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In this paper we present an operational semantics for the “call-by-name” probabilistic
λ-calculus, whose main feature is to use only deterministic relations and to have no
constraint on the reduction strategy. The calculus enjoys similar properties to the usual
λ-calculus. In particular we prove it to be confluent, and we prove a standardisation
theorem.

Introduction

Probabilistic λ-calculus Randomness appeared naturally in the world of programming
languages. It is very useful to have some probabilistic primitive, for instance to generate
random data on which to run a computation, or to implement some non deterministic
heuristic. To study the role of this non determinism from a theoretical point of view one
need to enrich the usual models of computation, such as Turing machines or λ-calculus,
with probabilistic behaviours.

In this article we consider the λ-calculus with an additional family of constructors
+p for p ∈ [0, 1] representing binary probabilistic choices. Given any two terms M and
N there is a term M +p N which will behave as M with probability p and as N with
probability 1− p. A problem arises immediately when we consider such constructors: we
have to choose a reduction strategy for the calculus to actually describe a probabilistic
behaviour. Indeed let us consider the term (λb.equiv b b) (T+p F) where p ∈]0, 1[, T and
F are some encoding of the booleans and equiv is a binary function encoding boolean
equivalence. If we directly reduce the sum this term reduces to (λb.equiv b b) T with
probability p and to (λb.equiv b b) F with probability 1 − p, and in both cases this will
reduce to T. But if we decide to perform the β-reduction first, we will be able to reduce
equiv (T +p F) (T +p F) to false. So there exist two probabilistic λ-calculi, the call-by-
name one and the call-by-value one. In the literature those calculi are always studied with
a very constrained reduction strategy, such that there is always at most one available



T. LEVENTIS 2

redex (see for instance (Ehrhard and Danos 2011) and (Ehrhard, Pagani, and Tasson
2011) about the call-by-name semantics, or (Dal Lago and Zorzi 2012) about both call-
by-value and call-by-name). Then from every term there is either a unique β-reduction,
or two reductions of single sum with probabilities p and 1−p, or no reduction at all, and
we can easily build the semantics of a term with probability distributions.

Reductions and equations In the deterministic λ-calculus β-reduction can be turned into
an equality on terms. The reduction can be performed under any context so the reflexive
symmetric transitive closure =β of β-reduction is a congruence, i.e. it is an equivalence
and if M =β N then C[M ] =β C[N ] for any context C. Besides reduction is confluent
so two terms are equivalent if and only if they have a common reduct. More generally
any relation =T on terms is an equational theory if it is a congruence and it respects the
β-rule, i.e. (λx.M) N =T M

[
N/x

]
for any M and N .

None of this works with the usual presentations of the probabilistic λ-calculus. The
reduction is not confluent (as we have M +p N

p−→ M and M +p N
1−p−−→ N , and in

general M and N have no common reduct), it can not be performed under arbitrary
context, and it is not even a pure relation between terms, as it is indexed by probabilities.
Yet it makes sense to think about equational theories for a probabilistic λ-calculus. An
example of this is the model defined by Ehrhard, Pagani and Tasson (Ehrhard, Pagani,
and Tasson 2011). They give a denotational semantics JMK for every probabilistic term
M , and although they restrict their calculus to the head reduction we can observe that
we have JC[M ]K = JC[N ]K whenever JMK = JNK, and J(λx.M) NK = JM

[
N/x

]
K for any

M and N .
The purpose of this article is to give a suitable description of the call-by-name proba-

bilistic λ-calculus from which we can derive a notion of probabilistic equational theory.
In other words we define a rewrite system based on deterministic reductions performed
under arbitrary contexts. We also prove that this reduction is confluent, hence the prob-
abilistic version of β-equivalence is characterised by the existence of a common reduct,
just like the deterministic one. In addition we prove a standardisation theorem, which
is necessary to link the general notion of reduction to the head reduction. Moreover we
show that these properties are preserved when one consider the probabilistic choice mod-
ulo barycentric equivalence (Stone 1949): commutativity, associativity, idempotence and
simplification of the trivial choices +1 and +0.

Related work The presentation of a quantitative λ-calculus with a deterministic and con-
textual rewrite system already exists in the literature. De’Liguoro and Piperno (Liguoro
and Piperno 1995) studied such a system for the non-deterministic λ-calculus, i.e. the
λ-calculus with a simple unlabelled choice constructor + such that M +N behaves as M
or as N , and they proved a standardisation theorem. But their calculus is not confluent
as they still consider a non-deterministic reduction where M + N actually reduces into
eitherM or N . Unlike in the probabilistic λ-calculus, it makes sense to say that the term
(λb.equiv b b) (T +p F) has six possible reductions (two if we reduce the sum first, four
is we duplicate it) and that it reduces non-deterministically either to T or to F.

The work presented in this paper is closer to what exists in the algebraic λ-calculus, i.e.
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the λ-calculus with arbitrary linear combinations instead of just probability distributions.
In particular a confluence result similar to ours has been proven by Alberti (Alberti
2014). Actually his techniques could likely be used to prove a confluence property in the
probabilistic case, and conversely our proofs can be adapted to a more general setting of
terms with labelled sums +l. The main difference in our approaches is that he considers
as algebraic terms some equivalence classes of syntactic terms, whereas we introduce the
same equivalences but as an additional structure. This may be why he could not prove
any standardisation result, which we do by playing on the equivalences we use.

Layout of the paper In Section 1 of the paper we describe the probabilistic λ-terms, and
we sketch a proof of confluence of β-reduction (Proposition 1.2.1) to introduce the tools
and technique we will use for more complex theorems, and in particular the notions of
residuals and parallel reductions.

In Section 2 we detail the reduction →+ associated to sums (Definition 2.1). We show
that every term has a unique normal form for this reduction (Theorem 2.2.3), which we
call its canonical form.

We prove the confluence of the union of β-reduction and reduction of sums in Section 3
(Proposition 3.1.7), which is preserved when we consider the whole equivalence induced
by →+ (Theorem 3.2.2). We also show that the calculus can be described with a notion
of β-reduction between canonical forms (Theorem 3.2.3).

In Section 4 we introduce a weaker reduction for sums corresponding to weak head
reduction, which has a more convenient structure than →+ and which is in particular
orthogonal to β-reduction. We show a relation between this new reduction and →+

(Theorem 4.2.5).
Section 5 is dedicated to the proof of some standardisation theorems. We first prove

a standardisation result for the calculus with weak reduction of sums (Theorem 5.1.9)
using well-known proof techniques based on the orthogonality of the reduction system.
Then we use the correspondence proven in the previous section to get a standardisation
theorem for →+ (Theorem 5.2.3).

In Sections 6 we introduce an additional equivalence on terms. This equivalence ex-
presses the commutativity, the associativity and the idempotence of probabilistic choice,
as well as the triviality of choices with probability 0 or 1. We show that the sums in terms
modulo this equivalence describe precisely probability distributions (Theorem 6.1.6). We
then show that idempotence does play a role in the computations, but the rest of this
equivalence has little influence on the reductions (Proposition 6.2.7).

In Section 7 we further study the role of idempotence, and we achieve new confluence
and standardisation results with our additional equivalence (Theorems 7.1.10 and 7.2.3).

In conclusion in Section 8 we use our contextual operational semantics to justify the
definition of a notion of probabilistic theory, and we define the observational equivalence
of terms as an example.

Notation: If R and S are two relations we note R · S their composition, such that
M R · S N iff there exists P with M R P and P S N .

For any relation R, we use the following notations:
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— R? is its reflexive closure: M R? N iff M R N or M = N ;
— R+ is its transitive closure;
— R∗ is its reflexive transitive closure;
— Rn for n ∈ N is its n-iteration: R0 is the identity relation and Rn+1 = R · Rn;
— for a reduction → we write ← for the anti-reduction: M ← N iff N →M .

1. β-Reduction with Sums

1.1. Probabilistic Terms

We extend the syntax of the λ-calculus with probabilistic sums.

Definition 1.1. The set Λ+ of probabilistic λ-terms is given inductively by:

M,N ∈ Λ+ := x | λx.M |M N |M +p N, p ∈ [0, 1].

Terms in Λ+ are considered modulo α-equivalence, which is induced by λx.M =α λy.N

whenever y is not free in M and N is obtained by substituting all free occurrences of x
in M by y.

Notation: When reading terms, we will always consider sums first: for instance the term
λx.M +p N P is to be read (λx.M) +p (N P ). We also consider abstractions before
applications and we read the application as left associative: typically a head normal form
λx1...xn.y P1 ... Pm is to be read λx1...xn.((x P1) ... Pn).

Definition 1.2. The substitution M
[
P/x

]
of P for x in M is defined by:

— x
[
P/x

]
= P ;

— y
[
P/x

]
= y if y 6= x;

— (λy.M)
[
P/x

]
= λy.

(
M
[
P/x

])
if y 6= x and y is not free in P ;

— (M N)
[
P/x

]
) =

(
M
[
P/x

]) (
N
[
P/x

])
;

— (M +pM
′)
[
P/x

]
) =

(
M
[
P/x

])
+p

(
M ′
[
P/x

])
.

Definition 1.3. We define contexts as terms with exactly one occurrence of a hole [ ]

C := [ ] | λx.C | C N |M C | C +p N |M +p C

and we note C[P ] the substitution of P for [ ] in C with variable capture:

— ([ ])[P ] = P ;
— (λy.C)[P ] = λy.C[P ];
— (C N)[P ] = C[P ] N ;
— (M C)[P ] = M C[P ];
— (C +p N)[P ] = C[P ] +p N ;
— (M +p C)[P ] = M +p C[P ];

If C and C ′ are contexts then we define a context C[C ′] in a similar way.
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1.2. β-Reduction

Our goal is to give a meaningful operational semantics for this syntax using contextual
relations, i.e. relations R such that if M R N then C[M ] R C[N ] for every context
C, exclusively. Such an operational semantics necessarily includes β-reduction under
arbitrary context.

Definition 1.4. The β-reduction →β is:

(λx.M) N →β M
[
N/x

]
extended to arbitrary contexts:

if M →β M
′ then C[M ]→β C[M ′].

Before giving any rule for probabilistic sums, we can check that the presence of sums
does not hinder the standard proof of the confluence of β-reduction. The original proof
of confluence for the deterministic λ-calculus uses labelled redexes to define a notion
of parallel reduction which enjoys the diamond property, hence is confluent, and whose
transitive closure matches the transitive closure of the β-reduction, hence the latter is
also confluent ((Barendregt 1981), Section 11.2). Another technique is to define the same
notion of parallel reduction directly by induction on terms (Takahashi 1995). The latter
allows for more concise definitions and proofs to prove a confluence property. But the
parallel reduction is also useful to prove the standardisation, and its inductive definition
becomes far less convenient when we want to decompose the parallel reduction itself,
especially in our probabilistic setting. So in this paper we will use labelled terms, and
we will further discuss this choice in Subsection 5.1 before proving our standardisation
theorem.

