
Toward a Theory of Contexts of Assumptions

in Logical Frameworks

Amy Felty1, Alberto Momigliano2, and Brigitte Pientka3

1 School of Electrical Engineering and Computer Science, University of Ottawa, Canada,
afelty@eecs.uottawa.ca

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy, momigliano@di.unimi.it
3 School of Computer Science, McGill University, Montreal, Canada, bpientka@cs.mcgill.ca

In the beginning Gentzen created natural deduction, but then He switched to the sequent
calculus in order to sort out the meta-theory. Something similar happened to logical frameworks
supporting higher-order abstract syntax (HOAS): first Edinburgh LF adopted Martin-Löf’s
parametric-hypothetical judgments to encode object logics in such a way that contexts were
left implicit. Later on, Twelf [5] had to provide some characterization of contexts (regular
worlds) to verify the meta-theory of those very object logics. The same applies to λProlog vs.
Abella [3] and Hybrid [2] and, in a more principled way, to Beluga [4].

One may argue that, prior to Girard, proof-theory had been somewhat oblivious to what
contexts look like. Even sub-structural logics view a context of assumptions as a flat collection
of formulas A1, A2, . . . , An listing its elements separated by commas. However, this turns out
to be inadequate once we mechanize this matter, as it ignores that assumptions come in blocks.
Consider as an object logic the typing rules for the polymorphic lambda-calculus:

x term
tmx x : T1

ofv

...
M : T2

(lamx.M) : (arr T 1T2)
of tmx,ofv

l

α tp
tpv

...
M : T1

(tlamα.M) : (allα. T)
of tpv

tl

M1 : (arr T 1T2) M2 : T1

(appM1 M2) : T2
ofa

M : (allα. T1) T2 tp

(tappM T1) : [T2/α]T1
ofta

We have proposed in [1] to view contexts as structured sequences of declarations D, where a
declaration is a block of unique (atomic) assumptions separated by ’;’.

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ, D
Schema S ::= Ds | Ds + S

A schema classifies contexts and consists of declarations Ds, possibly more general than those
occurring in a concrete context having schema S. This yields for the above example

Γ ::= · | Γ, (x term;x : T) | Γ, α tp
S ::= α tp + (x term;x : T)

where, e.g., the context α1 tp, (x1 term;x1 : (arr α1 α1)), (x2 term;x2 : α1) has schema S.
Since contexts are structured sequences, they admit structural properties on the level of se-

quences (for example by adding a new declaration) as well as inside a block of declarations (for
example by adding an element to an existing declaration). We distinguish also between struc-
tural properties of a concrete context and structural properties of all contexts of a given schema.

We give a unified treatment of all such weakening/strengthening/exchange re-arrangements via
total operations rm and perm that remove an element of a declaration, and permute elements
within a declaration. For example, declaration weakening can be seen as:

Γ, rmA(D),Γ′ ` J
Γ, D,Γ′ ` J d-wk

Suppose now that we want to prove in a logical framework some meta-theorem involving differ-
ent contexts, say “if Γ1 ` J1 then Γ2 ` J2”, for Γi of schema Si. HOAS-based logical frameworks
have so far pursued two apparently different options:

(G) We reinterpret the statement in a generalized context containing all the relevant assumptions—
we call this the generalized context approach, as taken in Twelf and Beluga—and prove
“if Γ1 ∪ Γ2 ` J1 then Γ1 ∪ Γ2 ` J2”, where “∪” denotes the join of the two contexts.

(R) We state how two (or more) contexts are related—we call this the context relations ap-
proach. The statement becomes therefore “if Γ1 ∼ Γ2 and Γ1 ` J1 then Γ2 ` J2”, with
an explicit and typically inductive definition of this relation. This approach is taken in
Abella and Hybrid.

If we had a common grounding of both approaches, this would pave the way toward moving
proofs from one system to another, in particular breaking the type/proof theory barrier. It
turns out, roughly, that a context relation can be seen as the graph of one or more appropriate
rm operation on a generalized context. Further, if we take the above join metaphor seriously,
we can organize declarations and contexts in a semi-lattice, where x � y holds iff x can be
reached from y by some rm operation on y. A generalized context will indeed be the (lattice-
theoretic) join of two contexts and context relations can be identified by navigating the lattice
starting from the join of the to-be-related contexts. Our ongoing effort is to use the lattice
structure to give a declarative account promotion/demotion of theorems (known in the Twelf
lingo as “context subsumption”), where a statement proven in a certain context can be used in
a “related” one. We may formulate subsumption rules akin to upward and downward casting
over the lattice order.

This work also has a practical outcome in our ongoing work designing ORBI (Open challenge
problem Repository for systems supporting reasoning with BInders), a repository for sharing
benchmark problems and their solutions for HOAS-based systems, in the spirit of TPTP [6].

References

[1] A. Felty, A. Momigliano, and B. Pientka. The next 700 challenge problems for reasoning with
higher-order abstract syntax representations: Part 1—a foundational view. Submitted, 2014.

[2] A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning with higher-
order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

[3] A. Gacek. The Abella interactive theorem prover (system description). In IJCAR 2008, volume
5195 of LNCS, pages 154–161. Springer, 2008.

[4] B. Pientka and J. Dunfield. Beluga:a framework for programming and reasoning with deductive
systems (system description). In IJCAR 2010, volume 6173 of LNCS, pages 15–21. Springer, 2010.

[5] C. Schürmann. The Twelf proof assistant. In 22nd International Conference on Theorem Proving
in Higher Order Logics, volume 567 of LNCS, pages 79–83. Springer, 2009.

[6] G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated
Reasoning, 43(4):337–362, 2009.

