
Type-Checking Linear Dependent Types

Arthur Azevedo de Amorim1, Emilio Jesús Gallego Arias1, Marco Gaboardi2,

and Justin Hsu1

1 University of Pennsylvania
2 University of Dundee

Linear indexed type systems have been used to ensure safety properties of programs with
respect to di�erent kinds of resources; examples include usage analysis [10], implicit complex-
ity [3], and more. Linear indexed types use a type-level index language to describe resources
and linear types to reason about the program's resource usage in a compositional way.

A limitation of current analysis techniques for such systems is that resource usage is inferred
independently of the control �ow of a program�e.g., the typing rule for branching usually ap-
proximates resources by taking the maximal usage of one of the branches. To make this analysis
more precise, some authors have proposed extending adding dependent types, considering both
resource usage and the size information of a program's input. This signi�cantly enriches the
resulting analysis by allowing resource usage to depend on runtime information. Linear de-
pendent type systems have been used in several domains, such as implicit complexity [1] and
others.

Of course, there is a price to be paid for the increase in expressiveness: type checking and
type inference inevitably become more complex. In linear indexed type systems, these tasks are
often done in two stages: a standard Hindley-Milner-like pass, followed by a constraint-solving
procedure. In some cases, the generated constraints can be solved automatically with custom
algorithms [6] or o�-the-shelf SMT solvers [4]. However, the constraints are speci�c to the index
language, and richer index languages often lead to more complex constraints.

In this work we consider the type-checking problem for a particular system with linear
dependent types, DFuzz. DFuzz was born out of Fuzz [9], a language where types are used to
reason about sensitivity of programs, which measures the distance between outputs on nearby
inputs. Fuzz uses real numbers as indices for the linear types, which provide an upper bound
on the sensitivity of the program. As shown by [4], type-checking Fuzz programs can be done
e�ciently by using an SMT solver to discharge the numeric proof obligations arising from the
type system. The same approach works for type inference, which infers the minimal sensitivity
of a function.

DFuzz [5] was introduced to overcome a fundamental limitation of Fuzz: sensitivity infor-
mation cannot depend on runtime information, such as the size of a data structure. This is
done by enriching Fuzz with a limited form of dependent types, whose index language combines
information about the size of data structures and the sensitivity of functions. These changes
have a signi�cant impact on the di�culty of type checking, since type checking constraints in
DFuzz may involve general polynomials rather than just constants.

One solution could be to extend the algorithm proposed in [4] to work with the new index
language by generating additional constraints when dealing with the new constructs. This
would be similar in spirit to the work of [2] for type inference for d`PCF, a linear dependent
type system for complexity analysis. Unfortunately, such an approach does not work as well for
DFuzz, since it relies on the presence of arbitrary computable functions in the index language,
whereas DFuzz's index language is far simpler. Instead, since the type system of DFuzz also
supports subtyping, we consider a di�erent approach inspired by techniques from the literature
on subtyping (e.g. [7]) and on constraint-based type-inference approaches (e.g. [8]).



The main idea is to type-check a program by inferring some set of sensitivities for it, and
then testing whether the resulting type is a subtype of the desired type. To obtain completeness,
one must ensure that the inferred sensitivities are the �best� possible. Unfortunately, the DFuzz

index language is not rich enough for expressing such sensitivities. For instance, some cases
require taking the maximum of two sensitivity expressions, which may not lie inside the basic
sensitivity language. We solve this problem by extending the index language with a handful of
index constructs to ease sensitivity-inference; we call this new system EDFuzz. We present a
sensitivity-inference algorithm for EDFuzz, which we show sound and complete. Furthermore,
EDFuzz has similar meta-theoretic properties as DFuzz.

We are left with the problem of solving the constraints generated by our algorithm. First,
we show how to compile the constraints generated by the algorithmic systems to �rst-order
constraints, allowing us to use standard solvers. Unfortunately, the resulting set of constraints
is too powerful, and we also show that type checking for DFuzz is undecidable. We discuss how
to approximate complete type-checking with a constraint relaxation procedure that is enough
to handle the examples proposed in [5].

References

[1] Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In IEEE
Symposium on Logic in Computer Science (LICS), Toronto, Ontario, pages 133�142. IEEE, 2011.

[2] Ugo Dal Lago, Barbara Petit, et al. The geometry of types. In ACM SIGPLAN�SIGACT Sym-
posium on Principles of Programming Languages (POPL), Rome, Italy, pages 167�178, 2013.

[3] Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear space. In ACM Transac-
tions on Programming Languages and Systems, pages 205�225. Springer, 2010.

[4] Loris D'Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen, and Benjamin C.
Pierce. Sensitivity analysis using type-based constraints. InWorkshop on Functional Programming
Concepts in Domain-speci�c Languages (FPCDSL), FPCDSL '13, pages 43�50, New York, NY,
USA, 2013. ACM.

[5] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. Linear
dependent types for di�erential privacy. In ACM SIGPLAN�SIGACT Symposium on Principles of
Programming Languages (POPL), Rome, Italy, POPL '13, pages 357�370, New York, NY, USA,
2013. ACM.

[6] Ugo Dal Lago and Ulrich Schöpp. Type inference for sublinear space functional programming.
In Kazunori Ueda, editor, Asian Symposium on Programming Languages and Systems (APLAS),
Shanghai, China, volume 6461 of Lecture Notes in Computer Science, pages 376�391. Springer,
2010.

[7] Benjamin C. Pierce and Martin Ste�en. Higher-order subtyping. In IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), pages 511�530, 1994. Full version in
Theoretical Computer Science, vol. 176, no. 1�2, pp. 235�282, 1997 (corrigendum in TCS vol. 184
(1997), p. 247).

[8] François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389�489. MIT
Press, 2005.

[9] Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A calculus for
di�erential privacy. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Baltimore, Maryland, ICFP '10, pages 157�168, New York, NY, USA, 2010.

[10] Philip Wadler. Is there a use for linear logic? In Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), New Haven, Connecticut, volume 26, pages 255�273. ACM,
1991.


