Higher Inductive Types as Homotopy-Initial Algebras

Kristina Sojakova

Carnegie Mellon University

TYPES 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

In Extensional Type Theory we have a well-known correspondence (Dybjer 1996) between

- Inductive types: finite types 0, 1, 2, ..., natural numbers N, lists List[A], well-founded trees W_{x:A}B(x), etc.
- 2. Initial algebras of a certain form

 $(\mathbb{N}, 0, \operatorname{suc})$ is initial among algebras of the form (C, z, c), where z : C and $c : C \longrightarrow C$.

Initial: there is a unique function $h : \mathbb{N} \longrightarrow C$ which preserves the constructors (a *homomorphism*).

Introduction

In Intensional Type Theory this correspondence breaks down: we cannot prove (definitional) uniqueness.

In Homotopy Type Theory, we can prove *propositional* uniqueness, and more: we have a correspondence (Awodey et al, 2012) between

- 1. Inductive types: 0, 1, 2, \mathbb{N} , List[*A*], $W_{x:A}B(x)$, etc. with *propositional computation rules*
- 2. Homotopy-initial algebras of a certain form

 $(\mathbb{N}, 0, suc)$ is homotopy-initial among algebras of the form (C, z, c).

Homotopy-initial: the type of homomorphisms from $(\mathbb{N}, 0, suc)$ to any other algebra (C, z, c) is contractible.

Higher Inductive Types

A powerful tool in HoTT are *Higher-Inductive Types* (HITs):

1. HITs extend ordinary inductive types by allowing constructors involving *path spaces* of X (e.g., $c : a =_X b$) rather than just points of X (e.g., c : X).

E,g., the circle S^1 is a HIT generated by four constructors:

north : S^1

south : S^1

east : north $=_{S^1}$ south

west : north $=_{S^1}$ south

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Higher Inductive Types

- Many interesting constructions arise as HITs: spheres Sⁿ, interval, torus T, quotients, pushouts, suspensions, integers Z, truncations ||A|| (aka squash types), ...
- 3. Open question: Which computation rules should be propositional vs. definitional? Here we assume the former.
- 3. Open problem: finding a unifying schema for HITs (**not** a subject of this talk).

The subject of this talk: *Can a manageable class of HITs be characterized by a universal property - as homotopy-initial algebras?*

Higher Inductive Types

- Many interesting constructions arise as HITs: spheres Sⁿ, interval, torus T, quotients, pushouts, suspensions, integers Z, truncations ||A|| (aka squash types), ...
- 3. Open question: Which computation rules should be propositional vs. definitional? Here we assume the former.
- 3. Open problem: finding a unifying schema for HITs (**not** a subject of this talk).

The subject of this talk: *Can a manageable class of HITs be characterized by a universal property - as homotopy-initial algebras?* Yes!

Martin-Löf's well-founded trees $W_{x:A}B(x)$: nontrivial induction on point constructors; no higher-dimensional constructors.

Martin-Löf's well-founded trees $W_{x:A}B(x)$: nontrivial induction on point constructors; no higher-dimensional constructors.

+

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Martin-Löf's well-founded trees $W_{x:A}B(x)$: nontrivial induction on point constructors; no higher-dimensional constructors.

+

"Generalized suspensions": vacuous induction on point constructors; arbitrary number of path constructors between any two point constructors.

Martin-Löf's well-founded trees $W_{x:A}B(x)$: nontrivial induction on point constructors; no higher-dimensional constructors.

+

"Generalized suspensions": vacuous induction on point constructors; arbitrary number of path constructors between any two point constructors.

Induction and higher-dimensionality remain orthogonal, which gives W-supsensions a well-behaved elimination principle.

W-suspensions: point constructors

The W-suspension type W is a HIT generated by

point : $\Pi_{a:A}(B(a) \longrightarrow W) \longrightarrow W$ path : ...

where, just like for well-founded trees,

- A is the type of *point constructors*
- ► *B* : *A* → type gives the arity of each point constructor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

W-suspensions: point constructors

The W-suspension type W is a HIT generated by

point : $\Pi_{a:A}(B(a) \longrightarrow W) \longrightarrow W$ path : ...

where, just like for well-founded trees,

- A is the type of *point constructors*
- ► B : A → type gives the arity of each point constructor

Example: The type \mathbb{N} has two point constructors: one for zero and one for successor. Thus, \mathbb{N} is a W-suspension with A := 2 and B given by $\top \mapsto 0, \bot \mapsto 1$.

