# A Kleene realizability semantics for the minimalist foundation

S.Maschio (joint work with M.E.Maietti)



Università degli Studi di Padova

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Department of Mathematics University of Padua

> *TYPES 2014* Paris, May 12-15

A foundation for constructive mathematics



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A foundation for constructive mathematics



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constructive mathematics=implicit computational mathematics!

| classical    | constructive |
|--------------|--------------|
| ONE standard | NO standard  |

| classical                  |                 | constructive                                                    |
|----------------------------|-----------------|-----------------------------------------------------------------|
| ONE standard               | b               | NO standard                                                     |
| impredicative Zermelo-Frae | nkel set theory | internal theory of topoi<br>Coquand's Calculus of Constructions |

|               | classical                   | constructive                                                                   |
|---------------|-----------------------------|--------------------------------------------------------------------------------|
|               | ONE standard                | NO standard                                                                    |
| impredicative | Zermelo-Fraenkel set theory | { internal theory of topoi<br>{ Coquand's Calculus of Constructions            |
| predicative   | Feferman's explicit maths   | Aczel's CZF<br>Martin-Löf's type theory<br>Feferman's constructive expl. maths |

|               | classical                   | constructive                                                                   |
|---------------|-----------------------------|--------------------------------------------------------------------------------|
|               | ONE standard                | NO standard                                                                    |
| impredicative | Zermelo-Fraenkel set theory | { internal theory of topoi<br>Coquand's Calculus of Constructions              |
| predicative   | Feferman's explicit maths   | Aczel's CZF<br>Martin-Löf's type theory<br>Feferman's constructive expl. maths |

Necessity of a common core: the minimalist foundation (Maietti, Sambin 2005)

- 2-level theory based on versions of Martin-Löf Type Theory

- 2-level theory based on versions of Martin-Löf Type Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $+\ {\rm a}$  primitive notion of propositions

- 2-level theory based on versions of Martin-Löf Type Theory
  - $+\ {\rm a}\ {\rm primitive}\ {\rm notion}\ {\rm of}\ {\rm propositions}$
- an intensional level (mTT): computational contents of proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2-level theory based on versions of Martin-Löf Type Theory + a primitive notion of propositions
- an intensional level (mTT): computational contents of proofs
- an extensional level (emTT): where to develop ordinary mathematics.

- set: basic  $N_0, N_1, N_1$ 

- set: basic  $N_0, N_1, N$ , all small propositions

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi$ ,  $\Sigma$ , + and list;

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi$ ,  $\Sigma$ , + and list;

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

- coll: all sets,

- set: basic  $\textbf{N}_0, \textbf{N}_1, \textbf{N},$  all small propositions and constructors  $\Pi,$   $\Sigma,$  + and list;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- coll: all sets, all propositions,

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi, \Sigma, +$  and list;

- **coll**: all sets, all propositions, the type of (codes for) small propositions prop<sub>s</sub>,

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi, \Sigma, +$  and list;

- **coll**: all sets, all propositions, the type of (codes for) small propositions prop<sub>s</sub>,  $A \rightarrow \text{prop}_s$  with A set and constructor  $\Sigma$ ;

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi$ ,  $\Sigma$ , + and list;

(日) (日) (日) (日) (日) (日) (日) (日)

- **coll**: all sets, all propositions, the type of (codes for) small propositions prop<sub>s</sub>,  $A \rightarrow \text{prop}_s$  with A set and constructor  $\Sigma$ ;
- **prop**:  $\bot$  and closed under connectives  $\land, \lor, \rightarrow$ , collection bounded quantifiers and **Id** in collections.

- set: basic  $N_0, N_1, N$ , all small propositions and constructors  $\Pi$ ,  $\Sigma$ , + and list;
- **coll**: all sets, all propositions, the type of (codes for) small propositions prop<sub>s</sub>,  $A \rightarrow \text{prop}_s$  with A set and constructor  $\Sigma$ ;
- **prop**:  $\bot$  and closed under connectives  $\land, \lor, \rightarrow$ , collection bounded quantifiers and **Id** in collections.
- **prop**<sub>s</sub> is **prop** with only set bounded quantifiers and **Id**s relative to sets.

According to Sambin, A minimalist foundation at work (2011):

A foundation of mathematics is a choice of what is considered relevant.

