
A Separation Logic for Non-determinism and

Sequence Points in C Formalized in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

Abstract

The C11 standard of the C programming language does not specify the execution order
of expressions. Besides, to make more effective optimizations possible (e.g. delaying of
side-effects and interleaving), it gives compilers in certain cases the freedom to use even
more behaviors than just those of all execution orders.

Widely used C compilers exploit this freedom given by the C standard for optimiza-
tions, so it should be taken seriously in formal verification. In [3], we have presented an
operational and axiomatic semantics (based on separation logic) for non-determinism and
sequence points in C. Soundness of the axiomatic semantics is proved with respect to the
operational semantics. This proof has been fully formalized using the Coq proof assistant.

1 Introduction

The C programming language [2] is not only among the most popular programming languages in
the world, but it is also among the most dangerous programming languages. Due to weak static
typing and the absence of runtime checks, it is extremely easy for C programs to have bugs that
make the program crash or behave badly in other ways: NULL-pointers can be dereferenced,
arrays can be accessed outside their bounds, memory can be used after it is freed, etc.

Instead of forcing compilers to use a predefined execution order for expressions (e.g. left
to right), the C standard does not specify it. This is a common cause of portability and
maintenance problems, as a compiler may use an arbitrary execution order for each expression.
Hence, to prove the correctness of a C program with respect to an arbitrary compiler, one has
to verify that each possible execution order is legal and gives the correct result. To make more
effective optimizations possible (e.g. delaying of side-effects and interleaving), the C standard
requires the programmer to ensure that all execution orders satisfy certain conditions. If these
conditions are not met, the program may do anything. Let us take a look at an example where
one of those conditions is not met.

int main() {

int x; int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

By considering all possible execution orders, one would naively expect this program to print
4 7 or 3 7, depending on whether the assignment x = 3 or x = 4 is executed first. However,
the sequence point restriction does not allow an object to be modified more than once (or being
read after being modified) between two sequence points [2, 6.5p2]. A sequence point occurs for
example at the end ; of a full expression, before a function call, and after the first operand of the
conditional ? : operator [2, Annex C]. Hence, both execution orders lead to a sequence point
violation, and are thus illegal. As a result, the execution of this program exhibits undefined
behavior, meaning it may do literally anything. Indeed, when compiled with gcc -O1 (version
4.7.2), it prints 4 8, which does not correspond to any of the execution orders.



2 Approach

As a step towards taking non-determinism and the sequence point restriction seriously in C ver-
ification, we extend our axiomatic semantics with a Hoare judgment {P} e {Q} for expressions.
Since expressions not only have side-effects but primarily yield a value, the postcondition Q is
a function from values to assertions. Intuitively, {P} e {Q} means that if P holds beforehand,
and execution of e yields a value v, then Qv holds afterwards.

Apart from partial program correctness, the judgment {P} e {Q} ensures that e exhibits
no undefined behavior. To deal with the unrestrained non-determinism in C, we observe that
non-determinism in expressions corresponds to a form of concurrency, which separation logic
is well capable of dealing with. Inspired by the rule for the parallel composition of separation
logic (see [4]), we propose the following kind of rules for each operator }.

{P1} e1 {Q1} {P2} e2 {Q2}
{Pl ∗ Pr} e1 } e2 {Q1 ∗ Q2}

The idea is that, if the memory can be split up into two disjoint parts (using the separating
conjunction ∗), in which the subexpressions e1 respectively e2 can be executed safely, then the
full expression e1 } e2 can be executed safely in the whole memory.

To ensure no sequence point violations occur, we use separation logic with permissions [1],

extended with a special class of locked permissions. The singleton assertion becomes e1
γ7→ e2

where γ is the permission of the object e2 at address e1. The inference rules are set up in such
a way that reads and writes are only allowed for objects that are not locked, and moreover
such that objects become locked after they have been written to. At constructs that contain a
sequence point, the inference rules ensure that these locks are released.

3 Formalization in Coq

All our proofs have been fully formalized using the Coq proof assistant. We used Coq’s notation
mechanism combined with unicode symbols and type classes for overloading to let the Coq code
correspond as well as possible to the definitions on paper. Coq’s type classes are also used
to provide abstract interfaces for commonly used structures like finite sets and finite partial
functions, so that we were able to prove theory and implement automation in an abstract
way. Because the semantics is rather big, it is quite cumbersome to prove properties about
it without automation, to this end, we have automated many steps of the proofs. Our Coq
code, available at http://robbertkrebbers.nl/research/ch2o, is about 10 000 lines of code
including comments and white space. Apart from that, our library on general purpose theory
(finite sets, finite functions, lists, etc.) is about 9 000 lines.

References

[1] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. Permission
Accounting in Separation Logic. In POPL, pages 259–270, 2005.

[2] International Organization for Standardization. ISO/IEC 9899-2011: Programming languages – C.
ISO Working Group 14, 2012.

[3] Robbert Krebbers. An Operational and Axiomatic Semantics for Non-determinism and Sequence
Points in C. In POPL, pages 101–112, 2014.

[4] Peter W. O’Hearn. Resources, Concurrency and Local Reasoning. In CONCUR, volume 3170 of
LNCS, pages 49–67, 2004.

http://robbertkrebbers.nl/research/ch2o

	Introduction
	Approach
	Formalization in Coq

