Lyon/Ciruits, Lannion, Nijmegen/C-CoRN and Roq/Higman. And we

have already announed that only two ontributions use the new module system. Lastly, we

have only tested our extration of o-indutive types towards Oaml in the situation of the

ontribution named Roq/Mutual-Exlusion. We now study more in detail some of these

ontributions bene�ting from our new extration.

5.3 Exeptions by ontinuations in Coq

We start by studying the works by J.-F. Monin onerning the erti�ation of funtional

programs with exeptions. These works [60, 61℄ were arried out between 1995 and 1997.

Historially, this is one of the two onrete situations where the old extration of Coq was

generating non-typable ode. The seond of these onrete situations orresponds to the

ontribution Roq/Higman whih we study just afterward.

5.3.1 Formalization of the exeptions in Coq

To model exeptions in Coq, J.-F. Monin uses a translation by ontinuation (CPS, for

�ontinuation passing style�). We enter diretly in the ore of this method, the reader eager

to �nd an more gradual introdution to these works an refer to [61℄. Here omes, �rst of all,

the type sheme used to express the result type of a funtion that an raise an exeption:

Definition Mx (C:Prop)(A:Set) :=

∀(X:Set)(P:Prop), (P→X) → (C → P) → (A → X) → X.

Here, the informative type A is the �usual� return type for the funtion that we onsi-

der, whereas C is a logial ondition implying the raising of an exeption. The presene of

the quanti�ation on X orresponds to the translation by ontinuation

1

. Lastly, P and the

following argument e of type P→X represents the manner of building the result X of the

ontinuation in ase of an exeption. Finally, the type (Mx C A) an be seen as a sum type

A∨C, representing the two possible exits, standard or exeptional, of our funtion.

Let us now see how to manufature values in this type:

Definition Mx_unit (C:Prop)(A:Set)(a:A) : Mx C A :=

fun X P e i k ⇒ k a.

Definition Mx_raise (C:Prop)(A:Set)(:C) : Mx C A :=

fun X P e i k ⇒ e (i).

The �rst funtion orresponds to the normal result: if one sueeds in building an objet a of

type A, it is enough to apply it to the urrent ontinuation k of type A→X. On the ontrary,

the seond funtion deals with the raising of an exeption: if one obtains a proof stating

that one is in the exeptional situation C, one uses the mehanism of exeption generation,

namely the funtions i then e of the respetive types C→P and P→X.

1

Without the exeptions, this translation would have onsisted in hanging A into ∀X, (A→X)→X.

5.3. Exeptions by ontinuations in Coq 149

Here ome now two funtions allowing to treat the exeptions. The �rst orresponds to

an ase analysis:

Definition Mx_try (C:Prop)(A:Set)(m:Mx C A)(X:Set)(k:A→X)(e:C→X): X :=

m X C e (fun p ⇒ p) k.

In other words, if one an always generate a result of type X starting as well from a normal

value of type A or from an exeption of type C, then one an always build a result in X

starting from an objet m in the sum type (Mx C A). In addition, one an pass from a type

with exeptions to another type with exeptions by the means of the following funtion:

Definition Mx_bind

(A A':Set)(C C':Prop)(m:Mx C A)(f:A→Mx C' A')(j:C→C') : Mx C' A' :=

fun X P e i k ⇒ m X P e (fun ⇒ i (j)) (fun a ⇒ f a X P e i k).

This operator allows in pratie to ompose two funtions being both able to raise exeptions.

5.3.2 Imprediativity and typing of the extrated funtions

The ontribution Lannion uses the imprediativity of Set (f page 23) for the type Mx.

Indeed, this type, whih ontains a universal quanti�ation on X:Set, should a priori be

in Type. But if we ativate the imprediativity of Set, Mx an then be of type Set. As

a onsequene, this allows to take X=(Mx C A) inside (Mx C A). This situation ours for

example when one builds a result of type Mx C A via a Mx

_

try. Suh an imprediative

situation is a strong indiator of the presene of typing errors in the raw extrated ode.

J.-F. Monin noties moreover p.48 of [61℄ that problems our for �xpoint (translated into

ontinuations) of the shape:

let re f x = ... try ... f y ... with ...

We will see thereafter that the imprediativity alone does not involve neessarily the need

for Obj.magi in the extrated ode, and also that Obj.magi an appear without any

imprediative objets. Historially anyway, the need for Obj.magi in the extrated ode

was felt initially in Lannion and Roq/Higman, two ontributions using the imprediativity,

and that is not by hane.

5.3.3 The extration of this development

If we stik to the extration of types exposed in hapter 3, the type Mx is translated in a

very approximate way, beause of its two universal quanti�ations, the seond being logial

in addition:

type 'a mx = __ → __ → (__ → __) → __ → ('a → __) → __

On the other hand, in the type of Mx

_

unit and Mx

_

raise, this type sheme Mx is used in

head position, and its universal quanti�ations ends on the �rst level of types. Improvement

150 Certi�ed funtional programming

of types desribed in setion 3.5.4 gives then a type muh more standard to these two

funtions:

(** val mx_unit : 'a1 → (__ → 'a2) → ('a1 → 'a2) → 'a2 **)

let mx_unit a e k = k a

(** val mx_raise : (__ → 'a2) → ('a1 → 'a2) → 'a2 **)

let mx_raise e k = e __

We an see in partiular that the extration of these two funtions do not require the use

of Obj.magi, even if their later use an need some. On the other hand, the situation gets

worse for Mx

_

try, sine Mx is then found in the type of one of the arguments of this funtion,

and not any more in head position.

(** val mx_try : 'a1 mx → ('a1 → 'a2) → (__ → 'a2) → 'a2 **)

let mx_try m k e = Obj.magi m __ __ e __ k

We see that an Obj.magi appears. For example, the argument e of Mx

_

try has a type C→X

on the Coq level, whih beomes

__→' a2 on the Oaml level sine C is logial and sine we

try to transform X into a type variable aording to the improvement 3.5.4. But the objet

m of type (Mx C A) expets on the Oaml level a third argument, of type

__→__

. The use

of an Obj.magi is thus neessary if one wishes to keep the type of e as generi as possible.

In fat, if we would not have applied the improvement 3.5.4, the type of mx

_

try would

have been made up primarily of

__

, and this funtion would have been typable without

Obj.magi. But proeeding this way would do nothing but delay the problem, here at the

time of the use of mx

_

try.

Lastly, for Mx

_

bind, the situation is similar to that of Mx

_

try:

(** val mx_bind :

'a1 mx → ('a1 → 'a2 mx) → (__ → 'a3) → ('a2 → 'a3) → 'a3 **)

let mx_bind m f e k =

Obj.magi m __ __ e __ (fun a → Obj.magi f a __ __ e __ k)

5.3.4 Usage of these exeptions

The ontribution Lannion ontains a ertain number of appliations of these exeptions

to pratial ases. We now desribe the extration of these various ases.

Uni�ation of �rst order terms

In diretory Lannion/ontinuations/FOUnify

_

ps, J.-F. Monin extends the study by

J. Rouyer of a deision proedure for the uni�ation of �rst order terms (f Nany/FOUnify).

Simply, in the event of an uni�ation failure for two subterms, an exeption is now raised

instead of �nishing to treat all remaining omputations.

5.3. Exeptions by ontinuations in Coq 151

In this simple ase (only one exeption, without ontents), J.-F. Monin use in fat a

simpli�ed version of the exeptions presented previously, without polymorphism related to

the ∀X. Instead of Mx, the type of the exeptions is:

Definition Nx (X:Set)(P:Prop)(e:P→X)(C:Prop)(A:Set) :=

(C → P) → (A → X) → X.

And the fat of having X, P and e in parameters rather than in universally quanti�ed variables

largely improves the auray of the extrated type:

type ('x, 'a) nx = __ → ('a → 'x) → 'x

And the last remaining

__

orresponds to the logial argument of type C→P. Finally, the

extrated uni�ation program is diretly typable without Obj.magi, a fat that J.-F. Monin

has already noted in [61℄:

This example only inludes one try... with whih is outside the all to a re-

ursive funtion. The imprediativity of Mx is thus not put at ontribution, the

extrated program is typable in ML.

And our extration does not generate here any super�uous Obj.magi.

Traversal of trees with exeptions

Here omes the examples of the diretory Lannion/ontinuations/weight. The goal

is now to ompute the �weight� of a binary tree, namely the sum of all integers present at

its leafs. And the use of exeption is gradually introdued in order to answer the following

(arbitrary) onstraints:

• One stops the traversal if the urrent partial sum exeeds a ertain preset quantity.

• One also stops the traversal if one meets a zero in one of the leafs.

In pratie, these examples use exeptions of the same kind as the preeding example of

uni�ation, i.e. with a parameter X �xed in advane instead of an universal quanti�ation on

X. During extration, one an note that these examples are more omplex that the previous

uni�ation: some Obj.magi appear indeed. But these Obj.magi are used here just to

ensure the onformity of the type of eah subterm with the hoies of our extration of

types. And in fat the extrated ode remains typable here if these Obj.magi are removed.

Hu�man's algorithm

The diretory Lannion/polyont ontains the �rst true example using the imprediative

situation identi�ed by J.-F. Monin, namely the use of exeptions in a reursive loop. As

reminder, the Hu�man's enoding algorithm assoiates a path

2

in a tree t to an objet a

that we wish to enode. Here is a manually oded version:

2

that is a list of diretions L or R

152 Certi�ed funtional programming

let enode a t =

let re lookup = funtion

| Leaf → raise Not_found

| Node(t1,b,t2) →
if a=b then [℄

else try L::lookup t1 with Not_found → R::lookup t2

in lookup t

And here omes the version �nally extrated from the Coq proof of J.-F. Monin:

(** val lookup : 'a1 → 'a1 tree → (__ → 'a2) →
(diretion list sig0 → 'a2) → 'a2 **)

let lookup a t e x =

let re lookup0 = funtion

| Leaf → (fun _ _ x0 _ x1 → x0 __)

| Node (t1, b, t2) →
(math eg a b with

| true → (fun _ _ x0 _ x1 → x1 Nil)

| false →
mx_try (Obj.magi lookup0 t1) (fun h _ _ x0 _ x1 →

x1 (Cons (L, h))) (fun _ _ _ x0 _ x1 →
mx_bind (Obj.magi lookup0 t2) (fun l2 _ _ x2 _ x3 →

x3 (Cons (R, l2))) x0 x1))

in lookup0 t __ __ e __ x

(** val enode : 'a1 → 'a1 tree → diretion list sig0 **)

let enode a t =

mx_try (fun _ _ x _ x0 → lookup a t x x0) (fun x → x) (fun _ → Nil)

It is thus notieable that this version is very omplex, and ontains two Obj.magi (plus

three hidden behind mx

_

try and mx

_

bind). In fat, as already remarked by J.-F. Monin,

only one Obj.magi in front of mx

_

try is su�ient.

In addition, the presene of the Obj.magi seems to interat badly with the optimizations

normally arried out by the extration, whih usually allows to remove the majority of the

logial residues

_

and

__

. We intend to improve that in the future.

In any ase, the generated ode, without being elegant, has the advantage of being

generated automatially, inluding the Obj.magi, and of being diretly ompilable.

Maximal sharing of ommon subterms

We will not develop the last example of this ontribution, namely a tree transformation

with maximum sharing of subtrees. Indeed the behavior of this example with respet to the

extration is similar to the one of Hu�man.

5.4. Higman's lemma 153

5.4 Higman's lemma

We now study the extration of another ontribution taking advantage of the impredia-

tivity, namely Roq/Higman. This ontribution is a onstrutive proof of Higman's lemma

in the ase of words on an two letter alphabet, implemented in Coq by H. Herbelin around

1992.

Higman's lemma is a ombinatorial result whih stipulates that for any sequene wn of

words on a �nite alphabet, there exists two indies i < j suh that wi is a sub-word of wj ,

in the sense that it is enough to remove some letters of wj to obtain wi. We note wi ✂wj the

latter relation on words. This lemma also has a formulation in term of well quasi-orders, this

time on alphabets that are not neessarily �nite any more. Sine the alphabet onsidered

here has only two letters, we do not use this generalized formulation.

This result gave plae to a lot of works in the intuitionisti ommunity, aiming at building

a onstrutive proof of whih the algorithm derived by extration is the most e�etive

possible. Instead of realling here the omplete history of these works, we prefer to refer the

interested reader to the very good manusript of M. Seisenberger [74℄, and in partiular to

the synopti table p.47. For replaing the formalization of H. Herbelin in its ontext, let us

just mention that an elegant lassial proof of Higman's lemma has been found by Nash-

Williams in the sixties, i.e. ten years after the work of Higman. This proof is based on an

reasoning known as of �minimal bad sequene�. Then several years later, in 1990, C. Murthy

has formalized this lassial proof in Nuprl in order to obtain from it a onstrutive version

by using the A-translation of Friedman. Independently, H. Herbelin formalized around 1992

an A-translation �when required� in Coq, introduing a minimum of double-negations.

But it quikly appeared that the algorithm orresponding to this initial onstrutive

proof had very bad omputational properties, as we will see thereafter. This is why many

other onstrutive proofs of this lemma has been proposed later on, suh as for example [63℄

or [21℄. Aording to H. Herbelin:

The motivation of T. Coquand was not so muh the extration, but the unders-

tanding of the share of imprediativity needed in the proof, in fat indution on

trees with in�nite branhing, as well as the symmetrization of the proof, that is

abstrating oneself to the need of ordering the alphabet. I should also add his very

strong quest for elegane, and his onern of aessing the very ore of mathe-

matial theorems.

The proof of [21℄ is in fat a reformulation of the one by Nash-Williams, in whih the

reasoning by ontradition has been made positive via the use of some ad ho indutive

types. This proof suggested by T. Coquand and D. Fridlender has sine been formalized in

Minlog by M. Seisenberger [74℄ and in Isabelle by S. Berghofer [13, 14℄. Lastly, S. Berghofer has

reently adapted his Isabelle proof into Coq. This new Coq formalization of Higman's lemma,

whih forms now a user ontribution named Muenhen/Higman, is partiularly onise while

providing at the same time an extrated ode exessively more e�etive than the ode

extrated from Roq/Higman.

154 Certi�ed funtional programming

5.4.1 Higman and the imprediativity

We �rst illustrate the mehanism of the proof formalized by H. Herbelin, whih is origi-

nally due to Nash-Williams for its lassial part, then transformed of onstrutive proof by

A-translation. In partiular we now detail how this formalization relies strongly on impre-

diativity, and how this fat implies the presene after extration of type non expressible in

ML.

The proof is done by reasoning on an hypothetial �minimal bad sequene�. In this

ontext, a �bad sequene� is a suession of words whih would invalidate Higman's lemma.

Here sequenes are formalized via informative relations

3

(i.e. on Set) onneting integers

and words:

Definition seq := nat → word → Set.

Setion Bad_sequene.

Variable f : seq.

Definition exi_im := ∀n, (∀x, f n x → A) → A.

Definition uniq_im := ∀n x y, f n x → f n y → (x = y → A) → A.

Definition ex := ∀i j x y, f i x → f j y → i < j → x ✂ y → A.

Indutive bad : Set := bad_intro : exi_im → uniq_im → ex → bad.

End Bad_sequene.

The properties exi

_

im and uniq

_

im stipulate that our relation f is in fat funtional, by

requiring respetively the existene and the uniqueness of the image of an integer n by f. On

the way, one an note the e�ets of the A-translation. Intuitively, A plays the role of False,

but will be �nally used to ontain the result of the onstrutive algorithm. For example,

(∀x, f n x → A)→A is to be read informally as ¬(∀x, ¬(f n x)), whih is lassially

equivalent to ∃x, f n x. Then, the property ex express the fat that f invalids indeed

Higman's lemma. And �nally, a sequene f is �bad� if we have (bad F), that is the three

preeding onditions are met.

One spei�ed what is a �bad sequene�, let us pass now to the de�nition of a �minimal

bad sequene�:

(* To be equal on the n-1 first terms *)

Definition eqgn (n : nat) (h h' : seq) :=

∀i, i < n → ∀s t, h i s → h' i t → (s = t → A) → A.

(* To be minimal on the nth term *)

Definition Minbad (n : nat) (h : seq) (y : word) :=

...

/

...

3

H. Herbelin told us that this use of relations, and as a onsequene the use of imprediativity, allows to

avoid the use of the desription axiom neessary to the proof via funtions.

5.4. Higman's lemma 155

...

/

...

∀h' : seq, bad h' → eqgn n h h' → ∀z, h' n z → z ≺ y → A.

(* To be minimal on the first n-1 terms *)

Definition Minbadns (n : nat) (h : seq) :=

∀p, p < n → (∀y, h p y → Minbad p h y → A) → A.

(* The minimal (bad) ounter-example *)

Definition Minex (n : nat) (x : word) :=

∀C : Set,

(∀h : seq, bad h → Minbadns n h → h n x → Minbad n h x → C) → C.

Let us detail mostly the last de�nition. One reognizes there in fat the imprediative

enoding of an universal quanti�ation, hene Minex means informally:

Definition Minex (n : nat) (x : word) :=

∃h:seq, bad h ∧ Minbadns n h ∧ h n x ∧ Minbad n h x.

One an also interpret Minex as an in�nite union over all sequenes. And the imprediative

harater of this enoding omes of ourse from the quanti�ation over all the types C:Type,

while at the same time we wish Minex to be a sequene, and thus has a result in Set.

After having built this smaller bad sequene in an abstrat way, the proof then establishes

that, if there is a bad sequene (not neessarily minimal), then Minex is also a bad sequene

(i.e. we have bad Minex). The next step is to derive from any bad sequene another smaller

bad sequene. By examining the sequene thus derived starting from Minex, we �nally

obtain a ontradition (that is a proof of A) by taking into aount the minimality properties

of Minex. Choosing A arefully allows to onlude, here to get that ∃i j, i<j → f i ✂

f j.

