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Inductive data such as lists and trees is modeled category-theoretically as algebra where construction
is the primary concept and elimination is obtained by initiality. In a more practical setting, functions
are programmed by pattern matching on inductive data. Dually, coinductive structures such as streams
and processes are modeled as coalgebras where destruction (or transition) is primary and construction
rests on finality [Hag87]. Due to the coincidence of least and greatest fixed-point types [SP82] in lazy
languages such as Haskell, the distinction between inductive and coinductive types is blurred in partial
functional programming. As a consequence, coinductive structures are treated just as infinitely deep
(or, non-well-founded) trees, and pattern matching on coinductive data is the dominant programming
style. In total functional programming, which is underlying the dependently-typed proof assistants Coq
[INR12] and Agda [Nor07], the distinction between induction and coinduction is vital for the soundness,
and pattern matching on coinductive data leads to the loss of subject reduction [Gim96]. Further, in
terms of expressive power, the productivity checker for definitions by coinduction lacks behind the
termination checker for inductively defined functions.

It is thus worth considering the alternative picture that a coalgebraic approach to coinductive struc-
tures might offer for total and, especially, for dependently-typed programming. Understanding “alge-
braic programming” as defining functions by pattern matching, the dualization “coalgebraic program-
ming” leads us to the notion of copattern matching. While patterns match the introduction forms of finite
data, copatterns match on elimination contexts for infinite objects, which are applications (eliminating
functions) and destructors/projections (eliminating coalgebraic types = Hagino’s codatatypes). An infi-
nite object such as a function or a stream can be defined by its behavior in all possible contexts. Thus, if
we consider a set of copatterns covering all possible elimination contexts, plus the object’s response for
each of the copatterns, that object is defined uniquely. More concretely, a stream is determined by its
head and its tail, thus, we can introduce a new stream object by giving two equations; one that specifies
the value it produces if its head is demanded, and one for the case that the tail is demanded.

record Stream {i : Size} (A : Set) : Set where
coinductive
constructor _::_
field head : A

tail : ∀{j : Size< i} → Stream {j} A
open Stream public

zipWith : ∀{i A B C} (f : A → B → C) → Stream {i} A → Stream {i} B → Stream {i} C
head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

Another covering set of copatterns consists of head, head of tail and tail of tail. For instance, the
stream of Fibonacci numbers can be given by the three equations, using a function zipWith f s t which
pointwise applies the binary function f to the elements of streams s and t.



fib : ∀{i} → Stream {i} N
( (head fib)) = 0
(head (tail fib)) = 1
(tail (tail fib)) = zipWith _+_ fib (tail fib)

Taking the above equations as left-to-right rewrite rules, we obtain a strongly normalizing system. This
is in contrast to the conventional definition of fib in terms of the stream constructor h :: t by

fib = 0 :: 1 :: zipWith _+_ fib (tail fib)

which, even if unfolded under destructors only, admits an infinite reduction sequence starting with tail fib
−→ 1 :: zipWith _+_ fib (tail fib) −→ 1 :: zipWith _+_ fib (1 :: zipWith _+_ fib (tail fib)) −→ . . . The
crucial difference is that tail fib does not reduce if we choose the definition by copatterns above, since
the elimination tail is not matched by any of the copatterns; only in contexts head or head of tail or tail of
tail it is that fib springs into action.

Using definitions by copattern matching, we reduce productivity to termination and productivity
checking to termination checking. As termination of a function is usually proven by a measure on
the size of the function arguments, we prove productivity by well-founded induction on the size of
the elimination context. For instance, fib is productive because the recursive calls occur in smaller
contexts: at least one tail-destructor is “consumed” and, equally important, zipWith does not add any
more destructors. The number of eliminations (as well as the size of arguments) can be tracked by sized
types [HPS96], reducing productivity (and termination) checking to type checking. For a polymorphic
lambda-calculus with inductive and coinductive types and patterns and copatterns, this has been spelled
out in joint work with Brigitte Pientka [AP13]. An introductory study of copatterns and covering sets
thereof can be found in previous work [APTS13].

A similar abstract has appeared under the title Productive Infinite Objects via Copatterns in the informal pro-
ceedings of NWPT 2013 (Nordic Workshop of Programming Theory, Tallinn, Estonia, November 2013), and under
the title Programming and Reasoning with Infinite Structures Using Copatterns and Sized Types in the proceedings
of ATPS 2014 (Arbeitstagung Programmiersprachen, Kiel, Germany, February 2014).
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