Session Types, Solos, and
the Computational Contents
of Sequent Calculus Proofs

Nicolas Guenot

IT University of Copenhagen
ngue@itu.dk

The original form of the Curry-Howard correspondence established a connection between
intuitionistic natural deduction and the simply-typed A-calculus, but this has been extended to
various other logical systems and other calculi. One problem with such extensions arise when
considering proofs in the sequent calculus: the correspondence in such a setting is difficult to
design, so that the proof systems considered are often quite constrained — for example using
a stoup in the logic to restrict the shape of proofs — and term calculi are not necessarily
well-behaved — for example when one interprets the left rule for implication as a floating let
construct, which is problematic in the usual theory of A-calculi. We discuss in this work the
status of this problem in the light of some recent developments relating linear sequent proofs
to session-typed processes.

1 Cut Elimination and Permutations

A quite striking difference between normalisation in the natural deduction NJ and any cut
elimination procedure for the sequent calculus is the fact that eliminating cuts from a proof is
performed in small steps, such that important steps, the so-called principal cases, require some
form of synchronisation of the shape of the two subproofs above the cut. The other cases are
mere trivial permutations that reflect the lax structure of proofs in the sequent calculus: the
order between the rule instances in a given proof are often irrelevant, leading to the notion of
proof-nets in linear logic [Gir87].

While the view of principal cases in cut elimination as synchronisation has lead to the
concurrent interpretation of sequent calculi, as done in linear logic [CP10], this emphasis on
trivial permutations leads to the idea that instead of using proof-nets to represent parallel
processes, one can adopt a syntactic approach where permutations correspond to the equations
of a congruence on processes — as usually considered in the process calculi community. The
correspondence we are looking for is thus:

propositions session types
proofs processes
cut elimination communication
congruence permutation

2 Linear Logic and Session Solos

The session types system introduced by Caires and Pfenning [CP10], based on the intuitionistic
variant of linear logic and adapted to linear logic by Wadler [Wad12] establishes a correspondence
that provides strong guarantees on typed m-terms, but the connection it shows between proofs

and processes is not as tight as one might expect, in the sense that some equations on processes
cannot be reflected in the structure of proofs. To improve this, we propose to use the solos
calculus [LV03], a restricted setting where inputs and outputs are free of explicit sequentialisation
— it drops the prefix operation just as the asynchronous m-calculus drops it for outputs, leaving
only implicit, causal dependencies. Consider for example the typing of some process starting
with an output in Wadler’s typed m-calculus:

AN

PrIy: A QFAx:B
Z(y).(P|Q)FT,A,x: A® B

and observe that typing involves the decomposition of several operators, where in particular
the prefix operation supposedly prevents processes inside P or @) to move out even if they are
not using = or y. As a consequence, typeability is not preserved by the structural congruence
usually applied on 7-terms, as illustrated by the two terms below:

#(y).(Pl(v2) (QIR)) = T(y).(v2) (PIQ)|R)

where the left one is typeable and the right one is not. Moving to the more parallel setting of
solos allows to write this process as (y) (Z(y)|(z) (P|Q)) or equivalently as (y) (2) (Z(y)|(P|Q)),
which is much closer to the structure of the corresponding proof in the sequent calculus, where
some rule instances in II; and Il might permute downwards.

The adoption of solos as the underlying computational model yields a session type system
where the correspondence between proofs and processes is tighter, and all this can also be
adapted to the intuitionistic variant of linear logic. This might place solos in the position of
being an interesting implementation language for typesafe concurrent programming, but it does
not solve all problems of previous systems nor create a perfect correspondence. Because of the
shape of proofs in the sequent calculus, an exact matching of 7-terms or solos processes with
such proofs is impossible. This offers two orthogonal possibilities: either making concessions
on the side of process calculi and constrain further the structure of processes, or use a different
logical formalism where the structure of proofs is even more lax than in the sequent calculus.

References

[CP10] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In P. Gastin
and F. Laroussinie, editors, CONCUR’10, volume 6269 of LNCS, pages 222-236, 2010.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[LV03] C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer Science,
13(5):657-683, 2003.

[Wad12] P. Wadler. Propositions as sessions. In P. Thiemann and R. B. Findler, editors, ICFP’12,
pages 273-286. ACM, 2012.

	Cut Elimination and Permutations
	Linear Logic and Session Solos