5.4.2 The extration of Higman

Historially, this formalization was extrated by H. Herbelin around 1992, by using a

version 5.x of Coq. This was one of the �rst versions of the Coq extration, implemented

then by C. Paulin and B. Werner. The target languages for extration during these �rst

experiments were Caml Lourd and also LazyML, a lazy version of ML, whih one still �nds

today as base for the hb ompiler for Haskell.

In addition to the interest of lazyness, lose to the redution strategy of Coq, LazyML pre-

sented as other interest at that time to have an ompilation option deativating ompletely

the type-heking.

In fat, we have observed that there is only one loation in all the extrated ode whih

requires a workaround for getting ML typability. This is rather surprising ompared to the

entral role of Minex in the formalization and its ML-inompatible type. The urrent extra-

tion retrieve indeed automatially this problemati point, and inserts there an Obj.magi :

156 Certi�ed funtional programming

let snake badf f0 f_0_f0 a h n h0 h1 =

xa_elim a n h1 (fun y h3 →
Obj.magi h3 __ (fun _ h5 h6 h7 h8 →

h8 __ (badfx (badMin badf f0 f_0_f0) a h n (Leastp_intro (h1, h0)))

(fun x _ x0 x2 x3 x4 x5 →
eqgn_fxMin_h badf f0 f_0_f0 a n h5 h6 x x0 x2 x3 x4 x5) y (Fxtl

(n, (Leastp_intro (h1, h0)), h3)) __))

On the other hand, just as for Lannion, some other �super�uous� Obj.magi are also added.

They are used to make oinide the approximate type hosen for Minex and the types of

the funtions handling suh Minex objets. If the goal is only to ompile the �le higman.ml

reated by the extration, then these 14 additional Obj.magi an be removed. But then

the obtained �le is not any more ompatible with the interfae higman.mli automatially

generated.

Let us return now to the study of the obtained program. The extrated ode is relatively

short (435 lines) but inomprehensible even with a good preliminary knowledge of the initial

proof, as shown by the previous exerpt. Conerning the exeution of this program, it is

possible, at least for small examples:

./higman 101 0110 01010

f(0)=101

f(1)=0110

f(2)=01010

f(3)=...

==> f(0) is inluded in f(2)

This display has been printed by the standalone program obtained by ombining the extra-

ted ode with a small manual interfae allowing a simple input of a word sequene pre�x to

test (see the ontents of ontribution Roq/Higman). This interfae also allows to randomly

hoose words to test the behavior of the algorithm when it must explore longer sequenes

and/or larger words. But these tests quikly enountered an ine�etive behavior of the pro-

gram. Indeed, as soon as the pre�x to manipulate ontains more than a dozen elements, it

beomes frequent to obtain a fast but disappointing answer:

./higman --random

Fatal error: exeption Stak_overflow

We have also tested an extration to Haskell

4

. As the extration does not generate yet

any unsafeCoere (the funtions equivalent to Obj.magi in Haskell), we have inserted one

manually in the funtion snake. We then obtain a program with a di�erent behavior: no

more stak over�ows, but really slow omputation times. For example, we easily exeed

one minute of omputation on a reent mahine for a sequene for whih the pre�x to be

4

Unlike the extration to Oaml, the orresponding �les of this experimentation are not yet part of

Roq/Higman. The interested reader an still ontat the author.

5.4. Higman's lemma 157

onsidered is made of less than ten elements. And these omputation times grow very quikly

when the length of the pre�xes inreases, in an apparently exponential way.

Our experiments thus join the former analysis announing disastrous e�etiveness for the

algorithm obtained by (partial) A-translation. Moreover, taking into aount the omplexity

of the produed ode, it seems di�ult to analyze a posteriori this ode for understanding

how to improve it.

5.4.3 The new proof of Higman

We now evoke a new proof of Higman's lemma in Coq, still in the version restrited to

an alphabet of two letters. This new version, that dates bak to 2003, is due to S. Berghofer,

and is now named Muenhen/Higman as a ontribution.

This setion is intended for to illustrate the progresses arried out sine 1993 in the

searh of an e�etive onstrutive proof of Higman's lemma. On the other hand, ontrary

to all the others examples detailed starting from this hapter, the extration of this new

formalization is not of great interest from the strit point of view of the Coq extration.

Indeed, the types handled here are very simple, without reourse to the imprediativity or

to quanti�ations of an higher nature. Finally, one obtains some extrated ode perfetly

typable in ML, free from any Obj.magi, and that the old extration ould have managed.

A new approah in the proof

As mentioned in our introdution to Higman's lemma, the onept of this new forma-

lization is due to T. Coquand and D. Fridlender [21℄. This is a use of a priniple named

�bar indution�, whih is a form of indution on trees with in�nite branhing. This indution

priniple allows to turn in a positive way the reasoning by ontradition of Nash-Williams.

In fat, the urrent implementation in Coq is only an adapted version of the implementation

in Isabelle made by S. Berghofer. In addition, a similar proof was also implemented in Alf

by D. Fridlender and in Minlog by M. Seisenberger [74℄. We do not desribe here in detail

the proof, very well desribed in [14℄, p. 104. Let us simply announe that instead of relying

on an hypothetial smaller ounterexample Minex, one now de�nes a prediate bar on the

�nite sequenes of words:

Indutive L (v : word) : list word → Set :=

| L0 : ∀w ws, w ✂ v → L v (w::ws)

| L1 : ∀w ws, L v ws → L v (w::ws).

Indutive good : list word → Set :=

| good0 : ∀ws w, L w ws → good (w::ws)

| good1 : ∀ws w, good ws → good (w::ws).

Indutive bar : list word → Set :=

| bar1 : ∀ws, good ws → bar ws

| bar2 : ∀ws, (∀w, bar (w::ws)) → bar ws.

158 Certi�ed funtional programming

This prediate bar thus expresses either that one already found the two overlapping words

w ✂ v in the urrent �nite pre�x, that is to say that all prolongation of this pre�x leads

later to the validation of the lemma. This is in in fat a onstrutive formulation of the good

foundation of ✂. The key point of the demonstration is then to establish (bar nil). For

that we use two other indutive prediates:

Indutive R (a : letter) : list word → list word → Set :=

| R0 : R a nil nil

| R1 : ∀vs ws w, R a vs ws → R a (w::vs) ((a::w)::ws).

Indutive T (a : letter) : list word → list word → Set :=

| T0 : ∀b w ws zs, a 6= b → R b ws zs → T a (w::zs) ((a::w)::zs)

| T1 : ∀w ws zs, T a ws zs → T a (w::ws) ((a::w)::zs)

| T2 : ∀b w ws zs, a 6= b → T a ws zs → T a ws ((b::w)::zs).

And with these �ve prediates (plus ✂), we have �nished the tour of all the strutures

used by this formalization! The remainder is only a suession of small lemmas aiming at

establishing (bar nil) in a �rst time, then at extrating from that the two expeted indies

i and j. On the whole, this gives us a proof of 220 lines of Coq, whih is remarkably short

5

ompared to the 1085 lines of the proof obtained by A-translation from Nash-Williams's

proof.

The extration

After extration, one obtains 165 lines of ode, whih hene gives us an extremely low

ratio (Coq sript)/(extrated ode), ratio whih is usually nearer to 10 (see for example

Orsay/FSets in hapter 7). In addition, this extrated ode is extremely simple. Here is for

example the largest and most omplex extrated funtion:

let re prop2 a b xs h ys x zs x0 x1 =

math h with

| Bar1 (ws, g) → Bar1 (zs, (lemma3 ws zs a x0 g))

| Bar2 (ws, b0) →
let re f l0 b1 zs0 h2 h3 =

math b1 with

| Bar1 (ws0, g) → Bar1 (zs0, (lemma3 ws0 zs0 b h3 g))

| Bar2 (ws0, b2) → Bar2 (zs0, (fun w →
math w with

| Nil → prop1 zs0

| Cons (l1, l2) →
(math letter_eq_de l1 a with

...

/

...

5

In fat, we have re-worked the proof of S. Berghofer in order to use as muh as possible the automati

tatis of Coq, whih redues appreiably the size of this ontribution, whereas this have not been done in

the ase of Roq/Higman.

5.4. Higman's lemma 159

...

/

...

| Left →
prop2 a b (Cons (l2, ws))

(b0 l2) ws0 (Bar2 (ws0, b2)) (Cons ((Cons

(a, l2)), zs0)) (T1 (l2, ws, zs0, h2)) (T2

(a, l2, ws0, zs0, h3))

| Right →
f (Cons (l2, ws0)) (b2 l2) (Cons ((Cons (b,

l2)), zs0)) (T2 (b, l2, ws, zs0, h2)) (T1

(l2, ws0, zs0, h3)))))

in f ys x zs x0 x1

Even if the two internal branhes are not very readable due to an imperfet pretty-printing,

one reognizes at least the algorithmi struture of this funtion, whih was very di�ult

with Roq/Higman.

But the major progress with respet to Roq/Higman is the gain in exeution speed. The

program obtained an now handle pre�xes of more than one thousand of words in a few tens

of seonds, eah word having a random length ranging between 20 and 80.

160 Certi�ed funtional programming

Chapitre 6

Construtive reals and extration

In this hapter, we present some works that we arried out in ollaboration with several

others European researhers. The goal of these works is obtaining a erti�ed library of exat

real arithmeti, and this by extration from onstrutive formalizations of real analysis in

Coq.

The �rst of these works relates to the C-CoRN projet (previously known as FTA) from

the university of Nijmegen in the Netherlands. The study of the extration for ertain parts

of this projet was started by two members of the Nijmegen team, namely L. Cruz-Filipe

and B. Spitters. In partiular, they have presented this �rst study in a publiation, whose

referene is [25℄. We see in the �rst part of this hapter that a lot of progresses have been

aomplished sine the idea of extrating FTA was �rst launhed, but also that a great

number of di�ulties remain, in partiular onerning the e�etiveness of the extrated

ode. This �rst part of the hapter is very lose to hapter 6 to [24℄, sine they both report

the same work, simply approahed under slightly di�erent angles.

More reently, we had the opportunity to have long disussions with H. Shwihtenberg

onerning the extration of onstrutive real numbers during the summer shool 2003 in

Marktoberdorf. And these disussions were prolonged by a visit of one week in Munih in

September 2003. We then realized together the outline of a formalization of onstrutive

reals in Coq. This mini-formalization is obviously without ommon sale with C-CoRN from

the point of view of the size, but its interest is to be right from the beginning thought in

term of extration. And this study has brought new insights to the di�ulties enountered

with the extration of C-CoRN.

6.1 The extration of the C-CoRN projet

6.1.1 Desription of the FTA/C-CoRN projet

FTA is the abbreviation of the Fundamental Theorem of Algebra. This theorem stipulates

that any not-onstant polynomial with omplex oe�ients has at least a root in C. In

1999 and 2000, the group direted by H. Barendregt at the university of Nijmegen has

formalized in Coq a onstrutive proof, due to Kneser, of this result [35℄. This formalization

is really impressive, the �nal version of FTA being made of 40 000 lines of Coq sripts (see

162 Certi�ed funtional programming

http://www.s.kun.nl/gi/projets/fta/).

The algebrai strutures of FTA

The prinipal reason of suh a width is the onstrution from srath of a whole stak

of onstrutive algebrai strutures, sine the standard library of Coq do not omprise suh

algebrai strutures adapted to the need for this formalization. These strutures onsist in

partiular of:

• CSetoids

• CSemiGroups

• CMonoids

• CGroups

• CRings

• CPolynomials

• CFields

• COrdFields

• CReals

• CComplex

It should be noted that the CSetoids are based on a alulative relation of di�erene, or

�apartness�, rather than on a relation of equality, whih ould not be onstrutive for �elds

like real numbers.

In addition, these strutures are nested the ones in the others via the use of Coq oerions.

For example, here is the de�nition of semigroups:

Definition is_CSemi_grp (A:CSetoid)(unit:A)(op:CSetoid_bin_op A) :=

Assoiative op.

Reord CSemi_grp : Type :=

{ sg_rr :> CSetoid;

sg_unit : sg_rr; (* non-empty *)

sg_op : CSetoid_bin_op sg_rr;

sg_proof : is_CSemi_grp sg_rr sg_unit sg_op

}.

A CSemi

_

grp is thus omposed of a CSetoid whih is additionally required to be non-

empty (sine it is equipped at least of an element), and must also ontain an assoiative

operation on the other hand. Without going more into the details, let us just note that the

oerion :>ensure that any CSemi

_

grp is also visible as a CSetoid. And similarly for the

other algebrai strutures: eah one is based on a preeding struture, and adds new objets

and/or properties. One thus obtains a linear hain of oerions going from a CComplex down

to a CSetoid. The polynomials form the only struture that deviates from this ontinuous

hain.

6.1. The extration of the C-CoRN projet 163

The de�nition of these strutures and their basi properties deserve between one third

and one half of the 40 000 lines previously mentioned, inluding a big part devoted to the

basi properties of polynomials. In fat, one proved the intermediate value theorem

1

and

the existene of n-th roots

2

in R and C, there only remain approximately 3 000 lines devoted

to Kneser's lemma and FTA itself

3

.

Some axiomatized reals, later realized

Let us mention another ruial point of the FTA arhiteture. The real numbers have

been used in an �axiomati way� [36℄. Indeed, after de�ning in CReals.v the Coq type of

the algebrai strutures that are isomorph to the real numbers, all the remainder of the FTA

proof is done with respet to suh a partiular struture. In fat, for tehnial onveniene

4

, this struture is posed as an axiom:

Axiom IR : CReals.

This way, any partiular representation of the onstrutive real numbers an replae this

axiom IR. And suh a partiular representation Conrete

_

R was developed later on by M.

Niqui, based on the Cauhy sequenes. The transformation of the previous axiom in the

following de�nition should normally not modify the validity of the remainder of FTA :

Definition IR : CReals := Conrete_R.

From FTA to C-CoRN

Sine the ompletion of the FTA proof itself, this formalization was gradually reorganized

in a more ambitious projet. The proof of the fundamental theorem of the algebra is now

just one of the the faets of this new C-CoRN projet (for Construtive Coq Repository At

Nijmegen). This projet is aimed at beoming a wide library of onstrutive mathematial

results based on the hierarhy of algebrai strutures desribed previously. C-CoRN ontains

already, in addition to FTA, some extended results onerning series, usual transendent

funtions, and espeially a part named FTC (for Fundamental Theorem of Calulus). L.

Cruz-Filipe has proved there that integration and derivation are two reiproal proesses

[23℄.

6.1.2 The �rst extration attempts

Our �rst ontat with FTA dates bak to Otober 2001. In a mail, M. Niqui reported

his �rst attempt at extrating FTA : �after 24 hours my mahine ran out of memory�, the

mentioned mahine being quite reasonable.

1

See the �le IVT.v.

2

See the �les NRootIR.v and NRootCC.v.

3

See the �les KeyLemma.v, MainLemma.v, KneserLemma.v, FTAreg.v and FTA.v.

4

At that time, the modules and funtors did not exist in Coq.

164 Certi�ed funtional programming

It should be said that FTA have not been initially oneived with the extration in mind.

Of ourse, as this development is onstrutive, its authors were onsious of the theoretial

possibility of extrating a program from it. But this possibility, onsidered to be unrealisti

at the time, has not in�uened the initial design hoies. In partiular, all the development

has been plaed initially in the sort Prop of the objets preisely ignored by the extration.

For his �rst extration attempts, M. Niqui then simply replaed all the ourrenes of Prop

by Set. Instead of ignoring everything, the extration now keeps and translates everything.

Sine this development of 40 000 lines of Coq sript generates omplex and bulky proof

terms, it is understandable that this extration is exessively more demanding than the one

of other examples met up to that point, hene the problems of omputing time and memory

oupation of M. Niqui.

In fat, it appeared thereafter that the extration of this version of FTA using Set

as universe was not so unfeasible after all, provided that one uses slightly more reent

hardware and in addition orrets the extration by removing one heuristi �optimization�

more than hazardous, whih as a onsequene the replaement of too many onstants by

their de�nitions. In the partiular ase of FTA, that was leading to an amazing inrease in

the ode size. Here what L. Cruz-Filipe reported in February 2003:

You might �nd it interesting to know that we atually managed to extrat the

original FTA version (e.g. the one urrently in the Coq library, with all the

logi in Set) after you �xed the inlining bug in the extration routine. We still

almost ran out of resoures (on a 2GHz mahine with 1Gb RAM memory and

2Gb swap), but the extrated ode is "only" around 13 Mb.

This �gure of 13 Mo of soure ode seems really aberrant for a program whih, let us

reall, is just supposed to ompute approximations of roots for omplex polynomials. One

an nevertheless relativize somewhat these 13 Mo. They are indeed due in great part to two

unpleasant, but simple phenomena:

• the �rst problem is due to the attempts made by the extration to embellish the

display (or �pretty-print�). This printing is done by means of display boxes, vertial

or horizontal, provided by the Oaml language. However this mehanism works with a

�xed width of line, whih is 80 olumns by default. In the ase of the disproportionate

funtions of FTA, respeting at the same time the indentation and this width limit

implies to frequently use only the last quarter of the lines, sometimes even less. Finally

more than half of the extrated �le is made up of white spaes at the beginning of

lines.

