Objects and subtyping in the A\II-calculus modulo

Ali Assaf, Raphaél Cauderlier, Catherine Dubois

TYPES 2014, May 12

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 1/24

@ The All-calculus modulo has been designed to encode other calculi
e Functional Pure Type Systems
e Proof assistants: Coq, HOL, FoCaLize
e Theorem provers: Zenon, iProver
@ We use All-calculus modulo rewriting to study OOL semantics
e How can we translate object mechanisms in the A\II-calculus modulo?
@ Object calculi have type systems with (object) subtyping
o The AII-calculus modulo lacks subtyping

@ Subtyping is a common feature of type systems, also present in Coq
(universes)

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and in the AIT-calculus modulo TYPES 2014, May 12

Related work

@ In System F¥. (polymorphism, type operators and subtyping)

e Several deep encodings: Cardelli (1984), Pierce, Turner and Hofmann
(1993-1995), Bruce (1993), Abadi, Cardelli and Viswanathan (1996)
o Implemented in Yarrow (1997): a proof assistant with object subtyping

@ Object calculi (a.k.a ¢-calculi) from Abadi and Cardelli, A Theory of
Objects, Springer Verlag, 1996
e Deep encodings in Coq, focus on proving properties on the type system

e by Gillard and Despeyroux (1999): reasoning on binders encoded via DeBrujn
indices
e and Liquori (2007): proof of the subject-reduction theorem

@ In Isabelle/HOL: deep formalisation of class-based languages (parts of
Java and Scala) with extensible records: Klein and Nipkow (2005), Foster
and Vytiniotis (2006)

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and sub g in the AIT-calculus modulo TYPES 2014, May 12 3/24

@ Encoding of an object calculus: the simply-typed ¢-calculus
@ Shallow embedding

o semantically equal terms, types or proofs should not be distinguishable after
the encoding

o expected efficiency

e readability

@ In the AII-calculus modulo

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and the AII-calculus modulo TYPES 2014, May 12 4/24

Outline

@ The \l-calculus modulo and Dedukti

@ The simply-typed ¢-calculus

© Explicit subtyping in the AII-calculus modulo

TYPES 2014, May 12 5/24

“auderlier, Catherine Dubois

The AlI-calculus modulo

@ The All-calculus is a typed A calculus with dependent types

@ The All-calculus modulo, introduced by Cousineau and Dowek in 2007,
extends the AII-calculus with a rewrite system R.

I'—r:A AEﬁRB

C
I't:B (Convy

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 6/24

o Type-checker for the AIl-calculus modulo
It is a free software, available at
https://www.rocq.inria.fr/deducteam/Dedukti/

Dependent types
Rewriting on terms and types

Partial functions and proofs

Non-linear pattern-matching

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

https://www.rocq.inria.fr/deducteam/Dedukti/

The simply-typed ¢-calculus: Abadi and Cardelli, A Theory

of Objects, 1996

@ Functional semantics (imperative semantics also studied)
@ Model of both class-based and object-based languages
@ No termination guaranted by typing

@ Structural subtyping

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Syntax and semantics

e Types
A:=[1:Alizin labels are unordered

@ Terms
tui= [L=c(x:A) ¢ lizin
t.1
tl<=¢x:A)u
(t.I<= u) abbreviates (t.1<= ¢(x : A) u) where x & FV(u).
(1= u) abbreviates (I = ¢(x : A) u) where x € FV(u).
@ Operational semantics
A=[1i: Ajlizin
t=[li=¢(x:A)tili=1.n
t.lj — 4 [t/x]
thedx:Au — [L=cx:A)uwli=cx:A)t lizinizj

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 9/24

Typing and subtyping

A=[1:AiL=1n

Vi=1l..n Ix: At A (obj) I'—t: A (select)
I'[li=¢x:A)tlizin: A '=tli: A

I't: A I'x:AFu: A
I'Hti<=¢x:Au: A

(update)

[Li:Ajliztnem <t [L Aj lizin

I't: A A< B
I'—t:B

(subsume)

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Example: Encoding of booleans

Boolp :=[if : A, then: A, else : A]

truep = [if = ¢(self : A) self.then,
then = ¢(self : A) self.then,
else = ¢(self : A) self.else]

falsep = [if = ¢(self : A) self.else,
then = ¢(self : A) self.then,
else = ¢(self : A) self.else]

if o b then t else e := ((b.then<= t).else<= e).if

"then" and "else" methods are updated before "if" is selected

TYPES 2014, May 12

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo

Subtyping example

RomCell := [get: nat]
PromCell := [get : nat, set : nat - RomCell]

PromCell <: RomCell

myCell : PromCell := [get =0,
set = g(self : PromCell) A(n : nat) self.get<n |

myCell.set(42).get —* 42

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 12/24

Translation scheme from simply-typed ¢-calculus to

Al I-calculus modulo

o Types and objects are translated as association lists
@ The operational semantics is translated to rewrite rules

