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In informal mathematics, isomorphic structures are often identified. For instance, the nat-
ural numbers and non negative integers are never distinguished, although they formally are
different structures.

In typed lambda-calculus, in programming languages, and in proof theory, two types A and
B are said to be isomorphic, when there exists two functions φ from A to B and ψ from B to
A such that ψφr = r for all terms r of type A and φψs = s for all terms s of type B.

In some cases, isomorphic types are identified. For instance, in Martin-Löf’s type theory [16],
in the Calculus of Constructions [8], and in Deduction modulo [14,15], definitionally equivalent
types are identified. For example, the types x ⊆ y, x ∈ P(y) and ∀z (z ∈ x ⇒ z ∈ y) may
be identified. However, definitional equality does not handle all the isomorphisms and, for
example, the isomorphic types A∧B and B∧A are not usually identified: a term of type A∧B
does not have type B ∧A.

Not identifying such types has many drawbacks, for instance if a library contains a proof of
B ∧ A, a request on a proof of A ∧B fails to find it [18], if r and s are proofs of (A ∧B)⇒ C
and B ∧ A respectively, it is not possible to apply r to s to get a proof of C, but we need to
explicitly apply a function of type (B ∧A)⇒ (A ∧B) to s before we can apply r to this term.
This has lead to several projects aiming at identifying in a way or another isomorphic types in
type theory, for instance with the univalence axiom [4]. Identifying types also leads, as we shall
see, to interesting calculi.

In [6], Bruce, Di Cosmo and Longo have provided a characterisation of isomorphic types in
the simply typed λ-calculus extended with products and a unit type. In this work, we fully
defined a simply typed λ-calculus extended with products, where all the isomorphic types are
identified, and we provide a proof of strong normalisation for it. All the isomorphisms in such
a setting, can be summarised to the following four:

A ∧B ≡ B ∧A (1)

A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (2)

A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C) (3)

(A ∧B)⇒ C ≡ A⇒ B ⇒ C (4)

Any other isomorphisms can be obtained by a combination of the previous four. For example,
A⇒ B ⇒ C ≡ B ⇒ A⇒ C is a consequence of isomorphisms (4) and (1).

Identifying types requires to also identify terms. For example, if 〈r, s〉 has type A∧B = B∧A,
then it is not clear what the first projection would be. A more elaborated example, if r is a
closed term of type A, then λxA.x is a term of type A ⇒ A, and 〈λxA.x, λxA.x〉 is a term of
type (A ⇒ A) ∧ (A ⇒ A), hence, by isomorphism (3), a term of type A ⇒ (A ∧ A). Thus
the term 〈λxA.x, λxA.x〉r is a term of type A ∧ A. Although this term contains no redex, we
do not want to consider it as normal, in particular because it is not an introduction. So we
shall distribute the application over the comma, yielding the term 〈(λxA.x)r, (λxA.x)r〉 that
finally reduces to 〈r, r〉. Similar considerations lead to introduction of several equivalence rules
on terms.
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One of the main difficulties in the design of this calculus is the design of the elimination
rule for the conjunction. A rule like “if r : A ∧ B then π1(r) : A”, would not be consistent.
Indeed, if A and B are two arbitrary types, s a term of type A and t a term of type B, then
〈s, t〉 has both types A ∧B and B ∧A, thus π1〈s, t〉 would have both type A and type B. The
approach we have followed is to consider explicitly typed (Church style) terms, and parametrise
the projection by the type: if r : A ∧ B then πA(r) : A and the reduction rule is then that
πA〈s, t〉 reduces to s if s has type A.

But this rule introduces some non-determinism. Indeed, in the particular case where A
happens to be equal to B, then both s and t have type A and πA〈s, t〉 reduces both to s and
to t. Notice that although this reduction rule is non-deterministic, it preserves typing.

Thus, our calculus is one of the many non-deterministic calculi in the line of [5,7,9,10,12,17].
Our pair-construction operator is like the parallel composition operator in a non deterministic
calculi. In non-deterministic calculi, the parallel composition is such that if r and s are two λ-
terms, the term 〈r, s〉 represents the computation that runs either r or s non-deterministically,
that is such that 〈r, s〉t reduces either to rt or st. In our case, πB(〈r, s〉t) first reduces to
πA⇒B〈r, s〉t and then to rt or st.

In [11] we showed that this calculus is also related to the algebraic calculi [1–3,13,19], some
of which have been designed to express quantum algorithms. In this case, the pair 〈s, t〉 is
not interpreted as a non deterministic choice but as a superposition of two processes running s
and t, and the projection π is the related to the projective measurement, that is the only non
deterministic operation.
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