• Looking quikly at this enormous extrated �le, the other point immediately notieable

is the omnipresene of projetions resulting from oerions. For example, for a struture

like that the real numbers, the addition is done by onsidering R as a semi-group

CSemi

_

grp, thanks to a suession of oerions, then by using the operator inside the

�eld sg

_

op of this CSemi

_

grp struture. In fat, the Coq user does not have to be

onerned by these oerions, sine they are impliit. If IR is the struture of real

numbers, one an form IR.sg

_

op diretly. But these oerions are stored expliitly in

the proof term, and are thus found also in the �nal extrated term. Thus the extration

of the addition over reals is:

6.1. The extration of the C-CoRN projet 165

iR.rl_rr.of_rr.f_rr.r_rr.g_rr.m_rr.sg_op

One an reognize here the suessive projetions into the substrutures of ordered

�eld, then �eld, then ring, then group, then monoid, and �nally semi-group, before

the �nal projetion into the �eld ontaining the addition operator. Finally, one needs

almost a line to write this addition, who appears several hundreds of times in the

extrated �le. And the same applies to other elementary objets like 0, 1 and the

remaining operations.

It is of ourse possible to fatorize the produed ode in order to avoid, at least

partially, suh hains of projetions. It would thus be enough to de�ne one and for all

a onstant iR

_

plus equal to the previous objet. But what ould be easily done for a

�xed struture like iR, is muh more ompliated and less e�etive to do it in �rst half

of the extrated �le, where one reasons on unknown strutures, given as argument of

funtions.

In fat, even after manually fatorizing these spaes and these oerions hains, the

soure ode still weight several megabytes. It thus seems obvious that a substantial part of

this ode has in fat no interest at the algorithmi level.

6.1.3 Distintion between logial parts and informative parts

To allow the extration to at least partially eliminate the dead ode from these extrated

terms, L. Cruz-Filipe and B. Spitters have then modi�ed again the initial development, and

tried to identify the parts that ould remain in Prop. This work is desribed in detail in [25℄

and in the beginning of hapter 6 of [24℄.

It should be well understood that FTA is an atypial development with respet to the

distintion between informative and logial parts. Usually, it is rather easy to see the dis-

tintion between informative operations like 1+2 and logial assertions like n=0∨0<n. But
in FTA, it is ruial for the relation < over reals to be informative: behind x<y is in fat

hidden a stritly positive rational below y-x. And this rational is indeed used in pratie in

operations, for example when omputing the inverse of a non-null real (see for example p.

148 of [24℄). In the same way, di�erene between two real has some omputational ontents.

On the opposite, the equality and the relation ≤ are not deidable over reals and an

thus remain logial. In fat, these two relations are de�ned as the respetive negations of the

apartness and strit order < relations. This gives them a logial status, sine False, used in

negations, always remains in Prop.

These deisions for basi relations then in�uene the status of operators like disjuntions

or onjuntions. For example, one will not be able to use the usual logial disjuntion or in

the example n=0∨0<n, sine the right part is informative. In partiular, this expression is

not equivalent onstrutively to 0≤n, whih is ompletely logial.

One sees that using the Prop/Set distintion in the ase of FTA is not obvious, whih

explains the initial hoie of �everything logial�, and then the swith to the onverse in a

seond time. L. Cruz-Filipe and B. Spitters have in partiular had to alter ertain portions

166 Certi�ed funtional programming

of the initial development, similarly to the previous or replaed by an ad ho disjuntion.

But this task was worth it, sine one obtains a gain of a fator 10 on the size of the extrated

ode.

In addition to this distribution between Prop and Set for all onstrutions of FTA, L.

Cruz-Filipe and B. Spitters also noted that it was possible to derease even more the size

of the extrated terms thanks to some lever modi�ations of the proofs relating < and ≤.
First of all, they have exploited the fat that the two following formulations of the Cauhy

property are equivalent:

∀ε > 0 ∃N : nat ∀m, n > N |xm − xn| < ε

and

∀ε > 0 ∃N : nat ∀m, n > N |xm − xn| ≤ ε

Using the seond alternative then results in making disappear from the extrated terms the

major part of these Cauhy properties, and only keeping the essential part, namely the part

building indeed the bound N starting from a given ε.

Another example of optimization onerns the proofs of properties of the form a < b.
Initially, these proofs were frequently done by suessive reasoning as in a < x1 < x2 < x3 <
b. In fat, only one of these stages really requires a strit order: it is enough for example to

establish a < x1 ≤ x2 ≤ x3 ≤ b, and only this �rst stage of reasoning will remain in the

extration.

Finally, thanks to suh transformations of the FTA proof, and in partiular the redesign of

the division part, L. Cruz-Filipe and B. Spitters have redued the size of the extrated ode

down to a little more than 200 KB, that is to say almost 100 times less than during the �rst

suessful extration. Moreover, this extration is now arried out in a few seonds, even if the

speed of extration has never been yet a major design goal for our implementation . Lastly,

this size of 200 KB still inludes multiple redundanies related to oerions/projetions,

whih are not solved yet in a satisfatory way. On the other hand, reduing the size of the

extrated ode largely attenuates the problems of indentation for this extrated ode.

6.1.4 Compilation of the extrated ode

After bringing the extrated ode from FTA on a more reasonable sale of a few thousands

of lines, the following hallenge onsists in trying to build a program whih an be run

and return some useful result. In fat, during the �rst suessful extrations of FTA, we

enountered immediately an important obstale, namely the non-typability of this extrated

ode. And we were far from the situation of ontributions like Lannion and Higman as in

the previous hapter, where it was still possible to insert manually one or two om. Here, the

typing on�its amount to hundreds, whih almost impose the use of an automati method.

Fortunately, we have in the meantime implemented an automati insertion of Obj.magi

at the loations of these typing on�its (see hapter 3). Here, approximately 400 of these

Obj.magi are inserted in the extrated ode. And this ode is indeed aepted by the

ompiler Oaml without any additional modi�ation.

6.1. The extration of the C-CoRN projet 167

If we look more losely at these typing on�its, we �nd some of the situations evoked in

hapter 3. For example, the �rst problem that appears is related to the CSetoid struture:

Reord CSetoid : Type :=

{ s_rr :> Set;

s_eq : (Relation s_rr);

s_ap : (Crelation s_rr);

s_proof : (is_CSetoid s_rr s_eq s_ap)

}.

A CSetoid is thus an unspei�ed type provided with two equality and apartness relations.

In fat, this example is similar to the indutive type any of page 92. In both ases, one

embed a type in a struture, and subsequent �elds of this reord depend over this type. This

struture does not have ounterparts

5

in ML, and the extration produes the following

approximation, in whih s

_

rr was replaed by the unknown type T (or

__

):

type Setoid = { s_ap : __ relation; s_proof : (__, __) is_CSetoid }

The use of the �elds s

_

ap or s

_

proof then leads frequently to untypable situations, whih

fore the use of Obj.magi.

6.1.5 The exeution of the extrated program

One settled the question of ompilation, we then designed a small input-output interfae

in order to be able to use this ode and to test its e�ieny. As FTA handles real numbers

as Cauhy sequene, our interfae just asks for an rank n and a prede�ned real x to approxi-

mate, and then returns the rational number xn onstituting the n-th element of the Cauhy

sequene x. More exatly, this interfae tries to return xn. Very quikly, it has appeared

that this extrated program su�ers from huge e�ieny problems. In partiular, in the ase

of the �anoni� example of the omputation of

√
2 seen as a root of the polynomial x2 − 2,

the program seems to need a few enturies, exept in the ase of the �rst approximation

. . . whih is worth zero. As L. Cruz-Filipe has said one, �the only good news was that this

program required very little memory to run�.

In fat, to obtaining an e�ient extrated program is a hallenge at least as di�ult as

the �rst task of giving it a reasonable size. And the resolution of this new hallenge is still in

progress today even if muh has already be done. The remaining of this setion reports the

various transformations and optimizations that we tried on FTA, and the progresses thus

realized. It should be noted that this part orresponds to a phase of very ative ollaboration

with the Nijmegen team and in partiular with L. Cruz-Filipe, whereas our personal ontri-

bution to this study of FTA had been previously limited to only orret the dysfuntion of

the extration leading to too many unfoldings of onstants.

5

In fat, Oaml 3.07 allows in reords a ertain form of abstration over types. We an write type setoid

= {eq : 'a.'a→'a→bool}. But this is not really appropriate for our needs here, beause one partiular

equality eq

_

int: int→int→bool annot to be used to build suh a setoid.

168 Certi�ed funtional programming

Improving the datatypes

Our �rst try for improving the extrated program has been to hunt and remove ine�etive

datatypes. Indeed, in other development, this sole stage had sometimes allowed to produe

reasonable programs starting from developments not initially planned to be extrated, suh

as for example the ontribution Bordeaux/Additions of P. Castéran. In the ase of FTA, a

�rst modi�ation has been related to the rational numbers used by M. Niqui to model real

numbers via Cauhy series. These rational numbers were indeed at �rst reords where the

�rst �eld was an integer representing the numerator of the fration, and the seond �eld was

a natural number oding the denominator. But as muh the integers are e�etive sine oded

in a binary way in the Coq type Z, as muh the natural numbers used at �rst were nat, oded

in a unary way. Our �rst ontribution to FTA has thus been to replae in the denominator

the type nat by the type positive of stritly positive integers, enoded in binary notation.

Not only has this largely aelerated the operations on the rational numbers, but it has even

simpli�ed the formalization: there is no need any more to be onerned with the ase of a

null denominator.

A redesign of the real number model

In fat, the previous modi�ation was rather disappointing. Of ourse, this improvement

of the rational numbers deserved to be made, but it did not indue a visible e�et on the

�rst tests: omputations whih were diverging ontinued to do it. Worse, the extrated ode

persisted, in spite of this hange, to ontain hundredths of values in nat, inluding several

onstants up to 48. In fat, this kind of onstants was useful primarily during the onstrution

of a model of reals by the means of Cauhy sequenes. And L. Cruz-Filipe �nally understood

how to alter ompletely this part, so that a giganti proof like Rmult

_

is

_

extensional

6

, long

of 1800 lines of Coq sript, is now obtained in ten lines. And the size of the extrated ode

still derease, the majority of these bulky onstants of type nat disappear . . . but however

the e�etiveness is still not improved onerning the omputation of

√
2 via FTA.

Some less ambitious tests

In front of suh di�ulties, we then tried to better identify the auses of ine�ienies

via more progressive tests. It then appeared that all arithmetial omputations on numbers

rational are almost instantaneous, even when these rationals are seen as reals

7

or when these

omputations are done via the use of polynomials. On the other hand, the omputation of

√
2

as reiproal of 2 by the funtion λx.x2
diverges, while at the same time this way of obtaining√

2 is normally muh simpler than the use of FTA on the polynomial x2 − 2. By seeking

examples of simple real numbers that have nevertheless non-onstant Cauhy sequene, L.

Cruz-Filipe then suggested to onsider limits of series, and in partiular e =
∑∞

n=0
1
n!

and

to a lesser extent π = 4
∑∞

n=0
(−1)n

2n+1
. For the �rst time, we then obtained �nishing not-trivial

6

This result stipulates that for all reals suh as a*b 6=a'*b', then a 6=a' or b 6=b '. This is the dual of

the usual statement on the equality, whih states that two multipliations of equal numbers produe equal

numbers

7

We then onsiders onstant Cauhy sequene.

6.1. The extration of the C-CoRN projet 169

omputations. Here ome for example the frations returned as �rst terms of the Cauhy

sequene representing the onstant e. Without surprise, they are partial sums of the previous

series.

rank fration value

0 0/1 0.000000000
1 1/1 1.000000000
2 2/1 2.000000000
3 5/2 2.500000000
4 32/12 2.666666666
5 780/288 2.708333333
6 93888/34560 2.716666666
7 67633920/24883200 2.718055555
8 340899840000/125411328000 2.718253968
9 13745206960128000/5056584744960000 2.718278769
10 4987865758275993600000/1834933472251084800000 2.718281525
11 18099969098565397826764800000/6658606584104736522240000000 2.718281801

In fat, we were unable of obtaining all these frations during the �rst tests, sine om-

puting the approximation of rank 7 took already more than one hour, for experimentally

giving only three orret digits. The reason of suh a limited e�etiveness lies in the manner

of omputing the terms

1
n!
of the series. Indeed the real number n! was initially alulated in

type nat via the fatorial fa : nat→nat, then only in a seond time injeted into reals via

the funtion nring : ∀R:CRing, nat→R plus some more oerions. And this last funtion

just transforms a unary integer in a suession of additions 1 + . . . + 1 in the onsidered

ring R, here the one of reals. This method thus implies a huge number of omputations

on the fatorial numbers with a unary oding of numbers. We then proposed to plae the

omputation of fatorial in the type positive, followed by the use of a funtion pring :

∀R:CRing, positive→R, whih injets integers into a ring by now transferring their binary

odings.

Unfortunately, this improvement did not have the expeted e�et. After some investiga-

tions, it appeared that the next bottlenek was the inversion of n! in 1
n!
. In fat, in FTA, the

division is not a binary operator a/b but an ternary operator a/b//h, where h is a non-nullity

proof for b. And as we have already mentioned previously, the omputational ontent of h

is indeed used for onstruting the division. In the ase whih interests us, the non-nullity

proof of n! was given by a term (fa

_

ap

_

zero n), and the struture of this term was ini-

tially isomorph to n! oded in unary. But these proofs were of the form 0 < 1 < . . . < n!.
The utilization of the previously mentioned tehniques allows us to pass to a proof of the

form 0 < 1 ≤ . . . ≤ n!. The new estimated omplexity of the omputation of

1
n!
is then lose

to the size of the writing in base two of n!, that is to say ln(n!) ∼∞ n ln(n). And indeed,

this version allows to obtain in a few hours all the frations presented above, whih was

impossible beforehand.

During these experiments, we noted that the omputation of the approximation of rank

k + 1 requests approximately ten times longer than the omputation for the rank k. In the

170 Certi�ed funtional programming

same time, the auray is also inreased by a ten fator: on average, a new orret deimal

digit is obtained at eah step. This shows that the extration is able to handle frations of

onsequent size, but that the speed is still not perfet: at that pae, one should be ready for

a omputation of several month in order to obtain ten orret digits.

The issue of the omputation dupliations

In order to more �nely understand these omputations, we have then used some �pro�-

ling� tehniques on the exeutions. And we noted a few urious things. For example, the om-

putation for the approximation of rank 7 generated 14 alls to a funtion named e

_

series,

whih omputes for a given n the value of

1
n!
. As the required approximation was only suppo-

sed to use the �rst 7 terms of the series, we dedue that the omputations of these terms were

dupliated. At �rst, we suspeted that this omputation redundany was oming from the

use of e

_

series in the funtion e

_

series

_

onv: (onvergent e

_

series), whih proves

the onvergene of the series whose terms are given by e

_

series. But this was a false trak,

sine e

_

series

_

onv only appears in a reord �eld that is never used. In fat, we �nally

identi�ed the dupliation origin, loated in the following de�nition:

Definition LimR_CauhySeq (a:CauhySeq R_COrdField') :=

Build_CauhySeq F

(fun m ⇒ CS_seq F (CS_seq _ a m) (T (CS_seq _ a m) m))

(CS_seq_diagonal a).

The type R

_

COrdField' is the set of Cauhy sequene built on an arhimedian ordered

�eld. And the onstrution LimR

_

CauhySeq allows to build the limit of a Cauhy sequene

of suh sequenes, by means of an diagonal argument. The problem here is the repetition

of (CS

_

seq

_

a m). If one wants to avoid a double omputation when the sequene a is

instantiated by e

_

series, it is neessary to perform a fatorization:

Definition LimR_CauhySeq (a:CauhySeq R_COrdField') :=

Build_CauhySeq F

(fun m ⇒ let b := CS_seq a m in CS_seq F b (T b m))

(CS_seq_diagonal a).

Here, the two ourrenes of this dupliated subterm were in the same ontext. One an

thus imagine an automati tool able to identify this redundany and to fatorize it. But in

addition to its ost, suh a fatorization stage will have to take di�ult deisions in more

omplex situations. For example, when these multiple ourrenes an perfetly not been

evaluated, must one then risk to ause additional omputations by reating a �let-in�?.

In FTA, one also meets very frequent dupliations due to the dependent types. For

example, to build the fration

1
5
in a �eld F, one uses the ternary division One/(pring R

5)//(pring

_

ap

_

zero F 5). However the proof part of non-nullity, (pring

_

ap

_

zero F 5),

of type (pring F 5)6=Zero almost undoubtedly ontains the term (pring F 5), whih is

thus at least omputed twie during this division. Similarly, our new proof of fa

_

ap

_

zero

in the previous setion still ontains an ourrene of n!, even if this proof is now of the form

0 < 1 ≤ . . . ≤ n!.

6.1. The extration of the C-CoRN projet 171

This situation is really ommon in FTA, whereas in a more standard development the

proof part would be purely logial, and would disappear without ausing redundant ompu-

tations. Sometimes, fortunately, the dupliation is potentially present in FTA, but skipped,

as for e

_

series above. But these dupliations an also hange dramatially the omplexity,

as soon as they intervene within reursive funtions. This probably explains to a large extend

the ine�ieny of the program extrated from FTA. And orreting automatially this kind of

redundanies during the the extration would be really deliate, beause the problem an be

distributed between several funtions, as with the division, pring and pring

_

ap

_

zero. Cur-

rently, the only answer to these dupliations is a manual analysis a posteriori, by profiling,

whih is long and painful, and only allows to loate the most obvious problems.

A too onstraining axiomatization of reals

When we think of it, it is really disonerting to have to devote so many e�orts in order

to obtain an e�etive solution for omputing a real number like

1
n!
, whih is after all only a

rational. Why not make diretly this omputation in the struture of rational numbers, and

injet it into the reals only in a seond time ?

