Type-checking Linear
Dependent Types

Arthur Azevedo de Amorim 12 Marco Gaboardi® Emilio Jests Gallego Arias
JustinHsu 1

1University of Pennsylvania
2INRIA Paris-Rocquencourt

SUniversity of Dundee

yores
.bav
O

w
N7 "r&.

Anonymization

[Movie Ratings}

>= Internet |

»
KART
REPERTA

1

0!
DEN
VBIQS

How to allow database
gueries and retain privacy
guarantees?

Differential Privacy

e Rigorous bound on “privacy loss” [Dwork, 2006]

e Informally: adding one’s data doesn’t change query results
by much

e Many available algorithms

o Statistical analyses, combinatorial optimizations, machine
learning, ...

Ensuring Differential Privacy

Random Noise

— Differentially Private
(Determlnlstlc Query]_)[Probabilistic Query]

Ensuring Differential Privacy

Random Noise « k

k-sensitive Differentially Private
Deterministic Query Probabilistic Query

Ensuring Differential Privacy

Bound on result
variation

k-sensitive Differentially Private
Deterministic Query Probabilistic Query

Random Noise « k

Ensuring Differential Privacy

Bound on result
variation

k-sensitive Differentially Private
Deterministic Query Probabilistic Query

Requires tedious proofs

Random Noise « k

Types to the Rescue

DFuzz [Reed&Pierce10,Gaboardi13] is a type system for
function sensitivity (hence, differential privacy)

Capable of expressing many differentially private algorithms
Metatheory ensures differential privacy

Type-checking algorithm: proof automation

Challenge: Checking and
Inference

The DFuzz type system combines interesting features:

e Linearindexed types
e Dependent types

e Subtyping

Their interplay makes it difficult to reuse existing techniques
directly

Our Contributions

e Atype-checking and type-inference algorithm for a system
combining linear and dependent types in the presence of
subtyping

e Showing how ideas from the type-checking literature for
those domains can be adapted to a type system built around
a special-purpose index language

Outline

e DFuzz and function sensitivity

e Type checking and inference for DFuzz

DFuzz and Function
Sensitivity

11

Function Sensitivity

Bound output variation based on input variation

f is k-sensitive: d(f(x),f(y)) < k- d(x,y)

11

Function Sensitivity

Bound output variation based on input variation

Distance functions

Function Sensitivity

f

@ D

12

DFuzz in a Nutshell

e I 0 —o 7: k-sensitive function (= linear)

12

DFuzz in a Nutshell

o lyo —o ?ensitive function (= linear)

Multivariate polynomial

12

DFuzz in a Nutshell

e I 0 —o 7: k-sensitive function (= linear)

e list, o: list of length n (mechanisms that depend on input
size)

12

DFuzz in a Nutshell

e I 0 —o 7: k-sensitive function (= linear)

e list, o: list of length n (mechanisms that depend on input
size)

e o C 7:sensitivity weakening (e.g. (10 — 7) C (lp0 — 7))

13

A Basic Example

Consider the standard map function

function map f 1
case 1 of

X 1’ f x map f U’

How to bound “distance” between results of two calls?

14

Analyzing Example

d(map(f,X), map(g, y))

14

Analyzing Example

d(ma?), ma))

k-sensitive

14

Analyzing Example

d(map(wp(

length n

14

Analyzing Example

Distance for lists

14

Analyzing Example

d(map(f,X), map(g, y))

= >_d(f(x).8(y) /Triangleinequality
i—1
@[d(f(xi)ag(xi)) + d(g(Xi),g(YD

Analyzing Example

d(map(f,X), map(g, y))

= Zd(f(xi)yg()/i))
Max difference =1

between fandg D ld(f(xi), 8(xi)) + d(8(xi). 8(vi))]
i—1

14

14

Analyzing Example

d(map(f,X), map(g, y))

=Y _d(f(x).8(vi))
i=1

Definition of

< S [d(F(x), 80x)) + d(3(x), g(yFFTSTEVIEY
i=1

< 3.8 T b i

14

Analyzing Example

d(map(f,X), map(g, y))

= 2 () 3()
< Z[d (x). 806)) + d(80x).8(y1))]

< Z[d(f, g) + k- d(xi, yi)]

i=1

15

Typing Example in DFuzz

map : (ko —o 1) —o W list, o —o list, T

15

Typing Example in DFuzz

map (1n(o — 7) @ o —o list, T

Argument sensitivities

16

Some Rules

Mx:yotke:r

(=1

M= MX:oe:lgog—oT

16

Some Rules

Keep track of sensitivity

rﬁ%m:f (=)

M- ACxse: o —r

16

Some Rules

Mx:yotke:r

M= A kO‘G—OT

Propagate sensitivity to type

16

Some Rules

M-eq:lgo—T Altey:o

— E
r+k-A 1€2:T ()

Context split, combine
sensitivities

16

Some Rules

eq:lgo—T Altey:o

— E
Fr€k-A e1€er: T ()

Composition: multiply
sensitivities

16

Some Rules

At e:list, o
[en:T
r,h :k U,t:k ”Stio'l_econs T

N+k-Atbcaseeof [| —epj|h:t— econs:T

(list E)

