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Abstract

Continuation Calculus (CC), introduced by Geron and Geuvers |2], is a simple foundational
model for functional computation. It is closely related to lambda calculus and term rewriting,
but it has no variable binding and no pattern matching. It is Turing complete and evaluation
is deterministic. Notions like “call-by-value” and “call-by-name” computation are available
by choosing appropriate function definitions: e.g. there is a call-by-value and a call-by-name
addition function.

In the present paper we extend CC with types, to be able to define data types in a canonical
way, and functions over these data types, defined by iteration. Data type definitions follow
the so-called “Scott encoding” of data, as opposed to the more familiar “Church encoding”.

The iteration scheme comes in two flavors: a call-by-value and a call-by-name iteration
scheme. The call-by-value variant is a double negation variant of call-by-name iteration. The
double negation translation allows to move between call-by-name and call-by-value.

Continuation calculus (or CC) [2] is a crossover between term rewriting systems and A-calculus.
Rather than focusing on expressions, continuation calculus treats continuations as its fundamental
object. This is realized by restricting evaluation to strictly top-level, discarding the need for
evaluation inside contexts. This also fixes an evaluation order, so the representation of a program
in CC depends on whether call-by-value or call-by-name is desired. Furthermore, CC “separates
code from data” by placing the former in a static program, which is sourced for reductions on a
term. Variables are absent from terms, and no substitution happens inside terms.

Despite the obvious differences between CC and A-calculus with continuations (or A¢), there seems
to be a strong correspondence. For instance, it has been suggested [3| that programs in either
can be simulated in the other up to parametrized (non)termination, in an untyped setting. If
the correspondence turns out to be sufficiently strong, continuation calculus could become an
alternative characterization of \¢, and theorems in one system could apply without much effort
to the other.

The purpose of this paper is to strengthen the correspondence between CC and A-calculus, by
introducing a type system for CC and by showing how data types and functions over data can
be defined in CC. The type system rejects some undesired terms and the types emphasize the
difference between call-by-name and call-by-value. Also, the types pave the way for proving
properties of the programs. The types themselves do not enforce termination, because the system
is ‘open’: one can add whatever program one wants. However, if the programs on data types
are defined using only iteration and non-circular program rules, all programs are terminating,
which we show using a translation to a simply typed A-calculus with data-types and iterators in
call-by-name and call-by-value style. We show this A-calculus to be strongly normalizing.

Informal definition of CC Terms in CC are of the shape n.ty.ts..... tr, where n is a name and
t; is again a term. The ‘dot’ denotes binary application, which is left-associative. In CC, terms
can be evaluated by applying program rules which are of the shape

where u is a term over variables z; ...z,. However, this rule can only be applied on the ‘top level’:



e reduction is not a congruence;
e rule (*) can only be applied to the term n.ty.ts..... ty in case k = p,
e then this term evaluates to ulti/x1,...,tp/zp).

CC has no pattern matching or variable binding, but it is Turing complete and a faithful translation
to and from the untyped A-calculus can be defined, see [3].

In continuation calculus, the natural numbers are represented by the names Zero and Succ and
the following two program-rules:

Zero.cj.cy —
Succ.x.c;.cc — 2.

So Zero represents 0, Succ.Zero represents 1, Succ.(Succ.Zero) represents 2 etcetera. This
representation of data follows the so-called Scott encoding, which is known from the untyped
lambda calculus by defining Zero := Axy.z, Succ := An.\xy.yn (e.g. see [1,|4]). The Scott
numerals have “case-distinction” built in (distinguishing between 0 and n + 1), which can be used
to mimic pattern matching. The more familiar Church numerals have iteration built in. For Scott
numerals, iteration has to be added, or it can be obtained from the fixed-point combinator in
the case of untyped lambda calculus. For CC the situation is similar: we have to add iteration
ourselves.

As an example, we define addition in two ways: in call-by-value (CBV) and in call-by-name (CBN)
style ([2])-
Example 1.

AddCBV.n.m.c — n.(c.m).(AddCBV'.m.c)

AddCBV’'.m.c/ — AddCBV.n'.(Succ.m).c

AddCBN.n.m.ci.ca — n.(m.ci.c2).(AddCBN’.m.cs)
AddCBN’.m.ca.n’/ — ¢3.(AddCBN.n'.m)

For AddCBYV we find that AddCBYV.(Succ”.Zero).(Succ™.Zero).c evaluates to c.(Succ™ ™™ . Zero):
the result of the addition function is computed completely and passed as argument to the continu-
ation c. For AddCBN, only a first step in the computation is carried out and then the result is
passed to the appropriate continuation ¢y or cs.

Continuation calculus as it occurs in [2] is untyped. In the present work we present a typing
system for continuation calculus, using simple types and positive recursive types. The typing
system gives the user some guarantee about the meaning and well-formedness of well-typed terms.
We also develop a general procedure for defining algebraic data-types as types in CC and for
transforming functions defined over these data types into valid typed terms in CC.
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