Unfortunately for the extration, it is not possible to diretly do so. The problem is

loated at the distintion in FTA between the abstrat struture of the real numbers and

its onrete ounterpart. In fat, all the parts using real numbers, suh as for example the

proof of FTA itself, use an abstrat real struture, axiomatized:

Axiom IR : CReals.

And this type CReals is only spei�ed as being an arhimedian ordered �eld where all

Cauhy sequene admit a limit. In this framework, one has only aess to a minimal number

of primitive objets and basi properties, resulting from the underlying strutures.

In partiular, the only known primitive reals are 0 and 1, whih are respetively the

elements sg

_

unit and r

_

one of the semi-group and ring strutures IR. Instead of injeting

diretly rational numbers in IR, one must rebuild them by using 0, 1 and the operations

+, ∗ and /, this last operation requiring moreover a proof of non-nullity as third argument.

Suh proofs often involve in fat some proofs of strit positivity or negativity, whih one

must also build from a restrited ore of basi properties. Here ome for example the only

properties known initially onerning the order < over IR:

• the antisymmetry

• the transitivity

• the ompatibility with respet to the addition: x < y implies x + z < y + z

• the onservation of positivity by multipliation: 0 < x and 0 < y imply 0 < x ∗ y

• the dihotomy: x 6= y implies x < y or y < x

• the arhimedian property, stipulating that any real number an be bounded by the

injetion in IR of an adequate integer.

A property as basi as 0 < 1 is hene not primitive, but derived from the preeding proper-

ties. And it is obviously the same for more omplex proofs as 0 < n!.

172 Certi�ed funtional programming

On the other hand, FTA also provides a onrete model named Conrete

_

R of the real

numbers, built on the Cauhy sequenes of rational numbers. And in this model, it is imme-

diate to injet a rational q into Conrete

_

R via a funtion injet

_

Q : Q→Conrete

_

R. It

is indeed enough to take the Cauhy sequene where all the terms are worth q. In the same

way, a proof of the form a<b an be muh more diret in Conrete

_

R, sine we an aess

now the de�nition of <, that laims the existene of a stritly positive rational ∆ and a rank

N suh that all terms of rank greater than N in the two Cauhy sequenes being ompared are

always apart by more than ∆. In partiular, for two rational q<q', we immediately obtain

(injet

_

Q q)<(injet

_

Q q') in Conrete

_

R, by taking ∆=q'-q and N=0.

This separation between abstrat reals and onrete reals is without doubt bene�ial

at the mathematial level, beause it ensures that a proof made at the abstrat level is

independent of the partiular representation seleted at the onrete level. One an later on

hange this onrete model with no risk for the abstrat proofs. On the other hand, from

the programming point of view, we are here in the presene of two modules interating via

an interfae way too minimalist, whih obliges the upper level module to frequently reinvent

the wheel, and moreover in an ine�etive way. What would be said of an integer arithmeti

module whose interfae would not export the multipliation, under the justi�ation that one

an simulate it by repeated additions?

To on�rm that this distintion between the onrete and abstrat levels onstituted

indeed a bottlenek for program extration, we have added to the abstrat level a few

axioms, whih we then realized at the onrete level. Then we ordered the extration to

replae the axioms by their onrete realizations. This experiment had a spetaular e�et

on the test omputing the approximations of Euler's onstant. Instead of painfully obtaining

the approximation of rank 11 in more than one hour, we an now ompute that of rank 100

in 77 seonds. The fration obtained �lls two sreens, and gives 157 orret digits. As for

omplexity, it seems only to double every ten ranks, instead of being multiplied by ten for

eah additional rank. Here ome some details on the ode allowing that. First of all, we add

a ertain number of de�nitions at the onrete level:

(* Diret injetion of fatorial in Conrete_R via injet_Q *)

Definition onrete_fat (n:nat) : Conrete_R :=

injet_Q Q_as_COrdField (injet_Z (pos_fat n)).

Lemma onrete_fat_ap_zero : ∀n:nat, (onrete_fat n)[#℄Zero.

intros; red; simpl; unfold R_ap. (* bak to the definition of 6= *)

right; unfold R_lt. (* bak to the definition of < *)

exists O. (* the rank N *)

exists (injet_Z 1). (* a str. positive rational between 0 and n! *)

.... (* the rest is in Prop *)

(* The link between the old fatorial and the new one *)

Lemma onrete_fat_pos_fat :

∀n:nat, (pring Conrete_R (pos_fat n))[=℄(onrete_fat n).

Then, we add some axioms at the abstrat level, the one of IR:

6.2. Some alternative reals dediated to the extration 173

Axiom onrete_fat' : nat → IR.

Axiom onrete_fat_ap_zero' : ∀n:nat, (onrete_fat' n)[#℄Zero.

Axiom onrete_fat_pos_fat' :

∀n:nat, (pring IR (pos_fat n))[=℄(onrete_fat' n).

Definition onrete_e_series :=

fun n ⇒ One[/℄?[//℄(onrete_fat_ap_zero' n).

Lemma onrete_e_series_onv : onvergent onrete_e_series.

...

(* The proof is done as before, by using the equality

onrete_fat_pos_fat' for going bak to the previous ase. *)

Definition onrete_E := series_sum ? onrete_e_series_onv.

Lastly, it is neessary to announe to the extration what it should do with these axioms:

Extrat Constant onrete_fat' ⇒ onrete_fat.

Extrat Constant onrete_fat_ap_zero' ⇒ onrete_fat_ap_zero.

And there is no need to delare the third axiom, sine it is logial.

It is interesting to note by the way that our formalization of Q as Z*positive pairs

works orretly, at least for our urrent needs. Of ourse, one an to still �nd better, sine

Maple or Mathematia is able to return even the big fration of rank 100 in a few tenths of

a seond. But these rational omputations are ertainly not a bottlenek for FTA.

Let us announe �nally a last experimentation, whih tried to �nd a third way between

doing everything in IR and doing everything in Conrete

_

R. Indeed, as we have already

mentioned, this distintion between IR and Conrete

_

R has its own interests, and anyway

swithing ompletely to Conrete

_

R would quikly beome painful. We thus tried to replae

only ertain ritial proof of IR by an equivalent in Conrete

_

R. But our attempts on

fa

_

ap

_

zero brought only tiny gains ompared to the initial (lak of) speeds, without

ommon measurement with the gains brought by onrete

_

E.

6.2 Some alternative reals dediated to the extration

Our last attempt at improving the extration of FTA has onsisted in analyzing the

omputational behavior of

√
2 seen as reiproal of 2 via the square funtion. But due to

lak of time, we have only determine that ine�ieny omes from ertain sub-funtions

dealing with polynomials. We will detail that later, but �rst let us present how a small

formalization of onstrutive reals, independent of FTA, has enabled us to identify some

ritial points explaining the e�ieny or ine�ieny of suh a omputation of

√
2.

This small formalization of onstrutive reals was realized in ollaboration with H.

Shwihtenberg, after some long disussions we had during the summer shool of Mark-

toberdorf 2003, about his leture of onstrutive analysis [73℄ and about Coq extration.

This study was then prolonged by a visit of week in Munih in September 2003.

174 Certi�ed funtional programming

Without being made to ompete with FTA/C-CoRN, this study aims at onsidering

onstrutive reals immediately from the point of view of the extration, unlike FTA where

this idea of extration ame a posteriori. To justify this new study, here omes immediately

its main result:

185073852193103815370647998607276856607447488995292267341249508862803707849

82122579258920081860060842211719751859243538935296074829527 / 1308669759060

604982435085250362633629384375727808179217478381261103282433564486174203616

9574998713491171057585998608659296292858913867

This long fration is an approximation of

√
2 with more than 140 orret binary digits,

or 42 orret deimal digits. And we obtained this result in approximately 3 minutes, by

using the same priniple than during our unfruitful tests with FTA, namely the seek of a

reiproal value of 2 via the square funtion.

It should be spei�ed immediately that this small development does not establish any

general results like FTA, but on the ontrary is speialized on the omputation of

√
2.

Moreover, as we will see, some parts remains un�nished and posed as axioms. This is thus

not a omplete formalization, but rather a proof of onept This being said, these few

hundreds of lines are quite full of lessons for the extration of reals.

6.2.1 The development method

The goal was learly to be able to test as fast as possible the the extrated ode. We thus

formalized the �rst pages of the ourse notes of H. Shwihtenberg [73℄, or more preisely

the exat onepts needed to the de�nition of

√
2. Here for example the de�nition of the

real numbers:

(* First, the Cauhy property. *)

Definition Is_Cauhy (f : nat → Q) (mo : nat → nat) :=

∀k m n, mo k ≤ m → mo k ≤ n → let e:=(f m - f n)*2^k in -1≤e≤1.
(* A real is given by a Cauhy sequene, a modulus sequene *)

(* and a proof of the Cauhy property of these sequenes. *)

Reord R : Set := {

auhy : nat → Q;

modulus : nat → nat;

is_auhy : Is_Cauhy auhy modulus }.

In fat, even by limiting ourself to the �useful� onepts, this would have needed more

than one week or two of work. We have then hosen to fous only on the informative portions

of the terms being de�ned. And the required logial parts were then systematially posed as

axioms, waiting for a later ompletion. Atually, rather than posing multiple axioms, whih

is tiresome, we have in fat �heated�, by posing only one:

Axiom Falsum: False.

...

/

...

6.2. Some alternative reals dediated to the extration 175

...

/

...

Lta fed_up := elim Falsum.

And the use of the tati fed

_

up then allows us to get rid of any �boring� end of proof. Here

is for example the initial de�nition of the addition for two real numbers:

Definition Rplus : R → R → R.

intros x y.

apply (Build_R (fun n ⇒ auhy x n + auhy y n)

(fun k ⇒ max (modulus x (S k)) (modulus y (S k)))).

fed_up.

Defined.

In this ase, the use of the fed

_

up allows to avoid the omplete proof that our new sequene

representing x+y is indeed a Cauhy sequene. In this partiular ase, this fed

_

up have been

later on replaed by a Coq sript of about thirty lines.

Of ourse, as long as there remain some fed

_

up in our development, we annot a�rm

for sure that the big fration above is indeed an approximation of

√
2 with the previously

mentioned auray. On the other hand, the extration of a proof ontaining fed

_

up is

exatly idential to the extration of the same omplete proof, as long as these fed

_

up are

used in portions of sort Prop. We must nevertheless be very areful with this �magi� tati:

• If we use it in an informative part, then an exeption is plaed in the program (see

the extration of False

_

re page 79).

• If we use it to fore the proof of an erroneous logial proposition, this an lead the

extrated program to a false result but also possibly to exeution errors or to not-

termination (see the examples of hapter 2).

6.2.2 The rational numbers

As we were already knowing quite well the rational numbers de�ned in FTA, we reused

again these rationals. But we added two improvements. The �rst of these improvements

relates to the proofs onerning these rationals. When we started with to replae the several

fed

_

up by true proofs, we have indeed noted that the proofs of rational arithmeti are ex-

tremely painful. The problem omes from the hosen representation, whih is not anonial:

the fration

1

2

is not equal to the fration

2

4

when using the usual equality of Coq. One must

then de�ne an ad ho equality for this datatype, and this forbids us a priori to use a ertain

number of tools that work only with the equality of Coq, suh as for example of the tatis

rewrite or ring

8

. Fortunately Coq has reently been extended by a mehanism due to C.

Renard, that allows to work more easily on suh strutures, known as �setoids� (see [78℄).

We have thus equipped our type Q with suh a struture of setoid, whih gives us aess

to tatis like setoid

_

rewrite. And in addition, we have helped to �nalize the extension

of the tati ring to support these setoids. This way, the rational numbers start to be of

8

This automati tati is able to solve in a ring the equalities deduible from assoiativity, ommutation

and distributivity of + and *.

176 Certi�ed funtional programming

a reasonably pratial use in proofs, even if a ertain number of automati tools are still

missing, suh as for example the tatis field and fourier.

The seond improvement relates more diretly to the extration. We have indeed notied

that the operations on Q were never reduing the frations in anonial forms. Consequently,

during our omputations of Euler's onstant in FTA, the frations obtained were growing

very quikly, while for example �nishing by a ertain number of zeros in the numerator and

in the denominator. And the approximation of rank 100, whih �lls out initially two sreens,

an in fat be redued to an irreduible fration of only four lines. We were at �rst quite

relutant to the idea of frequently simplifying the frations, beause this has also a ost.

But plaing some simpli�ations in this experimental development showed without possible

ambiguity the enormous omputation speed-up indued by these simpli�ations: instead of

three quikly aessible deimal digits, we an know reah several hundreds. In details, this

addition of simpli�ation was done via a funtion Qred: Q→Q, whih omputes the gd of

the numerator and denominator, before dividing them by this gd. We have also proved

that any fration returned by Qred is indeed equivalent to the input fration. We have then

inserted a Qred in the prinipal loop of omputation for

√
2. Perhaps would it be better

to plae some at eah elementary operation, or on the ontrary less frequently? Only more

omplete tests an answer that question. In any ase, it seems obvious that the omputation

of FTA would also gain to integrate suh simpli�ations. Finally, this improved library of

rational numbers was gathered in a new ontribution Orsay/Qarith.

6.2.3 The Cauhy sequenes

Let us return one moment to the de�nition of R given previously. This de�nition follows

the formulation of H. Shwihtenberg [73℄, whih di�ers slightly from the formulation used

in FTA. The latter, more usual, is ∀k, ∃N, ∀n>N, ∀n>N,|f(n)-f(m)|≤ 2-k, whereas in [73℄

the bound N is given expliitly as a funtion over k, this last funtion being named modulus

of the Cauhy sequene. These two formulations are in fat equivalent from the onstrutive

point of view, sine one an �nd the modulus N(k) starting from the proof of ∀k, ∃N,...
Nevertheless, the more expliit formulation of the modulus enourages to hoose it arefully,

and we endeavored to hoose it as aurately as possible. As a onsequene, during the

omputation of an approximation of

√
2 by the extrated program, one diretly obtains

an upper error margin for the result: it is enough to ask (sqrt2.auhy (sqrt2.modulus

140)) to be sure to obtain a result within 2−140
of the limit whih is

√
2 or, said otherwise, to

get 140 orret binary digits. In pratie, we even get some additional orret digits beause

of approximations in the omputation of the modulus for the sequene, but the order of

magnitude is the orret. In omparison, during the omputations of the e approximations

in FTA, it is experimentally lear that the approximation of rank k, that is the k-th term

of the Cauhy sequene, will provide us n orret deimal digit, but the relation between k

and n is not expliit. And even if it would be made expliit, it is not sure that this relation

would be very aurate, due to the hoies sometimes naive in the bounds N in FTA. The

errors estimates for omputations in FTA were thus arried out a posteriori with Maple.

6.2. Some alternative reals dediated to the extration 177

6.2.4 The ontinuous funtions

The way of de�ning the ontinuous funtions di�er also appreiably between [73℄ and

FTA. In FTA, a ontinuous funtion is a funtion R → R plus some assoiated properties.

Aording to the de�nition of R as set of of Cauhy sequenes, a ontinuous funtion in

FTA thus orresponds mainly to a funtion of type (N → Q) → N → Q. This funtion as

argument is in fat not desirable, beause it makes the extrated ode more omplex, more

deliate to analyze and potentially less e�etive. The alternative is then to use a family of

rational funtions whih onverge to the desired real funtion:

Reord ontinuous [i:itvl℄ : Set := {

ont_h : Q → nat → Q;

ont_α : nat → nat;

ont_w : nat → nat;

ont_auhy: ∀a:Q, Is_Cauhy (ont_h a) ont_α;
ont_unif : ∀a b n k, n≤(ont_α k) → a∈i → b∈i →

-1 ≤ (a-b)*2^((ont_w k)-1) ≤ 1 →
-1 ≤ (ont_h a n - ont_h b n)*2^k ≤ 1 }.

In this de�nition, itvl is the type of the intervals delimited by two rationals. The true

funtion in this de�nition is ont

_

h, of type Q→ N→ Q. Then follow two modulus funtions

and their properties:

• �pointwise� Cauhy property when the �rst argument of ont

_

h is �xed.

• �uniform� ontinuity when one �xes the seond argument of ont

_

h.

In partiular, for the funtion X 7→ X2−2 whih interests us, we take the following values:

Definition sqr2_h := fun (x:Q)(_:nat) ⇒ x*x-2.

Definition sqr2_α := fun _:nat ⇒ 0.

Definition sqr2_w := fun k:nat ⇒ 2+k.

6.2.5 The intermediate value theorem

Finally, the last major di�erene between this development and FTA relates to the me-

thod used to �nd the reiproal of a given value via a funtion. There are indeed two possible

versions for the intermediate value theorem (IVT):

• The �rst version is the theorem 3.12 of [73℄. This is the most general version of the two,

the only ondition on the onsidered funtion is to be ontinuous. But the ransom of

suh a wide sope is an expensive algorithm whih divides the urrent interval into a

multitude of su�iently small subintervals, and whih are inspeted sequentially before

stopping in one of them. Inidentally, it is also notieable that this version allows to

�nd reiproal as �nely approximate as one wants, but not exat.

• The seond version is proposition 3.13 of [73℄. This version requires an additional as-

sumption on our funtion, whih must be loally not-onstant: for any subinterval and

any value, one should be able to exhibit a point where the funtion di�ers from this

178 Certi�ed funtional programming

value. Equipped with this additional information, one an then proeed by �triho-

tomy�, an alternative of the dihotomy adapted to onstrutive logi. And an exat

reiproal is obtained this time.

Taking into aount the advantages of the seond version in term of e�etiveness and exa-

titude, both FTA and our development use it. On the other hand, a distintion is done

onerning the proof of loal not-onstany. FTA shows in fat that any polynomial of non-

null degree is loally not-onstant, via a general proof based on omplex fatorizations of

the polynomials. But for a partiular ase like ours, one an proeed way simpler: the strit

growth of X 7→ X2 − 2 on the interval whih interests us is enough to imply that this

funtion is loally not-onstant. And this algorithm using the strit monotony produes the

goods results whih we have seen above.

