
The Church-Scott representation of inductive and

coinductive data in typed lambda calculus

Herman Geuvers
1,2

1 ICIS, Radboud University Nijmegen, the Netherlands
2 Technical University Eindhoven, the Netherlands

Data in the lambda calculus is usually represented using the "Church encoding", which gives
closed terms for the constructors and which naturally allows to de�ne functions by "iteration".
An additional nice feature is that in system F (polymorphically typed lambda calculus) one can
de�ne closed data types for this data, the iteration scheme is well-typed and beta-reduction is
always terminating. A problem is that primitive recursion is not directly available: it can be
coded in terms of iteration at the cost of ine�ciency (e.g. a predecessor with linear run-time).
The much less well-known Scott encoding [1] has case distinction as a primitive. (For the numerals,
these are also known as `Parigot numerals'[3,4].) The terms are not typable in system F and there
is no iteration scheme, but there is a constant time destructor (e.g. predecessor).

We will present a uni�cation of the Church and Scott presentation of data types, which has
primitive recursion as basic. We show how these can be typed in the polymorphic lambda calculus
extended with recursive types and we show that all terms are strongly normalizing. We also show
that this works for the dual case, co-inductive data types, and we show how programs can be
extracted from proofs in second order predicate logic.

Church and Scott data types As a step back, we look at data in the untyped λ-calculus.
Church numerals:

0 := λx f.x p := λx f.fp (x)
1 := λx f.f x S := λn.λx f.f (nx f)
2 := λx f.f (f x)

The Church numerals have iteration as basis: the numerals are iterators. An advantage is that
one gets quite a bit of �well-founded recursion� for free. A disadvantage is that there is no pattern
matching built in, so the predecessor is hard to de�ne.

Scott numerals:

0 := λx f.x p+ 1 := λx f.f p
1 := λx f.f 0 S := λn.λx f.f n
2 := λx f.f 1

The Scott numerals have case as a basis: the numerals are case distinctors: nAB = A if n = 0
and nAB = Bm if n = m+ 1. An advantage is that the predecessor can immediately be de�ned,
but one has to get �recursion� from somewhere else (e.g. by using a �xed point-combinator).

A more general de�nition of Church and Scott data in the untyped λ-calculus is the following.
Given a data type with constructors c1, . . . , ck, each with a �xed arity, say the arity of constructor
ci is ar(i), we have a Church encoding:

ci := λx1 . . . xar(i).λc1 . . . ck.ci (x1 ~c) . . . (xar(i) ~c) 0 := λx f.x
S := λn.λx f.f (nx f)

and a Scott encoding:

ci := λx1 . . . xar(i).λc1 . . . ck.ci x1 . . . xar(i) 0 := λx f.x
S := λn.λx f.f n



The Scott encoding is simpler, but it's not very well-known and seldom used. Why? Probably
the main reason is that Church data can be typed in the polymorphic λ-calculus λ2, and already
quite a lot of functions can be typed in simple type theory, λ→.

To type Church numerals of type nat, we need nat = A → (A → A) → A. (Church 1940). In
polymorphic λ-calculus, we can even do better by taking

nat := ∀X.X → (X → X)→ X.

There is a (well-known) general pattern behind this

bool := ∀X.X → X → X

listA := ∀X.X → (A→ X → X)→ X

bintreeA,b := ∀X.(A→ X)→ (B → X → X → X)→ X

This provides a nice function de�nition scheme in λ2. As an example we give the iteration scheme

for nat and listA. (Let D be a type.)

d : D f : D → D

It d f : nat→ D

d : D f : A→ D → D

It d f : listA → D

with with
It d f 0 � d It d fnil � d
It d f (S x) � f (It d f x) It d f (cons a x) � f a (It d f x)

Important features: (1) This scheme is available in λ2: we can de�ne It for nat, listA, . . .; (2)
Using this we can de�ne as λ-terms very many functions: +, ×, exp, Ackermann, . . ., map-list,
fold, . . .; (3) Because these terms are typed in λ2, these are all terminating.

Do we have types for Scott data? To type Scott numerals we need nat = A→ (nat→ A)→ A.