[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

AC (axiom of choice):

[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

**AC** (axiom of choice):

 $(\forall x : A)(\exists y : B)R(x, y) \rightarrow (\exists f : A \rightarrow B)(\forall x : A)R(x, \operatorname{App}(f, x))$ 

[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

$$(\forall x : A)(\exists y : B)R(x, y) \rightarrow (\exists f : A \rightarrow B)(\forall x : A)R(x, \mathbf{App}(f, x))$$

Every A-total relation admits a choice operation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[M.E.Maietti, G. Sambin, Toward a minimalist foundation for constructive mathematics (2005)]

AC (axiom of choice):

$$(\forall x : A)(\exists y : B)R(x, y) \rightarrow (\exists f : A \rightarrow B)(\forall x : A)R(x, \mathbf{App}(f, x))$$

Every A-total relation admits a choice operation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(\forall f: N \to N)(\exists e: N)(\forall x: N)App(f, x) =_N \{e\}(x)$$

$$(\forall f: N \to N)(\exists e: N)(\forall x: N)App(f, x) =_N \{e\}(x)$$

Every function between natural numbers is recursive.

$$(\forall f: N \to N)(\exists e: N)(\forall x: N)App(f, x) =_N \{e\}(x)$$

Every function between natural numbers is recursive.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

**ECT** (Extended Church Thesis):

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

**ECT** (Extended Church Thesis):

 $(\forall x : N)(\exists y : N)R(x, y) \rightarrow (\exists e : N)(\forall x : N)R(x, \{e\}(x))$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

**ECT** (Extended Church Thesis):

 $(\forall x : N)(\exists y : N)R(x, y) \rightarrow (\exists e : N)(\forall x : N)R(x, \{e\}(x))$ 

It is equivalent to  $AC_{N,N} + CT$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

**EXT** (Extensionality of functions):
**EXT** (Extensionality of functions):

 $(\forall x : A) \mathsf{Id}(B, b, c) \rightarrow \mathsf{Id}((\Pi x : A)B, (\lambda x)b, (\lambda x)c)$ 

**EXT** (Extensionality of functions):

 $(\forall x : A) \mathsf{Id}(B, b, c) \rightarrow \mathsf{Id}((\Pi x : A)B, (\lambda x)b, (\lambda x)c)$ 

Equal terms in context give rise to equal functions

#### $\textbf{AC} + \textbf{CT} + \textbf{EXT} \vdash \bot$

#### $\textbf{AC} + \textbf{CT} + \textbf{EXT} \vdash \bot$

This is a reason for having 2 levels in the minimalist foundation!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

#### $\mathbf{AC} + \mathbf{CT} + \mathbf{EXT} \vdash \bot$

This is a reason for having 2 levels in the minimalist foundation!

 mTT should be consistent with AC and CT(proofs as programs) [this is work in progress]

#### $\mathbf{AC} + \mathbf{CT} + \mathbf{EXT} \vdash \bot$

This is a reason for having 2 levels in the minimalist foundation!

- mTT should be consistent with AC and CT(proofs as programs) [this is work in progress]
- (a) in emTT, EXT must be provable (ordinary mathematics is extensional!)

#### $\mathbf{AC} + \mathbf{CT} + \mathbf{EXT} \vdash \bot$

This is a reason for having 2 levels in the minimalist foundation!

- mTT should be consistent with AC and CT(proofs as programs) [this is work in progress]
- (a) in emTT, EXT must be provable (ordinary mathematics is extensional!)

Why a Kleene realizability model for the Minimalist Foundation?



Why a Kleene realizability model for the Minimalist Foundation? To prove the consistency of emTT + ECT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Why a Kleene realizability model for the Minimalist Foundation? To prove the consistency of emTT + ECT

Sector the Kleene realizability model for HA to mTT,

Why a Kleene realizability model for the Minimalist Foundation? To prove the consistency of emTT + ECT

- Sector the Kleene realizability model for HA to mTT,
- then extend this model to the extensional level following interpretation in [Maietti'09] with coherent isomorphisms and working in the extensional completion in [Maietti-Rosolini'13].

Why a Kleene realizability model for the Minimalist Foundation? To prove the consistency of emTT + ECT

- Sector the Kleene realizability model for HA to mTT,
- then extend this model to the extensional level following interpretation in [Maietti'09] with coherent isomorphisms and working in the extensional completion in [Maietti-Rosolini'13].

