A formalization of the Quipper quantum
programming language
Henri Chataing, Neil J. Ross & Peter Selinger

Dalhousie University & Ecole Polytechnique

2014 TYPES Meeting

Quantum computing is computing based on the laws of quantum
physics.

The standard model of quantum computing is Knill's Qram model,
in which a classical computer is connected to a quantum device.

Instructions

Classical Quantum

L\)

Measurement results

The instructions for the quantum device are arranged in a quantum
circuit.

The gates that compose quantum circuits can be unitaries, which
are reversible operations, or measurements, which are probabilistic
operations.

e A

G1 Gs

—

Quipper is a programming language for quantum computing,
implemented as an embedded language within Haskell.

Several non-trivial algorithms from the quantum computing
literature have been implemented in Quipper.

Quipper is a circuit description language.

Quipper’s circuit as data paradigm.

1 NZ A=) 11 1 NZ A=) 11
of 10 o} 10
of . 10
o
of
circuit :: [Qubit] -> Circ ([Qubit], [Qubit])

circuit gs = do
y <- with_computed subcircuit $ \subcircuit -> do
qc_copy subcircuit
return (gs, y)

Quipper’s type system does not guarantee that quantum programs
are physically meaningful.

self_control :: Qubit -> Circ Qubit
self_control q = do

gnot_at q ‘controlled‘ q

return q

Goals:

» Define a type-safe language, Proto-Quipper, that will serve as

a basis for the development of Quipper as a stand-alone
language.

Chosen features for Proto-Quipper:

» Have a type system to enforce the physics
(draw inspiration from the quantum lambda calculus).

» Capture Quipper's circuits as data paradigm.

Simplifying assumption:

» No measurements (all circuits are therefore reversible).

The Proto-Quipper language:

Type A B:= 1| bool | A@B | A—B|!A|

qubit | Circ(T, V)

QDataType T,U == qubit | 1 | TeU

Term a,b,c = ... |q | (t,C,a) | box" | unbox | rev

QDataTerm t,u == q | * | (t,u)

Some basic built-in gates:
» HAD := unbox(q, HAD, q)
» CNOT := unbox({q1, q2), CNOT,{q1, q2))
» INITO := unbox(x,0, q)

A Proto-Quipper term (not quite) for subcircuit:

subcircuit := boxd"P(\x.CNOT(HAD x, INITO x))

Proto-Quipper's operational semantics supposes a circuit
constructor.

The circuit constructor is assumed to be able to perform some
basic operations: appending gates, reversing circuits, ...

The reduction will be defined on closures [C, t] consisting of a

term t of the language and a circuit state C representing the
circuit currently being built.

10

The operational semantics of Proto-Quipper (a selection):

Specpqy(T) =t new(FQ(t)) =D
[C, box" (V)] — [C,(t, D, vt)]

[D,a] — [D',d]
[C,(t,D,a)] — [C,(t, D, a)]

bind(v,u) =b Append(C,D,b) = (C’,b') FQ(u') C dom(b’)

[C, (unbox(u, D, u"))v] — [C',b'(d)]

11

subcircuit := box®P®(\x.CNOT(INITO *, HAD x))

[- ,subcircuit] —» [————,CNOT(INITO *,HAD q))]

— [—{H}—, CNOT(INITO %, q))]
. ,
[non(d 9))

- [()]

= [,(q,C{d,9)]

12

For each of the constants boxT, unbox, and rev, we introduce a
type:

> Ao (T, U) = (T —o U) —o I Cire(T, V),

> Aunbox(T, U) = Cire(T,U) — (T — U), and

» Arel(T,U) = Cire(T, U) — ! Cire(U, T).

And a typing rule, for ¢ € {box", unbox, rev}:

AT, U) <: B
IA:QF-c: B

13

The type system of Proto-Quipper (a selection):

A< B
IA,x:A;D+-x:B IA; {q} F g : qubit

[x:AQFb:B IA,x:A0Fb:B

F;QI—)\x.b:A—oB(1) IA; 0+ Ax.b: I"™HA — B)
M, A a:!"A T, 1A;QFb:1"B (1)

Fl, F2, IA; Ql, Qz - <a, b> : !n(A® B)

Qbt: T 1A QFa:U In(C)=@Q1 Out(C) =@

IA; 0 (t,C,a): 1" Cire(T, U)

(axc) (axq)

(A2)

(circ)

14

Proto-Quipper is a type-safe language, It enjoys subject reduction
and progress.

Subject reduction: If T;FQ(a) - [C,a] : A, (Q'|Q") is a valid typed
closure and [C, a] — [C', d'], then [FQ(&') F [C', 4] : A, (Q'|Q")
is a valid typed closure.

15

References:

» A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and
B. Valiron. An introduction to quantum programming in
quipper.

» A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and

B. Valiron. Quipper: A scalable quantum programming
language.

» P. Selinger and B. Valiron. Quantum lambda calculus.

16

	Quantum Computing
	Quipper
	Proto-Quipper

