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Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)
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The formal system of the Minimalist Foundation (Maietti (2009)):
- 2-level theory based on versions of Martin-Lof Type Theory
+ a primitive notion of propositions
- an intensional level (mTT): computational contents of proofs

- an extensional level (emTT): where to develop ordinary mathematics.
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intensional level has four sorts of types:
set: basic Ng, N1, N, all small propositions and constructors I1, X, 4+ and list;

coll: all sets, all propositions, the type of (codes for) small propositions
props, A — prop, with A set and constructor ¥;

prop: | and closed under connectives A, V, —, collection bounded
quantifiers and Id in collections.

prop, is prop with only set bounded quantifiers and Ids relative to sets.



According to Sambin, A minimalist foundation at work (2011):

A foundation of mathematics is a choice of what is considered relevant.
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ECT (Extended Church Thesis):

(Vx: N)3y : N)R(x,y) — (Fe : N)(Vx : N)R(x, {e}(x))

It is equivalent to ACy y + CT
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(Vx : A)Id(B, b, c) — Id((Mx : A)B, (Ax)b, (Ax)c)

Equal terms in context give rise to equal functions
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Our interpretation

1D, predicative theory

PA (Peano Arithmetic)
+
some (not necessarily least)
fix points for positive arithmetical operators.
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A type (of any sort)
is interpreted as a pair
(T(A), =7(4))
where
Q@ J(A) is a definable class of ID;:
@ = (4 is a definable equivalence relation on J(A);

according to Kleene Realizability.
Terms are interpreted as (codes for) recursive functions with domain given by the
interpretation of the context.
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REMARK! Classical logic needed for fix points
to represent coding for family of small sets positively!

Set(a) A Vx(xea — Set(b))
is classically equivalent to the positive formula:
Set(a) A Vx(x £ aV Set(b))

We need to define ¢ and # as primitives!
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The model does not validate full AC
a realizer for
(Vx : A)(3y : B)R(x,y)

does not give a function f : A — B:
the realizer doesn’t need to preserve the equality in B.
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In N we have numerical equality!
The model validates unique choice AC,.
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this comes from proof-irrelevance!
= the model validates ECT = CT + ACy n.
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Equality in l1-types is extensional!
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extensionality of functions

4

the realizability model makes explicit how to extract programs from proofs in the
Minimalist Foundation.

Future work

@ to study the properties of the resulting model of the extensional level.
@ a realizability model for the intensional level validating AC and CT.