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

- the main concrete instance of BHK;

- the main concrete instance of BHK;
- based on the *double identity* of natural numbers: numbers and codes for recursive functions;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- the main concrete instance of BHK;
- based on the *double identity* of natural numbers: numbers and codes for recursive functions;
- natural numbers are used as witnesses of the provability of formulas  $(n \Vdash \phi)$ .

(日) (日) (日) (日) (日) (日) (日) (日)

- the main concrete instance of BHK;
- based on the *double identity* of natural numbers: numbers and codes for recursive functions;
- natural numbers are used as witnesses of the provability of formulas  $(n \Vdash \phi)$ .

(日) (日) (日) (日) (日) (日) (日) (日)

Our interpretation

### $\textbf{mTT} \rightarrow \textbf{I} \hat{\textbf{D}}_1$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Our interpretation

### $\textbf{mTT} \rightarrow \textbf{I} \hat{\textbf{D}}_1$

## $\hat{\text{ID}}_1$ predicative theory

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Our interpretation

 $\textbf{mTT} \rightarrow \textbf{I} \hat{\textbf{D}}_1$ 

### $\hat{\text{ID}}_1$ predicative theory

PA (Peano Arithmetic) + some (not necessarily least) fix points for positive arithmetical operators.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

is interpreted as a pair

$$(\mathcal{J}(A),\cong_{\mathcal{J}(A)})$$

is interpreted as a pair

$$(\mathcal{J}(A),\cong_{\mathcal{J}(A)})$$

where

• 
$$\mathcal{J}(A)$$
 is a definable class of  $\hat{\mathbf{ID}}_1$ ;

is interpreted as a pair

$$(\mathcal{J}(A),\cong_{\mathcal{J}(A)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where

• 
$$\mathcal{J}(A)$$
 is a definable class of  $\hat{ID}_1$ ;

●  $\cong_{\mathcal{J}(A)}$  is a definable equivalence relation on  $\mathcal{J}(A)$ ;

is interpreted as a pair

$$(\mathcal{J}(A),\cong_{\mathcal{J}(A)})$$

where

•  $\mathcal{J}(A)$  is a definable class of  $\hat{ID}_1$ ;

②  $\cong_{\mathcal{J}(A)}$  is a definable equivalence relation on  $\mathcal{J}(A)$ ; according to Kleene Realizability.

is interpreted as a pair

$$(\mathcal{J}(A),\cong_{\mathcal{J}(A)})$$

where

• 
$$\mathcal{J}(A)$$
 is a definable class of  $\hat{\mathbf{ID}}_1$ ;

 $\mathfrak{S} \cong_{\mathcal{J}(A)}$  is a definable equivalence relation on  $\mathcal{J}(A)$ ;

according to Kleene Realizability.

Terms are interpreted as (codes for) recursive functions with domain given by the interpretation of the context.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\ \ \, {\rm or} \ \ \, \phi \ \, {\rm proposition},$ 

• for  $\phi$  proposition,  $\mathcal{J}(\phi) := \{x | x \Vdash \phi\}$ 

• for  $\phi$  proposition,  $\mathcal{J}(\phi) := \{x | x \Vdash \phi\}$  and  $\cong_{\mathcal{J}(\phi)}$  is total (proof-irrelevance);

• for  $\phi$  proposition,  $\mathcal{J}(\phi) := \{x | x \Vdash \phi\}$  and  $\cong_{\mathcal{J}(\phi)}$  is total (proof-irrelevance);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

@ equality in  $\Pi$  sets is interpreted as extensional equality!

• for  $\phi$  proposition,  $\mathcal{J}(\phi) := \{x | x \Vdash \phi\}$  and  $\cong_{\mathcal{J}(\phi)}$  is total (proof-irrelevance);

- **2** equality in  $\Pi$  sets is interpreted as extensional equality!
- for basic sets  $\cong_{\mathcal{J}(A)}$  is the numerical equality;

• for  $\phi$  proposition,  $\mathcal{J}(\phi) := \{x | x \Vdash \phi\}$  and  $\cong_{\mathcal{J}(\phi)}$  is total (proof-irrelevance);

- **2** equality in  $\Pi$  sets is interpreted as extensional equality!
- for basic sets  $\cong_{\mathcal{J}(A)}$  is the numerical equality;