On the opposite, L. Cruz-Filipe has identi�ed later on that the bad omputational beha-

vior of

√
2 using the IVT in FTA was due to the phase of omputation of loal not-onstany

via polynomials. By also using strit monotony, he managed obtain a omputation of

√
2

that terminates. But the e�etiveness of this omputation is still far from the one of the small

experimentation presented here. This fat is ertainly due to frations not being fatorized

and omputations on terms of proof made in the abstrat part of FTA reals.

6.3 Conlusion

Arrived at this point, it is quite di�ult to be satis�ed by the urrent state of the program

extrated from FTA. Truly, we have sueeded with L. Cruz-Filipe with to understand and

optimize some omputations of series limits using the FTA formalism, but this study has

highlighted many limitations in the initial extrated program, and these limitations were

removed only by some manual interventions, sometimes very omplex, in the initial Coq

ode.

A mathematial development like FTA, not thought at the origin in term of extration,

an thus indue a huge amount of rewriting work before being able to generate a reasonable

program. The extration is thus not a magi button undoubtedly reating interesting pro-

grams starting from any proof. The situation is not so di�erent from the more usual software

development methods: a program ful�lling its spei�ation is not neessarily thought a good

program. There are just here two additional di�ulties:

• An analysis a posteriori as the one done here for FTA is very deliate. In partiular

the extration indues an additional distane between the initial ode to modify and

the program to to analyze, for example by pro�ling.

• The onept of �good proof� is less preise than the one of �good program�. From the

point of view of the extration, a good proof is obviously a proof whose extration is

e�etive. On the other hand, for the user, a good proof an be simply a ompletely

�nished proof. And for the mathematiian, a good proof an be an elegant or very

abstrat proof as those done in IR. Conversely, a very speialized development, made

for the extration as the one we have outlined, will undoubtedly be desribed as less

elegant.

6.3. Conlusion 179

The use of the ode extrated from the prinipal theorem of FTA is ertainly a failure for

the moment. But �rst of all, it is not a �nal failure, sine the understanding of this extrated

ode has enormously progressed, and that many ideas of improvements exist, suh as for

example the simpli�ation of the frations in FTA. Then, it is advisable to relativize this

failure, and in partiular to not see that as the failure of the extration as a methodology.

The example of FTA is indeed hardly generalizable:

• First, it is a premiere: no developments of omparable size have ever been extrated.

And as with a lot of premieres, it is hardly astonishing to have to endure initial

problems. FTA onstitutes urrently a kind of Mount Everest for the extration.

• It is also an exeption: FTA is the only development met by the extration that have

suh an atypial use of the logi of Coq.

Finally, it is rather reassuring to see that one an obtain quikly e�etive extrated

programs in the same domain as FTA, even if that supposes to go bak really far away, and

espeially to work from the beginning with the extration as ultimate goal.

180 Certi�ed funtional programming

Chapitre 7

A formalization of �nite sets

The development presented in this hapter has been realized in ollaboration with J.-C.

Filliâtre. All �les of this development, both the the Coq soures and the extrated �les, are

available on the site http://www.lri.fr/~filliatr/fsets. These �les onstitute now the

ontribution named Orsay/FSets. This development is also desribed in the joint artile

[34℄, with a slightly di�erent point of view, less entered on the extration.

When a programmer wishes to obtain erti�ed non-trivial programs by using the metho-

dology of the program extration, the �rst need is the existene of a erti�ed basi library,

su�iently rih not to have to reinvent the wheel at eah program line. For that purpose,

we have hosen to inspet the standard library oming with Oaml. Is it possible to develop

a erti�ed version of it?

Unfortunately, this standard library of Oaml ontains only a few purely funtional data

strutures. And in our extration paradigm, the study of the imperative modules like Array

is not feasible. To treat these imperative ases, one should rather turn to tools like Why [33℄

developed by J.-C. Filliâtre, whih supersedes the old tati Corretness [32℄. Some other

modules, without being imperative, would be deliate to formalize suh as for example those

using the hardware integers.

It thus only remains in our sope the modules List, Set, Map and to a lesser extent Sort

and Stream. Our study was �nally limited to the module Set of the �nite sets in Oaml.

At the same time, this hoie of Set is far from being an uninteresting hoie. This module

presents indeed the following harateristis:

• The need for its use is felt very frequently, obviously by the programmer, but also

by mathematiian. We will see for example how these sets an be used to establish a

result of graph theory.

• Its interfae, relatively simple, allows to highlight the new apaities of Coq in term

of modular organization. (see setion 4.1).

• The library Set thus allows to build modules ful�lling this interfae, thanks to a funtor

Make taking as input a module ontaining at least a type and a omparison funtion on

this type. However there exist numerous manners of oding this funtor Make, ranging

from the most naive to the most advaned one. For example, the implementation

urrently used by Oaml is based on AVL trees [2℄. During this formalization, we

182 Certi�ed funtional programming

arried out a �rst implementation using of sorted lists, and J.-C. Filliâtre has built

two others more e�etive implementation based on AVL trees and on Red-Blak trees

[41℄.

The general outline of our development is as follows:

Coq

Caml

interfae OrderedType interfae OrderedType

extration

interfae S for sets interfae S for sets

funtor Make : OrderedType → S funtor Make : OrderedType → S

A simple manner to obtain the Coq interfaes onsists in taking the Oaml interfaes

OrderedType and S, and adding in it only the spei�ation part for the funtions. Ideally,

the extration of these Coq interfaes would then give again the initial Oaml interfaes. We

have �rst followed this approah, in spite of one ertain number of di�ulties that we detail

in the following setion:

• First of all, some inompatibilities between the Oaml types and Coq one prevents

the interfae produed by the extration to be exatly equal to the initial interfae of

Oaml.

• Then, the spei�ation of higher order funtionals as fold appeared partiularly deli-

ate, and several versions were neessary before oming to a satisfatory result.

• Finally this �rst approah in whih spei�ations are separated from the signature

of the funtions is not inevitably the the most natural style in Coq. Indeed Coq also

allows to inorporate the spei�ation in the type, via the use of dependent types.

In fat, we propose our Coq interfae under these two versions, as well as translation

funtors between these versions.

In the same way, one an imagine to import

1

into Coq the urrent ode of the funtor

Make of Oaml, and in a seond time prove that these purely informative funtions ful�ll

indeed their separate spei�ations. We followed this approah for the erti�ation of a

naive version of Make based on sorted lists. On the other hand J.-C. Filliâtre preferred to

follow the interfae based on dependent types, and diretly de�ned the algorithms and their

justi�ations interleaved together. The same methodology was used to obtain an erti�ed

implementation of Make based on Red-Blak trees.

Finally, the programmer has now four Oaml implementations ompatible with the ex-

tration of our Coq interfae for �nite sets:

• the non-erti�ed initial implementation using AVL, via a slight wrapping for preisely

orresponding to our interfae;

1

For lak of better mehanism, this importation is urrently to be done manually.

7.1. The Coq interfae 183

• a simple and erti�ed but ine�etive implementation based on sorted lists;

• two implementation erti�ed and e�etive, via Red-Blak trees and AVL trees.

7.1 The Coq interfae

This interfae orresponds to the �le FSetInterfae.v. Let us see now more in details

the points that Coq allows to import diretly from Oaml, and those that need an adaptation.

7.1.1 The ordered types

First of all, the Oaml interfae of Set starts by the de�nition of a signature representing

a type equipped with an order relation, this type being meant to beome the support type

for the future sets.

module type OrderedType =

sig

type t

(* The type of the set elements. *)

val ompare : t → t → int

(* A total ordering funtion over the set elements.

This is a two-argument funtion [f℄ suh that

[f e1 e2℄ is zero if the elements [e1℄ and [e2℄ are equal,

[f e1 e2℄ is stritly negative if [e1℄ is smaller than [e2℄, and

[f e1 e2℄ is stritly positive if [e1℄ is greater than [e2℄.

end

A �rst problem appears immediately: for e�ieny reasons, the omparison of Oaml returns

an hardware integer int. However these integers do not exist in Coq, and even though, would

not be onvenient to perform logial reasoning. More in aordane with the use in Coq, our

interfae is based on logial relations, i.e. on funtions of type t→t→Prop. These logial

relations are the equality eq and the strit order lt. They ome together with �ve Axiom

that require that eq and lt ful�ll theirs usual elementary properties.

Indutive Compare (X : Set) (lt eq : X → X → Prop) (x y : X) : Set :=

| Lt : lt x y → Compare lt eq x y

| Eq : eq x y → Compare lt eq x y

| Gt : lt y x → Compare lt eq x y.

Module Type OrderedType.

Parameter t : Set.

Parameter eq : t → t → Prop.

Parameter lt : t → t → Prop.

Axiom eq_refl : ∀x, eq x x.

...

/

...

184 Certi�ed funtional programming

...

/

...

Axiom eq_sym : ∀x y, eq x y → eq y x.

Axiom eq_trans : ∀x y z, eq x y → eq y z → eq x z.

Axiom lt_trans : ∀x y z, lt x y → lt y z → lt x z.

Axiom lt_not_eq : ∀x y, lt x y → ¬ eq x y.

Parameter ompare : ∀x y, Compare lt eq x y.

End OrderedType.

In fat, the Oaml and Coq versions are not so di�erent, at least from an informative

point of view, the one of the extration. Indeed, eq and lt are ignored by the extration sine

plaed in sort Prop, the one of logial propositions. In the same way, the �ve properties of eq

and lt are also in Prop, thus ignored by the extration. Thus the only remaining parts after

extration are the informative parts plaed in Set, here the type t and the funtion ompare.

The latter funtion, similar to the ompare of Oaml, allows to disriminate aording to the

respetive positions of two elements of type t, and returns a result in the ternary indutive

type Compare. From the logial point of view, ompare states the deidability of eq and lt.

It should indeed be notied that ompare returns not only the desired position information

(via the used onstrutor Lt, Eq, or Gt), but also a logial proof ertifying the urrent

situation. This logial part is also forgotten by the extration, and that gives us for this

signature OrderedType the following extrated version:

type 'x ompare =

| Lt

| Eq

| Gt

module type OrderedType =

sig

type t

val ompare : t → t → t ompare

end

It should be noted that we an easily write manually wrappers between this type ompare

and the type int used in the initial Oaml interfae as a three-value type. One an thus

adapt the funtor Make provided by Oaml in order that it works with our interfae.

7.1.2 The signature of the sets

Now, in Oaml, an set struture is reated via the following funtor:

module Make (Ord : OrderedType) : S with type elt = Ord.t

(* Funtor building an implementation of the set struture

given a totally ordered type. *)

And here omes now the beginning of this signature S of the set struture:

7.1. The Coq interfae 185

module type S =

sig

type elt

(* The type of the set elements. *)

type t

(* The type of sets. *)

val empty: t

(* The empty set. *)

val is_empty: t → bool

(* Test whether a set is empty or not. *)

val mem: elt → t → bool

(* [mem x s℄ tests whether [x℄ belongs to the set [s℄. *)

val add: elt → t → t

(* [add x s℄ returns a set ontaining all elements of [s℄,

plus [x℄. If [x℄ was already in [s℄, [s℄ is returned unhanged. *)

[...℄

end

One �nds there, in addition to the types elt and t and the onstant empty, 22 ele-

mentary funtions over sets. It should be noted that eah funtion omes with an informal

spei�ation in omment. It is in fat starting from these informal spei�ations that we

have built our formalization. Our Coq signature thus begin in the same manner as the Oaml

signature, namely by the type delaration for the set operators:

Module Type S.

Delare Module E : OrderedType.

Definition elt := E.t.

Parameter t : Set.

Parameter empty : t.

Parameter is_empty : t → bool.

Parameter mem : elt → t → bool.

Parameter add : elt → t → t.

[...℄

End S.

Some funtion signatures are not adaptable so simply:

• ompare : t → t → int

One �nds again the same problem as with OrderedType: what to do with int? The

answer is similar. First, we add in the signature S two relations eq and lt on sets, of

186 Certi�ed funtional programming

type t→t→Prop, without equivalents in Oaml, and ignored by the extration. And

beside that, S requires the presene of an informative funtion ompare of type ∀s∀s',
(Compare eq lt s s'). This way, we still have in Coq the following interesting pro-

perty of Oaml : a module ful�lling S an also be seen as a OrderedType, whih allows

to build sets of sets.

• iter: (elt → unit) → t → unit

This is the only ourrene of an imperative funtion in all the module, untranslatable

in a purely funtional world, and thus omitted.

• ardinal: t → int

One again, int is not diretly usable in Coq. We have hosen to delare ardinal: t

→ nat, where nat is the Coq type of Peano integers. This debatable hoie has only

the interest of providing simple indution priniples over the size of a set. But this is

done at the detriment of the e�ieny. Among the other alternatives, one an also use

the binary integers Z of Coq, or an axiomatized abstrat type, whih one then extrats

manually to int (see setion 4.4.2). In any ase, the other versions of ardinal an

easily be written thanks to the generi funtion fold.

• min

_

elt, max

_

elt and hoose: t → elt

All these three funtions are supposed to raise the exeption Not

_

found if their argu-

ment is empty. A natural manner of enoding this behavior in Coq is the use of the

type option.

At the head of the Coq interfae, one an notie the presene of a delaration E:

OrderedType. This delaration, laking in Oaml, allows in partiular to name E.t, E.lt

and E.eq in the spei�ations. The Coq type of the Make modules will then be:

Module Make (X:OrderedType) : S with Module E := X.

It is possible to avoid the use of this internal sub-module E by replaing it with two

Parameter eq and lt in S, and by providing three �with Definition...� instead of only

one �with Module...�.

The spei�ation part, with is the seond half of the signature S of Coq, is entered

around a logial membership relation In : elt→t→Prop. This relation is abstrat: eah

module implementing our �nite set interfae should provide one. The only property required

for this In is the ompatibility with respet to the equality of E:

Parameter In_1: E.eq x y → In x s → In y s.

This property must be understood with a impliit universal quanti�ation over the variables

x, y and s, as authorizes by the mehanism of Setion (see page 29). The same is true in

the following examples.

All the set funtion spei�ations are now expressed with respet to this prediate In.

One writes for example:

(** Speifiation of [mem℄ *)

...

/

...

7.1. The Coq interfae 187

...

/

...

Parameter mem_1: In x s → mem x s = true.

Parameter mem_2: mem x s = true → In x s.

(** Speifiation of [add℄ *)

Parameter add_1: In x (add x s).

Parameter add_2: In y s → In y (add x s).

Parameter add_3: ¬ E.eq x y → In y (add x s) → In y s.

7.1.3 The ase of higher order funtions

Among these set funtions, those taking a funtion as argument require a little more

attention. This onerns fold, filter, for_all, exists and partition. For example the

abstrat spei�ation of fold is:

val fold: (elt → 'a → 'a) → t → 'a → 'a

(* [fold f s a℄ omputes [(f xN ... (f x2 (f x1 a))...)℄, where

[x1 ... xN℄ are the elements of [s℄. The order in whih elements

of [s℄ are presented to [f℄ is unspeified. *)

Our �rst attempts at speifying fold were based on the formalization of the two following

equations:

fold f empty i = i

fold f (add x s) i = f x (fold f s i)

But this approah appeared to be extremely hard to �nalize. Two problems have arisen in

partiular:

• To take in aount the unspei�ed harater of the order of omputations, while spea-

king of a meaningful �nal result, it was neessary to add assumptions on f, like the

ommutativity: f x (f y a) = f y (f x a).

• Moreover, what happens if f returns two distint values for two elements x and y that

are equal modulo E.eq? In a preliminary version, we did not treat this ase orretly,

whih would have allowed to prove false = true starting from a hypothetial module

having for interfae this version S.

• Finally the use of the usual equality �=� of Coq in these equations is too restritive

for ertain uses. For example if one wishes to rebuild a set via a fold, one would

then write (fold add s empty). But the usual equality is not appropriate with our

sets parameterized by an equality E.eq. We an then aept this ase by using an

additional equality eqA over the output type, but that beomes really heavy.

Finally, we have hosen a spei�ation at the same time simpler and more expressive,

by relying on a previously de�ned datatype, namely the lists, and more preisely on the

funtion fold

_

right de�ned on these lists. The �nal spei�ation is rather lose to the

informal version given in omment above. Instead of saying �x1... xN is the elements of

the set s�, we a�rm �l is a list without redundany ontaining all the elements of s and only

those�. Of ourse, the membership of our list and the not-redundany are expressed modulo

188 Certi�ed funtional programming

E.eq. For that we have de�ned two speialized prediates InList and Unique parameterized

by one equality. Here ome this �nal spei�ation of fold:

Parameter fold_1 : ∀(A : Set)(i : A)(f : elt → A → A), ∃l : list elt,

Unique E.eq l ∧
(∀x, In x s ↔ InList E.eq x l) ∧
fold f s i = fold_right f i l.

This formulation does in partiular not assume any pre-ondition on the funtion f. If

this funtion f does not hek the ommutativity of omputations, or is not invariant with

respet to E.eq, then several lists ontaining the elements of s will produe di�erent results

by fold

_

right. But at least one of these lists ends in the same result as the fold. In fat,

if we adds these pre-onditions on f, one an replae ∃l by ∀l in the spei�ation.

For speifying the other higher order funtions, that is filter, for_all, exists and

partition, we ould also have established a parallel with the versions of these funtions

working on lists. In fat, these ases are appreiably simpler than the example of fold, sine

there is no problem of omputations order or equality on the output type. We have thus

used a diret spei�ation, suh as for example:

Parameter filter_1 : ompat E.eq f → In x (filter f s) → In x s.