@ Subtyping is explicit

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Explicit subtyping

@ In the All-calculus modulo, each term has at most one type modulo the
rewrite system + 3 conversion

@ Convertibility is a symmetric relation

@ We cannot rewrite A to B whenever A <: B because that would make both
types equal

@ Hence we ask the user to provide explicit coercions (subtyping annotations)

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subt; g in the AIT-calculus modulo TYPES 2014, May 12 14 /24

Translation of types

@ Types are translated by normalized association lists
o Equality and subtyping relations on types are decidable:
A=A —true

[I=C_,_):_ <> false A <[] true
(_,_) = _=[]— false A< (1,By): By
i, A =B =, Ay) By —Bj=assoc AlIANA<: By

—lLhi=h AAI=A, AB1 =B,

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 15/24

Translation of objects

Objects are also translated by association lists with labels in the same order than
in the corresponding type

@ an object of type A is something of the form
[I=c(x: A)(t: assoc A Dlicdom(a)

@ sublists are not well-typed objects

@ to construct objects, we need to consider (ill-typed) objects
defined on subsets of dom(A)

@ to coerce objects, we need to consider (ill-typed) objects
with methods typed by (assoc B).

= A pre-object of type (A, f, D) is something of the form
[l=c(x: A)(t: fDlep

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Semantics

@ preselect: V A, f, D, PreObj(A, f, D) = VI, A — f(D).
preselect (11, m) :: 0) 12
—
if (11 =12) then m else preselect (o, 12)
@ select: VA, A — VI, assoc Al
select al — preselectala
e preupdate : V A, f, D, PreObj(A, f, D) — V 1, (A — (1)) — PreObj(A, f,
D).
preupdate ((11, m1) :: 0) 12 m2
—
if (11 =12)
then ((12, m2) :: 0)
else ((11, m1) :: (preupdate A f D o 12 m2))
o update: VA, A — V1 (A —assoc Al) = A.
update a l m < preupdate a Il m

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 171724

Coercion

@ coerce: VA,B_A<:B—A—B

o Partial function

cases where A £: B don't have to be defined, they will not reduce
o Decidibility of <:

proof of A <: B is trivial for concrete A and B

@ Some lemmata about equality, subtyping and pre-objects needed

V A’ f’ g’ D’
(V1€ D, () =gl) — PreObj(A, f, D) — PreObj(A, g, D).

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Implementation

@ Code and examples available at
https:
//www.rocq.inria.fr/deducteam/Sigmaid/sigmaid.tar.gz
@ Auxiliary definitions (mostly the definition of labels as strings)
430 lines, 151 rewrite rules

@ Core calculus
523 lines, 104 rewrite rules
o Time
type-checked by Dedukti v2.2¢ in 70ms

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and in the AIT-calculus modulo TYPES 2014, May 12 19/24

https://www.rocq.inria.fr/deducteam/Sigmaid/sigmaid.tar.gz
https://www.rocq.inria.fr/deducteam/Sigmaid/sigmaid.tar.gz

Examples from Abadi and Cardelli

myPromCell : PromCell := [get = 42,
set = ¢(self : PromCell) A(x : Nat)
coerce PromCell RomCell (self.get< x)]

if 5 truep then t else e —*t v
if o falsea then t else e —*e v
AEx:A—DbKx))a —*ba) | V
(coerce ColorPoint Point [x =42,y =24,c=red]).x —*42 v
[get =42].get —*42 |V
myPromCell.get —*42 |/
myPromCell.set(24).get —*24 |V
myCell.set(24).get —*24 |V

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12 20/24

Conclusion and perspectives

@ Shallow embedding of a typed object calculus with subtyping
o Formalized in Dedukti in a few hundred lines

@ Validated on examples from Abadi and Cardelli

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Conclusion and perspectives

o Study the efficiency

@ Check the confluence
o Extend the object calculus with dependent types

e Specifications and proofs as methods
e Dependencies between methods

o Loss of decidable type equality

o Abstract method / redefinition

@ Other object formalizations (featherweight java)

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and subtyping in the AII-calculus modulo TYPES 2014, May 12

Questions

Thank you!

Ordering of labels

o Indistinguishable types in the source language are not always convertible in
the target language

@ This could be solved by maintaining the list ordered with this extra
rewrite-rule
(11, A]) b (12, A2) ©B ? 11 > 12
<_>
(b, Ap) (1, Ap) B
@ But this breaks confluence with the rule
A=A —true
@ There are other approaches:

o Add a proof of 1; <1, as argument of cons
and define insert without logical argument
o Define a guarded version of equal

Ali Assaf, Raphaél Cauderlier, Catherine Dubois Objects and in the AIT-calculus modulo TYPES 2014, May 12

	The -calculus modulo and Dedukti
	Appendix

