
Formal verification of a static analyzer:

abstract interpretation in type theory

Xavier Leroy

Inria Paris-Rocquencourt
xavier.leroy@inria.fr

(Joint work with David Pichardie, Sandrine Blazy, Jacques-Henri Jourdan, and Vincent
Laporte.)

Abstract

Static analysis is the automatic inference and checking of simple properties of all executions
of a program. Initially developed in the context of compilers to support code optimization,
static analysis is very successful today for the formal verification of safety properties of critical
software, owing to its good scalability. As is the case for all tools involved in the production and
verification of critical software (compilers, code generators, program provers, model checkers),
confidence in the results of a static analysis tool requires evidence that the tool is sound and
correctly over-approximates all possible executions of the program. Such evidence can take the
form of a soundness proof mechanized using a proof assistant [5, 4].

Abstract interpretation [2] is an elegant, powerful mathematical framework to define and
reason about static analyses. In particular, it is not limited to so-called “non-relational” anal-
yses (inferring properties of a single value or variable) and works naturally for “relational”
analyses (inferring relations between several variables, such as linear inequalities). The classic
presentation of abstract interpretation involves Galois connections. It has the advantage that,
once the meaning of abstract data is chosen via a Galois connection, the abstract operators used
by the static analyzer can, in principle, be derived systematically from the concrete semantics,
in a way that is not only sound by construction, but also relatively optimal.

However, the theory of Galois connections is resolutely set-theoretical, involving non-comput-
able functions and equational reasoning over set comprehensions, making it very hard to ex-
press in type theory and to use in a proof assistant such as Coq. To overcome this difficulty,
Pichardie et al [6, 1] developed and mechanized an alternative presentation of abstract inter-
pretation, using only the “γ” (concretization) part of Galois connections, viewed as relations
“concrete-datum ∈ abstract-datum”. The calculational style is lost, and relative optimality is
no longer guaranteed, but soundness proofs are easily conducted with a proof assistant.

In the context of the Verasco project, we are currently trying to scale Pichardie’s approach
all the way to the development and Coq verification of a realistic static analyzer based on
abstract interpretation for the CompCert subset of the C language. Proper modular decom-
position is crucial to build the appropriate abstractions as a hierarchy combining numerical
and memory abstract domains. While the general interface of a non-relational domain is well
known, giving such an interface for relational domains is more challenging, and so is formulating
generic composition operators (such as reduced products) between such domains. Another en-
abling technique is the opportunistic use of validation a posteriori to obviate the need to prove
complicated algorithms such as fixpoint iteration with widening and narrowing, or operations
over polyhedra for relational domains of linear inequalities [3].

http://verasco.imag.fr


Acknowledgments This work is supported by the Verasco project (ANR-11-INSE-003) of
Agence Nationale de la Recherche (ANR).

References

[1] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a data flow analyser
in constructive logic. Theoretical Computer Science, 342(1):56–78, 2005.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM Symposium on
Principles of Programming Languages (POPL’77), pages 238–252. ACM, 1977.

[3] Alexis Fouilhé, David Monniaux, and Michaël Périn. Efficient generation of correctness certificates
for the abstract domain of polyhedra. In Static Analysis - 20th International Symposium (SAS
2013), volume 7935 of Lecture Notes in Computer Science, pages 345–365. Springer, 2013.

[4] Paolo Herms, Claude Marché, and Benjamin Monate. A certified multi-prover verification condition
generator. In Verified Software: Theories, Tools, Experiments (VSTTE 2012), volume 7152 of
Lecture Notes in Computer Science, pages 2–17. Springer, 2012.

[5] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–
115, 2009.

[6] David Pichardie. Interprétation abstraite en logique intuitionniste: extraction d’analyseurs Java
certifiés. PhD thesis, Université Rennes 1, 2005.