Parameter filter_2 : ompat E.eq f → In x (filter f s) → f x = true.

Parameter filter_3 :

ompat E.eq f → In x s → f x = true → In x (filter f s).

The ondition ompat then requires the invariane of f with respet to E.eq.

7.1.4 A alternate signature ontaining dependent types

Our signature is thus divided into two, with one one side the purely informative funtions,

and on the other side the spei�ations in the form of purely logial axioms. This approah

is not the only possible one in Coq. Thanks to the dependent types, one an indeed gather

both parts in only one expression, whose general outline is, for a funtion with an argument,

∀x,P(x)→∃y,Q(x,y) with P and Q logial prediates expressing respetively the pre- and

post-onditions.

We have then written a seond version of the set signature, named Sdep, by using this

style of �dependent types�. Here omes an exerpt:

Module Type Sdep.

Delare Module E : OrderedType.

Definition elt := E.t.

Parameter t : Set.

Parameter In : elt → t → Prop.

Definition Empty s := ∀a, ¬ In a s.

...

/

...

7.1. The Coq interfae 189

...

/

...

Definition Add (x:elt)(s s':t) := ∀y, In y s' ↔ E.eq y x ∨ In y s.

[...℄

Parameter empty : {s : t | Empty s}.

Parameter is_empty : ∀s, {Empty s}+{¬ Empty s}.

Parameter mem : ∀x s, {In x s}+{¬ In x s}.

Parameter add : ∀x s, {s' : t | Add x s s'}.

[...℄

End Sdep

The parameter In is now needed at the very beginning to express the spei�ations. Then

follow a ertain number of shortuts suh as Empty and Add, expressing logial properties

based on In. The funtion add is now build on the pre- and post-ondition model: the pre-

ondition is here always true, and the post-ondition (Add x s s') expresses the fat that

the new set s' ontains the same elements as the old s, plus x. The ase of the funtions

is_empty and mem is slightly di�erent: instead of saying �there exists a boolean suh that...�,

we diretly use an indutive type with two values, sort of enrihed boolean type, allowing

to express what happens in both ases. This type is sumbool, presented p. 29.

One again, the funtions that are the most di�ult to speify are the higher order

funtions. Here is for example fold, whih now ontains the property fold

_

1 in post-

ondition:

Parameter fold : ∀(A : Set)(f : elt → A → A)(s : t)(i : A),

{r : A | ∃l : list elt,

Unique E.eq l ∧
(∀x, In x s ↔ InList E.eq x l) ∧
r = fold_right f i l}.

7.1.5 Two funtors to hoose the signature style

The new system of module of Coq then allows us to avoid a hoie between the two

possible signatures. Indeed one an easily write a funtor whih transforms a module of

type S into a new module of type Sdep and another funtor doing the onverse work. This

is atually done in the �le FSetBridge.v. This way, all new implementation of the sets

only needs to be done for one version, whihever one is hosen. Aording to the taste of

the programmer, the two implementations based on sorted lists and on red-blak trees were

build over di�erent signature, one in aordane to S, the other in aordane to Sdep. And

onversely, any user has the hoie of the version whih he prefers to use. He an even, and

it is really appreiable in pratie, use the two interfaes simultaneously.

7.1.6 Extration of the set signatures

What happen to the extrated versions from these two interfaes? They are in fat

extremely lose, and an even be made equal.

190 Certi�ed funtional programming

Conerning the interfae S, the extration is quite simple. Indeed, the pure signatures do

not ontain any logial part, and there is no use of advaned Coq types like sorts, pattern

mathings or �xpoints. The extration is then a simple translation to Oaml. Conerning the

spei�ations, sine they are ompletely logial, they are just forgotten. We just go bak to

the initial Oaml interfae modulo the slight adaptations mentioned previously. Here omes

its beginning:

module type S =

sig

module E : OrderedType

type elt = E.t

type t

val empty : t

val is_empty : t → bool

val mem : elt → t → bool

val add : elt → t → t

[...℄

end

Things get more ompliated in the ase of the interfae Sdep. First of all, the possible

logial arguments orresponding to pre-onditions are eliminated. Then the indutive type

orresponding to the post-onditions of the form {y: Y| ... }, that is sig, is reognized

as being a �singleton informative� type (see p. 131), and is thus translated into the identity:

type 'a sig0 = 'a. The type extrated from the dependent version of add is thus elt

→ t → t sig0, whih is then onvertible to the expeted elt → t → t. In the other

possible situation, namely the use of sumbool as in is_empty or mem, the extration of

sumbool onsists in forgetting the logial deorations of this indutive, whih gives:

type sumbool =

| Left

| Right

This extrated type sumbool is isomorph with the boolean type, but not equal. If one wishes

to fore the equality, in order to really obtain the same signature in both ases, it is enough

to use the replaement mehanism for the extrated indutive (see p. 142):

Extrat Indutive sumbool ⇒ bool [true false℄.

Here is the beginning of the interfae extrated from Sdep, with no replaement of sumbool

by bool:

module type Sdep =

sig

...

/

...

7.1. The Coq interfae 191

...

/

...

module E : OrderedType

type elt = E.t

type t

val empty : t sig0

val is_empty : t → sumbool

val mem : elt → t → sumbool

val add : elt → t → t sig0

[...℄

end

At this point, we have a formal interfae in Coq, as well as an extration of this interfae

in Oaml. We an then right now provide a not-formal implementation of this extrated

interfae thanks to the module Set of Oaml, with the help of a manual enapsulation of

ertain funtions, in partiular the omparisons.

(* 2i : 't ompare → int *)

let 2i = funtion Lt → -1 | Eq → 0 | Gt → 1

(* i2 : int → 't ompare *)

let i2 i = if i<0 then Lt else if i=0 then Eq else Gt

(* i2n : int → nat, tail reursive *)

let i2n =

let re a p = funtion 0 → p | n → a (S p) (n-1)

in a O

module Make(X:OrderedType) : S with module E = X and type elt = X.t =

strut

module E = X

module M = Set.Make(strut

type t = X.t

let ompare x y = 2i (X.ompare x y)

end)

inlude M

let ompare s s' = i2 (ompare s s')

let ardinal s = i2n (ardinal s)

let max_elt s = try Some (max_elt s) with Not_found → None

let min_elt s = try Some (min_elt s) with Not_found → None

let hoose s = try Some (hoose s) with Not_found → None

end

Please note that this only works if we have replaed beforehand ertain extrated indu-

tive types by their primitive equivalent in Oaml. This onerns the boolean, the pairs and

the lists. For boolean, that an be done via an Extrat Indutive, but the two other ases

192 Certi�ed funtional programming

require an external intervention, for example the use of a syntati sript of improvement

of the extrated ode. This sript, written in Camlp4, is available at the following address:

http://www.lri.fr/~letouzey/download/pp_extrat.ml.

7.2 A implementation based on sorted lists

Before going further, one may wonder why do we really need to ode in Coq an imple-

mentation of our set interfaes. After all, using a pragmati attitude, one an indeed hoose

to regard the module Set of Oaml as being su�iently tested to be orret with respet to

its informal spei�ation written in omments. And onerning our small manual wrapping

funtor Make in the previous paragraph, its small size and its simpliity leave little plae to

errors. If we aept these two points, then we an perfetly arry out a erti�ed development

in Coq using our sets only via their interfae, and obtain nevertheless a omplete program

thanks to this funtor Make.

In fat, we will see later in the desription of our implementation based on AVL trees

that the original implementation of Oaml was not so orret after all, sine we have found

there an error. The formalization of this implementation was thus not vain.

And from the point of view of a Coq user interested in our �nite set library, stopping

this library with only the Coq interfae presents two disadvantages. First of all, suh an

abstrat vision exludes any omputation in Coq. In partiular, one an build a proof that

(is_empty empty) is worth true, but not ompute/exeute/simplify (is_empty empty)

into true. This is only possible for a partiular implementation of the sets. Maybe a future

introdution of primitive rewriting in Coq will one day hange this fat. And providing an

e�etive Coq implementation in whih we an ompute an also lead to the use of these sets

in tatis based on re�exion (see for example [16℄).

The other disadvantage is the risk of inonsisteny of our interfae, whih is by itself only

an axiomatization. This risk is to be taken seriously. For example we have already mentioned

the fat that an earlier version of FSetInterfae.v was allowing to dedue False from some

partiular OrderedType, due to a bad spei�ation of the higher order funtions like fold.

This nasty surprise annot happen any more, sine at least an implementation allows, from

any OrderedType, to build a module ful�lling S, and this without using any axiom.

7.2.1 Desription of the module FSetList

The goal of this module is to provide as quikly as possible an implementation to our

Coq interfae for sets, mainly in order to to hek its oherene. E�ieny was hene not a

preoupation during its reation. As a onsequene, the �rst idea was an implementation

using unspei�ed lists. But ontrary to the ommon ideas, the set operations for unspei�ed

lists are not so obvious to write. In partiular the funtion remove must parse all the list to

detet possible doubled items. Similarly, the funtion fold must deal with these dupliated

items. A solution is then to maintain an invariant of not-redundany. Sine an invariant is

to be maintained, it is hardly more di�ult to require diretly that the lists are sorted. And

this way the e�ieny is muh better.

7.2. A implementation based on sorted lists 193

For this implementation, we have followed the not-dependent interfae S. But it is not

that simple to work with lists assoiated with an invariant. In partiular, for eah operation

produing a list, it is immediately neessary to hek that this invariant is preserved. We

have preferred to split the work in several phases.

A �rst funtor Raw, taking a OrderedType as argument, de�nes set funtions over the

datatype t = (list elt), impliitly assuming that these lists are sorted Thus the union

orresponds to the lassial merge algorithm:

Fixpoint union (s : t) : t → t :=

math s with

| [℄ ⇒ fun s' ⇒ s'

| x :: l ⇒
(fix union_aux (s' : t) : t :=

math s' with

| [℄ ⇒ s

| x' :: l' ⇒
math E.ompare x x' with

| Lt _ ⇒ x :: union l s'

| Eq _ ⇒ x :: union l l'

| Gt _ ⇒ x' :: union_aux l'

end

end)

end.

Note here the usual trik onsisting in using an anonymous internal fix for enabling the

all (union_aux l'), not struturally dereasing ompared to the �rst argument.

In a seond time, the funtor Raw proves the properties expeted by the signature S,

exept that we add at the top of the lemmas the assumption that the input lists are initially

sorted.

Lemma union_1 : ∀(s s' : t)(Hs : Sort s)(Hs' : Sort s')(x : elt),

In x (union s s') → In x s ∨ In x s'.

We also prove that our operations always produe sorted lists when their arguments are

sorted. For example:

Lemma union_sort :

∀(s s' : t) (Hs : Sort s) (Hs' : Sort s'), Sort (union s s').

Consequently, we then have all the piees to de�ne a seond funtor named Make, whih this

time really produes a module of signature S. In this module, the datatype is now the well

sorted lists, de�ned by:

Reord sorted_list : Set := { this :> Raw.t ; sorted : sort E.lt this }.

Definition t := sorted_list.

The remainder of the module is only a long sequene of wrapping/unwrapping, whih thanks

194 Certi�ed funtional programming

to the impliit arguments and to the oerion t :> Raw.t are done without problem. For

example:

Definition union (s s' : t) :=

Build_sorted_list (Raw.union_sort (sorted s) (sorted s')).

Definition union_1 (s s' : t) := Raw.union_1 (sorted s) (sorted s').

7.2.2 Extration of FSetList

The extration of the whole annot be simpler. Conerning the funtor Raw, the pure

funtions are extrated into themselves, and their properties are forgotten. Our example of

the union gives:

let re union s x =

math s with

| Nil → x

| Cons (x0, l) →
let re union_aux s' = math s' with

| Nil → s

| Cons (x', l') →
(math E.ompare x0 x' with

| Lt → Cons (x0, (union l s'))

| Eq → Cons (x0, (union l l'))

| Gt → Cons (x', (union_aux l')))

in union_aux x

And in the funtor Make, the type sorted_list is reognized as being isomorph to (list

elt) as soon as the logial part sorted is removed (one more informative singleton indutive

type). All the remainder is thus only de�nitions of aliases. For example:

let this s = s

let union s s' = Raw.union (this s) (this s')

7.2.3 The tail reursivity

It should be noted that our funtions on lists were written in a diret reursive style,

and are thus almost never tail reursive. This is a priori not a problem, beause this module

has no laim of e�etiveness. Exept that...

It indeed appeared during the realization of the e�etive implementation based on Red-

Blak trees, that a ertain number of operations, suh as for example the union and the

intersetion, ould be in fat advantageously �subontrated� to the module FSetList:

• On the e�ieny level, one an transform a Red-Blak tree, whih is a partiular form

of binary searh tree, into a sorted list via a simple linear traversal. And the reiproal

transformation, even if less simple, an also be done in linear time. Finally, we obtain

7.3. A implementation based on Red-Blak trees 195

this way an union on trees whose omplexity is in the worst ase the sum of the sizes

of his arguments. This omplexity is theoretially optimal, and quite far from being

obvious to obtain by diret analysis of the trees.

• On the level of the orretness proof for these �subontrated� funtions, there is an

obvious gain: we only need to prove one and for all the orretness of the two funtions

of onversion between Red-Blak trees and sorted lists, and then the orretness of the

tree funtions done this way is obtained by diret translation of the results already

proved for the lists.

Consequently, it would be interesting to arry out an alternative of FSetList that

onsume no stak. A simple way to reah that point would be undoubtedly to de�ne the tail

reursive alternatives, and to prove immediately that they return the same result as their

simpler ounterparts.

Conerning the implementation based on AVL tree, we made a point of being as faithful

as possible to the original Oaml ode of the library Set. We thus have not used this method

of �attening, merging, then rebuilding, but rather the method used in Set, more e�etive

in pratie.

7.3 A implementation based on Red-Blak trees

The orresponding �le is FSetRBT.v. Let us remind that Red-Blak trees (RBT) are

binary searh trees for whih one limits the maximum imbalane by assoiating two olors

to the nodes, and by ontrolling the loations of these olors. More preisely:

(i) all the paths from the root to a leaf should ontain exatly the same number of blak

nodes.

(ii) a red node annot have red hild.

(iii) the leaves are onsidered blak.

Our implementation of sets based on RBT is thus e�etive. For example, the searh

for an element has a logarithmi maximal ost. But this e�etiveness is paid during the

orretness proofs, whih are muh more omplex than in the preeding implementation.

For example, the orretness proof of the add onsists of more than 350 lines. Fortunately,

only add, remove and of_list (the building of a RBT starting from a sorted list) have

presented real di�ulties. The other funtions were either simpler, or �subontrated� to the

list funtor as seen in the previous paragraph.

Our intention is here not to desribe the details of this implementation. Moreover the

main funtions like add and remove having been realized by J.-C. Filliâtre. One an ne-

vertheless note that the interfae used is Sdep, the one ontaining dependent types. The

funtions are thus de�ned by tatis instead of diretly providing terms, and these tatis

allow to build at the same time the struture of the underlying algorithm and the proofs of

the intermediate needed properties, invariants and post-onditions. This module thus onsti-

tutes a good test benh for the extration, whih have to distinguish informative parts from

logial parts. In pratial, the extrated funtions are eah time lose to what one would

have manually written, exept for syntati details like the shape of pattern mathings.

196 Certi�ed funtional programming

And as shows in a following setion, the e�etiveness of the extrated funtions is indeed as

awaited.

Let us onsider for example the funtion of_list that onstruts a RBT from a sorted

list. It relies on a funtion of_list_aux with three informative arguments:

• the height k of the tree to be manufatured, initialized in of_list with N_digits,

that is a base two logarithm.

• the size n of the tree to be manufatured.

• the list of the elements, that an beome larger than n during the internal reursive

alls. So this funtion of_list_aux funtion also returns the extra elements.

Here ome shortened versions of of_list_aux and of_list. We have removed all the in-

variants propagated in these funtions, and have only kept the treatment of the various

situations. But even this way, this Coq sript remains highly indigestible, and is given only

as an illustration.

Definition of_list_aux :

∀k : Z, 0 ≤ k →
∀n : Z, two_p k ≤ n + 1 ≤ two_p (Zsu k) →
∀l : list elt, sort E.lt l → n ≤ Zlength l →
{rl' : tree * list elt | ... }.

Proof.

intros k Hk; pattern k; apply natlike_re3; try assumption.

intro n; ase (Z_eq_de 0 n).

(* k=0 n=0 *)

intros Hn1 Hn2 l Hl1 Hl2; exists (Leaf, l); [...℄.

(* k=0 n>0 (in fat 1) *)

intros Hn1 Hn2.

assert (n = 1). [...℄

rewrite H.

intro l; ase l.

(* l = [℄, absurd ase. *)

intros Hl1 Hl2; unfold Zlength, Zlt in Hl2; elim Hl2; trivial.

(* l = x::l' *)

intros x l' Hl1 Hl2; exists (Node red Leaf x Leaf, l'); [...℄

(* k>0 *)

lear k Hk; intros k Hk Hre n Hn l Hl1 Hl2.

rewrite <- Zsu_pred in Hre.

generalize (power_invariant n k Hk).

elim (Zeven.Zsplit2 (n - 1)); intros (n1, n2) (A, B) C.

elim (C Hn); lear C; intros Hn1 Hn2.

(* 1st reursive all : (of_list_aux (Zpred k) n1 l) gives (lft,l') *)

elim (Hre n1 Hn1 l Hl1).

intro p; ase p; lear p; intros lft l'; ase l'.

...

/

...

7.3. A implementation based on Red-Blak trees 197

...

