
A formalization of the Quipper quantum
programming language

Henri Chataing, Neil J. Ross & Peter Selinger

Dalhousie University & École Polytechnique

2014 TYPES Meeting

1

Quantum computing is computing based on the laws of quantum
physics.

The standard model of quantum computing is Knill’s Qram model,
in which a classical computer is connected to a quantum device.

Classical Quantum

Measurement results

Instructions

2

The instructions for the quantum device are arranged in a quantum
circuit.

The gates that compose quantum circuits can be unitaries, which
are reversible operations, or measurements, which are probabilistic
operations.

G1

G2
G3

G4

3

Quipper is a programming language for quantum computing,
implemented as an embedded language within Haskell.

Several non-trivial algorithms from the quantum computing
literature have been implemented in Quipper.

Quipper is a circuit description language.

4

Quipper’s circuit as data paradigm.

H

1

0

0

0

1

0

0

1

0

0

0

1

H

circuit :: [Qubit] -> Circ ([Qubit], [Qubit])

circuit qs = do

y <- with_computed subcircuit $ \subcircuit -> do

qc_copy subcircuit

return (qs, y)

5

Quipper’s type system does not guarantee that quantum programs
are physically meaningful.

self_control :: Qubit -> Circ Qubit

self_control q = do

qnot_at q ‘controlled‘ q

return q

6

Goals:

I Define a type-safe language, Proto-Quipper, that will serve as
a basis for the development of Quipper as a stand-alone
language.

Chosen features for Proto-Quipper:

I Have a type system to enforce the physics
(draw inspiration from the quantum lambda calculus).

I Capture Quipper’s circuits as data paradigm.

Simplifying assumption:

I No measurements (all circuits are therefore reversible).

7

The Proto-Quipper language:

Type A,B ::= 1 bool A⊗ B A(B !A

qubit Circ(T ,U)

QDataType T ,U ::= qubit 1 T ⊗ U

Term a, b, c ::= . . . q (t,C , a) boxT unbox rev

QDataTerm t, u ::= q ∗ 〈t, u〉

8

Some basic built-in gates:

I HAD := unbox(q,HAD, q)

I CNOT := unbox(〈q1, q2〉,CNOT , 〈q1, q2〉)
I INIT0 := unbox(∗, 0, q)

A Proto-Quipper term (not quite) for subcircuit:

subcircuit := boxqubit(λx .CNOT(HAD x , INIT0 ∗))

(q,
H

0
, 〈q, q′〉)

9

Proto-Quipper’s operational semantics supposes a circuit
constructor.

The circuit constructor is assumed to be able to perform some
basic operations: appending gates, reversing circuits, . . .

The reduction will be defined on closures [C , t] consisting of a
term t of the language and a circuit state C representing the
circuit currently being built.

10

The operational semantics of Proto-Quipper (a selection):

SpecFQ(v)(T) = t new(FQ(t)) = D

[C , boxT (v)]→ [C , (t,D, vt)]

[D, a]→ [D ′, a′]

[C , (t,D, a)]→ [C , (t,D ′, a′)]

bind(v , u) = b Append(C ,D, b) = (C ′, b′) FQ(u′) ⊆ dom(b′)

[C , (unbox (u,D, u′))v]→ [C ′, b′(u′)]

11

subcircuit := boxqubit(λx .CNOT(INIT0 ∗, HAD x))

[· , subcircuit] � [, CNOT(INIT0 ∗, HAD q))]

� [H , CNOT(INIT0 ∗, q))]

� [
H

0
, CNOT(q′, q))]

� [H

0
, 〈q′, q〉]

� [· , (q,C , 〈q′, q〉)]

12

For each of the constants boxT , unbox, and rev, we introduce a
type:

I AboxT (T ,U) = !(T (U)(!Circ(T ,U),

I Aunbox(T ,U) = Circ(T ,U)(!(T (U), and

I Arev(T ,U) = Circ(T ,U)(!Circ(U,T).

And a typing rule, for c ∈ {boxT , unbox, rev}:

!Ac(T ,U) <: B

!∆; ∅ ` c : B

13

The type system of Proto-Quipper (a selection):

A <: B
!∆, x : A; ∅ ` x : B

(axc)
!∆; {q} ` q : qubit

(axq)

Γ, x : A;Q ` b : B

Γ;Q ` λx .b : A(B
(λ1)

!∆, x : A; ∅ ` b : B

!∆; ∅ ` λx .b : !n+1(A(B)
(λ2)

Γ1, !∆;Q1 ` a : !nA Γ2, !∆;Q2 ` b : !nB

Γ1, Γ2, !∆;Q1,Q2 ` 〈a, b〉 : !n(A⊗ B)
(⊗-i)

Q1 ` t : T !∆;Q2 ` a : U In(C) = Q1 Out(C) = Q2

!∆; ∅ ` (t,C , a) : !n Circ(T ,U)
(circ)

14

Proto-Quipper is a type-safe language, It enjoys subject reduction
and progress.

Subject reduction: If Γ;FQ(a) ` [C , a] : A, (Q ′|Q ′′) is a valid typed
closure and [C , a]→ [C ′, a′], then Γ;FQ(a′) ` [C ′, a′] : A, (Q ′|Q ′′)
is a valid typed closure.

15

References:

I A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and
B. Valiron. An introduction to quantum programming in
quipper.

I A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and
B. Valiron. Quipper: A scalable quantum programming
language.

I P. Selinger and B. Valiron. Quantum lambda calculus.

16

	Quantum Computing
	Quipper
	Proto-Quipper

