A Type Theory with Partial Equivalence Relations as Types

Abhishek Anand Mark Bickford Robert L. Constable Vincent Rahli

May 13, 2014
Stuart Allen’s Thesis

This work started with a careful reading of:

Stuart Allen’s PhD thesis [All87]:
A Non-Type-Theoretic Semantics for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as Partial Equivalence Relations on terms (the PER semantics).
Among others, Nuprl has the following types:

Equality: $a = b \in T$

Dependent function: $a: A \to B[a]$

Dependent product: $a : A \times B[a]$

Intersection: $\cap a : A. B[a]$

Partial: $\overline{\bar{A}}$

Universe: $\mathbb{U} ;$

Subset: $\{a : A \mid B[a]\}$

Quotient: $T//E$

where E has to be an equivalence relation w.r.t. T.
Stuart Allen's Thesis

In his thesis, the following page was misplaced:

forming an $a \in A$ such that $B_{E_{A}}$ is inhabited; two equal canonical members
are formed by forming $a, a' \in \{ z \in A \mid B_{z} \}$ such that $E_{A}(a, a')$ is inhabited.

The set type and quotient type constructor could have been unified in a
single constructor $\nu \in A / E_{A}$ which is the quotient except that, rather
than requiring the inhabitation of E_{A} to be an equivalence relation, we
require only that it be transitive and symmetric over A, i.e., its restriction
to A should be a partial equivalence relation. The equal members are the
members of A that make E_{A} inhabited. Thus, a type $a, a' \in A / E_{A}$ is
extensionally equal to $a, a' \in A / E_{A}$, and a type $\{ z \in A \mid B_{z} \}$ is extensionally
equal to $\{ z, z' \mid E_{A}(z, z') \}$.

We come now to Nuprl's treatment of assumptions. Nuprl uses one form
of judgement:

$$a_{1} : A_{1}, \ldots, a_{n} : A_{n} \Rightarrow \mathbb{N}$$

Let us start by considering Nuprl judgements with one assumption. The
meaning of $a : A \Rightarrow \mathbb{N}$ is that, for any z and a', if $z = a' : A$ then $T_{A_{1}, \ldots, A_{n}} - f(z) = f(a') = T_{A_{1}, \ldots, A_{n}}$. Notice that, rather than implying or
presupposing that A is a type, the typehood of A is part of the assumption
(since the typehood of A is implied by $a \in A$). Thus, if A cannot be
defined as a type, because it has no value, say, then we may infer for any z_{1}, z_{2}
and f that $x = f(z_{1} ; z_{2})$. In contrast, we cannot infer $I_{z} : T_{A_{1}, \ldots, A_{n}}$ unless we
also know that A is a type. Since we are discussing two forms of assumption,
it will be convenient to introduce a distinguishing nomenclature; there will be
no need to make the general application of the terminology precise. We shall
say an assumption $a : A$ is positive within the judgement that, by virtue of
that assumption, imply the typehood of A, and we shall say the assumption is
negative within the judgements in which the typehood of A is a part of what
is being assumed. The assumption $a \in A$ is positive within $\{ z \in \mathbb{N} \mid a \in A \}$ and
negative within $\{ z \in \mathbb{N} \mid f(z) \in \mathbb{N} \}$. The use of negative assumptions allows one
to express the assumption that a is a member of A as a negative assumption
$a : \{ a \in A \mid \alpha \}$. A positive assumption of this form would be useless since for
$\{ a \in A \mid \alpha \}$ to be a type A must be a type with member a.

Now we shall consider judgements that use two negative assumptions.
The meaning intended for judgements using more assumptions should be
clear in light of the explanation for two assumptions. A coarse reading, one

\[a_{1} : A_{1}, \ldots, a_{n} : A_{n} \Rightarrow \mathbb{N} \]
What does it say?

It suggests that the \textit{quotient} and \textit{subset} types could be replaced by a quotient-like type that only requires a partial equivalence relation.
Our Proposal

Here is our proposal—redefining Nuprl’s type theory around an extensional “Partial Equivalence Relation” type constructor that turns PERs into types.

The domain: the closed terms of Nuprl’s computation system.

Base is the type that contains all closed terms and whose equality \sim is Howe’s computational equivalence relation [How89].
Our Proposal

Now, the **per** type constructor:

- \(\text{per}(R) \) is a type if \(R \) is a PER on \(\text{Base} \).
- \(a = b \in \text{per}(R) \) if \(R \ a \ b \).
- \(\text{per}(R_1) = \text{per}(R_2) \in \mathbb{U}_i \) if \(R_1 \) and \(R_2 \) are equivalent relations.

We’ll need universes as well.