In λ2, we cannot do this, unless we extend it with (positive) recursive types, obtaining λ2µ:

nat := µY.∀X.X → (Y → X)→ X.

Type formation rule: µY.Φ[Y ] is a well-formed type if Y occurs positive in the type expression
Φ[Y ]. A drawback of this approach is that one does not get any well-founded recursion �for free�.

Combined Church-Scott encoding To get the best of both worlds, we can de�ne the CS
(Church-Scott) numerals by

0 := λx f.x p+ 1 := λx f.f p (p x f)

1 := λx f.f 0 (0x f) S := λn.λx f.f n (nx f)
2 := λx f.f 1 (1x f)

These numerals can be types as well in λ2µ:

nat := µY.∀X.X → (Y → X → X)→ X.

The advantage is that now one obtains the primitive recursion scheme for free.

d : D f : nat→ D → D

Rec d f : nat→ D

with Rec d f := λn : nat.n d f , satisfying Rec d f 0 = d and Rec d f (S x) = f x (Rec d f x).

For other known data types, we can do the same, if we observe that



• in λ2, nat := lfp Φ, with Φ(X) = 1 + X and lfp Φ is the well-known de�nable (weak) least
�xed point in λ2,

• in our new de�nition nat := µY.lfp Φ×Y , where Φ×Y (X) = 1 + (Y ×X).

The fact that all this works is due to that fact that we can de�ne recursive algebras (in the
terminology of [2]) inside λ2µ in a very generic way.

The dual case: streams It is well-know that streams over a base type A can also be de�ned
in λ2:

StrA := ∃X.X × (X → A×X)

If we use the same type of implicit Curry-style typing for ∃ that we have also used for ∀ above,
and we use 〈−,−〉 for pairing and (−)1 and (−)2 for the projections. we see that the de�nitions
of head and tail are:

hd s := (s2 s1)1

tl s := 〈(s2 s1)2, s2〉

Now it is hard to de�ne the cons operator, that takes an a : A and an s : StrA to create
cons a s : StrA. However, in λ2µ we can de�ne a co-recursive co-algebra for the functorX 7→ A×X
as follows:

StrA := µY.∃X.X × (X → A× (X + Y ))

Now we can de�ne

hd s := (s2 s1)1

tl s := case (s2 s1)2 of (inlx⇒ 〈x, s2〉) (inry ⇒ y)

cons a s := 〈a, λx.〈a, inr s〉〉

And we can check that

hd(cons a s) := a

tl(cons a s) := s

It can be shown that the approach sketched above works for more general inductive and co-
inductive data-types. It gives �nice� �nite representations of in�nite data in the untyped lambda
calculus. (E.g. the stream of natural numbers is a term in normal form.) It can also be shown
that the programs from proof extraction mechanism as developed by Krivine, Leivant and Parigot
[3] works nicely for these data type de�nitions.

Reference

[1] M. Abadi, L. Cardelli and G. Plotkin, Types for the Scott Numerals, 1993, http://lucacardelli.
name/Papers/Notes/scott2.pdf.

[2] H. Geuvers, Inductive and Coinductive Types with Iteration and Recursion, in the informal
proceedings of the 1992 workshop on Types for Proofs and Programs, Bastad 1992, Sweden, eds.
B. Nordström, K. Petersson and G. Plotkin, pp 183�207. http://www.cs.ru.nl/~herman/PUBS/
BRABasInf_RecTyp.ps.gz

[3] P. Fu, A. Stump, Self Types for Dependently Typed Lambda Encodings, Submitted to RTA-
TLCA 2014.

[4] M. Parigot, Recursive Programming with Proofs, Theor. Comput. Sci., 94, 2, 1992, pp.
335-336.

http://lucacardelli.name/Papers/Notes/scott2.pdf
http://lucacardelli.name/Papers/Notes/scott2.pdf
http://www.cs.ru.nl/~herman/PUBS/BRABasInf_RecTyp.ps.gz
http://www.cs.ru.nl/~herman/PUBS/BRABasInf_RecTyp.ps.gz