W-suspensions: path constructors

The W-suspension type W is a HIT generated by

point :
$$\Pi_{a:A}(B(a) \longrightarrow W) \longrightarrow W$$

path : $\Pi_{c:C} \Pi_{b_F:B(F(c))} \longrightarrow W \Pi_{b_G:B(G(c))} \longrightarrow W$
point $(F(c), b_F) =_W point(G(c), b_G)$

where

- C is the type of path constructors
- ► $F : C \longrightarrow A$ and $G : C \longrightarrow A$ give the left and right endpoints of each path constructor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: the circle S^1 as a W-suspension

Revisiting the circle:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: the circle S^1 as a W-suspension

Revisiting the circle:

we see that \boldsymbol{S}^1 is a W-suspension with

- ► A := 2
- *B* is given by $\top, \bot \mapsto 0$
- ► C := 2
- *F* is given by $\top, \bot \mapsto$ north
- G is given by $\top, \bot \mapsto$ south

Theorem

In HoTT, the existence of W-suspensions is equivalent to the existence of a suitable algebra (W, point, path) which is homotopy-initial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

In HoTT, the existence of W-suspensions is equivalent to the existence of a suitable algebra (W, point, path) which is homotopy-initial.

Corollary

In HoTT, the existence of the circle S^1 is equivalent to the existence of a suitable algebra $(S^1, \text{north}, \text{south}, \text{east}, \text{west})$ which is homotopy-initial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

In HoTT, the existence of W-suspensions is equivalent to the existence of a suitable algebra (W, point, path) which is homotopy-initial.

Corollary

In HoTT, the existence of the circle S^1 is equivalent to the existence of a suitable algebra $(S^1, \text{north}, \text{south}, \text{east}, \text{west})$ which is homotopy-initial.

Corollary

In HoTT, the existence of the natural numbers $\mathbb N$ is equivalent ...

(日) (同) (三) (三) (三) (○) (○)

Theorem

In HoTT, the existence of W-suspensions is equivalent to the existence of a suitable algebra (W, point, path) which is homotopy-initial.

Corollary

In HoTT, the existence of the circle S^1 is equivalent to the existence of a suitable algebra $(S^1, \text{north}, \text{south}, \text{east}, \text{west})$ which is homotopy-initial.

Corollary

In HoTT, the existence of the natural numbers $\mathbb N$ is equivalent ...

and so on

Proof Idea

We show that for any algebra (W, point, path), the induction principle is equivalent to the simpler *recursion principle* plus a *uniqueness condition*, which are in turn equivalent to homotopy-initiality:

Induction = Recursion + Uniqueness = Homotopy-Initiality

Recursion principle: for any algebra (C, p, r), we have a homomorphism from (W, point, path) to (C, p, r). *Uniqueness condition*: any two homomorphisms from (W, point, path) to (C, p, r) are propositionally equal.

Proof Idea

For the circle S^1 :

Definition

A homomorphism from (C, n_C, s_C, e_C, w_C) to (D, n_D, s_D, e_D, w_D) is a map $f : C \longrightarrow D$ together with paths

$$\frac{\alpha}{\beta} : f(n_C) = n_D$$
$$\frac{\beta}{\beta} : f(s_C) = s_D$$

and higher paths θ, ϕ :

Proof Idea

The uniqueness condition for **S**¹ thus says that any two homomorphisms $(f, \alpha_f, \beta_f, \theta_f, \phi_f)$ and $(g, \alpha_g, \beta_g, \theta_g, \phi_g)$ from (**S**¹, north, south, east, west) to (C, n_C, s_C, e_C, w_C) are equal.

This is the same as saying that

- 1. There is a path p: f = g (a **propositional** η -rule).
- 2. The (higher) paths $\alpha_f, \beta_f, \theta_f, \phi_f$ and $\alpha_g, \beta_g, \theta_g, \phi_g$ are suitably related over p.

Conclusion

We have

- Introduced a class of higher inductive types, which is relatively simple and subsumes types like
 - ▶ well-founded trees W_{x:A}B(x), hence the types of natural numbers N, lists List[A], ...

- the interval I
- all the spheres Sⁿ
- ordinary suspensions susp(A)

with propositional computational rules.

Conclusion

We have

- Introduced a class of higher inductive types, which is relatively simple and subsumes types like
 - ▶ well-founded trees W_{x:A}B(x), hence the types of natural numbers N, lists List[A], ...
 - the interval I
 - all the spheres Sⁿ
 - ordinary suspensions susp(A)

with propositional computational rules.

Shown that this class can be characterized as a homotopy-initial algebra of a certain form; thus equating the proof-theoretic concept of a higher-inductive type with a particular universal property.

Conclusion

Open questions:

- What other HITs arise naturally as W-suspensions?
- Does homotopy-initiality scale to other HITs such as set and groupoid quotients, higher-level truncations, the torus, ?

References:

- P. Dybjer, Representing Inductively Defined Sets by Well-orderings in Martin-Löf's Type Theory, 1996.
- S. Awodey, N. Gambino, and K. Sojakova, Inductive Types in Homotopy Type Theory, 2012.