
Liquid Types Revisited

Mário Pereira, Sandra Alves, and Mário Florido

University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

Abstract

We present a new type system combining re�nement types ideas and the expressiveness
of intersection type discipline. The use of such features makes it possible to derive very
precise types, using the types language itself as a detailed description for programs' func-
tional behaviour. We have been able to prove several interesting properties for our system
(including subject reduction) and started the development of an inference algorithm, which
was proved sound.

1 Motivation

Re�nement types [2, 4] state complex program invariants, by augmenting type systems with
logical predicates. A re�nement type of the form {ν : B | φ} stands for the set of values from
basic type B restricted to the �ltering predicate (re�nement) φ. A subtyping relation exists for
re�nement types, which will generate implication conditions (much like a VCGen in the context
of program veri�cation):

Γ; ν : B ` φ⇒ ψ

Γ ` {ν : B | φ} <: {ν : B | ψ}

One idea behind the use of such type systems is to perform type-checking using SMTs
(Satisfability Modulo Theories), discharging conditions as the above φ⇒ ψ. However, the use
of arbitrary boolean terms as re�nement expressions leads to undecidable type systems, both
for type checking and inference.

Liquid Types [5, 6] (Logically Quali�ed Data Types) present a system capable of automat-
ically infer re�nement types, by means of two main restrictions to a system: every re�nement
predicate is a conjunction of expressions exclusively taken from a global, user-supplied set (de-
noted Q) of logical quali�ers (simple predicates over program variables, the value variable ν
and the variable placeholder ?); and a conservative (hence decidable) notion of subtyping.

The Liquid Types system is de�ned as an extension to the Damas-Milner type system,
with the term language extended with an if-then-else constructor and constants. A key idea
behind this system is that the re�nement type of every term is a re�nement of the corresponding
ML type.

Despite the interest of Liquid Types, some situations arise where the inference procedure
infers poorly accurate types. For example, considering Q = {ν ≥ 0, ν ≤ 0} and the term neg ≡
λx.−x, Liquid Types system infers neg :: x : {ν : int |0 ≤ ν ∧0 ≥ ν} → {ν : int |0 ≤ ν ∧0 ≥ ν}
(the syntax x : τ → σ is here preferred over the usual Π(x : τ).σ for functional dependent types).
This type cannot, at all, be taken as a precise description of the neg function's behaviour.

2 Intersection-re�nement types

We propose a re�nement type system with the addition of intersection types [1]. Our intersec-
tions are at the re�nement expressions level only, i.e. for the type σ ∩ τ both σ and τ are of

the same form, solely di�ering in the re�nement predicates. We introduce a new rule to form
intersections on types (our typing relation is denoted by `∩):

Intersect

Γ `∩ M : σ Γ `∩ M : τ

Γ `∩ M : σ ∩ τ

As an example, the neg function could be typed within our system as

(x : {ν : int | ν ≥ 0} → {ν : int | ν ≤ 0}) ∩ (x : {ν : int | ν ≤ 0} → {ν : int | ν ≥ 0})

Our use of intersections for re�nement types draws some inspiration from [3].
We use a standard call-by-value small step operational semantics to de�ne the evaluation

relation, denoted ;. Based on this relation, we were able to prove the following result:

Theorem 1 (Subject reduction). If Γ `∩ M : σ and M ; N then Γ `∩ N : σ.

Based on the Liquid Types restrictions, we conceived an algorithm to infer appropriate
re�ned types with intersections. We use the set Q to restrict the possible re�nements of types
and to guarantee that the algorithm terminates. We de�ne the inference algorithm in terms of a
programM , a typing context Γ and Q as Infer(Γ,M,Q) = σ, where σ is an intersection-re�ned
type. The following result holds:

Theorem 2 (Soundness). If Infer(Γ,M,Q) = σ then Γ `∩ M : σ.

With the use of intersections we are able to derive more precise types than in a classical
re�nement type system. These types can thus be taken as detailed descriptions of programs'
behaviour.

We are currently investigating completeness properties of our inference algorithm. We take
particular interest in realizing if our algorithm infers most-general types by means of subtyping.
In other words, we would like to prove that if Infer(Γ,M,Q) = σ and Γ `∩ M : σ′, for some
σ′, then σ <: σ′.

References

[1] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A �lter lambda model and
the completeness of type assignment. The journal of symbolic logic, 48(4):931�940, 1983.

[2] Ewen Denney. Re�nement types for speci�cation. In Programming Concepts and Methods PRO-

COMET'98, pages 148�166. Springer, 1998.

[3] Tim Freeman and Frank Pfenning. Re�nement types for ML. In Proceedings of the ACM SIGPLAN

1991 Conference on Programming Language Design and Implementation, PLDI '91, pages 268�277,
New York, NY, USA, 1991. ACM.

[4] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans. Program. Lang. Syst.,
32(2):6:1�6:34, February 2010.

[5] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the 2008

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '08,
pages 159�169, New York, NY, USA, 2008. ACM.

[6] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract re�nement types. In Proceedings of

the 22Nd European Conference on Programming Languages and Systems, ESOP'13, pages 209�228,
Berlin, Heidelberg, 2013. Springer-Verlag.

	Motivation
	Intersection-refinement types

