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Martin-Löf’s type theory

Feferman’s constructive expl. maths

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)



The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin-Löf Type Theory
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According to Sambin, A minimalist foundation at work (2011):

A foundation of mathematics is a choice of what is considered relevant.
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Every A-total relation admits a choice operation
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1 mTT should be consistent with AC and CT(proofs as programs) [this is
work in progress]

2 in emTT, EXT must be provable (ordinary mathematics is extensional!)
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To prove the consistency of emTT + ECT

1 Extend the Kleene realizability model for HA to mTT,

2 then extend this model to the extensional level following interpretation in
[Maietti’09] with coherent isomorphisms and working in the extensional
completion in [Maietti-Rosolini’13].
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is interpreted as a pair
(J (A),∼=J (A))

where

1 J (A) is a definable class of ˆID1;

2 ∼=J (A) is a definable equivalence relation on J (A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.
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Key points:

1 for φ proposition, J (φ) := {x |x  φ} and ∼=J (φ) is total (proof-irrelevance);

2 equality in Π sets is interpreted as extensional equality!

3 for basic sets ∼=J (A) is the numerical equality;
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where props(x) is defined by using fix point formulas:

Set, tεx , t ≡x s, t 6 ε x , t 6≡x s

internalizations of being sets, membership, equality in sets and their negations.
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We proved the consistency of the Minimalist Foundation with CT, ACN,N and
extensionality of functions

⇓

the realizability model makes explicit how to extract programs from proofs in the
Minimalist Foundation.

Future work

1 to study the properties of the resulting model of the extensional level.

2 a realizability model for the intensional level validating AC and CT.
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