/

...

(* l' = [℄, absurd ase. *)

intros o; elimtype False. [...℄

(* l' = x :: l'' *)

intros x l'' o1.

(* 2nd re. all : (of_list_aux (Zpred k) n2 l'') gives (rht,l''') *)

elim (Hre n2 Hn2 l''); lear Hre.

intro p; ase p; lear p; intros rht l''' o2.

exists (Node blak lft x rht, l'''). [...℄

Defined.

Definition of_list : ∀l : list elt, sort E.lt l →
{s : t | ∀x : elt, In x s ↔ InList E.eq x l}.

Proof.

intros.

set (n := Zlength l) in *.

set (k := N_digits n) in *.

assert (0 ≤ n). [...℄

assert (two_p k ≤ n + 1 ≤ two_p (Zsu k)). [...℄

elim (of_list_aux k (ZERO_le_N_digits n) n H1 l); auto.

intros (r, l') o.

assert (∃n : nat, rbtree n r). [...℄

exists (t_intro r (olai_bst o) H2). [...℄

Defined.

And here omes now the extration of these two funtions:

(** val of_list_aux : z → z → elt list → (tree, elt list) prod sig0 **)

let re of_list_aux x n l =

math x with

| ZERO →
(math z_eq_de ZERO n with

| Left → Pair (Leaf, l)

| Right →
(math l with

| Nil → assert false (* absurd ase *)

| Cons (x0, l') → Pair ((Node (Coq_red, Leaf, x0,

Leaf)), l')))

| POS p →
let Pair (n1, n2) = zsplit2 (zminus n (POS XH)) in

let Pair (lft, l1) = of_list_aux (zpred (POS p)) n1 l in

(math l1 with

| Nil → assert false (* absurd ase *)

| Cons (x0, l2) →
let Pair (rht, l3) = of_list_aux (zpred (POS p)) n2 l2 in

...

/

...

198 Certi�ed funtional programming

...

/

...

Pair ((Node (Coq_blak, lft, x0, rht)), l3))

| NEG p → assert false (* absurd ase *)

(** val of_list : elt list → t sig0 **)

let of_list l =

let n = zlength l in

let Pair (r, l') = of_list_aux (n_digits n) n l in

r

The proof struture of of_list_aux an be better understood by reading the extrated

ode rather than the proof itself, even with the aompanying notes. This readability of the

extrated ode does not ome for free, and is the result of many optimizations (f setion

4.3). Here, one noties an indution on the integer k≥0, thanks to an ad ho indution

priniple named natlike_re2, whose type is:

Lemma natlike_re2 : ∀P : Z → Type,

P 0 →
(∀z : Z, 0 ≤ z → P z → P (Zsu z)) →
∀z : Z, 0 ≤ z → P z

In the ase k=0, we have either n=0 and then we builds an empty tree or n=1 and then we

build a �nal node of red olor. And when k>0, we divide n-1 into two halves, (n1 and n2),

and we all reursively twie the funtion to build the left and right parts of the tree.

7.4 A implementation based on AVL trees

We have also realized a third implementation of a funtor Make taking an OrderedType

and returning a module of signature Sdep. After those based of sorted lists and on Red-

Blak trees, this third implementation is based on AVL trees. It has been arried out by

J.-C. Filliâtre by following as losely as possible the initial implementation of the funtor

Set.Make available in the standard library of Oaml. In fat, the ode whih we obtain by

extration of this Coq implementation is su�iently lose to the original manual ode to be

able to a�rm reasonably that we have formalized and erti�ed this Oaml library.

Exept for the printing details, the prinipal di�erene between two odes onerns the

arithmeti used. AVL Trees are indeed trees in whih the depth di�erene between any

two sub-trees does not exeed a ertain �xed

2

. quantity ∆. And it is essential to store the

depth of the tree in the hosen data struture, otherwise we would reompute this depth

uneasingly. However a depth is an hardware integer int in the initial Oaml ode, and we

have replaed this in Coq by an integer of type Z.

This di�erene in the integer representation has an important in�uene on the speed of

the two odes, the manual Oaml version going approximately four times faster than the

extrated version, as shown by the �gures presented in [34℄. The Coq integers, enoded via

2

In the literature, ∆ is often 1, whereas 2 was hosen in the Oaml implementation as trade-o� between

the advantages of having very balaned trees and the osts related to re-balaning.

7.5. An example of use in a mathematial ontext 199

indutive types, even in binary format, annot ompete with hardware integers. It would then

have been interesting to have a tool allowing to substitute a representation by another during

the extration, generalizing the ommand Extrat Indutive, too limited. In theory, this

replaement is not sure, beause the type int is subjet to over�ow problems that annot

happen with the type Z of Coq. But this danger is here quite hypothetial, sine it would

be quite utopian to try to handle balaned binary trees with depth higher than 230
, sine

that would mean that that they would have about 2230

elements! More generally, one an

imagine to replae Z by big

_

int, whih gives arbitrary preision while doing a maximum of

omputation via the hardware integers.

At the tehnial level, this implementation is �nally quite similar to the one via Red-

Blak trees, exept for a great quantity of reasoning on the integers, and thus a strong

use of the automati tati omega. Instead of giving here too many details, we refer to [34℄

for (a little) more information. The major surprise has been the disovery of an error in

the initial Oaml ode. Certain funtions ould indeed return trees whih were not orretly

balaned any more. This problem was not ritial sine the trees were remaining orret (i.e.

still ontained the good elements), but on the other hand the e�ieny ould be strongly

a�eted. For example the logarithmi omplexity for the searh for an element, advertised

in a omment, was not guaranteed any more. We informed X. Leroy of this problem, and he

immediately orreted the Oaml soure ode.

7.5 An example of use in a mathematial ontext

The example whih follows now is inluded in our ontribution Orsay/FSets, in the

sub-diretory PreedeneGraph. This result was initially an exerise posed during some

pratial sessions about theory of operating systems [9℄. Sine the o�ial solution of this

exerise was inorret, we have then searhed a orret proof, and formalized this proof in

Coq to be onvined of its orretness one and for all. This formal proof has in fat been at

the origin of our interest in �nite sets in Coq. We have modi�ed it later so that it now uses

our sets à la Oaml. It is now a good example of use of these sets within a mathematial

ontext.

The result deals with the preedene graphs. Suh a graph is a representation without

redundany of a strit order: more preisely, if < is a strit order, the assoiated graph is

de�ned by a → b i� a < b and ∀c,¬(a < c < b). In pratie, we an also see a preedene

graph as an ayli direted graph whose transitive edges have been removed (i.e. a→ ...→ b
implies ¬(a→ b)). The result then states that:

E ≤ N2

4

with E being the edge number of a preedene graph, and N its node number.

The proof is done by indution over N , by removing at eah step a arefully hosen node

and the edges whih are assoiated to this node. This proof outline has made us hoose to

the following representation for the graph

3

3

We have hosen to label our nodes with integers. In fat, any OrderedType ould have worked.

200 Certi�ed funtional programming

Reord Graph : Set := {

nodes:> t;

to: nat → nat → bool }.

with t being a �nite set of integers. This way, when we withdraw a node, we just have to

update nodes, whereas the transition funtion to an remain invariant. Indeed, the only

edges that are ounted are those whose both ends are in nodes. The funtion filter then

allows to de�ne the sets of suessors and predeessors of a node, whih in ombination to

ardinal allows to de�ne the number of edges.

The proof proeeds then in four stages:

Theorem edges_remove : ∀G:Graph, ∀n:elt, In n G → to G n n = false →
nb_edges G = (nb_edges (node_remove G n))+(arity G n).

Theorem get_init : ∀G:AyliGraph, 0 < nb_nodes G →
{p:nat| In p G ∧ nb_pred G p = 0}.

Theorem low_arity: ∀p:nat, ∀G:PreGraph, 0 < nb_nodes G →
nb_nodes G < 2*(p+1) →
{k:nat| In k G ∧ nb_linked G k ≤ p}.

Theorem TheBound : ∀G:PreGraph,
(nb_edges G)*4 ≤ (nb_nodes G)*(nb_nodes G).

The �rst theorem establishes that the edges number of G r {n} is the one of G less the

number of suessors and predeessors of n. Then, for an ayli graph, we show the existene

of an initial element. The third theorem is ruial: it a�rms that in any preedene graph

whose size is stritly lower than 2(p + 1), we an �nd a node with less than p neighbors.

And �nally this partiular node is adequate for our purpose: we an remove it and �nish

the indution reasoning, whih enables us to establish the �nal theorem.

7.6 A �nal word

This ase study shows that it is perfetly possible to speify and to implement funtional

and e�ient data strutures in Coq, while remaining in onnetion with an interfae and an

e�etive Oaml implementation by the means of the extration.

This method an obviously be reused for other strutures, suh as those presented by C.

Okasaki in [64℄. In partiular all the present work ould normally allow us to obtain a module

Map at low ost. One an, indeed, see a Map struture as being a Set where the OrderedType

is a pair index * value and where the omparison only aesses the �rst omponent. The

only new funtion to write is then find, whih is anyway only an alternative of mem.

Conlusion

Arrived at the end of this work, it is now time for taking stok, by asking at least the

two following questions:

• Is this new extration better than the old one? We do think so.

• Now, is our is extration still perfetible? Of that we are sure.

The realizations

First, the ritial orretness issues that we have evoked in introdution have been solved.

A syntati proof, enabling to ompare the redution of a extrated term with the redution

of an initial Coq term, ensures indeed that potential exeution errors, like those from whih

the old extration su�ered, annot our any more at the present time, whether it is with

the strit evaluation à la Oaml or with the lazy evaluation à la Haskell.

In addition we have �nalized a seond orretness proof, inspired by realizability, whih

guarantees that the semanti properties of the initial Coq terms are indeed preserved during

extration. This proof has been made in a system as lose as possible to the Ci urrently

employed in Coq, whih has implied a very onsequent inrease in omplexity for this seman-

ti proof when omparing to the original works by C. Paulin. This proof, although manual

and thus partly unsatisfatory, must be seen as a �rst stage towards a internal orretness

proof, formalized in Coq, that we will evoke among the prospets.

Another realization of this thesis is the solution of the typing problem for the extrated

terms. Our solution onsists in the use of untyped oerion funtions: this is ertainly ad

ho, but works very well in pratie. This allows now to explore all the range of the Coq

terms with no more fear of ending on terms without extration or with untyped extration.

Lastly, a substantial e�ort has been made on the implementation level, in order to make

of extration a real platform of erti�ed ode generation, and not any more an experimental

tool. In partiular, this point, one an note the pro�ts in readability for the extrated ode,

and espeially the progresses onerning the integration of extrated ode with broader

developments, thanks to the generation of interfaes, and espeially thanks to the extension

of the extration to the new module system of Coq.

The prospets

First of all, it is obvious that one an still improve the safety of this mehanism of ode

generation. Of ourse, as shown by K. Thompson in the artile [79℄, our �nal program will

202 Certi�ed funtional programming

be worthy of on�dene only if eah link in the prodution hain is, and in partiular the

ompiler Oaml or Haskell used, the operating system, the proessor, et

4

. In pratie suh

a level of veri�ation is never reahed. But one of the weak spot in this safety hain seems

to be today the orretness of our extration. It is indeed hardly satisfatory that all this

omplex mehanism relies only on a proof in L

A

T

E

X. There are then two possible approahes

to ure that:

• One an �rst add to the extration mehanism an extension that, for eah extrated

term, produes the Coq term proving the orretness of this extrated term. Conse-

quently, at eah extration, the aeptane by the type-heker of Coq of this Coq

proof term will guarantee the orretness of the given extrated term. This approah

orresponds to systems like Minlog or Isabelle. And the realization of suh an extension

of the extration seems within reah, thanks to our study of setion 2.4.

• There also exists an muh more ambitious alternative, but also less realisti in the

immediate future. It would be the omplete formalization in Coq of our orretness

proof for the extration. That would require muh more work than the preeding

approah, sine it would be a Coq formalization instead of an extension in Oaml. At

the same time we would then obtain a total guarantee, instead of building a partiular

proof at eah extration. With regard to this possible omplete formalization, one an

imagine to start from the formalization of Coq in Coq by B. Barras [8℄, and also re-use

one of the works about the semantis of ML, as for example [29℄. And why not then try

to extrat this formalization in order to build an extration made of extrated ode,

at least for its entral part? This would take naturally plae into the utopian projet

of �bootstrapping� the ore of Coq defended by B. Barred.

Conerning the appliations of the extration, the work on the extration of C-CoRN

deserves to be ontinued. Of ourse, many problems still persist about e�ieny. These

problems an be loated at several levels. First the algorithms employed are sometimes the

most general possible, at the detriment of the e�ieny. In addition, the proof sripts are

still largely improvable, for example to avoid any redundant omputation. Finally the ode

generated by the extration is ertainly not without defet. All this explains that it appears

di�ult to hope to ompute approximations of roots of polynomials via the extration of

FTA within the next months. At the same time, if one looks at the progress already ahieved,

it would be a shame to stay there. Let us reall that some time ago, even the extration

stage out of FTA seemed unrealisti...

It would be also interesting to try to extend the �eld of appliation of the extration

methodology. Indeed, for the moment, the programs adapted as andidates to erti�ation

by extration are those for whih only the result of the exeution imports. On the other

hand, in the situations where it is of primary importane to terminate quikly or without

onsuming more than a ertain memory quantity, then the extration is urrently not a good

methodology. This immediately exludes any embedded program, whether real-time, or with

limited memory, or both. On the ontrary, the urrent �eld of appliation for the extration

4

Sine the writing of [79℄, the situation is even more omplex, sine the majority of the modern systems

use now dynami libraries (.so or .dll). It is thus theoretially possible to pervert the behavior of a program

after its reation without ever touhing it.

7.6. A �nal word 203

is highlighted by the main examples: tautology hekers, type hekers [8℄, program analyzers

[17℄... Indeed the time and the resoures does not matter muh when you hek a tautology

or searh for a ounterexample, when you typehek or analyze a program, as long as the

result is orret. Currently begins around J.-P. Jouannaud some work on the topi of the

time omplexity evaluation of the extrated programs, with as referene some work done in

Nuprl [11℄. Let us hope that this work will allow to extend the appliability of the extration.

Another possible extension of the �eld of appliation for the extration would onsist of

an internalization of the results of extrated programs inside Coq. After all, if the extration

is sure, why Coq would not trust a deision proedure proved and then extrated? There

undoubtedly matter of interation with the internal ompiler of B. Grégoire [40℄.

A last domain urrently out of reah by the Coq extration is the extration of programs

starting from lassial proofs. This is an extremely ative �eld of researh, in partiular

around Minlog. It should be said that Coq was not, until reently, a good platform for suh

studies, beause the addition of a lassial axiom in Prop does not hange anything for

the extration, whereas the same addition in Set makes the system inoherent when Set

is imprediative. However Set is now prediative by default, whih may allow a lassial

extration in Coq in the future.

Lastly, a last topi of possible improvement is to make this methodology more pleasant

to use. A urrent lak is, for example, the impossibility of importing in Coq some already

existing ML ode. Of ourse, one an always translate it by hand, prove the expeted proper-

ties, then extrat, and �nally hek that the di�erenes between the original ML ode and

the extrated ode are tiny. We have proeeded this way in our erti�ation of the �nite sets

of Oaml (see hapter 7), the original manual ode being in fat available with Oaml. This

importation of ML ode is related with the work by C. Parent around the tati Program

[65℄. Unfortunately, the implementation of this tati have not been adapted to the versions

7.0 and following of Coq. It should be stressed that this importation of ML ode is far from

obvious. For example the importation of a non-strutural reursive funtion will immedia-

tely require the proof justifying its good foundation. This would undoubtedly be interesting

to ombine this importation with the work of A. Balaa and Y. Bertot that failitates the

de�nition of suh reursive funtions [6, 5℄.

It is thus lear that the researh possibilities still open at the end of this thesis are

multiple, even if muh have been done sine the beginnings of the extration in Coq �fteen

years ago. Arrived at this point, let us wish that this methodology for program development

named extration an ontinue its rise, in partiular in diretion of the industrial world.

May this thesis have ontributed to that...

204 Certi�ed funtional programming

Appendix

A User ontributions using extration

� Bordeaux/Additions

� Bordeaux/ditionaries

� Bordeaux/EXCEPTIONS

� Bordeaux/NewSearhTrees

� Bordeaux/SearhTrees

� Dyade/BDDS

� Lannion

� Lyon/CIRCUITS

� Lyon/FIRING-SQUAD

� Marseille/CIRCUITS

� Muenhen/Higman

� Nany/FOUnify

� Nijmegen/C-CoRN

� Nijmegen/QArith

� Orsay/FSets

� Orsay/QArith

� Roq/ARITH/Chinese

� Roq/ARITH/ZChinese

� Roq/COC

� Roq/GRAPHS

� Roq/HIGMAN

� Roq/MUTUAL-EXCLUSION

� Sophia-Antipolis/Buhberger

� Sophia-Antipolis/Bertrand

� Sophia-Antipolis/Hu�man

206 Certi�ed funtional programming

� Sophia-Antipolis/ReursiveDe�nition

� Sophia-Antipolis/Stalmark

� Suresnes/BDD

Bibliographie

[1℄ J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press,

1996.

[2℄ G. M. Adel'son-Vel'skĭι and E. M. Landis. An algorithm for the organization of infor-

mation. Soviet Mathematis�Doklady, 3(5):1259�1263, September 1962.

[3℄ A. Amerkad, Y. Bertot, L. Rideau, and L. Pottier. Mathematis and proof presentation

in poq. In Proeedings of Proof Transformation and Presentation and Proof Complexi-

ties (PTP'01), 2001. Software available at http://www-sop.inria.fr/lemme/poq.