Here we will just sketch the proof for the confluence of β-reduction alone, and we will
detail a similar but slightly more complicated proof involving some reduction rules for
the sums in Section 3.

Subterms and Redexes. Given a term M we call subterm of M a term P in a given
position in M , i.e. a pair (C,P ) such that M = C[P ]. Remark that a subterm of M
is entirely defined by the context C, as for a fixed C there is at most one P such that
C[P ] = M , but it is often more convenient to describe the term P . For instance if we
consider a term of the form M1 +p M2, we sometimes write "the subterm M1" for the
subterm ([ ] +pM2,M1).

A β-redex of M is a subterm of M of the form (C, (λx.P ) Q). If ∆ = (C, (λx.P ) Q) is
a redex of M we write M ∆−→β C

[
P
[
Q/x

]]
the reduction of ∆ in M .

Labelled Terms. We consider terms with labelled β-redexes, which are given by:

M,N ∈ Λ+
l := x | λx.M |M N | M+p N | (λ0x.M) N

We generalise the definitions of variable substitution and context to this labelled setting.
We also define β-reduction:

(λx.M) N →β M
[N/x]
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as well as β0-reduction of labelled redexes:

(λ0x.M) N →β0
M
[N/x]

both extended under arbitrary context.
Given a term M and a set F of β-redexes in M , for each subterm (C,P ) of M we

defined a labelled term (C,P )F , by induction on P :

— (C, x)F = x;
— (C, λx.P )F = λx.P with P = (C[λx.[ ]], P )F ;
— (C,P Q)F = P Q with P = (C[[ ] Q], P )F and Q = (C[P [ ]], Q)F if (C,P Q) /∈ F ;
— (C, (λx.P )Q)F = (λ0x.P)Q with P = (C[(λx.[ ])Q], P )F andQ = (C[(λx.P ) [ ]], Q)F

if (C, (λx.P ) Q) ∈ F ;
— (C,P +p Q)F = P +p Q with P = (C[[ ] +p Q], P )F and Q = (C[P +p [ ]], Q)F .

Then the labelling of M by F is defined as MF = ([ ],M)F . Conversely if M ∈ Λ+
l we

write |M| the term obtained by erasing all the labels inM. In particular we always have
|MF | = M . One can also easily check that given anyM∈ Λ+

l , there is a unique term M

and a unique set F such thatM = MF .

Residual of β-redexes. Given a set F of β-redexes in a term M , every reduction
M

∆−→β N can be lifted to Λ+
l along the labelling of M by F . If ∆ /∈ F then one can

prove there is a unique labelled term N such that MF →β N and |N | = N . If ∆ ∈ F
then let ∆′ be the labelled redex of MF corresponding to ∆, there is a unique N such
that MF

∆′−−→ N and we have |N | = N . In both cases there is a unique set G of β-redexes
in N such that NG = N : this set is called the set of residuals of F for the reduction
M

∆−→β N .
Remark that the residuals are defined for the reduction of a particular redex. For

instance let I = λx.x, the term I (I I) can only β-reduce into I I, but there are two
different β-redexes which make this reduction possible. If we consider for instance the
outermost β-redex ([ ], I (I I)), it may have one residual or none depending on the
reduced redex:

(λ0x.x) ((λx.x) (λx.x))→β (λ0x.x) (λx.x)

(λ0x.x) ((λx.x) (λx.x))→β0
(λx.x) (λx.x)

Parallel Reduction. Reducing a set F of β-redexes in a termM means β0-normalising
MF . For deterministic terms the reduction β0 is known to be weakly confluent and
strongly normalising (Barendregt 1981), and the proof easily generalises to terms with
sums, hence every labelled term has a unique normal form. Besides a normal form for
→β0 is precisely a term without label. So the result of the parallel reduction of F in M
is well defined, and it is the unique term N such that MF →∗β0

N .

Definition 1.5. We write NF0(M,F) for the unique β0-normal form of MF , M
F−→β// N

if N = NF0(M,F), and more generally M −→β// N if there exists F such that M F−→β// N .
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Confluence. The parallel reduction has the diamond property. Indeed if F and F ′
are sets of β-redexes in M and G′ is the set of residuals of F ′ in NF0(M,F) then

NF0(NF0(M,F),G′) = NF0(M,F ∪F ′). This means that if M F−→β// N and M F ′−→β// N
′

then let P = NF0(M,F ∪ F ′), we have N −→β// P and N ′ −→β// P .

M

N N ′

P

F F ′

G′ G

F ∪ F ′

Moreover we have obviously →β ⊂ −→β// and −→β// ⊂ →∗β , so −→∗β// = →∗β . Consequently
the confluence of the β-reduction is equivalent to the confluence of −→β//, which is an
immediate corollary of its diamond property.

Proposition 1.2.1. The β-reduction →β is confluent on Λ+.

2. Probabilistic Choice

2.1. Operational Semantics of Sums

The sumM+pN is meant to describe a probabilistic choice betweenM (with probability
p) and N (with probability 1− p). So its operational semantics is usually given in terms
of probabilistic reductions:

M +p N
p−→M

M +p N
1−p−−→ N

where p−→ is to be understood as a reduction which happens with probability p.
For this semantics to actually describe a probabilistic behaviour we cannot allow re-

ductions under arbitrary contexts and must choose a strategy. A simple example of that
is the term δ (x + 1

2
y) with δ = λx.x x. If we allow reduction under arbitrary context,

we have the following reduction paths:

δ (x+ 1
2
y)


1/2−−→ δ x →β x x
1/2−−→ δ y →β y y

δ (x+ 1
2
y)→β (x+ 1

2
y) (x+ 1

2
y)



1/2−−→ x (x+ 1
2
y)


1/2−−→ x x
1/2−−→ x y

1/2−−→ y (x+ 1
2
y)


1/2−−→ y x
1/2−−→ y y
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Intuitively one could say that if we reduce the sum first we get a first probability distri-
bution over normal forms (x x and y y with probability 1

2 ) and if we β-reduce first we
get a second distribution (x x, x y, y x and y y with probability 1

2 ×
1
2 = 1

4 ). But we
expect each probabilistic term to describe a single probability distribution.

When defining such a probabilistic calculus, one has to choose between call-by-name
and call-by-value strategies. In this article we are interested in the call-by-name variant
of this calculus. In this case the reduction of sums is usually restricted to head contexts
as in (Dal Lago and Zorzi 2012) or (Ehrhard, Pagani, and Tasson 2011):

λx1...xn.(M +p N) P1 ... Pm
p−→ λx1...xn.M P1 ... Pm

λx1...xn.(M +p N) P1 ... Pm
1−p−−→ λx1...xn.N P1 ... Pm

Then how to transpose such reductions into a contextual calculus? The trick is simple
and is used in other quantitative calculi such as the algebraic λ-calculus (Vaux 2009),(Al-
berti 2014), although such a presentation has not been studied before in the probabilistic
case. The key idea is not to let the probabilities leave the realm of terms. The fact
that the term λx1...xn.(M +p N) P1 ... Pm reduces into both λx1...xn.M P1 ... Pm
and λx1...xn.N P1 ... Pm should not be described by two reductions labelled with prob-
abilities. We can express this by a single reduction on terms without any additional
information:

λx1...xn.(M +p N) P1 ... Pm → λx1...xn.M P1 ... Pm +p λx1...xn.N P1 ... Pm.

Then we obtain a calculus which describes the head reduction of sums, but in which it
is perfectly safe to reduce under any context:

C
[
λx1...xn.(M +p N) P1 ... Pm

]
→ C

[
λx1...xn.M P1 ... Pm +p λx1...xn.N P1 ... Pm

]
.

It is actually more convenient to decompose such a reduction in elementary steps.

Definition 2.1. The reduction of sums →+ on Λ+ is given by

λx.(M +p N)→+ λx.M +p λx.N

(M +p N) P →+ M P +p N P

extended to arbitrary contexts.

Definition 2.2. The relation ≡+ is the reflexive symmetric transitive closures of →+.

2.2. Canonical Terms

The reduction→+ does not have an important computational meaning. Its role is to move
the sums out of the terms in order to let the β-reduction do the actual computation. For
instance if we have a term ((λx.M) +p N) P , we need the reduction of sums to write
((λx.M) +p N) P →+ (λx.M) P +p N P , but the main point of this reduction is to
allow the β-reduction (λx.M) P +p N P →β M

[
P/x

]
+p N P . For this reason the

reduction →+ is very simple: it is confluent and strongly normalising, hence every term
has a unique normal form for →+.
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Proposition 2.2.1. The reduction →+ is weakly confluent.

Proof. If M →+ N1 and M →+ N2 we show by induction on M that there is P such
that Ni →∗+ P for i ∈ {1, 2}.
— If (λx.(Q1 +p Q2)) →+ λx.Q1 +p λx.Q2 and (λx.(Q1 +p Q2)) →+ (λx.(Q′1 +p Q

′
2))

with Qi →?
+ Q′i for i ∈ {1, 2} then both terms reduce to λx.Q′1 +p λx.Q

′
2.

— If (Q1 +p Q2) R →+ Q1 R +p Q2 R and (Q1 +p Q2) R →+ (Q′1 +p Q
′
2) R′ with

Qi →?
+ Q′i for i ∈ {1, 2} and R→?

+ R′ then both terms reduce to Q′1 R′ +p Q
′
2 R
′.

— Otherwise M is not a reduced redex and the result is immediate. For instance if
Q R→+ Q1 R1 and Q RQ2 R2 with Q→?

+ Qi and R
∑?

Ri for i ∈ {1, 2} then either
trivially or by induction hypothesis there are Q′ and R′ such that Qi →∗+ Q′ and
Ri →∗+ R′, hence Qi Ri →∗+ Q′ R′.

Proposition 2.2.2. The reduction →+ is strongly normalising.

Proof. To prove the proposition we define a suitable weight on terms which decreases
along the reductions. We define a family of weight functions wd : Λ+ → N for d ∈ N by
induction on terms:

— ∀d ∈ N, wd(x) = 0;
— ∀d ∈ N, wd(λx.M) = wd+1(M);
— ∀d ∈ N, wd(M N) = (wd+1(M) + 1)(w0(N) + 1);
— ∀d ∈ N, wd(M +p N) = wd(M) + wd(N) + d.

Then whenever we have a reduction M →+ N we have wd(M) > wd(N) for all d ∈ N.
This is a consequence of the three following facts.

(1) ∀M,N,∀C,
(
∀d ∈ N, wd(M) > wd(N)

)
⇒ ∀d ∈ N, wd(C[M ]) > wd(C[N ]).

