
Isomorphism of Finitary Inductive Types

Christian Sattler
joint work (in progress) with Nicolai Kraus

University of Nottingham

May 2014



Motivating Example

Generic data may be represented in a multitude of ways.

Consider generic binary trees with generic data at nodes and leafs:

data Tree (X Y : Set) : Set where
leaf : X → Tree X Y
node : Y → Tree X Y → Tree X Y → Tree X Y
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Motivating Example

Unravelling the left-most branch yields an alternative presentation
as spine trees:

data Spine (X Y : Set) : Set where
nil : Spine X Y
cons : Y → Tree X Y → Spine X Y → Spine X Y

data SpineTree (X Y : Set) : Set where
spine : X → Spine X Y → SpineTree X Y

Altenkirch et al. (2005): can we decide whether two such definitions
(i.e., parametric finitary inductive types) are generically isomorphic?
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Regular Functors

A modular description of parametric finitary inductive types is given
by regular functors. They are composed of (codes for)

I finite products,
I finite sums,
I (parametric) initial algebra formation.

Recall that mutual inductive definitions may be transformed into
non-mutual "nested" definitions, e.g.

SpineTree = µA.X × (µB. 1+ Y × A× B)

Thus we ask: is isomorphism of regular functors decidable?
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Isomorphism: Clarification Needed

But what does isomorphic mean?

Most general sensible notion of model for parametric finitary
inductive types: bicartesian-closed categories with initial algebras
for regular functors.

Possible choices:
I Isomorphism in the standard set model, type theory, or any

other locally cartesian-closed category with sufficient colimits.
I Syntactic isomorphism (isomorphism in all models): closed
λ-terms f : A→ B and g : B → A such that g ◦ f =βη idA
and f ◦ g =βη idB with conversion rules for extensionality of
sums and uniqueness of recursors.

I . . .
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The Set Model

Altenkirch et al. (2005) observe that isomorphism in the set model
boils down to equivalence of context-free grammars with

I commuting letters (instead of derived words one considers
multisets of letters),

I multiplicity of derivation (taking into account the number of
possible derivations of a given multiset).

Here, letters correspond to type parameters.

(The terminology of regular functors is slightly misleading in this
context as they more closely resemble context-free grammars.)
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The Set Model: Power Series

Lists:
List(X ) = 1+ X + X 2 + . . . ∈ NJX K

Fibonacci sequence:

A = 1+ (X + X 2)× A

=⇒ A = 1+ X + 2X 2 + 3X 3 + 5X 4 + 8X 5 + . . . ∈ NJX K

Binary trees:

Tree = X + Y × Tree× Tree

=⇒ Tree =
1−
√
1− 4XY
2Y

=⇒ Tree = X + X 2Y + 2X 3Y 2 + 5X 4Y 3 + 15X 5Y 4 + . . . ∈ NJX ,Y K
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The Set Model: Guardedness

Call a regular functor guarded if it has a representation as a power
series with finite coefficients.

Via syntactic analysis, any regular functor F can be decomposed
into the sum F = G + H of a guarded regular functor G and a
"purely unguarded" fuctor H fulfilling N× H = H.

The primordial purely unguarded type is

N = µX . 1+ X

Warning: only the purely unguarded part of the decomposition is
uniquely determined.
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The Set Model: Guardedness

Consider regular functors with named parameters X1, . . . ,Xn.

Closing guarded regular functors under negation and inversion, we
obtain a subfield

K ⊆ Q((X1, . . . ,Xn))

of formal Laurent series. By structural induction, we see that the
field extension

Q(X1, . . . ,Xn) ⊆ K

is algebraic.

The minimal polynomial of a guarded regular functor, together with
a bounded prefix of its list of coefficients, yields a finitary
description of its semantics.
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The Set Model

Decidability of isomorphism of purely unguarded regular functors is
dealt with by Parikh’s theorem (1961).

However, we not yet know how to combine these results. A
complication is provided by the fact that the diagonal of an
algebraic power series need not be algebraic.

(However, we note that the interesting examples of generic
datatypes tend to be guarded.)
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The Term Model: An Outline

Main part of our contribution: internalization of the guardedness
argument in the equational theory of the initial model.

Warning: initial algebras in the term model cannot be constructed
as colimits of chains. In particular, we do not have any way to
properly induct over natural numbers. Uniqueness of the recursor
provides for a very weak substitute of induction over identities.

This provides the capital complication.
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The Term Model: An Outline

The main ingredients are:
I utilizing internal booleans for internal propositional logic,
I an internal version of induction over internal propositions,
I a version of traversability generalized to multiple argument

functors, together with a derivation of traversability of regular
functors in arbitrary bicccs — the abstract concept of
traversability keeps the development from getting overly
syntactic,

I internal (generalized structural) equality predicates defined
using traversability,

I internal representations of algebraic structures such as rings
and fields, polynomials and power series,



The Term Model: An Outline

(cont.)
I internal enumerative listings of degree–sorted values of

guarded regular types to serve as lookup tables for indexing
functions, with the listings again utilizing traversals,

I polymorphic injection and extraction of data of regular
functors akin to the concept of shapely functors, but in a
weaker setting (our category is not extensive).



Conclusion

Core results:
I Syntactic isomorphism of guarded regular functors is decidable.
I The set model is complete for isomorphism of guarded regular

functors

Further questions:
I What about mixed guarded–unguarded types?
I Do we have a similar result for coinductive types?


