
Pattern matching without K

Jesper Cockx, Dominique Devriese, and Frank Piessens

DistriNet – KU Leuven

Dependent pattern matching [Coquand, 1992] is a technique for writing functions in languages
based on dependent type theory, such as Agda [Norell, 2007], Coq [Sozeau, 2010], and Idris [Brady,
2013]. It allows us to define functions in a style similar to functional programming languages
such as Haskell. Additionally, dependent pattern matching can be used to write proofs in
the form of dependently-typed functions. For example, we can prove the transitivity of the
propositional equality x ≡ y by pattern matching on its only constructor refl : x ≡ x:

trans : (x y z : A)→ x ≡ y → y ≡ z → x ≡ z

trans x bxc bxc refl refl = refl
(1)

Inaccessible patterns, like bxc in this example, witness the fact that only one type-correct
argument can be in that position. Indeed, matching on a proof of x ≡ y with refl : x ≡ x
forces x and y to be the same.

Proofs by dependent pattern matching are typically much shorter and more readable than
ones that use the classical datatype eliminators associated to each inductive family. On the
other hand, Goguen et al. [2006] showed that all definitions by dependent pattern matching can
be translated to ones that only use eliminators. For this translation they depend on the so-called
K axiom. Coquand [1992] already observed that pattern matching allows proving this K axiom:

K : (P : a ≡ a→ Set)→
(p : P refl)(e : a ≡ a)→ P e

K P p refl = p

(2)

An emerging field within dependent type theory is homotopy type theory (HoTT) [The
Univalent Foundations Program, 2013]. It gives a new interpretation of terms of type x ≡ y
as paths from x to y. Many basic constructions in HoTT can be written very elegantly using
pattern matching, for example trans (1) corresponds to the composition of two paths.

One of the core elements of HoTT is the univalence axiom. Univalence captures the common
mathematical practice of informal reasoning “up to isomorphism” in a nice and formalized way.
It also has a number of useful consequences, such as functional extensionality. However, the
univalence axiom is incompatible with dependent pattern matching. This has forced people
working on HoTT to avoid using pattern matching or risk unsoundness.

The source of the incompatibility between univalence and dependent pattern matching is that
pattern matching relies on the K axiom. In an attempt to fix this, an option called –without-K
was added to Agda. In theory, this option should allow people to use pattern matching in a safe
way when it is undesirable to assume K. However, the option has been criticized many times
for being too restrictive, for having unclear semantics, and for containing errors. These errors
allowed one to prove (weaker versions of) the K axiom. While they are typically fixed quickly,
this really calls for a more in-depth investigation of dependent pattern matching without K.

We present a new criterion that describes what kind of definitions by pattern matching are
still allowed if we do not assume K, which is strictly more general than previous attempts. Our
criterion works by limiting the unification algorithm used for case splitting in two ways:

� It is not allowed to delete equations of the form x = x.



� When applying injectivity on the equation c s̄ = c t̄ where c s̄, c t̄ : D ū, the indices ū (but
not the parameters) should be self-unifiable, i.e. unification of ū with itself should succeed
positively (while still adhering to these two restrictions).

This criterion has been implemented as a patch to Agda. It allows the definition of trans (1),
but it prohibits the definition of K (2) because case splitting on the argument of type a ≡ a fails.

We give a formal proof that definitions by pattern matching satisfying this criterion are
conservative over standard type theory by translating them to eliminators in the style of Goguen
et al. [2006], without relying on the K axiom. Our proof follows the same general outline, but
there are two important differences:

� We work with the homogeneous equality instead of the heterogeneous version, because the
elimination rule for the heterogeneous equality is equivalent with K [McBride, 2000].

� Working with the homogeneous equality leads us naturally to upgraded versions of the
unification transitions given by Goguen et al. [2006], where the return type is dependent
on the equality proof.

We hope that this is enough to convince the HoTT community that pattern matching can
be used safely without assuming K, and maybe even helps in the creation of a language based
on HoTT. Our criterion makes it possible to do pattern matching on regular inductive families
without assuming K. But HoTT also introduces the concept of higher inductive types, which can
have nontrivial identity proofs between their constructors. This implies that in general they
don’t satisfy the injectivity, disjointness, or acyclicity properties. Luckily, our proof is entirely
parametric in the actual unification transitions that are used. So in order to allow pattern
matching in a context with higher inductive types, we should just limit the unification algorithm
further.

References

Edwin Brady. Idris, a general purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23(5), 2013.

Thierry Coquand. Pattern matching with dependent types. In Types for proofs and programs,
1992.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning, and Computation. 2006.

Conor McBride. Dependently typed functional programs and their proofs. PhD thesis, University
of Edinburgh, 2000.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

Matthieu Sozeau. Equations: A dependent pattern-matching compiler. In Interactive theorem
proving, 2010.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

http://homotopytypetheory.org/book