(2) ∀M,N,∀d ∈ N, wd
(
λx.(M +p N)

)
> wd

(
λx.M +p λx.N

)
.

(3) ∀M,N,P, ∀d ∈ N, wd
(
(M +p N) P

)
> wd

(
M P +p N P

)
.

For instance we have w0((x +p y) z) = 1 as we have a sum on the left side of an
application and w0(x y +p y z) = 0; w0(λx.λy.(x +p y)) = 2 as the sum is below two
abstractions, w0(λx.(λy.x+pλy.y)) = 1 and w0(λx.λy.x+pλx.λy.y) = 0; but w0(z (x+p

y)) = 0 as the sum is directly on the right side of an application.

Theorem 2.2.3. Every term has a unique normal form for →+. These normal forms,
called canonical terms, are of the form

M,N := v |M +p N

v := x | λx.v | v M.

We call values the canonical terms which are not sums.

Proof. The reduction →+ is weakly confluent and strongly normalising so it is also
confluent and every term has a unique normal form. Besides it is easy to check that the
canonical terms we described are indeed normal forms for →+. Conversely an induction
on the structure of terms gives that every normal form for →+ is canonical.

— Variables are canonical.
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— If λx.M is normal then M is normal, hence by induction hypothesis M is canonical,
and M is not a sum.

— If M N is normal then M and N are normal, hence by induction hypothesis they are
canonical, and M is not a sum.

— If M +p N is normal then M and N are normal, hence canonical.

Definition 2.3. We write can(M) the canonical form of a termM , i.e. its unique normal
form for →+, and we define the reduction →can by M →can can(M) for all M .

Remark that →can is an extremely simple reduction. In particular we do not extend it
under arbitrary contexts, so from a term M there is always a unique reduction M →can

can(M), and→can is idempotent (i.e.→can · →can=→can), so it is not relevant to consider
reduction paths of length more than 1.

3. The Full Calculus

3.1. Confluence

We proved some results independently for β-reduction and the reduction of sums, but
we are interested in the calculus with both of them. It is interesting to know that →β

and →+ are both confluent but we want to prove that the reduction →β ∪ →+ is also
confluent. To do so we proceed in the same way as to prove the confluence of β-reduction
alone, by defining a parallel reduction enjoying the diamond property. More precisely
we will define a canonicalising parallel β-reduction: the reduction of sums being strongly
normalising we will define the reduction of a set of β-redexes along with the normalisation
by →+. As in Section 1 we consider terms with labelled β-redexes

M,N := x | λx.M |M N | M+p N | (λ0x.M) N

along with the β-reduction

(λx.M) N →β M
[N/x] ,

the β0-reduction of labelled redexes

(λ0x.M) N →β0 M
[N/x] ,

and the reduction of sums

λx.(M+p N )→+ λx.M+p λx.N

(M+p N ) P →+ M P +p N P

(λ0x.(M+p N )) P →+ (λ0x.M) P +p (λ0x.N ) P
all extended to arbitrary contexts. We want to prove that the reduction →β0 ∪ →+

associate a unique normal form to every labelled term.

Lemma 3.1.1. The reduction →+ is substitutive: if M →+ M′ then M
[P/x] →+

M′
[P/x].
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Proof. By a simple induction on the context of the reduction.

Proposition 3.1.2. The reduction →β0
∪ →+ is weakly confluent.

Proof. We reason by induction on the structure of the reduced term.

— If (λ0x.M) P →β0
M
[P/x] and (λ0x.M) P →+ (λ0x.M′) P withM→+ M′ then

the previous lemma givesM
[P/x]→+ M′

[P/x] and (λ0x.M′) P →β0 M′
[P/x].

— If (λ0x.M) P →β0
M
[P/x] and (λ0x.M) P →+ (λ0x.M) P ′ with P →+ P ′ then

M
[P/x]→∗+ M [

P ′/x
]
and (λ0x.M) P ′ →β0 M′

[
P ′/x

]
.

— If (λ0x.(M+pN )) P →β0
(M+pN )

[P/x] =M
[P/x]+pN

[P/x] and (λ0x.(M+p

N )) P →+ (λ0x.M) P +p (λ0x.N ) P then we have (λ0x.M) P +p (λ0x.N ) →∗β0

M
[P/x]+p N

[P/x].
— If λx.(M1 +pM2)→+ λx.M1 +p λx.M2 and λx.(M1 +pM2)→β0

λx.(M′1 +pM′2)

with Mi →?
β0
M′i for i ∈ {1, 2} then λx.M1 +p λx.M2 →β0

λx.M′1 +p λx.M′2 and
λx.(M′1 +pM′2)→+ λx.M′1 +p λx.M′2.

— If (M1 +pM2) M3 →+ M1 M3 +pM2 M3 and (M1 +pM2) M3 →β0
(M′1 +p

M′2)M′3 withMi →?
β0
M′i for i ∈ {1, 2; 3} thenM1 M3+pM2 M3 →∗β0

M′1 M′3+p

M′2 M′3 and (M′1 +pM′2) M′3 →+ M′1 M′3 +pM′2 M′3.
— The other cases are given either by the weak confluence of→β0 or→+, or by induction

hypothesis.

Proposition 3.1.3. The reduction →β0
∪ →+ is strongly normalising.

Proof. To prove this result we adapt the weight of the corresponding result in (Baren-
dregt 1981) so that the weight of a term decreases along the β0-reduction and is preserved
by→+. Given a termM we define a weight w onM by giving a value w(o) ∈ N, w(o) ≥ 2

for each variable occurrence o inM (i.e. each couple (C, x) such thatM = C[x]). Then
we define w(P) for every subterm P ofM (where the context is implicit) by

— w(λx.P) = w(P);
— w(P Q) = w(P)× w(Q);
— w(P +p Q) = w(P) + w(Q);
— w((λ0x.P) Q) = w(P)× w(Q).

Then given a reduction M→β0
N a weight on M induces a weight on N in a natural

way, as every variable occurrence in N comes from a unique variable occurrence inM.
IfM = C [(λ0x.P) Q]→β0

C
[
P
[Q/x]] = N then

— the weight of a variable occurrence in C in N is the weight of the corresponding
variable occurrence in C inM;

— the weight of a variable occurrence in P in N is the weight of the corresponding
variable occurrence in P inM;

— the weight of a variable occurrence in one of the copies of Q in N is the weight of the
corresponding variable occurrence in Q inM.

Similarly we can derive a weight on N from a reductionM→+ N .
Given a weight w on M, it is easy to see that if a reduction M →+ N induces the
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weight w′ onN then w(M) = w′(N ): indeed we have w(λx.(P+pQ)) = w′(λx.P+pλx.Q)

and w((P +p Q) R) = w′(P R +p Q R). But if M →β0
N we do not necessarily have

w(M) > w′(N ).
To prove our proposition we need to look at particular weights: a weight w on M is

called decreasing if for every β0-redex (λ0x.P) Q inM we have w(o) ≥ w(Q) for every
occurrence o of x in P. Decreasing weights have the following properties.

(1) For every labelled termM there exists a decreasing weight onM.
(2) If w is a decreasing weight onM andM→β0

N then the induced weight w′ on N is
decreasing and we have w(M) > w′(N ).

Proving that decreasing weights exist and are preserved by reduction is easily done by
induction on the terms. Then ifM = C [(λ0x.P) Q]→β0

C
[
P
[Q/x]] = N , w is decreas-

ing on M and w′ is the induced weight on N then we have w(P) ≥ w′
(
P
[Q/x]) and

w(Q) ≥ 2 so w ((λ0x.P) Q) > w′
(
P
[Q/x]). See (Barendregt 1981) for a detailed proof

in the deterministic case, which easily generalises to terms with sums.
Then for any term M there is a decreasing weight w on M, and every reduction

M (→β0
∪ →+)

∗ N has at most w(M) β0-reduction steps. But we also know that →+

is strongly normalising so →β0 ∪ →+ is strongly normalising.

Definition 3.1. Given a termM and a set F of β-redexes inM we write NFc
0(M,F) for

the unique normal form of MF for →β0 ∪ →+. We write M F−→βc
//
N if N = NFc

0(M,F),

and more generally M −→βc
//
N if there exists F such that M F−→βc

//
N .

Proposition 3.1.4. The canonicalising parallel reduction is the parallel reduction fol-
lowed by a canonicalisation:

−→βc
//

= −→β// · →can .

Proof. Given a termM and a set F of redexes inM , we haveMF →∗β0
NF0(M,F)→∗+

can (NF0(M,F)), hence M (→β0
∪ →+)

∗
can (NF0(M,F)). But can (NF0(M,F)) is by

construction a normal form for→+, and NF0(M,F) is a β0-normal form so it is clear that
can (NF0(M,F)) is also β0-normal. Then necessarily can (NF0(M,F)) = NFc

0(M,F).

Proposition 3.1.5. The reduction −→βc
//
has the diamond property.

Proof. If F and F ′ are sets of β-redexes in M , M F−→βc
//
N , G′ is the set of residuals of

F ′ in N and N G′−→βc
//
P then M F∪F ′−−−−→βc

//
P .

As our parallel reductions do not describe in detail the reductions of the sums we do
not have −→∗βc

//
= (→β ∪ →+)∗ and we can not deduce directly the confluence of→β ∪ →+

from the confluence of −→βc
//
. But this construction of the parallel reductions gives a very

interesting result about the β-reduction and the canonicalisation.

Definition 3.2. The canonicalising β-reduction →βc is defined between canonical terms
by

→βc=→β · →can
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Proposition 3.1.6. For any reduction M →β N we have can(M)→∗βc can(N).

Proof. Let ∆ be a β-redex such that M ∆−→β N , we have M{∆} →β0 N →∗+ can(N).
But we also have M{∆} →∗+ can(M{∆}). Then as →β0

∪ →+ is strongly normalising we
can find a sequence of reductions can(M{∆})→β0 · →∗+ M1 →β0 · →∗+ ...→β0 · →∗+ Mn

such that the Mis are canonical and Mn is β0-normal. As →β0
∪ →+ is confluent we

necessarily haveMn = can(N).
Now if we erase the labels we get |can(M{∆})| −→βc

//
|M1| −→βc

//
. . . −→βc

//
|Mn| = can(N),

and we can check that |can(M{∆})| = can(M).

This result and the observation that →β ∪ →can ⊂ −→βc
//
allow us to conclude.

Proposition 3.1.7. The reduction →β ∪ →+ is confluent.

Proof. Whenever M →β N we have can(M) −→∗βc
//

can(N), and whenever M →+ N we

have can(M) = can(N). Then if M (→β ∪ →+)
∗
Ni for i ∈ {1, 2} we have can(M) −→∗βc

//

can(Ni), and the confluence of −→βc
//
gives a (canonical) term P such that can(Ni) −→∗βc

//
P .

In particular we have Ni (→β ∪ →+)
∗
P for i ∈ {1, 2}.

