Pattern matching without K

Jesper Cockx
Dominique Devriese
Frank Piessens

DistriNet — KU Leuven

13 May 2014

How can we recognize definitions by pattern
matching that do not depend on K?

How can we recognize definitions by pattern
matching that do not depend on K?

By taking identity proofs into account during
unification of the indices!

Pattern matching without K

Dependent pattern matching
The K axiom
Translation to eliminators

Proof-relevant unification

Pattern matching without K

Dependent pattern matching

Simple pattern matching

data N : Set where
z: N
s: N— N

min: N— N — N
min x y =7

2/20

Simple pattern matching

data N : Set where
z: N
s: N— N

min: N— N —- N
min z y =
min (s x) y

z
?

2/20

Simple pattern matching

data N : Set where

z: N

s:N—-N

min: N — N — N
min z y = z
min (s x) z = z

min (s x) (sy) = s (nin x y)

2/20

Dependent pattern matching

data < _:N — N — Set where
2 (n N)—>z<n
2 (m

Ny ->m<n—sm<sn

antisym: (x y :N) > x<y > y<x = x=y
antisym Xx y p q = 7

3/20

Dependent pattern matching

data < _:N — N — Set where
(n:)—>z<n
2 (m

Ny ->m<n—sm<sn

antisym |z| |y| (1zy) q

antisym: (xy:N) > x<y— y<x —
antisym |sx] [sy| (Isxyp)gq =

3/20

Dependent pattern matching

<_:N —= N — Set where
(n:)—>z<n
:(mn:N)->m<n—sm<sn

data

antisym: (xy:N)—=> x<y—> y<x — x=y
antisym |z| |z] (1z|z]) (1z|z]) = refl
antisym |sx] [sy| (Isxyp)gq ?

3/20

Dependent pattern matching

data < _:N — N — Set where
(n:)—>z<n
2 (m

Ny ->m<n—sm<sn

antisym: (xy:N)—=> x<y—> y<x—>x=y

antisym |z| |z] (1z|z]) (1z|z])=refl

antisym [sx] [sy] (Isxyp) (1s ly] [x] q)
= cong s (antisym x y p q)

3/20

Pattern matching without K

The K axiom

The identity type
as an inductive family

data = (x:A): A — Set where
refl : x=x

4/20

The identity type
as an inductive family

data = (x:A): A — Set where
refl : x=x

trans: (xyz: A) 9 x=y S y=z > x=z
trans x |x| |x| refl refl = refl

4/20

K follows from pattern matching

5/20

We don't always want to assume K

K is incompatible with univalence:

m K implies that subst e true = true
for all e : Bool =Bool

m Univalence gives swap : Bool = Bool
such that subst swap true = false

hence true = false!

6/20

The —without-K flag in Agda

m When making a case split, the indices must
be applications of constructors to distinct
variables (constructor parameters are
treated as other arguments).

m These distinct variables must not be free in
the parameters.

New specification of —without-K

m It is not allowed to delete reflexive
equations.

m When applying injectivity on an equation
c 5= c t of type D &, the indices & should
be self-unifiable.

Pattern matching without K

Translation to eliminators

Eliminating
dependent pattern matching

Basic case analysis:
Translate each case split to an eliminator.

Specialization by unification:
Solve the equations on the indices.

Structural recursion:
Fill in the recursive calls.

9/20

Specialization by unification

x~x, A=A (Deletion)

t ~x, A= Alx — t] (Solution)
cs~ct,A=5~t A (Injectivity)
c15~ct, A= 1 (Conflict)
x~cp[x],A= 1 (Cycle)

10/20

antisym: (mn:N) > m<n—n<m-—m=n
antisym = elim< (Am;n;_.n<m — m=n)
(An;e. elime (Am;m; . m=z — m=n)
(An; e. e)
(MNk; I, e.elim (M. s I =s k)
(noConfy (s /) z €))

nzerefl)
(Am; n; _; H; q. cong s
(H

(elime (M\k; ;. k=sn—I=sm—n<m)
(A e _.elim; (A_. n< m)
(noConfy z (s n) e))
(A\k; I, e;_; p; q. subst (An. n < m)
(noConfy (s k) (s n) p)
(subst (Am. k < m)
(noConfy (s /) (s m) q) €))
(s n) (s m) g refl refl)))

11/20

Pattern matching without K

Proof-relevant unification

Heterogeneous equality

a:A b:B a:A

a~ b Set refl:a~a

eqElim: (xy: A) = (e : x> y) —
Dxrefl - Dye

This elimination rule is equivalent with K . ..

12/20

Homogeneous telescopic equality

We can use the first equality proof
to fix the types of the following equations.

dy,dy = b17 b2

4

(e1: a1 = b1)(e : subst e ap = by)

13 /20

Deletion

x~x, A=A

4

e:x = x,A = Ale — refl]

14 /20

Solution

t~ x,A = Alx — t]

4

e:t=x,A= Alx— t e+ refl]

15 /20

Injectivity

cs~ct, A= s~tA

e:cs=ct,A=2e:5=t Ale— conf g

16 /20

Conflict

cLu~cov,A= L

4

e:ci1s=cot,A = |

17 /20

Cycle

x ~cp[x],A= 1

Y
e:x=cp[x],A= 1L

18 /20

Future work

m Detecting types that satisfy K (i.e. sets)

19/20

Future work

m Detecting types that satisfy K (i.e. sets)

m Implementing the translation to eliminators

19/20

Future work

m Detecting types that satisfy K (i.e. sets)
m Implementing the translation to eliminators

m Extending pattern matching
to higher inductive types

19/20

Conclusion

By restricting the unification algorithm,
we can make sure that K is never used.

You no longer have to worry
when using pattern matching for HoT T!

20/20

http://people.cs.kuleuven.be/
~ jesper.cockx/Without-K/

Standard library without K
Fixable errors: 16

Module Functions
Algebra.RingSolver ;H, N
Data.Fin.Properties drop-suc
Data.Vec.Equality trans, L
Data.Vec.Properties :-injective, ...

Relation.Binary.Vec.Pointwise head, tail
Data.Fin.Subset.Properties drop-there, €1, ...
Data.Fin.Dec e?
Data.List.Countdown drop-suc

Unfixable /unknown errors: 20

Module

Relation.Binary.
HeterogeneousEquality
PropositionalEquality
Sigma.Pointwise

Data.
Colist
Covec
Container.Indexed
List. Any.BagAndSetEquality
Star.Decoration
Star.Pointer
Vec.Properties

Functions

=-to-=, subst, cong, ...
proof-irrelevance
Rel<>=, inverse

Any-cong, C-Poset
setoid

setoid, natural, o-correct
drop-cons

gmapAll, a<<«

lookup
proof-irrelevance-[|=

Why deletion has to be disabled

UIP: (e:a=a) — e=refl
UIP refl =refl

Couldn't solve reflexive equation a = a of type
A because K has been disabled.

Why injectivity has to be restricted

UIP : (e:refl =,—,refl) —» e =refl
UIP' refl =refl

Couldn't solve reflexive equation a = a of type
A because K has been disabled.

