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Abstract

A small core type language with intersection types in which a partial equivalence rela-
tion on closed terms is a type is enough to build the non-inductive types of Nuprl, including
the types of dependent functions and partial functions. Using induction on natural num-
bers and intersection types, we build coinductive types; and using partial functions and
coinductive types we build algebraic datatypes.

Introduction. Nuprl [6, 2] is a functional programming language based on a constructive dependent
type theory with partial types called CTT. As in similar systems such as Coq [4] and Agda [5], it
has dependent functions, inductive types, and a cumulative hierarchy of universes. In addition,
CTT has dependent products, disjoint union, integer,1, equality, set (or refinement) and quotient
types [6]; intersection and union types [10]; image types [11]; computational approximation and
equivalence types [12]; and is one of the only type theories with partial types [7, 8].

Allen gave a semantics of CTT where a type is a Partial Equivalence Relation (PER) on
closed terms [1], which is connected to Russell’s original definition of a type as “the range of
significance of a propositional function.” By allowing the theory to directly represent PERs as
types, we can reformulate CTT using a smaller core of primitive type constructors. For example,
the dependent function type can now be defined. Allen [1, pp.15] suggested such a type that
represents PERs by combining the set and quotient types.

The per type constructor can turn PERs into types. Therefore, we need some primitives
to express such PERs: Base is the type of closed terms (PERs are relations on closed terms)
whose equality ∼ is Howe’s computational equivalence [9]; equality (or identity) types to refer
to already defined PERs2; our main logical operator is the intersection type constructor which
is a uniform universal quantifier; the computational approximation type constructor � allows
us to build PERs by imposing restrictions on their domains in terms of how terms compute.

When the partial, union and image types were added to Nuprl in the past we had to update
the metatheory accordingly. Using the per constructor we can now add new types to Nuprl
without changing the metatheory. We are already using this type in Nuprl and have defined
several formerly primitive types using it, such as the quotient and partial types.

Nuprl’s syntax. Nuprl is defined on top of an applied lazy untyped λ-calculus. We define the
subset of this language that is of interest to us in this paper as follows:

A,B,R ::= t1 � t2 | Base | Ui | per(R) | ∩ x:A.B[x] | t1 = t2 ∈ A
v ::= A | i | λx .t | 〈t1, t2〉 | Ax | inl(t) | inr(t)

t ::= x | v | t1 t2 | fix(t) | let x, y = t1 in t2 | let x := t1 in t2
| if t1<t2 then t3 else t4 | isint(t1, t2, t3) | isaxiom(t1, t2, t3)

where A, B, and R stand for types, i for an integer, v for a value, x for a variable, and t
for a term. Ax is the unique canonical inhabitant of true propositions that do not have any
nontrivial computational meaning in CTT, such as 0 = 0 ∈ N. The canonical form tests such as

1For efficiency issues, the integer type is a primitive type in Nuprl.
2We extended the definition of equality types so that the equality in T is not only a relation on T but also

a relation on Base [3, Sec. 4.2.1].



isaxiom allow us to distinguish between the different canonical forms [12]. A term of the form
let x := t1 in t2 eagerly evaluates t1 before evaluating t2.

The Booleans are: tt = inl(Ax) and ff = inr(Ax). The following operation lifts Booleans
to propositions: ⇑(a) = tt � a, which implies that a is computationally equivalent to tt. The
following operator asserts that its parameter computes to a value: halts(t) = Ax � (let x :=
t in Ax). We define the following uniform implication: AVB = ∩x:A.B, where x does not
occur free in B; uniform and: A u B = ∩x:Base. ∩ y:halts(x).isaxiom(x,A,B); uniform iff:
AWVB = (AVB uBVA); computational equivalence: t1 ∼ t2 = t1 � t2 u t2 � t1.

Meaning of per types. A term of the form per(R) is a type if for all closed terms t1 and t2,
R t1 t2 is a type, and R is a PER on closed terms. Two per types per(R1) and per(R2) are
equal if for all closed terms t1 and t2, R1 t1 t2 is inhabited iff R t1 t2 is inhabited. Two terms
t1 and t2 are equal in per(R) if R t1 t2 is inhabited. We have formally proved in our Coq
metatheory that the derivation rules that implement these conditions are valid [3, Sec. 5.2.4].

Type definitions. We now show how one defines Nuprl’s partial and function types using the core
type system described above. We first start with the simple Void, Unit and Z types.

Void = per(λa.λb.tt � ff) Unit = per(λa.λb.tt � tt)
Z = per(λa.λb.a ∼ b u ⇑(isint(a, tt, ff)))

a:A→ B[a] = per(λf.λg. ∩ a, b:Base.a = b ∈ AVf a = g b ∈ B[a])
A = per(λx, y.(halts(x)WVhalts(y)) u (halts(x)Vx = y ∈ A) u ∩a:Base.a ∈ AVhalts(a))

Using these definitions, several of our inference rules can be proved as lemmas.

Algebraic datatypes. Let N = per(λa.λb.a = b ∈ Zu⇑(if −1<a then tt else ff)). We assume
the existence of an induction principle on N. Using induction on N and intersection types, we
build coinductive types: corec(G) = ∩n:N.fix(λP .λn.if n=0 then Top else G (P (n−1))) n;
and using partial functions and coinductive types we build algebraic datatypes. (In order to
build inductive types we can add W types to our core system. However, in a companion paper
we discuss how to build inductive types using Bar Induction instead.) Our method consists
in selecting the largest collection of terms on which the subterm relation is well-founded. We
then derive induction principles using this selection procedure. Given a coalgebraic datatype
T , we define a size function s on T . Using fixpoint induction [8] we can prove that for all t ∈ T ,
s(t) ∈ Z. We can then prove that (∃n : N. s(t) = n ∈ Z) ∈ P. We define our algebraic datatype
as {t : T | ∃n : N. s(t) = n ∈ Z}. To prove inductive properties of algebraic datatypes, we can
then go by induction on n.
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