3.2. β-Reduction Modulo Equivalences

We can observe that the proof of confluence of →β ∪ →+ only uses two facts about
the reductions of sums: they preserve β0-normal forms and with β-reduction they are
sufficient to recover the parallel reduction, i.e. −→βc

//
⊂ (→β ∪ →+)∗. So we can do the

same proof with the whole equivalence ≡+.

Proposition 3.2.1. The reduction →β ∪ ≡+ is confluent.

Of course it is not natural to treat ≡+ as a reduction. It would be more intuitive to
say that β-reduction modulo ≡+ is confluent. Reduction systems modulo an equivalence
relation have been studied in (Bezem, Klop, and Vrijer 2003). The basic idea is that β-
reduction modulo an equivalence relation ≡ is β-reduction between equivalences classes
of terms. GivenM,N ⊂ Λ+ two equivalence classes of terms for ≡ we consider thatM
β-reduces into N if there are M ∈M and N ∈ N such that M →β N . This induces the
following definition on terms.

Definition 3.3. For any equivalence relation ≡ on terms the reduction→β/≡ is defined
by

M →β/≡ N ⇔ ∃M ′, N ′ : M ≡M ′ →β N
′ ≡ N.

A reduction for →∗β/≡ is then given by a path of the form

M0 ≡M ′0 →β M1 ≡M ′1 →β ...→β Mn ≡M ′n.

In particular by a slight abuse of notations we consider that M →∗β/≡ M ′ whenever
M ≡M ′.

In such a framework two main properties are associated to the notion of confluence.
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We say that the β-reduction is confluent modulo ≡ if for any terms M1, M2, N1 and N2

we have:

N1 ←∗β M1 ≡M2 →∗β N2 ⇒ ∃P1, P2 ∈ Λ+ : N1 →∗β P1 ≡ P2 ←∗β N2.

Furthermore the stronger property of being Church-Rosser modulo ≡ is defined as:

M1 (→β ∪ ←β ∪ ≡)
∗
M2 ⇒ ∃P1, P2 ∈ Λ+ : M1 →∗β P1 ≡ P2 ←∗β M2

for all M1 and M2. In both cases we can see that the equivalence ≡ is not supposed to
play any role in the reduction. Two related terms are supposed to reduce into a common
result, provided this result and only this result is considered modulo equivalence. It is
easy to see that the equivalence ≡+ does not fit in this framework. For example we have

(λx.x+p y) z ≡+ (λx.x) z +p y z →β z +p y z

but there are no terms P1 and P2 such that

(λx.x+p y) z →∗β P1 ≡+ P2 ←∗β z +p y z.

It is not necessary to view the commutation of sums with abstractions and applications
as a reduction, but it definitely plays an important role in the reduction. So it is not true
that β-reduction is confluent modulo ≡+. What is true is that β-reduction modulo ≡+

is confluent.

Theorem 3.2.2. →β/≡+
is confluent.

Another interesting result on β-reduction modulo ≡+ is given by Proposition 3.1.6.

Theorem 3.2.3. We have M →∗β/≡+
N iff can(M)→∗βc can(N).

4. Weak and Strong Reductions of Sums

4.1. Weak Head Reduction of Sums

We have based our reduction rules for the probabilistic sums on head reduction: our goal
was to replace the usual probabilistic reduction rules:

λx1...xn.(M +p N) P1 ... Pm
p−→ λx1...xn.M P1 ... Pm

λx1...xn.(M +p N) P1 ... Pm
1−p−−→ λx1...xn.N P1 ... Pm

by a deterministic reduction:

λx1...xn.(M +p N) P1 ... Pm →∗+ λx1...xn.M P1 ... Pm +p λx1...xn.N P1 ... Pm.

But as we mentioned in Subsection 2.2 the purpose of this reduction is mostly to make
explicit potential β-redexes: the term ((λx.M)+pN) P is a priori β-normal (ifM , N and
P are normal), but it reduces into (λx.M) P +p N P which has a β-redex. To achieve
this purpose, we actually need a single reduction rule:

(M +p N) P →+ M P +p N P.
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Definition 4.1. The weak reduction of sums →+w on Λ+ is given by

(M +p N) P →+w M P +p N P

extended to arbitrary contexts.

This reduction corresponds to a weak head reduction strategy for the sums. One can
check that all the properties of →+ proven in Sections 2 and 3 also hold for →+w .

Proposition 4.1.1.

(1) The reduction →+w is confluent and strongly normalising. We call weak canonical
form of M and we note canw(M) the unique normal form of M for →+w . We define
a reduction →canw by M →canw canw(M).

(2) The reduction →β0
∪ →+w is confluent and strongly normalising on labelled terms.

Given a termM and a set F of redexes inM we write NFw
0 (M,F) the unique normal

form ofMF . We writeM F−→βw
//
N if N = NFw

0 (M,F), and more generallyM −→βw
//
N

if there exists F such that M F−→βw
//
N .

(3) The weakly canonicalising parallel reduction −→βw
//

is equal to −→β// · →canw .
(4) The reduction −→βw

//
has the diamond property.

(5) We define the weakly canonicalising β-reduction by →βw=→β · →canw . If M →β N

then canw(M)→∗βw canw(N).
(6) The reductions →β ∪ →+w and →β/≡+w

are confluent.
(7) We have M →∗β/≡+w

N iff canw(M)→∗βw canw(N).

Proof. The proofs of the corresponding results for →+ are easily adapted to →+w .

This reduction has one major property which→+ lacks: it is orthogonal to β-reduction.
In any term of the form (λx.(M1 +pM2)) N there are two overlapping redexes, one for
→+ and one for→β . This situation does not occur with→+w , which makes studying the
reduction →β ∪ →+w much more convenient. In particular, we will see in Section 5 that
we can prove a standardisation theorem for →β ∪ →+w using well-known techniques,
whereas such an attempt fails for →β ∪ →+.

Another convenient property, although of much lesser importance, is that weakly
canonical forms are easier to manipulate. One can prove that those weakly canonical
forms are given inductively by:

M,N := v |M +p N

v := x | λx.M | v M.

but we can also characterise them without defining values, by:

M,N := x N1 . . . Nm | (λx.M) N1 . . . Nm |M +p N.

This makes it much easier to reason by induction on weakly canonical forms than on
canonical forms.
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4.2. From Strong Reduction to Weak Reduction

We have two reductions for the sum, one corresponding to the head reduction usually
considered in the literature and the other which we claim is more simple and enjoys
more interesting properties than the first one. What is the relation between these two
reductions? On one side we obviously have →+w⊂→+. On the other side we claimed
that the reduction rule λx.(M +p N) →+ λx.M +p λx.N does not really influence β-
reduction, so we could expect that whenever M →∗β/≡+

N then M →∗β/≡+w
· ≡+ N .

But this clearly does not hold: we have for instance a reduction

(λx.(x+p y)) z →+ (λx.x+p λx.y) z →+ (λx.x) z +p (λx.y) z →β z +p (λx.y) z

whereas the only possible reduction of this term for →β ∪ →+w is

(λx.(x+p y)) z →β z +p y.

The reduction rule λx.(M +pN)→+ λx.M +p λx.N may be used to duplicate β-redexes
and we can then choose to reduce only some of the resulting copies, which is impossible
with the weak reduction. On the other hand, this example seems to indicate that we can
reduce the remaining copies at the end of our strong reduction to reach a result which can
be attained by a weak reduction: there is no reduction →β ∪ →+w from (λx.(x+p y)) z

to z +p (λx.y) z but we do have z +p (λx.y) z →β z +p y and (λx.(x+p y)) z →β z +p y.
We will prove that every reduction M →∗β/≡+

N can be extended with a reduc-

tion N →∗β/≡+
N ′ such that M →∗β/≡+w

N ′ (Theorem 4.2.5). More precisely we

will prove that every reduction M (→β ∪ →+)
∗
N can be extended with a reduction

N (→β ∪ →+)
∗

can(N ′) (hence N →∗β/≡+
N ′) such that M (→β ∪ →+w)

∗
N ′, the cor-

respondence between these two results being given by Theorem 3.2.3 and Proposition
4.1.1, (7).

We will denote by →+λ the relation →+ \ →+w , i.e. the reduction given by

λx.(M +p N)→+λ λx.M +p λx.N

extended to arbitrary context.

Lemma 4.2.1. If M is weakly canonical and M →+λ · →canw · −→β// N then there is N ′

such that N −→β// N
′ and M −→β// · →∗+ N ′.

M

N

N ′

+λ canw

β//

β//

β//

+∗

Proof. We reason by induction on M as a weakly canonical term, as described at the
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end of Subsection 4.1. We detail two cases, where we have an abstraction in weak head
position.

— If

(λx.M) P R1 ... Rm →+λ · →canw (λx.M ′) P ′ R′1 ... R
′
m

−→β// N
[
Q/x

]
S1 ... Sm

with M →?
+λ · →canw M ′ −→β// N , P →?

+λ · →canw P ′ −→β// Q and Ri →?
+λ · →canw

R′i −→β// Si for i ≤ m then applying the induction hypothesis to these reductions gives
terms N ′, Q′ and S′i and we get

N
[
Q/x

]
S1 ... Sm −→β// N

′
[
Q′/x

]
S′1 ... S

′
m

(λx.M) P R1 ... Rm −→β// · →
∗
+ N ′

[
Q′/x

]
S′1 ... S

′
m.

— If

(λx.(M1 +pM2)) P R1 ... Rm →+λ (λx.M1 +p λx.M2) P R1 ... Rm

→canw (λx.M1) P R1 ... Rm +p (λx.M2) P R1 ... Rm

−→β// T1 +p T2

with (λx.M1) P R1 ... Rm −→β// T1 and (λx.M2) P R1 ... Rm −→β// T2 then for
each j ∈ {1, 2} there are reductions Mj −→β// Nj , P −→β// Qj and Ri −→β// Si,j such
that Tj = (λx.Nj) Qj S1,j ... Sm,j or Tj = Nj

[
Qj/x

]
S1,j ... Sm,j . In either case as

P −→β// Qj for j ∈ {1, 2} there is Q′ such that P −→β// Q
′ and Qj −→β// Q

′ for j ∈ {1, 2},
and similarly there are terms S′i such that Ri −→β// S

′
i and for j ∈ {1, 2}, Si,j −→β// S

′
i.

We get

T1 +p T2 −→β// N1

[
Q′/x

]
S′1 ... S

′
m +p N2

[
Q′/x

]
S′1 ... S

′
m

(λx.(M1 +pM2)) P R1 ... Rm −→β//

(
N1

[
Q′/x

]
+p N2

[
Q′/x

])
S′1 ... S

′
m

→∗+ N1

[
Q′/x

]
S′1 ... S

′
m +p N2

[
Q′/x

]
S′1 ... S

′
m.

