Liquid Types Revisited J

Mario Pereira Sandra Alves Mario Florido

University of Oporto - Department of Computer Science & LIACC

May 18, 2014

1/22

@ Motivation

© Refinement Types

© Liquid Types

@ A new refinement type system

© Future steps

2/22

Motivation

Consider the following OCaml examples:

let last_cell = function
| [V —>v
| el —> last_cell |

let div xy =x/y;;
val div : int — int — int = <fun>

First one -~ compile-time error if y = 0.

The other one ~ if, provably, 1ast_cell is never applied to an empty list
no warning about incomplete pattern matching.

can be used to overcome such situations.

@ Motivation

© Refinement Types

© Liquid Types

@ A new refinement type system

© Future steps

4/22

Refinement types

Refinement types: complex program's invariants, by augmenting type sys-

tems with

{v : B | ¢} stands for the set of terms M of basic type B such that the formula
M /v]d holds.

{v:int|v > 0 /A v <5} represents the integers values from 0 to 5.

Refinement types system

Let P-Var
r''M:t Mx:t-N:o N-o Nx)=y:o0—71
l'-letx=MinN:o Fr-x:(y:0—1
Fun App
Ngx:oFM:T ko ''EM:(x:t— 0) I'-N:7t
I FAxM:(x:0—1) ' MN: [N/x]o
B-Var
Mx) = {v:B|) Cst
F'Ex:{v:B|lv=x} I'c:ty(c)
Sub
''EM:t lt<:o o
'EM:o

Figure 1: Type system for refinement types

6/22

Refinement types: subtyping

<:-Poly
<:-Var No<:t
Nk-o <o Voo < Vot
<:-Fun <:-Base
'k oy <oy Mx:o 11 <12 v:BFEd =1
lx:01 2T <ix:02 212 F-{v:B|o}<:{v:B|Y}

Figure 2: Subtyping relation

Rule [<:-Base] generates

Arbitrary boolean terms for refinement predicates

@ Motivation

© Refinement Types

© Liquid Types

@ A new refinement type system

© Future steps

8/22

Liquid Types

(Logically Qualified Data Types) ~~ Damas-Milner inference
predicate abstraction:

O refinements are conjunctions of logical qualifiers;

@ decidable notion of subtyping.
Extension to the Damas-Milner type system.

Refinement type ~ refinement of the corresponding ML type.

9/22

Liquid Types: example

Let Q={v>0,x<v,y<v}

o Q - set of logical qualifiers, over , the
v and the *.

Consider the following piece of code:
let maxxy = if x >y then x else y

Liquid Types is able to infer

max @ X:int = y:int = {v:iint | (x < V) A (y <v)}

10/22

@ Motivation

© Refinement Types

© Liquid Types

@ A new refinement type system

© Future steps

11/22

Liquid Intersection Types

Inspiration from the work of Freeman and Pfenning, 1991 ~ refinement type
system - intersection types.

We restrict our intersection to : differences at
refinement expressions level, only.

We use the restriction of Liquid Types: refinement expressions are
Q subtyping.

N

Type system
The type language:

= al{v:Bld}Ix:TT oL ITTiNnT,
T|Va.o
= B |CK|’T] — T2

a A a:—
Il

= o0ouT

To ensure our intersections are only of types of the same form:

::-Fun

::-Var T] T Tz s T/ ::-Ref

o TT-oThuot—o1 {(v:B|¢}:B
HE

~ =N

ouT Tot(Vi.1<i<n)
Voo T THTNn...NnTyuT

13/22

Type system

Our system presents the traditional rules for refinement type checking, plus
the following rule:

Intersect
r-"M:o Fr"M:o’ ono’ =t
r-"M:ono’

Decidable notion of subtyping:

—<-Base

Valid([F]A ([di] Ao Aldn]) = ([o1] A A b))
FE VBl ditn...n{v:Bldn} < {v:Bld1}n...n{v:B|d/}

[-] ~ embedding of environments and formulas to a decidable logic of
, and

14 /22

Example with intersections

With our system, we are able to derive very precise types, I' = x : {v > 0}

Dy :
I'x) ={v >0} Valid(x > 0Av=x=T)
ar- B
regx:{v=x TFO (v=x} <int o
Const A " A " Sub
FFQf:(yzlnt—){v:fy}) I'Fg x:int

FF& —x :{v=—x}

Dq :
Valid(x > 0Av=—x=v<0)

D FTF {v=-x}<{v<0}
TG —x:{v <0}
)—BAx.fx:(x:{vzo}H{vgo})

<-Base

Sub

Fun

Naming the derivation for E Ax. —x : (x : {v < 0} — {v > 0}) as D, we

have:
Dy Dy

}—8?\x.—x:(x:{v20}—){v§0})ﬂ(x:{v§0}—>{v20})

Intersect

15/22

Liquid Intersection Types: inference

Inference for Liquid Intersection Types:

© Damas-Milner type inference;
© constraint generation:

o well-formedness;
e subtyping.

© constraint solving: iterative removal of intersections in types.

16 /22

Type inference

Infer(l x, Q) if W(Shape(T'),x) = B then {v:B|v = x}

else I'(x)

ty(c)

let (x: 07 — 6{)JN...N(x:0pn — 0‘;1) = Fresh(WW/(Shape(I"), Ax.M), Q) in
let O‘i” = Infer(I;x : 0y, M, Q) in

let A = in

Infer(l,c, Q)
Infer(l, Ax.M, Q)

ﬂ{(xzﬁkﬂﬁb\X=UkHU{<eAvr?X:Gk e G‘IJ<G‘/<}
Infer(I; MN, Q) = let (x: 09 "U{)m---ﬁ(X:"'nHgé)zlnfer(r’M’Q) in
let 0 = Infer(, N, Q) in

Infer(llet x = M in N,Q) = in
let 07 = Infer(I, M, Q) in
let 0, = Infer(I';x : 07, N,Q) in
let A=N{c{|T+" o} in
ﬂ{o‘” |o” € A, T;x: 04 hg oy < U”}

Infer(l, [Aa]M, Q) = let 0 = Infer(l, M, Q) in
V.o
Infer(l [T]M, Q) = let v/ = Fresh(T, Q) in

let V.o = Infer(l; M, Q) in
let A=N{t{|IT+" 7'} in
o[A/]

Figure 3: Type inference algorithm

17/22

Inference example

Let Q ={v >0,v <0,y =5}. Inference for the term Ax. — x with I' = {):
@ Algorithm first generates the type:

(x:{v>0—={v>0}
x:{v>0}—{v<0)
v<0p={v>0})
vy <o = {v<o)
H{v>0—={y=5)
v <0t —={y=5)
Hy=5—-{r>0})
Hy=5t—-{v<0}
y=5—={y=5Y

@ With well-formedness constraints (no variable y is in scope):

x xR

A
N
N
N
n
n
n
n

X R R R

®

H{v>0—={v>0}
Hv> 0= {v<0}
v ={v>0}
v <0t = {v<0}

N
N
N

X
X
X
X

© Finally, because of subtyping relations:

(x:{v=0—={v<ohn
(x:{y <0} = {v =0}

18/22

@ Motivation

© Refinement Types

© Liquid Types

@ A new refinement type system

© Future steps

19/22

Where we are

Theorem (Subject reduction)
IFTFY"M:0and M~ N thenT - N: 0.

Theorem (Soundness of inference)
If Infer(TM,Q) =0 thenT - M: 0.

20/22

Where we want to go

of a refinement type system for rank-2 intersection types.

21/22

Thank you for your attention

22/22

	Motivation
	Refinement Types
	Liquid Types
	A new refinement type system
	Future steps

