
A Kleene realizability semantics for the minimalist
foundation

S.Maschio (joint work with M.E.Maietti)

Department of Mathematics
University of Padua

TYPES 2014
Paris, May 12-15

A foundation for constructive mathematics

abstract mathematics

Constructive mathematics = bridge

6

computational mathematics
?

Constructive mathematics=implicit computational mathematics!

A foundation for constructive mathematics

abstract mathematics

Constructive mathematics = bridge

6

computational mathematics
?

Constructive mathematics=implicit computational mathematics!

Many foundations in (constructive) mathematics...

classical constructive
ONE standard NO standard

impredicative Zermelo-Fraenkel set theory

(
internal theory of topoi

Coquand’s Calculus of Constructions

predicative Feferman’s explicit maths

8><>:
Aczel’s CZF

Martin-Löf’s type theory

Feferman’s constructive expl. maths

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)

Many foundations in (constructive) mathematics...

classical constructive
ONE standard NO standard

impredicative Zermelo-Fraenkel set theory

(
internal theory of topoi

Coquand’s Calculus of Constructions

predicative Feferman’s explicit maths

8><>:
Aczel’s CZF

Martin-Löf’s type theory

Feferman’s constructive expl. maths

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)

Many foundations in (constructive) mathematics...

classical constructive
ONE standard NO standard

impredicative Zermelo-Fraenkel set theory

(
internal theory of topoi

Coquand’s Calculus of Constructions

predicative Feferman’s explicit maths

8><>:
Aczel’s CZF

Martin-Löf’s type theory

Feferman’s constructive expl. maths

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)

Many foundations in (constructive) mathematics...

classical constructive
ONE standard NO standard

impredicative Zermelo-Fraenkel set theory

(
internal theory of topoi

Coquand’s Calculus of Constructions

predicative Feferman’s explicit maths

8><>:
Aczel’s CZF

Martin-Löf’s type theory

Feferman’s constructive expl. maths

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory
+ a primitive notion of propositions

- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory

+ a primitive notion of propositions

- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory
+ a primitive notion of propositions

- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory
+ a primitive notion of propositions

- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory
+ a primitive notion of propositions

- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N,

all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions

and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets,

all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions,

the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props ,

A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

The intensional level has four sorts of types:

- set: basic N0,N1,N, all small propositions and constructors Π, Σ, + and list;

- coll: all sets, all propositions, the type of (codes for) small propositions
props , A→ props with A set and constructor Σ;

- prop: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- props is prop with only set bounded quantifiers and Ids relative to sets.

According to Sambin, A minimalist foundation at work (2011):

A foundation of mathematics is a choice of what is considered relevant.

Some relevant principles
[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

(∀x : A)(∃y : B)R(x , y)→ (∃f : A→ B)(∀x : A)R(x ,App(f , x))

Every A-total relation admits a choice operation

Some relevant principles
[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

(∀x : A)(∃y : B)R(x , y)→ (∃f : A→ B)(∀x : A)R(x ,App(f , x))

Every A-total relation admits a choice operation

Some relevant principles
[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

(∀x : A)(∃y : B)R(x , y)→ (∃f : A→ B)(∀x : A)R(x ,App(f , x))

Every A-total relation admits a choice operation

Some relevant principles
[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

(∀x : A)(∃y : B)R(x , y)→ (∃f : A→ B)(∀x : A)R(x ,App(f , x))

Every A-total relation admits a choice operation

Some relevant principles
[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

(∀x : A)(∃y : B)R(x , y)→ (∃f : A→ B)(∀x : A)R(x ,App(f , x))

Every A-total relation admits a choice operation

CT (formal Church Thesis):

(∀f : N → N)(∃e : N)(∀x : N)App(f , x) =N {e}(x)

Every function between natural numbers is recursive.

CT (formal Church Thesis):

(∀f : N → N)(∃e : N)(∀x : N)App(f , x) =N {e}(x)

Every function between natural numbers is recursive.

CT (formal Church Thesis):

(∀f : N → N)(∃e : N)(∀x : N)App(f , x) =N {e}(x)

Every function between natural numbers is recursive.

CT (formal Church Thesis):

(∀f : N → N)(∃e : N)(∀x : N)App(f , x) =N {e}(x)

Every function between natural numbers is recursive.

ECT (Extended Church Thesis):

(∀x : N)(∃y : N)R(x , y)→ (∃e : N)(∀x : N)R(x , {e}(x))

It is equivalent to ACN,N + CT

ECT (Extended Church Thesis):

(∀x : N)(∃y : N)R(x , y)→ (∃e : N)(∀x : N)R(x , {e}(x))

It is equivalent to ACN,N + CT

ECT (Extended Church Thesis):

(∀x : N)(∃y : N)R(x , y)→ (∃e : N)(∀x : N)R(x , {e}(x))

It is equivalent to ACN,N + CT

EXT (Extensionality of functions):

(∀x : A)Id(B, b, c)→ Id((Πx : A)B, (λx)b, (λx)c)

Equal terms in context give rise to equal functions

EXT (Extensionality of functions):

(∀x : A)Id(B, b, c)→ Id((Πx : A)B, (λx)b, (λx)c)

Equal terms in context give rise to equal functions

EXT (Extensionality of functions):

(∀x : A)Id(B, b, c)→ Id((Πx : A)B, (λx)b, (λx)c)

Equal terms in context give rise to equal functions

However it is well known that:

AC + CT + EXT ` ⊥

This is a reason for having 2 levels in the minimalist foundation!