The other cases are immediate.

Lemma 4.2.2. If M is weakly canonical then there is a reduction M (→+λ · →canw)
∗

can(M).

Proof. We know that the length of the reductions M →∗+ can(M) is bounded (Propo-
sition 2.2.2), so we reason by induction on this bound. If M is canonical the result is
immediate. Otherwise M is weakly canonical but not canonical, so there is a reduction
M →+λ M

′, and by induction hypothesis we have canw(M ′) (→+λ · →canw)
∗

can(M ′).
But can(M ′) = can(M) so M →+λ M

′ →canw canw(M ′) (→+λ · →canw)
∗

can(M).

Lemma 4.2.3. If M is weakly canonical and M →can · −→βc
//
N then there is N ′ such

that N −→∗βc
//
N ′ and M −→βc

//
N ′. In particular we have M −→βw

//
· →can N

′.

Proof. If M is a weakly canonical term, according to the previous lemma we have
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M (→+λ · →canw)
∗

can(M). We reason by induction on the length of such a reduction.
If M is canonical then we just choose N ′ = N . Otherwise the induction step is given by
the following diagram:

M P can(M)

N

Q N ′

Q′ can(Q′)

+λ · canw
(
+λ · canw

)∗
βc
//

(
βc
//

)∗β//

can

β//

β//

+∗

βc
//

can

(IH)

(4.2.1)

If M →+λ · →canw P (→+λ · →canw)
∗

can(M) −→βc
//
N then the induction hypothesis

gives the terms Q and N ′. Next we apply Lemma 4.2.1 to M , P and Q to get the term
Q′. Now let F be the set of β-redexes in Q such that Q F−→β// Q

′, we have can(Q′) =

NFc
0(Q,F) (see the proof of Proposition 3.1.4). But as Q →∗+ N ′, let F ′ be the set of

residuals of F in N , we have NFc
0(Q,F) = NFc

0(N ′,F ′). In other words, N ′ −→βc
//

can(Q′).
Finally we can remark that −→βw

//
· →can=−→βc

//
.

Lemma 4.2.4. If M is weakly canonical and M →can · −→∗βc
//
N then there is N ′ such

that N −→∗βc
//
N ′ and M −→∗βw

//
· →can N

′.

Proof. We reason by induction on the length of the reduction −→∗βc
//
. We recall that for

n ∈ N we write −→n
βc
//
for n iterations of the reduction −→βc

//
. If M →can N then we just

choose N ′ = N . Otherwise the induction step is given by the following diagram:

M can(M) P N

M ′ P ′ Q

N ′

can βc
//

(
βc
//

)n
βw
//

(
βc
//

)∗
can (

βc
//

)n
(
βc
//

)∗
(
βw
//

)∗ (
βc
//

)∗
can

(IH)

(4.2.3) (3.1.5)

If M →can · −→βc
//
P −→n

βc
//
N then the previous lemma gives the terms M ′ and P ′. The

diamond property of −→βc
//
(Proposition 3.1.5) gives the existence of Q with P ′ −→n

βc
//
Q.
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Then we simply conclude by induction hypothesis on the reduction M ′ →can P
′ −→n

βc
//
Q.

Theorem 4.2.5. If M →∗β/≡+
N then there is N ′ such that N →∗β/≡+

N ′ and

M →∗β/≡+w
N ′.

Proof. IfM →∗β/≡+
N then according to Theorem 3.2.3 we have can(M)→∗βc can(N),

thus canw(M)→can · −→∗βc
//

can(N). The previous lemma states the existence of termsM ′

and N ′ such that can(N) −→∗βc
//
N ′ and canw(M) −→∗βw

//
M ′ →can N

′, hence N →∗β/≡+
M ′

and M →∗β/≡+w
M ′.

5. Standardisation

The purpose of this article is to present a probabilistic λ-calculus which does not require
a specific reduction strategy and allows reduction under arbitrary context. In this setting
there may be multiple ways to reduce a term, hence it was important to prove the
confluence of the reduction. But another interesting result we would like to obtain is a
standardisation theorem: it is very convenient to have that a term M reduces into N if
and only if there is a standard reduction fromM to N , i.e. a reduction where redexes are
reduced from left to right and from top to bottom. Unfortunately this does not hold for
the reduction →β/≡+

(see (Alberti 2014), example 3.2.10): if you consider the reduction

(λx.I (y +p z)) u→β (λx.(y +p z)) u ≡+ (λx.y) u+p (λx.z) u→β y +p (λx.z) u

where I = λx.x, there cannot be any standard reduction from (λx.I (y +p z)) u to
y+p (λx.z) u. Indeed (λx.I (y+p z)) u is only equivalent to itself with respect to ≡+, and
the only possible β-reductions are (λx.I (y+p z)) u→β I (y+p z), which does not reduce
into y +p (λx.z) u, and (λx.I (y +p z)) u →β (λx.(y +p z)) u, which cannot be further
β-reduced if we want to respect the intuition of what a standard reduction should be.
But just like the comparison between the weak and strong reductions of sums, we can
see that our reduction can be extended and then turned into a standard one. We have
y +p (λx.z) u→β y +p z and there is a standard reduction

(λx.I (y +p z)) u→β I (y +p z)→β y +p z.

As we mentioned in Subsection 4.1 the main reason we considered the weak reduction
of sums is that the reduction system →β ∪ →+w does not have any critical pair, thus
this problem of redex duplication does not occur and the usual proof techniques for the
standardisation are known to work. So we will first prove a standardisation property for
→β/≡+w

. Then using the theorem 4.2.5 we can prove that every β-reduction modulo ≡+

can be extended then turned into a standard one.

5.1. Strong Standardisation of the Weak Reduction

The key property behind the notion of standardisation is that every reduction can be
transformed into a sequence of head reductions followed by internal reductions. In an
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orthogonal system system such as →β ∪ →+w there is a natural way to define head and
internal reductions: head redexes are simply outermost redexes and the orthogonality
ensures that those are preserved by reduction. For instance in our case we could say that
terms of the form (λx.M) N or (M +p N) P are directly head redexes, and otherwise:

— x has no head redex,
— the head redexes of λx.M are the head redexes of M ,
— the head redexes of M N are the head redexes of M
— and the head redexes of M +p N are the head redexes of M or N .

But once again we are not really interested in →+w as a reduction, and we rather want
to prove a standardisation property for →β/≡+w

. This reduction being characterised by
weakly canonicalising reduction →βw between weakly canonical terms (by Proposition
4.1.1, (7)), we will not give a general notion of β+w-head redex but we will only define
weakly canonicalising head β-reduction and internal β-reduction on weakly canonical
terms.

Definition 5.1. The head β-redexes of the weakly canonical terms are defined as follows:

— the head redexes of M +p N are the head redexes of M and the head redexes of N ;
— x P1 ... Pm has no head redex;
— the head redexes of λx.M are the head redexes of M ;
— the only head redex of (λx.M) N P1 ... Pm is (λx.M) N .

β-redexes which are not head β-redexes are called internal.

Definition 5.2.

(1) Given a weakly canonical term M and a reduction M
∆−→β · →canw N we note

M →hw N if ∆ is a head redex of M , and M →iw N if ∆ is internal.
(2) Given a set F of β-redexes in a weakly canonical termM and a reductionM F−→βw

//
N

we note M −→hw
//
N if F is a set of head redexes, and M −→iw

//
N if it contains only

internal redexes.

Proposition 5.1.1. →hw ⊂ −→hw
//
⊂ →∗hw and →iw ⊂ −→iw

//
⊂ →∗iw .

Proof. We have immediately→hw ⊂ −→hw
//
and→iw ⊂ −→iw

//
. Moreover an easy induction

on M shows that if F is a set of head redexes in M and M →hw N then the residuals
of F in N are also head redexes, and similarly the residuals of internal redexes by an
internal reduction are internal redexes.

This definition of the head and internal reductions is actually perfectly suited for the
strong reduction of sums as well. The problem is that the following property only holds
for the weak reduction.

Lemma 5.1.2. If M →iw N and H is a set of head β-redexes in N then H is exactly
the set of residuals of a set H′ of head redexes in M .

Proof. By a simple induction on N . The key idea is that if N = (λx.N0) Q S1 ... Sm
then necessarily M = (λx.M0) P R1 ... Rm with M0 →βw N0, P →βw Q and Ri →βw Si
for i ≤ m.
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In our counterexample to the standardisation of→β ∪ →+ we precisely chose a reduc-
tion

(λx.I (y +p z)) u→ic (λx.y) u+p (λx.z) u

such that the redex (λx.y) u is not the unique residual of a head redex in the initial term,
so we could not transform our reduction into a reduction →∗hc · →∗ic , and our solution
to this problem was exactly to further reduce all the other residuals of the original head
redex (λx.I (y +p z)) u. But with the weak reduction the internal reduction does not
interact with the head redexes and we can prove that →∗βw ⊂ →∗hw · →∗iw .

Lemma 5.1.3. If M −→βw
//
N then M −→∗hw

//
· −→iw

//
N .

Proof. Let F be the set of β-redexes of M such that M F−→βw
//
N . The reduction

(→β0
∪ →+w) is strongly normalising (Proposition 3.1.3) so we reason by induction on

the maximal length of the reductionsMF (→β0
∪ →+w)

∗
N . If F contains no head redex

then M F−→iw
//
N . Otherwise there is a nonempty set H ⊂ F of head redexes and we have

a reduction M H−→hw
//
P . Let F ′ be the set of residuals of F \H in P , we have P F ′−→βw

//
N

and by induction hypothesis P −→∗hw
//
· −→iw

//
N .

Lemma 5.1.4. If M −→iw
//
· −→hw

//
N then M −→βw

//
N (hence M −→∗hw

//
· −→iw

//
N).

Proof. By definition there are a term P , a set F of internal β-redexes in M and a set
H of head β-redexes in P such that M F−→iw

//
P and P H−→hw

//
N . According to Proposition

5.1.1 we have M →∗iw P , and Proposition 5.1.2 gives a set H′ of (head) redexes in
M such that H is exactly the set of residuals of H′. Thus there is a direct reduction
M

F∪H′−−−−→βw
//
N .

Lemma 5.1.5. If M −→∗iw
//
· −→hw

//
N then M −→∗hw

//
· −→∗iw

//
N .

Proof. By induction on the length of the reduction −→∗iw
//
, using the previous lemma.

Proposition 5.1.6. If M →∗βw N then M →∗hw · →∗iw N .

Proof. We have →∗βw=−→∗βw
//
, →∗hw=−→∗hw

//
and →∗iw=−→∗iw

//
so we rather reason with par-

allel reductions.
If M −→∗βw

//
N then Lemma 5.1.3 gives M (−→∗hw

//
· −→iw

//
)
∗
N , which corresponds exactly

to M (−→hw
//
∪ −→iw

//
)
∗
N . We reason by induction on the length of such a reduction.