16

Some Rules

Assumingn =0

A+ e: list,
([€nil
r, h :k U,t :k ”St, econs T

(list E)
N+k-Atbcaseeof [| —epj|h:t— econs:T

16

Some Rules

Assumingn =i+ 1
At e:list, o
[en:T
r,h :k U,t :k ”St, g l_ econs . T

list E
F+k-AI—caseeof[]—>e,,,—,\h::t\—/>econs:7 ()

16

Some Rules

At e:list, o
[en:T
r,h :k U,t:k ”Stio'l_econs T

(list E)
F€k-ANcaseeof [| = epj|h::t— econs: T

Track sensitivity on list

Type Checking and
Inference

18

Plan

DFuzz Program

18

Plan

DFuzz Program

Inference

18

Constraints

Plan

DFuzz Program

Inference

18

Plan

DFuzz Program

Inference

Constraints o

Polynomial inequalities
from subtyping

18

Plan

DFuzz Program

Inference

Constraints —{Solver

18

Plan

DFuzz Program

Inference

Constraints —{Solver

18

Plan

DFuzz Program

Inference

Constraints —{Solver

18

Plan

DFuzz Program

Inference

Constraints —{Solver o

Provided by annotation

18

Plan

DFuzz Program

Inference

Constraints —> o

19

Important Points

o Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

19

Important Points

e Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

..e1...€62...

Important Points

e Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

e1:01 €02

..e1...€62...

19

19

Important Points

e Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

19

Important Points

o Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

e Restrict subtyping to essential places (e.g. application)

Important Points

o Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

e Restrict subtyping to essential places (e.g. application)

e Assume sensitivities on higher-order types are given

19

Important Points

o Context splitting imposes a bottom-up strategy: start with
leaves, combine sensitivities progressively

e Restrict subtyping to essential places (e.g. application)

e Assume sensitivities on higher-order types are given
Eg! (lka — a) — «

19

20

Problems

e Language not rich enough to express minimal sensitivities

e E.g. point-wise maximum of two polynomials is not a
polynomial

e Solution: enrich sensitivity language with new operators

20

Problems

e Language not rich enough to express minimal sensitivities

e E.g. point-wise maximum of two polynomials is not a

polynomial
¢rith new operators

e Solution: enrich sensitivity language

cf. literature on subtyping

20

Problems

e Language not rich enough to express minimal sensitivities

e E.g. point-wise maximum of two polynomials is not a
polynomial

e Solution: enrich sensitivity language with new operators

e Type checking is undecidable

e Canencode equality of integer polynomials (Hilbert’s tenth
problem)

o Completeness relative to a decider of sensitivity inequalities

21

Syntax-Directed Rules

Equivalent to previous ones, but directly translatable to
algorithm

Input Term, argument type annotations

Output Minimal sensitivities, minimal type

21

Syntax-Directed Rules

[Feq:lko—T AFGQZJ/
O'/EO'

_ (—E)
Fr+k-Akejey: 7

21

Syntax-Directed Rules

Not necessarily equal
Mey: [At ezg

Fr+k-Akejey: 7

21

Syntax-Directed Rules

Subtype check
[Feq:lko—T AFGQZJ/
o’ Co
(— E)

Ttk tere:r

Syntax-Directed Rules

At e:list, o
[+ eni = Thil
[h ot listi o econs : Teons
T = case(n, Ty, i, Tcons)

list E
F+k-Atcaseeof [| —epj|h:t— ecns:T ()

21

21

Syntax-Directed Rules

At e:list, o
[= enif © Thil
[hy ot listi o econs : Teons
= case(N, Tpil, i, Tcons

F+k-Ai—caseeor‘ﬂ‘(Tr‘n” Nt — econs: T

Sensitivity-level case lifted to
types

(list E)

22

Solver Integration

e Need to convert constraints so that standard solvers
understand them

¢ Avoid alternating quantifiers

22

Solver Integration

k > case(n, ko, i, ks)

|

(n=0=k>ko)A(¥in=i+1=k>k)

Wrapping Up

24

Conclusion

o Type-checking system with linear and dependent types

e Standard ideas adapted to exploit application domain and
index structure
e Recover minimal sensitivities by extending index language

e Assimple as possible, no need for much expressive power (cf
[DalLago&Petit13])

25

Implementation

Available at
http://cis.upenn.edu/~emilioga/dFuzz.tar.gz

Capable of checking most of the original DFuzz examples

26

Future Directions

o Let-generalization for sensitivities (remove higher-order
annotations)

e |dentify decidable fragment of DFuzz

27

Questions?

Some Metric Spaces

dr(x,y) = [x — vyl
do—-(f,g) = supd-(f(x),8(x))

Xeo
diaeo(l1. 1) = 00 if length(l1) # length(l)
Tt 2T S d (4], ofi]) otherwise

dset o (51,52) = |51\ S2US2 \ 51|

d
dp(o) (1, v) = / log (;:) du

28

29

More Typing Rules

29

More Typing Rules

Mx:xote: .
7 7 (Fix)

o-Tkfixx:o0e:o

29

More Typing Rules

30

Metric Preservation

Suppose

Fe:lyo—orT
Fvi:o
Fvy:o

evy =%V}

There exists v/, such thate v, —* v/, and

d-(vi,Vv5) < k-dg(ve,v2)

	DFuzz and Function Sensitivity
	Type Checking and Inference
	Wrapping Up