[4℄ D. Aspinall. Proof general: A generi tool for proof development. In Proeedings of TA-

CAS'2000, volume 1785. Leture Notes in Computer Siene, 2000. Software available

at http://proofgeneral.inf.ed.a.uk.

[5℄ A. Balaa. Fontions réursives générales dans le alul des onstrutions. Thèse d'uni-

versité, Nie Sophia-Antipolis, November 2002.

[6℄ A. Balaa and Y. Bertot. Fix-point equations for well-founded reursion in type theory.

In Harrison and Aagaard [43℄, pages 1�16.

[7℄ H. Barendregt. Lambda Caluli with Types. Tehnial Report 91-19, Catholi Univer-

sity Nijmegen, 1991. In Handbook of Logi in Computer Siene, Vol II.

[8℄ B. Barras. Auto-validation d'un système de preuves ave familles indutives. Thèse de

dotorat, Université Paris 7, November 1999.

[9℄ J. Beauquier and B. Bérard. Systèmes d'exploitation: onepts et algorithmes. MGraw

Hill, 1990.

[10℄ M. J. Beeson. Foundations of Construtive Mathematis. Springer-Verlag, 1980.

[11℄ R. Benzinger. Automated omplexity analysis of Nuprl extrated programs. Journal

of Funtional Programming, 11(1):3�31, January 2001.

[12℄ S. Berardi. Pruning simply typed λ-aluli. Journal of Logi and Computation, 6(2),

1996.

[13℄ S. Berghofer. A onstrutive proof of Higman's lemma in Isabelle. In S. Berardi and

M. Coppo, editors, Types for Proofs and Programs, International Workshop, TYPES

2003, Leture Notes in Computer Siene. Springer-Verlag, 2003.

[14℄ S. Berghofer. Proofs, Programs and Exeutable Spei�ations in Higher Order Logi.

PhD thesis, Institut für Informatik, Tehnishe Universität Münhen, 2003.

208 Certi�ed funtional programming

[15℄ L. Boerio. Extending pruning tehniques to polymorphi seond order λ-alulus. In

Proeedings ESOP'94, volume 788. Leture Notes in Computer Siene, 1994.

[16℄ S. Boutin. Using re�etion to build e�ient and erti�ed deision proedure s. In Martin

Abadi and Takahashi Ito, editors, TACS'97, volume 1281. Leture Notes in Computer

Siene, 1997.

[17℄ D. Cahera, T. Jensen, D. Pihardie, and V. Rusu. Extrating a Data Flow Analyser

in Construtive Logi. In D. Shmidt, editor, European Symposium on Programing,

ESOP'2004, volume 2986 of Leture Notes in Computer Siene. Springer-Verlag, 2004.

[18℄ J. Chrz¡szz. Implementing modules in the system Coq. In 16th International Confe-

rene on Theorem Proving in Higher Order Logis, University of Rome III, September

2003.

[19℄ J. Chrz¡szz. Modules in Type Theory with generative de�nitions. PhD thesis, Warsaw

University and Université Paris-Sud, 2003.

[20℄ T. Coquand. An analysis of Girard's paradox. In Proeedings of the First Symposium

on Logi in Computer Siene, Cambridge, MA, June 1986. IEEE Comp. So. Press.

[21℄ T. Coquand and D. Fridlender. A proof of Higman's lemma by strutural indution.

Tehnial report, Chalmers University, November 1993. Unpublished draft, available at

ftp://ftp.s.halmers.se/pub/users/oquand/open1.ps.Z.

[22℄ J. Courant. A Module Calulus for Pure Type Systems. In Typed Lambda Caluli and

Appliations 97, Leture Notes in Computer Siene, pages 112 � 128. Springer-Verlag,

1997.

[23℄ L. Cruz-Filipe. A onstrutive formalization of the fundamental theorem of alulus.

In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs, TYPES 2002,

volume 2646 of LNCS, pages 108�126. Springer�Verlag, 2003.

[24℄ L. Cruz-Filipe. Construtive Real Analysis: a Type-Theoretial Formalization and Ap-

pliations. PhD thesis, University of Nijmegen, April 2004.

[25℄ L. Cruz-Filipe and B. Spitters. Program extration from large proof developments. In

D. Basin and B. Wol�, editors, Theorem Proving in Higher Order Logis, 16th Inter-

national Conferene, TPHOLs 2003, volume 2758 of LNCS, pages 205�220. Springer�

Verlag, 2003.

[26℄ H. B. Curry and R. Feys. Combinatory Logi, volume 1. North-Holland, Amsterdam,

1958.

[27℄ L. Damas and R. Milner. Prinipal type-shemes for funtional programs. In Proeedings

of the 9th Annual ACM Symposium on Priniples of Programming Languages, pages

207�212. ACM Press, 1982.

[28℄ G. Dowek, G. Huet, and B. Werner. On the De�nition of the Eta-long Normal Form

in the Type Systems of the Cube. Informal Proeedings of the Workshop "Types",

Nijmegen, 1993.

[29℄ C. Dubois. Typing Soundness of ML within Coq. In Harrison and Aagaard [43℄, pages

127�144.

Bibliographie 209

[30℄ H. Benl et al. Proof theory at work: Program development in the Minlog system.

In Wolfgang Bibel and Peter H. Shmidt, editors, Automated Dedution: A Basis for

Appliations. Volume II, Systems and Implementation Tehniques. Kluwer Aademi

Publishers, Dordreht, 1998.

[31℄ S. Peyton Jones et al. Haskell 98, A Non-strit, Purely Funtional Language, 1999.

Available at http://haskell.org/.

[32℄ J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types. Thèse de dotorat,

Université Paris-Sud, July 1999.

[33℄ J.-C. Filliâtre. Why: a multi-language multi-prover veri�ation tool. Researh Report

1366, LRI, Université Paris Sud, Marh 2003.

[34℄ J.-C. Filliâtre and P. Letouzey. Funtors for Proofs and Programs. In D. Shmidt,

editor, European Symposium on Programing, ESOP'2004, volume 2986 of Leture Notes

in Computer Siene. Springer-Verlag, 2004.

[35℄ H. Geuvers, F. Wiedijk, and J. Zwanenburg. A Construtive Proof of the Fundamental

Theorem of Algebra without Using the Rationals. LNCS, 2277:96�111, 2001.

[36℄ Herman Geuvers and Milad Niqui. Construtive Reals in Coq: Axioms and Categoriity.

LNCS, 2277:79�95, 2001.

[37℄ E. Giménez. An appliation of o-Indutive types in Coq: veri�ation of the Alternating

Bit Protool. In Workshop on Types for Proofs and Programs, number 1158 in LNCS,

pages 135�152. Springer-Verlag, 1995.

[38℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Trats in Theo-

retial Computer Siene 7. Cambridge University Press, 1989.

[39℄ B. Grégoire and X. Leroy. A ompiled implementation of strong redution. In In-

ternational Conferene on Funtional Programming 2002, pages 235�246. ACM Press,

2002.

[40℄ B. Grégoire. Compilation des termes de preuves : un (nouveau) mariage entre Coq et

OCaml. PhD thesis, Université Paris 7, 2003.

[41℄ L. J. Guibas and R. Sedgewik. A dihromati framework for balaned trees. In

19th Annual Symposium on Foundations of Computer Siene, pages 8�21, Ann Arbor,

Mihigan, 16-18 Otober 1978. IEEE.

[42℄ R. Harper and M. Lillibridge. A type-theoreti approah to higher-order modules with

sharing. In Conferene reord of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium

on Priniples of Programming Languages, pages 123�137, Portland, OR, January 1994.

[43℄ J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order Logis: 13th

International Conferene, TPHOLs 2000, volume 1869 of Leture Notes in Computer

Siene. Springer-Verlag, 2000.

[44℄ S. Hayashi and H. Nakano. PX, a Computational Logi. Tehnial report, Researh

Institute for Mathematial Sienes, Kyoto University, 1987.

[45℄ C. A. R. Hoare. An axiomati basis for omputer programming. Communiations of

the ACM, 12(10):576�580,583, 1969.

210 Certi�ed funtional programming

[46℄ W.A. Howard. The formulae-as-types notion of onstrutions. In J.P. Seldin and J.R.

Hindley, editors, to H.B. Curry : Essays on Combinatory Logi, Lambda Calulus and

Formalism. Aademi Press, 1980. Unpublished 1969 Manusript.

[47℄ G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq Proof Assistant - A tutorial -

Version 8.0, February 2004. Available at http://oq.inria.fr/.

[48℄ R. Kelsey, W. Clinger, and J. Rees (eds.). Revised

5
Report on the Algorithmi Language

Sheme, 1998. Available at http://www.sheme.org/.

[49℄ S. C. Kleene. Introdution to Metamathematis. North-Holland, Amsterdam, 1952.

[50℄ C. Kreitz. The Nuprl Proof Development System, Version 5. Cornell University, Ithaa,

NY, 2002. Available at http://www.nuprl.org.

[51℄ O. Lee and K. Yi. Proofs about a folklore let-polymorphi type inferene algorithm.

ACM Transations on Programming Languages and Systems, 20(4):707�723, July 1998.

[52℄ X. Leroy. A modular module system. Journal of Funtional Programming, 10(3):269�

303, 2000.

[53℄ X. Leroy, J. Vouillon, D. Doliguez, J. Garrigue, and D. Rémy. The Objetive Caml

system � release 3.07, September 2003. Available at http://aml.inria.fr/.

[54℄ P. Letouzey. Exéution de termes de preuves: une nouvelle méthode d'extration pour

le Calul des Construtions Indutives. Université Paris VI, 2000. Available at http:

//www.lri.fr/~letouzey/download/rapport_dea.ps.gz.

[55℄ P. Letouzey. A New Extration for Coq. In H. Geuvers and F. Wiedijk, editors, Types

for Proofs and Programs, Seond International Workshop, TYPES 2002, Berg en Dal,

The Netherlands, April 24-28, 2002, volume 2646 of Leture Notes in Computer Siene.

Springer-Verlag, 2003.

[56℄ P. Letouzey and L. Théry. Formalizing Stålmark's algorithm in Coq. In Harrison and

Aagaard [43℄, pages 387�404.

[57℄ Z. Luo. Computation and Reasoning; a type theory for Computer Siene, volume 11 of

International Series of Monographs in Computer Siene. Oxford Siene Publiation,

1994.

[58℄ P. Martin-Löf. Intuitionisti Type Theory. Bibliopolis, 1984.

[59℄ R. Milner. A theory of type polymorphismn programming. Journal of Computer and

System Sienes, 17, 1978.

[60℄ J.-F. Monin. Extrating Programs with Exeptions in an Imprediative Type System. In

B. Möller, editor,Mathematis of Program Constrution, volume 947 of LNCS. Springer

Verlag, 1995.

[61℄ J.-F. Monin. Contribution aux méthodes formelles pour le logiiel. Mémoire d'habilita-

tion à diriger des reherhes, Université de Paris Sud, avril 2002.

[62℄ D. Monniaux. Réalisation méanisée d'interpréteurs abstraits. Rapport de DEA, Uni-

versité Paris VII, 1998.

[63℄ C. Murthy and J.R. Russell. A onstrutive proof of Higman's lemma. In Pro. 5th

IEEE Symp. Logi in Computer Siene, Philadelphia, pages 257�267, 1990.

Bibliographie 211

[64℄ C. Okasaki. Purely funtional data strutures. Cambridge University Press, 1998.

[65℄ C. Parent. Synthèse de preuves de programmes dans le Calul des Construtions In-

dutives. thèse d'université, Éole Normale Supérieure de Lyon, January 1995.

[66℄ C. Paulin-Mohring. Extrating Fω's programs from proofs in the Calulus of Constru-

tions. In Sixteenth Annual ACM Symposium on Priniples of Programming Languages,

Austin, January 1989. ACM Press.

[67℄ C. Paulin-Mohring. Extration de programmes dans le Calul des Construtions. Thèse

d'université, Paris 7, January 1989.

[68℄ C. Paulin-Mohring. Dé�nitions Indutives en Théorie des Types d'Ordre Supérieur.

Habilitation à diriger les reherhes, Université Claude Bernard Lyon I, Deember 1996.

[69℄ C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.

Journal of Symboli Computation, 15:607�640, 1993.

[70℄ L. Pottier. Extration dans le alul des onstrutions indutives. In Journées Frano-

phones des Langages Appliatifs, 2001.

[71℄ D. Prawitz. Natural Dedution, A Proof-Theoretial Study. Almqvist & Wiksell, 1965.

[72℄ F. Prost. Interprétation de l'analyse statique en théorie des types. PhD thesis, Éole

Normale Supérieure de Lyon, deember 1999.

[73℄ H. Shwihtenberg. Construtive analysis with witnesses. Tehnial report, Ludwig-

Maximilians-Universität, Münhen, 2003. Proeedings of Marktoberdorf '03 Summer

Shool.

[74℄ M. Seisenberger. On the Constutive Content of Proofs. PhD thesis, Ludwig-

Maximilians-Universität Münhen, Fakultät für Mathematik, Informatik und Statistik,

2003.

[75℄ M. Serrano and P. Weis. Bigloo: a portable and optimizing ompiler for strit funtional

languages. In 2nd Stati Analysis Symposium (SAS), pages 366�381. Leture Notes in

Computer Siene, 1995.

[76℄ P. Severi and N. Szasz. Studies of a theory of spei�ations with built-in program

extration. Journal of Automated Reasoning, 27(1), 2001.

[77℄ Julien Signoles. Calul statique des appliations de modules paramétrés. In Journées

Franophones des Langages Appliatifs, 2003.

[78℄ The Coq Development Team. The Coq Proof Assistant Referene Manual � Version

8.0, February 2004. Available at http://oq.inria.fr/.

[79℄ K. Thompson. Re�etions on trusting trust. Communiations of the ACM, 27(8):761�

763, Aug 1984.

[80℄ A. S. Troelstra and D. van Dalen. Construtivism in Mathematis: an Introdution.

Studies in Logi and the Foundations of Mathematis. North-Holland, 1988.

[81℄ P. Wadler, W. Taha, and D. MaQueen. How to add laziness to a strit language,

without even being odd. In Workshop on Standard ML, Baltimore, September 1998.

212 Certi�ed funtional programming

[82℄ K. Weih. Deision proedures for intuitionisti propositional logi by program extra-

tion. Leture Notes in Computer Siene, 1397:292, 1998. see http://www.mathematik.

uni-muenhen.de/~weih/.

[83℄ B. Werner. Méta-théorie du Calul des Construtions Indutives. Thèse d'université,

Univ. Paris VII, 1994.

Résumé

Nous nous intéressons ii à la génération de programmes erti�és orrets par onstru-

tion. Ces programmes sont obtenus en extrayant l'information pertinente de preuves ons-

trutives réalisées dans l'assistant de preuves Coq.

A telle tradution, ou �extration�, des preuves onstrutives en programmes fon-

tionnels n'est pas nouvelle, elle orrespond à un isomorphisme bien onnu sous le nom de

Curry-Howard. Et l'assistant Coq omporte depuis longtemps un tel outil d'extration. Mais

l'outil préédent présentait d'importantes limitations. Certaines preuves Coq étaient ainsi

hors de son hamp d'appliation, alors que d'autres engendraient des programmes inorrets.

A�n de résoudre es limitations, nous avons e�etué une refonte omplète de l'extration

dans Coq, tant du point de vue de la théorie que de l'implantation. Au niveau théorique,

ette refonte a entraîné la réalisation de nouvelles preuves de orretness de e méanisme

d'extration, preuves à la fois omplexes et originales. Conernant l'implantation, nous nous

sommes e�orés d'engendrer du ode extrait e�ae et réaliste, pouvant en partiulier être

intégré dans des développement logiiels de plus grande éhelle, par le biais de modules et

d'interfaes.

En�n, nous présentons également plusieurs études de as illustrant les possibilités de

notre nouvelle extration. Nous dérivons ainsi la erti�ation d'une bibliothèque modulaire

d'ensembles �nis, et l'obtention de programmes d'arithmétique réelle exate à partir d'une

formalisation d'analyse réelle onstrutive. Même si des progrès restent enore à obtenir,

surtout dans e dernier as, es exemples mettent en évidene le hemin déjà parouru.

Mots lés. Preuve de programmes. Programmation fontionnelle. Extration. Théorie des

types. Isomorphisme de Curry-Howard. Calul des Construtions Indutives. Système Coq.

Abstrat

This work onerns the generation of programs whih are erti�ed to be orret by

onstrution. These programs are obtained by extrating relevant information from onstru-

tive proofs made with the Coq proof assistant.

Suh a translation, named �extration�, of onstrutive proofs into funtional programs

is not new, and orresponds to an isomorphism known as Curry-Howard's. An extration

tool has been part of Coq assistant for a long time. But this old extration tool su�ered

from several limitations: in partiular, some Coq proofs were refused by it, whereas some

others led to inorret programs.

In order to overome these limitations, we built a ompletely new extration tool for Coq,

inluding both a new theory and a new implementation. Conerning theory, we developed

new orretness proofs for this extration mehanism. These new proofs are both omplex

and original. Conerning implementation, we foused on the generation of e�ient and

realisti ode, whih an be integrated in large-sale software developments, using modules

and interfaes.

Finally, we also present several ase studies illustrating the apabilities of our new extra-

tion. For example, we desribe the erti�ation of a modular library of �nite set strutures,

and the prodution of programs about real exat arithmeti, starting from a formalization

of onstrutive real analysis. These examples show the progress already ahieved, even if the

situation is not perfet yet, in partiular in the last study.

Keywords. Proof of programs. Funtional programming. Extration. Type theory. Curry-

Howard isomorphism. Calulus of Indutive Construtions. Coq system.