If M = N the result is immediate. If M (−→hw
//
∪ −→iw

//
)
∗
P −→iw

//
N then by induction

hypothesis M −→∗hw
//
· −→∗iw

//
P and the result is immediate. If M (−→hw

//
∪ −→iw

//
)
∗
P −→hw

//
N

then by induction hypothesis M −→∗hw
//
· −→∗iw

//
P , and with the previous lemma we get

M −→∗hw
//
·(−→∗hw

//
· −→∗iw

//
)N .

Labelled reduction versus inductive parallel reduction. As we mentioned in Sub-
section 1.2 one can define parallel β-reduction using labels as we did, following the con-
structions in (Barendregt 1981), or one can define it inductively as in (Takahashi 1995).
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The inductive definition is less elaborated and may be better suited to prove confluence
properties, but when one wants to prove that β-reduction decomposes into head reduc-
tions followed by internal reductions, not being able to reason with sets of β-redexes
and residuals is an important drawback. Furthermore in our case the situation is made
even more complicated by the fact that we are not interested in head and internal β-
reductions, but in weakly canonicalising head and internal β-reductions, and those are
not easily defined by induction. We believe a proof of our standardisation theorem using
inductively defined parallel reductions is possible, but we doubt it would be more concise
than the one using labels.

The standardisation is an extension of Proposition 5.1.6: a reduction is standard if it
is a sequence of head reductions followed by some internal reductions, and those internal
reductions are locally standard. So once again we will not try to define a general notion
of standard reduction for →β ∪ →+w but we will only consider weakly canonicalising
β-reductions between weakly canonical terms. More precisely we define inductively a
relation on weakly canonical terms characterising the existence of a standard reduction.

Definition 5.3. The relation M �Sw N is defined between weakly canonical terms by:

M1 �Sw N1 M2 �Sw N2

M1 +pM2 �Sw N1 +p N2

M �Sw N

λx.M �Sw λx.N

∀i ≤ m,Pi �Sw Qi
y P1 ... Pm �Sw y Q1 ... Qm

canw
(
M
[
P/y

]
Q1 ... Qm

)
�Sw N

(λy.M) P Q1 ... Qm �Sw N

M �Sw N ∀i ≤ m,Pi �Sw Qi m > 0

(λy.M) P1 ... Pm �Sw (λy.N) Q1 ... Qm

Remark that the rule for (λy.M) P1 ... Pm �Sw (λy.N) Q1 ... Qm with m = 0 corre-
sponds exactly to the rule for λx.M �Sw λx.N , so it may seem awkward to distinguish
the two cases. We chose to do so in order to match Definition 5.1 of head redexes: one
rule applies only to abstractions which are not part of a β-redex, while the other only
applies to β-redexes.

We want to prove that �Sw corresponds to →∗βw . First it is easy to check that the
relation �Sw is included in the canonicalising β-reduction.

Proposition 5.1.7. If M �Sw N then M →∗βw N .

Proof. By induction on �Sw .

The converse is easily proven using Proposition 5.1.6.

Lemma 5.1.8. If M →∗hw ·�Sw N then M �Sw N .
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Proof. By induction on the length of the reduction →∗hw . If M �Sw N the result
is immediate, and if M →hw · →∗hw · �Sw N then by induction hypothesis M →hw

· �Sw N and we reason by induction on M and �Sw . If M is a sum or an abstraction
then the result is immediate by induction hypothesis. The only other possible case is
M = (λy.M0) P Q1 ... Qm and M →hw canw

(
M0

[
P/y

]
Q1 ... Qm

)
�Sw N so we have

M �Sw N .

Theorem 5.1.9. If M →∗β/≡+w
N then canw(M) �Sw canw(N).

Proof. If M →∗β/≡+w
N Proposition 4.1.1, (7) gives canw(M) →∗βw canw(N), so we

want to prove that if M and N are weakly canonical and M →∗βw N then M �Sw N .
Moreover Proposition 5.1.6 gives that ifM →∗βw N thenM →∗hw P →∗iw N , and according
to the previous lemma if P �Sw N then M �Sw N . In the end we want to prove that
if M →∗iw N then M �Sw N . We reason by induction on N .

— If N = N1 +pN2 and M →∗iw N then necessarily M = M1 +pN2 with Mi →∗iw Ni for
i ∈ {1, 2} so by induction hypothesis Mi �Sw Ni, and M �Sw N .

— The case N = λx.N0 is similar.
— If N = (λy.N0) Q1 ... Qm with m > 0 and M →∗iw N then M = (λy.M0) P1 ... Pm

with M0 →∗βw N0 and Pi →∗βw Qi for i ≤ m. By induction hypothesis we know that
if S →∗iw N0 then S �Sw N0, and from there we know how to deduce M0 �Sw N0.
Similarly we get Pi �Sw Qi for i ≤ m, and we have M �Sw N .

— The case N = y Q1 ... Qm is similar.

5.2. Weak Standardisation of the Strong Reduction

As we mentioned in the previous Subsection, Definition 5.1 for the head β-redexes of a
weakly canonical term is easily transposed to the strongly canonical terms:

— the head redexes of M +p N are the head redexes of M and the head redexes of N ;
— λx1...xn.y P1 ... Pm has no head redex;
— the only head redex of λx1...xn.(λy.v) N P1 ... Pm is (λy.v) N .

We obtain the following notion of standard reduction.

Definition 5.4. The relation M �S N between canonical terms is defined by:

M1 �S N1 M2 �S N2

M1 +pM2 �S N1 +p N2

∀i ≤ m,Pi �S Qi
λx1...xn.y P1 ... Pm �S λx1...xn.y Q1 ... Qm

can
(
λx1...xn.v

[
P/y

]
Q1 ... Qm

)
�S N

λx1...xn.(λy.v) P Q1 ... Qm �S N

v �S N ∀i ≤ m,Pi �S Qi m > 0

λx1...xn.(λy.v) P1 ... Pm �S can (λx1...xn.(λy.N) Q1 ... Qm)
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Remark that in this case an abstraction λx.M is canonical only if M is a value, and it
is not sufficient to know that M is canonical. So in the last rule when we perform some
internal reductions under a β-redex we need to canonicalise the whole result to be sure
we get a canonical term.

Proposition 5.2.1. If M �S N then M →∗βc N .

Proof. By induction on �S .

Now we want to prove that every weak standard reduction gives a strong standard
one.

Proposition 5.2.2. If M �Sw N then can(M) �S can(N).

Proof. We reason by induction on �Sw . We need to show that the following rules are
admissible for �S :

can(M1) �S can(N1) can(M2) �S can(N2)

can(M1 +pM2) �S can(N1 +p N2)

can(M) �S can(N)

can(λx.M) �S can(λx.N)

∀i ≤ m, can(Pi) �S can(Qi)

can(y P1 ... Pm) �S can(y Q1 ... Qm)

can
(
M
[
P/y

]
Q1 ... Qm

)
�S can(N)

can((λy.M) P Q1 ... Qm) �S can(N)

can(M) �S can(N) ∀i ≤ m, can(Pi) �S can(Qi) m > 0

can((λy.M) P1 ... Pm) �S can((λy.N) Q1 ... Qm)

Some of these are immediately given by the rules of �S . We have can(M1 +pM2) =

can(M1) +p can(M2) and can(x P1 ... Pm) = x can(P1) ... can(Pm) so the first and
third rules are trivially admissible. The others can be simplified. For instance we have
can(λx.M) = can(λx.can(M)), so can(M) �S can(N) implies can(λx.M) �S can(λx.N)

for all terms M and N if and only if M �S N implies can(λx.M) �S can(λx.N) for all
canonical terms M and N . So we want to prove the three following rules with canonical
terms:

M �S N

can(λx.M) �S can(λx.N)

can
(
M
[
P/y

]
Q1 ... Qm

)
�S N

can((λy.M) P Q1 ... Qm) �S N

M �S N ∀i ≤ m,Pi �S Qi m > 0

can((λy.M) P1 ... Pm) �S can((λy.N) Q1 ... Qm)
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The last two rules are very close to actual rules of �S and they are easily proven by
induction on the canonical structure of M . For instance for the second one:

— ifM = v is a value then can((λy.v) P Q1 ... Qm) = (λy.v) P Q1 ... Qm (as we assume
w.l.o.g. all the subterms P and Qi canonical) and we get exactly a rule of �S ;

— if M = M1 +pM2 then

can
(
(M1 +pM2)

[
P/y

]
Q1 ... Qm

)
= can

(
M1

[
P/y

]
Q1 ... Qm

)
+p can

(
M2

[
P/y

]
Q1 ... Qm

)
can((λy.(M1 +pM2)) P Q1 ... Qm) = can((λy.M1) P Q1 ... Qm)

+p can((λy.M2) P Q1 ... Qm)

and we have necessarily N = N1 +p N2 with can
(
Mi

[
P/y

]
Q1 ... Qm

)
�S Ni for

i ∈ {1, 2} so we conclude by induction hypothesis.

The only remaining case is the rule specific to �Sw , i.e. the abstraction rule.

M �S N

can(λx.M) �S can(λx.N)

We prove this by a simple induction on M �S N .

With this result we obtain our weak standardisation property for the calculus with the
strong reduction of sums.

Theorem 5.2.3. If M →∗β/≡+
N then there exists N ′ such that N →∗β/≡+

N ′ and

can(M) �S N
′.

Proof. IfM →∗β/≡+
N then according to Theorem 4.2.5 there isN ′ such thatN →∗β/≡+

N ′ and M →∗β/≡+w
N ′. Then the standardisation theorem for the weak reduction (The-

orem 5.1.9) states that canw(M) �Sw canw(N ′), and the previous result gives a stan-
dard reduction can(canw(M)) �S can(canw(N ′)), i.e. can(M) �S can(N ′). Besides
N →∗β/≡+

N ′ so we obviously have N →∗β/≡+
can(N ′).

Corollary 5.2.4. If N is a canonical β-normal form then M →∗β/≡+
N if and only if

can(M) �S N .