1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)

However it is well known that:

AC + CT + EXT ` ⊥

This is a reason for having 2 levels in the minimalist foundation!

1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)

However it is well known that:

AC + CT + EXT ` ⊥

This is a reason for having 2 levels in the minimalist foundation!

1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)

However it is well known that:

AC + CT + EXT ` ⊥

This is a reason for having 2 levels in the minimalist foundation!

1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)

However it is well known that:

AC + CT + EXT ` ⊥

This is a reason for having 2 levels in the minimalist foundation!

1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)

The Kleene realizability model for mTT.

Why a Kleene realizability model for the Minimalist Foundation?

To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].

The Kleene realizability model for mTT.

Why a Kleene realizability model for the Minimalist Foundation?
To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].

The Kleene realizability model for mTT.

Why a Kleene realizability model for the Minimalist Foundation?
To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].

The Kleene realizability model for mTT.

Why a Kleene realizability model for the Minimalist Foundation?
To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].

The Kleene realizability model for mTT.

Why a Kleene realizability model for the Minimalist Foundation?
To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].

Kleene realizability is

- the main concrete instance of BHK;

- based on the double identity of natural numbers: numbers and codes for
recursive functions;

- natural numbers are used as witnesses of the provability of formulas (n φ).

Kleene realizability is

- the main concrete instance of BHK;

- based on the double identity of natural numbers: numbers and codes for
recursive functions;

- natural numbers are used as witnesses of the provability of formulas (n φ).

Kleene realizability is

- the main concrete instance of BHK;

- based on the double identity of natural numbers: numbers and codes for
recursive functions;

- natural numbers are used as witnesses of the provability of formulas (n φ).

Kleene realizability is

- the main concrete instance of BHK;

- based on the double identity of natural numbers: numbers and codes for
recursive functions;

- natural numbers are used as witnesses of the provability of formulas (n φ).

Kleene realizability is

- the main concrete instance of BHK;

- based on the double identity of natural numbers: numbers and codes for
recursive functions;

- natural numbers are used as witnesses of the provability of formulas (n φ).

Our interpretation
mTT→ ˆID1

ˆID1 predicative theory

PA (Peano Arithmetic)
+

some (not necessarily least)
fix points for positive arithmetical operators.

Our interpretation
mTT→ ˆID1

ˆID1 predicative theory

PA (Peano Arithmetic)
+

some (not necessarily least)
fix points for positive arithmetical operators.

Our interpretation
mTT→ ˆID1

ˆID1 predicative theory

PA (Peano Arithmetic)
+

some (not necessarily least)
fix points for positive arithmetical operators.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.

Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

A type (of any sort)

is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.

Key points:

1 for φ proposition, J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition,

J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition, J (φ) := {x |x φ}

and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition, J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition, J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition, J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Key points:

1 for φ proposition, J (φ) := {x |x φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

Moreover props is interpreted as the class

{x |props(x)}

where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.

REMARK! Classical logic needed for fix points

to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) ∧ ∀x(xεa→ Set(b))

is classically equivalent to the positive formula:

Set(a) ∧ ∀x(x 6 ε a ∨ Set(b))

We need to define 6 ε and 6≡ as primitives!

The model does not validate full AC

a realizer for
(∀x : A)(∃y : B)R(x , y)

does not give a function f : A→ B:
the realizer doesn’t need to preserve the equality in B.

The model does not validate full AC
a realizer for

(∀x : A)(∃y : B)R(x , y)

does not give a function f : A→ B:
the realizer doesn’t need to preserve the equality in B.

The model does not validate full AC
a realizer for

(∀x : A)(∃y : B)R(x , y)

does not give a function f : A→ B:

the realizer doesn’t need to preserve the equality in B.

The model does not validate full AC
a realizer for

(∀x : A)(∃y : B)R(x , y)

does not give a function f : A→ B:
the realizer doesn’t need to preserve the equality in B.

The model validates ACN,A

In N we have numerical equality!
The model validates unique choice AC!.

The model validates ACN,A

In N we have numerical equality!

The model validates unique choice AC!.

The model validates ACN,A

In N we have numerical equality!
The model validates unique choice AC!.

The model validates CT

this comes from proof-irrelevance!
⇒ the model validates ECT = CT + ACN,N .

The model validates CT
this comes from proof-irrelevance!

⇒ the model validates ECT = CT + ACN,N .

The model validates CT
this comes from proof-irrelevance!
⇒ the model validates ECT = CT + ACN,N .

Finally the model validates EXT and the ξ-rule

Equality in Π-types is extensional!

Finally the model validates EXT and the ξ-rule
Equality in Π-types is extensional!

Conclusion

We proved the consistency of the Minimalist Foundation with CT, ACN,N and
extensionality of functions

⇓

the realizability model makes explicit how to extract programs from proofs in the
Minimalist Foundation.

Future work

1 to study the properties of the resulting model of the extensional level.

2 a realizability model for the intensional level validating AC and CT.

Conclusion

We proved the consistency of the Minimalist Foundation with CT, ACN,N and
extensionality of functions

⇓

the realizability model makes explicit how to extract programs from proofs in the
Minimalist Foundation.

Future work

1 to study the properties of the resulting model of the extensional level.

2 a realizability model for the intensional level validating AC and CT.