Moreover  $\mathbf{prop}_s$  is interpreted as the class

<□ > < @ > < E > < E > E のQ @

Moreover  $\mathbf{prop}_s$  is interpreted as the class

 $\{x|prop_s(x)\}$ 

Moreover  $\mathbf{prop}_s$  is interpreted as the class

 $\{x|prop_s(x)\}$ 

where  $prop_s(x)$  is defined by using fix point formulas:
Moreover  $\mathbf{prop}_s$  is interpreted as the class

 $\{x|prop_s(x)\}$ 

where  $prop_s(x)$  is defined by using fix point formulas:

**Set**,  $t \in x$ ,  $t \equiv_x s$ ,  $t \notin x$ ,  $t \not\equiv_x s$ 

Moreover **prop**<sub>s</sub> is interpreted as the class

 $\{x | prop_s(x)\}$ 

where  $prop_s(x)$  is defined by using fix point formulas:

**Set**,  $t \in x$ ,  $t \equiv_x s$ ,  $t \notin x$ ,  $t \not\equiv_x s$ 

internalizations of being sets, membership, equality in sets and their negations.

Moreover **prop**<sub>s</sub> is interpreted as the class

 $\{x | prop_s(x)\}$ 

where  $prop_s(x)$  is defined by using fix point formulas:

**Set**,  $t \in x$ ,  $t \equiv_x s$ ,  $t \notin x$ ,  $t \not\equiv_x s$ 

internalizations of being sets, membership, equality in sets and their negations.

**REMARK**! Classical logic needed for fix points

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの</li>

(ロト・日本)・(日本・日本)の(の)

 $\mathsf{Set}(a) \land \forall x(x \varepsilon a \to \mathsf{Set}(b))$ 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\mathsf{Set}(a) \land \forall x(x \varepsilon a \to \mathsf{Set}(b))$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is classically equivalent to the positive formula:

 $\mathbf{Set}(a) \land \forall x (x \varepsilon a \rightarrow \mathbf{Set}(b))$ 

is classically equivalent to the positive formula:

 $\mathbf{Set}(a) \land \forall x (x \notin a \lor \mathbf{Set}(b))$ 

 $\mathbf{Set}(a) \land \forall x (x \varepsilon a \rightarrow \mathbf{Set}(b))$ 

is classically equivalent to the positive formula:

 $\mathbf{Set}(a) \land \forall x (x \notin a \lor \mathbf{Set}(b))$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We need to define  $\notin$  and  $\notin$  as primitives!

The model does not validate  $\ensuremath{\textbf{full}}\xspace \ensuremath{\textbf{AC}}\xspace$ 

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The model does not validate **full AC** a realizer for

## $(\forall x : A)(\exists y : B)R(x, y)$

The model does not validate **full AC** a realizer for

$$(\forall x : A)(\exists y : B)R(x, y)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

does not give a function  $f : A \rightarrow B$ :

The model does not validate **full AC** a realizer for

$$(\forall x : A)(\exists y : B)R(x, y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

does not give a function  $f : A \rightarrow B$ : the realizer doesn't need to preserve the equality in B. The model validates  $AC_{N,A}$ 

<□ > < @ > < E > < E > E のQ @

The model validates  $AC_{N,A}$ In *N* we have numerical equality!

The model validates  $AC_{N,A}$ In *N* we have numerical equality! The model validates unique choice  $AC_1$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The model validates  $\ensuremath{\text{CT}}$ 

The model validates **CT** this comes from proof-irrelevance!

The model validates **CT** this comes from proof-irrelevance!  $\Rightarrow$  the model validates **ECT** = **CT** + **AC**<sub>*N*,*N*</sub>.

Finally the model validates EXT and the  $\xi\text{-rule}$ 

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの</li>

Finally the model validates **EXT** and the  $\xi$ -rule Equality in  $\Pi$ -types is extensional!

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの</li>

## Conclusion

We proved the consistency of the Minimalist Foundation with  $\textbf{CT},\, \textbf{AC}_{N,N}$  and extensionality of functions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Conclusion

We proved the consistency of the Minimalist Foundation with CT,  $AC_{N,N}$  and extensionality of functions

the realizability model makes explicit how to extract programs from proofs in the Minimalist Foundation.

∜

## Future work

• to study the properties of the resulting model of the extensional level.

**2** a realizability model for the intensional level validating **AC** and **CT**.