6. Probabilities and Barycentric Equivalences

In Section 4 we claimed that weak reduction →+w has better properties than →+ and
Theorem 4.2.5 states that →+ is not much more expressive than →+w . Thus it would
make sense to forget about →+ and work with →+w exclusively. However →+w is not
particularly better behaved than →+ with respect to the issues addressed in the rest of
the paper, so we will keep working with →+. The following results, and in particular
Theorems 7.1.10 and 7.2.3, also hold for →+w , and the proofs are easily derived from
those for →+.
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6.1. Terms with Probability Distributions

So far we have proven some important results about our reduction systems. But some-
thing is missing: the probabilities do not play any role. We could actually replace the
probabilistic choices +p for p ∈ [0, 1] by any family of labelled sums +l for l ∈ L an
arbitrary set of labels, and all our previous results would still hold. This situation is
directly inherited from the presentation of the probabilistic λ-calculus with probabilistic
reductions, where the computation on the probabilities is defined at a higher level. For
instance in our example at the beginning of Section 2.1 we described the probabilistic
reductions of the term δ (x+ 1

2
y) and then we claimed that in the call-by-name case this

term reduces in x x, x y, y x or y y, each with probability 1
4 , but how one can compute

this distribution is not explained in the calculus: it is a higher level construction based
on all possible reductions. In this work we want to internalise as much as possible the se-
mantics of the probabilistic terms by syntactic means. To turn the sums into probability
distributions, we quotient them by the following equivalences, which correspond to the
equations of barycentric algebras (Stone 1949).

Definition 6.1. We define four equivalences on terms by:

M +p N ≡γ N +1−pM (M +p N) +q P ≡α M +pq (N + q−pq
1−pq

P )

M +pM ≡I M M +1 N ≡Z M
extended under arbitrary contexts. Together these define the equivalence ≡bar:

≡bar = (≡γ ∪ ≡α ∪ ≡I ∪ ≡Z)∗.

Remark: The associativity rule (M +p N) +q P ≡α M +pq (N + q−pq
1−pq

P ) is well defined
only when pq 6= 1. When pq = 1, i.e. p = q = 1, we can use the other rules to complete
the associativity. For any r ∈ [0, 1] we can write

M +1 (N +r P ) ≡γ (P +1−r N) +0 M

≡α P +0 (N +0 M)

≡γ (M +1 N) +1 P

or

M +1 (N +r P ) ≡Z M
≡Z M +1 N

≡Z (M +1 N) +1 P.

Considering terms modulo ≡bar amounts to viewing trees of sums as probability
distributions. For instance if we consider terms with only variables and sums, there
is a simple way to associate with any term M a probability distribution over vari-
ables VM : Var → [0, 1]. We just define Vx(x) = 1 and Vx(y) = 0 if y 6= x, and
VM+pN = pVM + (1− p)VN . Then we can prove that M ≡bar N if and only if VM = VN .

But ≡bar is not the first equivalence on terms we are interested in. We already looked



A Deterministic Rewrite System for the Probabilistic λ-Calculus 27

at the β-reduction modulo ≡+, so if we further quotient by ≡bar we obtain the following
equivalence on terms.

Definition 6.2. The equivalence ≡ is given by

≡ = (≡+ ∪ ≡bar)
∗

As usual when considering terms modulo ≡+ we are mostly interested in canonical
terms. So first we will prove that ≡ is entirely described by the relation ≡bar on canonical
terms (Corollary 6.1.5). To do so we consider the four following reductions:

M +p N →γ N +1−pM (M +p N) +q P →α M +pq (N + q−pq
1−pq

P )

M →I M +pM M +1 N →Z M
extended under arbitrary context. We obviously have ≡γ = →∗γ (as ←γ = →γ), ≡α =

(→α ∪ ←α)∗, ≡I = (→I ∪ ←I)∗ and ≡Z = (→Z ∪ ←Z)∗. We will also prove that some
reductions commute so it will be useful to consider some parallel reduction. We will only
need to consider an independent parallel reduction: given a reduction → we define i−→ by

M
i−→M

M → N

M
i−→ N

M
i−→ N

λx.M
i−→ λx.N

M
i−→ N M ′

i−→ N ′

M M ′
i−→ N N ′

M1
i−→ N1 M2

i−→ N2

M1 +lM2
i−→ N1 +l N2

Lemma 6.1.1. For any reduction→∈ {→γ ,→α,←α,→I ,←I ,→Z ,←Z}, ifM
i−→ N1+p

N2 then

(1) there is N ′ such that λx.N1 +p λx.N2 →∗+ N ′ and λx.M →∗+ ·
i−→ N ′

(2) there is N ′ such that N1 P +p N2 P →∗+ N ′ and M P →∗+ ·
i−→ N ′.

Proof. We reason by induction onM i−→ N1+pN2. EitherM = M1+pM2 withMi
i−→ Ni

for i ∈ {1, 2} and the result is immediate, or M → N1 +p N2. In the second case we can
assume w.l.o.g. the reduction context to be empty. Then we need to detail the different
possible reductions for→. There are three non trivial cases, which involve two reductions
of sums. For instance with→α, if M = (N1 +pN2)+qN3 →α N1 +pq (N2 + q−pq

1−pq
N3) then

we have λx.M →∗+ (λx.N1 +p λx.N2) +q λx.N3 →α λx.N1 +pq (λx.N2 + q−pq
1−pq

λx.N3) and
λx.N1 +pq λx.(N2 + q−pq

1−pq
N3)→+ λx.N1 +pq (λx.N2 + q−pq

1−pq
λx.N3).

Lemma 6.1.2. For any reduction → ∈ {→γ ,→α,←α,→I ,←I ,→Z ,←Z}, if M i−→
N →+ N ′ then there exist M ′ and N ′′ such that M →∗+ M ′

i−→ N ′′ and N ′ →∗+ N ′′.

M M ′

N N ′ N ′′

i

+

+∗

+∗

i
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Proof. We reason by induction on the reduction M i−→ N .

— If M i−→M the result is immediate.
— If M → N (with an empty reduction context) then we need to detail the cases of

each reduction→. They are all simple as the reduction→+ does not interact with the
reduction →. For instance if M →I M +pM →+ N +pM then N +pM →+ N +pN

and M →+ N →I N +p N .
— If λx.M i−→ λx.N with M i−→ N then we have either λx.N →+ λx.N ′ with N →+ N ′

and the result is immediate by induction hypothesis, or N = N1 +pN2 and λx.N →+

λx.N1 +p λx.N2 and the result is given by the previous lemma.
— The case M M ′

i−→ N N ′ is similar: it is immediate by induction hypothesis or given
by the previous lemma.

— If M1 +pM2
i−→ N1 +pN2 with Mi

i−→ Ni for i ∈ {1, 2} then necessarily the reduction
→+ is of the form N1 +pN2 →+ N ′1 +pN

′
2 with Ni →+ N ′i , so the result is immediate

by induction hypothesis.

Proposition 6.1.3. For any reduction → ∈ {→γ ,→α,←α,→I ,←I ,→Z ,←Z}, if M
i−→

N then can(M)
i−→ can(N).

Proof. The reduction →+ is strongly normalising (Proposition 2.2.2), so if M i−→ N

we can use the previous lemma in an induction on the maximal length of the reductions
of N to prove that there is M ′ such that M →∗+ M ′

i−→ can(N). But we proved this
for all our barycentric reductions and their anti-reductions, so if can(N)

i←− M ′ then
there is N ′ such that can(N) →∗+ N ′

i←− can(M ′), with necessarily N ′ = can(N) and
can(M ′) = can(M), hence can(M)

i−→ can(N).

Corollary 6.1.4. The equivalences ≡γ , ≡α, ≡I , ≡Z and ≡bar are stable by canonicali-
sation.

Proof. By definition of these equivalences as closures of the corresponding reductions.

Corollary 6.1.5. We have M ≡ N if and only if can(M) ≡bar can(N).

According to Theorem 2.2.3 the canonical terms are trees of sums with values at
the leaves. As trees of sums modulo ≡bar describe probability distributions, classes of
canonical terms modulo ≡bar are distributions over values.

Theorem 6.1.6. The classes of terms modulo ≡ are:

M,N := finite probability distributions over values v

v := x | λx.v | v M.

A detailed proof of this theorem can be found in (Leventis 2016), with a slightly
different barycentric equivalence: the rule M +1 N ≡Z M is replaced by M +1 N ≡Z
M +1 P , which is equivalent in the presence of the idempotence M +pM ≡I M .



A Deterministic Rewrite System for the Probabilistic λ-Calculus 29

6.2. Reduction Modulo ≡bar

In Sections 3 and 5 we proved some confluence and standardisation results for the β-
reduction modulo ≡+. Now we want to show that these properties also hold for the
β-reduction modulo ≡. In Subsection 3.2 we discussed more specifically the relation be-
tween β-reduction modulo ≡+ and the usual notion of reduction modulo equivalence. We
claimed that the equivalence ≡+ has too much computational content for the confluence
and Church-Rosser properties modulo ≡+ to be relevant, but here the equivalence ≡bar

is not supposed to play any role in the reduction. We could expect a very strong result
stating that if M →∗β/≡ N then M →∗β/≡+

· ≡bar N . With this we could deduce the
confluence of the reduction→β/≡ from the confluence of→β/≡+

, and the Church-Rosser
property modulo ≡bar would follow. Unfortunately one rule of ≡bar makes this property
fail. Indeed if M →β N we have

M →I M +pM →β N +pM

and in general there is no way to write a reduction M →∗β/≡+
· ≡bar N +pM . However

if we consider →I as part of the reduction, we can prove that if M →∗β/≡ N then
M (→β/≡+

∪ →I)
∗ · ≡bar N .

Definition 6.3. The reduction →bar is defined as

→bar = →γ ∪ →α ∪ ←α ∪ ←I ∪ →Z ∪ ←Z .

We obviously have ≡bar = (→I ∪ →bar)
∗. Our goal is to prove:

→∗β/≡⊂(→β/≡+
∪ →I)

∗ · →∗bar

More precisely we will prove this for canonical terms, in order for →∗β/≡+
and →∗βc to

coincide.

Lemma 6.2.1. If M →∗bar N then can(M) →∗bar can(N). In other words if M →∗bar

· →can N then M →can · →∗bar N .

Proof. This is a consequence of Proposition 6.1.3.

Lemma 6.2.2. If M is canonical and M →bar ·
i−→β N then M i−→β · →∗bar N .

Proof. By a simple induction on the reductions. The key idea is that asM is canonical
→bar can not create any β-redex: we don’t have any reduction of the form (λx.P +p

λx.P ) Q→bar (λx.P ) Q→β P
[
Q/x

]
or (λx.P +1 R) Q→bar (λx.P ) Q→β P

[
Q/x

]
.

Proposition 6.2.3. If M (→β/≡+
∪ →bar)

∗
N then can(M)→∗βc · →∗bar can(N).

Proof. First observe that if M is canonical and M →∗bar · →βc N then the previous
lemma gives M i−→β · →∗bar · →can N hence M i−→β · →can · →∗bar N by Lemma 6.2.1 and
M →∗βc · →∗bar N by Theorem 3.2.3. Now if M (→β/≡+

∪ →bar)
∗
N then Lemma 6.2.1

and Theorem 3.2.3 give

can(M) = M0 →∗bar M
′
0 →βc M1 →∗bar M

′
1 →βc ...→βc Mn →∗bar M

′
n = can(N)
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where all the terms Mi and M ′i are canonical. By an easy induction on n we get that
can(M)→∗βc · →∗bar can(N).

