
Polymorphic variants in dependent type theory

Claudio Sacerdoti Coen1∗ and Dominic Mulligan1

Dipartimento di Informatica – Scienza e Ingegneria,
Università di Bologna,

Mura Anteo Zamboni 7, Bologna (BO) Italy

The expression problem and polymorphic variants The expression problem is maybe
the best known issue in programming language development. The problem consists in the
extension of a data type of expressions to include new constructors. All operations defined on
the data type have to be updated to cover also the new constructors. The difficulty is that
the extension should be done modularly: it should be possible to add new constructors or to
merge together two sets of them without modifying the already developed code. Object oriented
languages provide a solution to the problem: the type of expressions becomes an interface that
is implemented by each constructor, represented as a class. The tradeoff is the impossibility
to close the universe of expressions in order to perform pattern matching and exhaustivity
checking. Pattern matching, in particular, seems the natural way to reason on (expression)
trees.

A partial solution can be obtained using functional languages based on algebraic types and
pattern matching, like OCaml or Haskell. The idea consists in “opening” the algebraic data type
E of expressions by turning it into a parametric type E α where the type parameter α replaces
E in the recursive arguments of the constructors of E. The recursive type µα.(E α) is then
isomorphic to the original “closed” type E. In order to merge together two types of expressions
E1 α and E2 α is it sufficient to build the parametric disjoint union E α := K1 : E1 α |K2 : E2 α.
Similarly, given two functions f1, f2 typed as fi : (α → β) → Ei α → Ei β), it is possible to
build the function f over E α by pattern matching over the argument and dispatching the
computation to the appropriate fi.

The previous solution has several major problems. The first one is the non associativity of
the binary merge operation, which is a major hindrance to modularity. Concretely, it is often the
case that one needs to explicitly provide functions to convert back and forth between isomorphic
types. A second problem is the following: merge is implemented on top of a disjoint union,
when the expected operation is the standard union. Again, this is a problem for modularity,
since it disallows multiple inheritance. Finally, the solution is not efficient since every merge
operation adds an indirection that is paid for both in space (memory consumption) and pattern
matching time.

A satisfactory solution to the expression problem for functional languages is given by poly-
morphic variants, like the ones implemented by Guarrigue in the OCaml language [?, ?] . The
idea is to add to the programming language a (partial) merge operation over algebraic types
that corresponds to a standard union. Merging fails when the the same constructor occurs in
both types to be merged with incompatible types. Replaying the previous construction with
this operation already gives a satisfactory solution by solving at once all previous problems.
Moreover, polymorphic variants and their duals, polymorphic records, allow for an interesting
typing discipline where polymorphisms is obtained not by subtyping, but by uniformity. For

∗The project CerCo acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European Commission, under FET-
Open grant number: 243881.



example, a function could be typed as [K1 : T1 | K2 : T2] ∪ ρ → T to mean that the input
can be any type obtained by merging a type ρ into the type of the two listed constructors. The
function can be applied to a K3 M by instantiating (via unification in ML) ρ with [K3 : T3] ∪ σ
for some σ and for M : T3.

An efficient encoding in dependent type theory In the talk we will show an efficient
encoding of bounded polymorphic variants in a dependent type theory augmented with implicit
coercions. The languages of Coq and Matita, for instance, can be used for the encoding, doing
everything at user level. We name bounded polymorphic variants the class of all polymorphic
variants whose constructors are a subset of one (or more) sets of typed constructors — called
universes — given in advance.

Several encodings are possible. However, we will limit ourselves to the one that respects the
following requirements:

1. Universe extension: after adding a new constructor to a universe, all files that used
polymorphic variants that were subsets of the universe should typecheck without modi-
fications. Therefore, the restriction to the bounded case is not problematic because the
merge of two universes does not require any changes to the code.

2. Efficiency of extracted code: after code extraction, bounded polymorphic variants and
classical algebraic types should be represented in the same way and have the same effi-
ciency.

3. Expressivity: all typing rules for polymorphic variants discussed in the literature must
be derivable. In particular, each bounded polymorphic variant should come with its own
elimination principle that allows to reason only on the constructors of the universe that
occur in the polymorphic variant.

4. Non intrusivity: thanks to implicit coercions and derived typing rules, writing code that
uses polymorphic variants should not require more code than what is required in OCaml.

Our encoding is based on the following idea: a universe is represented as a standard al-
gebraic data type; a polymorphic variant on that universe is represented as a pair of lists of
constructors, those that may and those that must be present; dependent types and computable
type formers allow to turn the two lists into the sigma-type of inhabitants of the universe
that are built only from constructors that respect the constraints; code extraction turns the
sigma-type into the universe type, ensuring efficiency; implicit coercions are used to hide the
sigma type construction, so that the user only works with the two lists; more dependently typed
type formers compute the type of the introduction and elimination rules for the polymorphic
variants; the latter are inhabited by dependently typed functions. All previous functions and
type formers cannot be expressed in the type theory itself. However, we provide a uniform
construction (at the meta-level) to write them for each universe.

Finally, we will show how the same ideas can be exploited for a similar efficient representation
of polymorphic records in dependent type theory.