Our type theory now has: Base, \(\mathbb{U}_i \), per.
Our Proposal

per types are now part of our implementation of Nuprl in Coq [AR14]. We verified:

\[
H \vdash \text{per}(R) = \text{per}(R') \in \text{Type} \quad \text{BY [pertypeEquality]}
\]
\[
H, x : \text{Base}, y : \text{Base} \vdash R \times y \in \text{Type}
\]
\[
H, x : \text{Base}, y : \text{Base} \vdash R' \times y \in \text{Type}
\]
\[
H, x : \text{Base}, y : \text{Base}, z : R \times y \vdash R' \times y
\]
\[
H, x : \text{Base}, y : \text{Base}, z : R' \times y \vdash R \times y
\]
\[
H, x : \text{Base}, y : \text{Base}, z : R \times y \vdash R \times y \quad \text{BY [ext e]}
\]
\[
H, x : t_1 = t_2 \in \text{per}(R) \vdash C \quad \text{BY [pertypeElimination]}
\]
\[
H, x : t_1 = t_2 \in \text{per}(R), [y : R \ t_1 \ t_2] \vdash C \quad \text{BY [ext e]}
\]
\[
H \vdash t_1 = t_2 \in \text{per}(R) \quad \text{BY [pertypeMemberEquality]}
\]
\[
H \vdash \text{per}(R) \in \text{Type}
\]
\[
H \vdash R \ t_1 \ t_2
\]
\[
H \vdash t_1 \in \text{Base}
\]
\[
H \vdash t_2 \in \text{Base}
\]
Examples

Let us start with simple examples:

\[
\text{Void} = \text{per}(\lambda -, .1 \preceq 0)
\]

\[
\text{Unit} = \text{per}(\lambda -, .0 \preceq 0)
\]

These use \(\preceq\), Howe’s computational approximation relation [How89].

Our type theory now has: Base, \(\mathbb{U}_i\), per, \(\preceq\).
Examples

Integers:

\[\mathbb{Z} = \text{per}(\lambda a. \lambda b. a \sim b \sqcap \uparrow(\text{isint}(a, \text{tt}, \text{ff}))) \]

where

\[A \sqcap B = \sqcap x: \text{Base}. \sqcap y: \text{halts}(x). \text{isaxiom}(x, A, B) \]

\[\uparrow(a) = \text{tt} \preceq a \]

\[\text{halts}(t) = A x \preceq (\text{let } x := t \text{ in } A x) \]

Our type theory now has: \text{Base, } \mathbb{U};, \text{per, } \preceq, \sim, \sqcap.
Examples

Quotient types:

\[T // E = \text{per}(\lambda x, y. (x \in T) \cap (y \in T) \cap (E \times y)) \]

This is the definition we are using in Nuprl now—no longer a primitive.

The partial type constructor is a quotient type—no longer a primitive.

Our type theory now has: Base, \(\mathbb{U} \), per, \(\leq \), ~, \(\cap \), \(_ = _ \in _ \).
What about the subset type?

\[\{ a : A \mid B[a] \} = \text{per}(\lambda x, y. (x = y \in A) \cap B[x]) \]
Examples

What about the subset type?

\[\{ a : A \mid B[a] \} = \text{per}(\lambda x, y. (x = y \in A) \cap B[x]) \]

This does not work!

We do not get that \(B\) is functional over \(A\).
one solution—annotate families with levels:

\[
\{a : A \mid B[a]\}; = \text{per}(\lambda x, y. (x = y \in A) \cap B[x] \cap \text{Fam}(A, B, i))
\]

where

\[
\text{Fam}(A, B, i) = \cap a, b: A. (B[a] = B[b] \in \mathbb{U}_i)
\]

One drawback: the annotations.
another solution—introduce a type of type equalities \((T = U)\):

\[
\{ a : A \mid B[a] \} = \text{per}(\lambda x, y. (x = y \in A) \sqcap B[x] \sqcap \text{Fam}(A, B))
\]

where

\[
\text{Fam}(A, B) = \sqcap a, b : A. (B[a] = B[b])
\]

This requires a more intensional version of our \text{per} type.
Examples

Using this method, we can also define the other type families such as: dependent functions, dependent products, …

Both \(\text{per} \) and its intensional version are part of our implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the \(\text{per} \) version of our function type is valid.
Inductive types

We saw how to build inductive types in yesterday's talk.

- Algebraic datatypes: \(\{ t : coDT \mid \text{halts}(\text{size}(t)) \} \).
- Inductive types using Bar Induction.
Conclusion

❖ Conciseness
 ▶ A small core of primitive types.
 ▶ Simple rules.

❖ Flexibility
 ▶ Lets user define even more types.
 ▶ No need to modify/update the meta-theory.

❖ Practicality?
 ▶ We’re already using it.
 ▶ We’re still experimenting with the intensional per type.
Stuart F. Allen.
A Non-Type-Theoretic Semantics for Type-Theoretic Language.

Abhishek Anand and Vincent Rahli.
Towards a formally verified proof assistant.
Accepted to ITP 2014, 2014.

Douglas J. Howe.
Equality in lazy computation systems.