To deal with →I it is convenient to observe that the reduction →∗I has an inductive
characterisation.

Proposition 6.2.4. The reduction →∗I is inductively given by

x→∗I x
M →∗I N

λx.M →∗I λx.N
M →∗I N M ′ →∗I N ′

M M ′ →∗I N N ′

M1 →∗I N1 M2 →∗I N2

M1 +pM2 →∗I N1 +p N2

M →∗I N1 M →∗I N2

M →∗I N1 +p N2

Proof. Let us write � the reduction defined by these rules, we want to prove that it
is equal to the reduction →∗I . First an easy induction gives that � ⊂ →∗I : the cases of
the context rules are immediate and for the last rule if M →∗I N1 and M →∗I N2 then
M →I M+pM →∗I M1 +pM →∗I M1 +pM2. Conversely to prove→∗I ⊂� we reason by
induction on the length of the reduction →∗I . The reduction � is reflexive, and we need
to show that if M � · →I N then M � N , which is again easily achieved by induction
on �.

We want to show that →I can be performed before the other barycentric transforma-
tions: if M →∗bar · →∗I N then M →∗I · →∗bar N . This is not entirely straightforward. If
we have for instance

(M +p N) +q P →bar M +pq (N + q−pq
1−pq

P )→I M +pq ((N + q−pq
1−pq

P ) +r (N + q−pq
1−pq

P ))

we can not directly duplicate the sum N + q−pq
1−pq

P in the original term. We need to
duplicate N and P separately:

(M+pN)+qP →∗I (M+p(N+rN))+q(P+rP )→∗bar M+pq((N+ q−pq
1−pq

P )+r(N+ q−pq
1−pq

P )).

Lemma 6.2.5. IfM1 +pM2 →∗I N then there are terms N1 and N2 such thatMi →∗I Ni
for i ∈ {1, 2} and N1 +p N2 →∗bar N .

Proof. We reason by induction on →∗I , and there are two possible cases. We may have
directly N = N1 +p N2 with Mi →∗I Ni for i ∈ {1, 2}. Otherwise we have N = N1 +q N2

with M1 +pM2 →∗I Nj for j ∈ {1, 2} and by induction hypothesis there are terms N1,1,
N1,2, N2,1 and N2,2 such that Mi →∗I Ni,j and N1,j +p N2,j →∗bar Nj . Then we have
Mi →∗I Ni,1 +q Ni,2 and

(N1,1 +q N1,2) +p (N2,1 +q N2,2)→∗bar (N1,1 +p N2,1) +q (N1,2 +p N2,2)→∗bar N1 +q N2.

Lemma 6.2.6. If M →∗bar · →∗I N then M →∗I · →∗bar N .

Proof. If we prove that whenever M →bar · →∗I N we have M →∗I · →∗bar N then we
can get the proposition by induction on the length of the reduction→∗bar. This can be done
by a simple induction on the reduction→bar. If the context of the reduction is not empty
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the result is immediate by induction on→∗I . Otherwise there are six cases corresponding
to the six reductions →γ , →α, ←α, ←I , →Z and ←Z . They are all immediate thanks to
the previous lemma (remark that most cases are actually easy by induction hypothesis,
and the lemma is mostly useful for the associativity cases). For instance ifM2+pM1 →bar

M1 +1−pM2 →∗I N then the lemma gives terms N1 and N2 and we have M2 +pM1 →∗I
N2 +p N1 →bar N1 +1−p N2 →∗bar N .

Together these results ensure that the use of →bar can be postponed until the end of
the reduction.

Proposition 6.2.7. If M →∗β/≡ N then M (→β/≡+
∪ →I)

∗ · →∗bar can(N).

Proof. If M →∗β/≡ N then M (→β/≡+
∪ →I ∪ →bar)

∗
N and using Theorem 3.2.3,

Proposition 6.1.3 for →∗I and its consequence Proposition 6.2.1 we can canonicalise
this reduction to get can(M) (→βc ∪ →I ∪ →bar)

∗
can(N). From Proposition 6.2.3 and

Lemma 6.2.6 we deduce can(M) (→βc ∪ →I)
∗ · →∗bar can(N).

We proved that except for→I , the equivalence ≡bar does not influence the reductions.
If we prove that →β/≡+

∪ →I is confluent then we also get that →β/≡ is confluent,
and even that →β/≡+

∪ →I is Church-Rosser modulo ≡bar. Yet we will not directly
prove this confluence. Indeed the reduction →β/≡+

∪ →I can still be simplified, and its
confluence will be a consequence of the confluence of →β/≡+

.

7. The Role of Idempotence

In the previous section we showed that among the barycentric reductions →I is the only
one which interfere with β+-reductions. Yet its role is minimal: in this section we will
show that the reduction →β/≡+

is actually at the core of the reduction →β/≡, and that
even the role of →I is a marginal one.

7.1. Confluence Modulo ≡bar

Unlike the other barycentric transformations, the idempotence reduction →I cannot be
delayed to the end of the β-reduction. But it can still be isolated from the rest of the
reduction. Indeed no particular syntactic structure is required to split a term, so all the
splitting can be done at the very beginning of the reduction. Of course we may duplicate
too many terms: in the reduction

(λx.x x) M →β M M →I M (M +pM)

we cannot duplicate M first and then β-reduce to obtain the same result. But we can
extend the reduction, or use the symmetrical reduction ←I to write

(λx.x x) M →I (λx.x x) (M +pM)→β (M +pM) (M +pM)←I M (M +pM).

We will show that if M (→β/≡+
∪ →I)

∗
N then M →∗I · →∗β/≡+

· ←∗I can(N). The
confluence of →β/≡ will follow. To achieve this result we prove that →I commutes with
the other reductions (Propositions 7.1.1, 7.1.4 and 7.1.6).
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Proposition 7.1.1. →I is confluent. In other words ifM ←∗I · →∗I N thenM →∗I · ←∗I
N .

Proof. By a simple induction on →∗I using Proposition 6.2.4.

Lemma 7.1.2.

(1) If λx.M0 →∗I N then there is N0 such that M0 →∗I N0 and λx.N0 →∗+ N .
(2) If M1 M2 →∗I N then there are N1 and N2 such that Mi →∗I Ni for i ∈ {1, 2} and

N1 N2 (→+ ∪ ←I)
∗
N .

Proof. We reason by induction on →∗I using Proposition 6.2.4, the base cases are
immediate.

Otherwise if λx.M0 →∗I Ni for i ∈ {1, 2} and N = N1 +p N2 then by induction
hypothesis we haveM0 →∗I Ni,0 and λx.Ni,0 →∗+ Ni for i ∈ {1, 2}, soM0 →∗I N1,0+pN2,0

and λx.(N1,0 +p N2,0)→+ λx.N1,0 +p λx.N2,0 →∗+ N1 +p N2.
Similarly if M1 M2 →∗I Ni for i ∈ {1, 2} and N = N1 +p N2 then by induction

hypothesis we have terms Ni,j with Mj →∗I Ni,j and Ni,1 Ni,2 (→+ ∪ ←I)
∗
Ni. The

confluence of→I (Proposition 7.1.1) gives a term N ′2 such that Ni,2 →∗I N ′2 and we have
M1 →∗I N1,1 +p N2,1, M2 →∗I N ′2 and (N1,1 +p N2,1) N ′2 →+ N1,1 N

′
2 +p N2,1 N

′
2 ←∗I

N1,1 N1,2 +p N2,1 N2,2 with N1,1 N1,2 +p N2,1 N2,2 (→+ ∪ ←I)
∗
N1 +p N2.

Lemma 7.1.3.

(1) If λx.M1 +p λx.M2 →∗I N then λx.(M1 +pM2)→∗I · →∗+ N .
(2) If M1 P +pM2 P →∗I N then (M1 +pM2) P →∗I · (→+ ∪ ←I)

∗
N .

Proof. We only detail the case of the application, which is the most complicated. We
reason by induction on →∗I using Proposition 6.2.4. There are two possible cases.

If M1 P +p M2 P →∗I N1 +p N2 with Mi P →∗I Ni for i ∈ {1, 2} then according to
the previous lemma there are N ′1, N ′2, Q1 and Q2 such that Mi →∗I N ′i , P →∗I Qi and
N ′i Qi (→+ ∪ ←I)

∗
Ni for i ∈ {1, 2}. By the confluence of →I there is Q such that

Qi →∗I Q, hence Q←∗I Qi and N ′i Q (→+ ∪ ←I)
∗
Ni. Then we have (M1 +pM2) P →∗I

(N ′1 +p N
′
2) Q→+ N ′1 Q+p N

′
2 Q (→+ ∪ ←I)

∗
N1 +p N2.

If M1 P +p M2 P →∗I N1 +q N2 with M1 P +p M2 P →∗I Ni for i ∈ {1, 2} then by
induction hypothesis (M1 +p M2) P →∗I Ri (→+ ∪ ←I)

∗
Ni, and (M1 +p M2) P →∗I

R1 +q R2 (→+ ∪ ←I)
∗
N1 +p N2.

Proposition 7.1.4. If M →+ · →∗I N then M →∗I · (→+ ∪ ←I)
∗
N .

Proof. We reason by induction on →∗I (using Proposition 6.2.4). If the context of the
reduction →+ is empty then the result is immediately given by the previous lemma.
Otherwise the result is given by induction hypothesis.

We have a similar result for the β-reduction.

Lemma 7.1.5. IfM0

[
P/x

]
→∗I N then there are terms N0 and Q such thatM0 →∗I N0,

P →∗I Q and N0

[
Q/x

]
←∗I N .
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Proof. We reason by induction on→∗I . In any case remark that ifM0 = x then P →∗I N
and we choose N0 = x and Q = N , and if M0 = y 6= x then y →∗I N and we choose
N0 = N (and necessarily x is not free in N0). Otherwise we detail the different cases of
the induction.

— IfM0

[
P/x

]
→∗I Ni for i ∈ {1, 2} and N = N1 +pN2 then by induction hypothesis we

have terms Ni,0 and Qi such that M0 →∗I Ni,0, P →∗I Qi and Ni,0
[
Qi/x

]
←∗I Ni. As

→I is confluent (Proposition 7.1.1) there is Q such that Qi →∗I Q so M0 →∗I N1,0 +p

N2,0, P →∗I Q and (N1,0+pN2,0)
[
Q/x

]
←∗I N1,0

[
Q1/x

]
+pN2,0

[
Q2/x

]
←∗I N1+pN2.

— The other cases are immediate whenM0 is not a variable. For instance ifM0

[
P/x

]
=

λy.R and N = λy.N ′ with R →∗I N ′ then necessarily M0 = λy.M ′0 and R =

M ′0
[
P/x

]
, so by induction hypothesis we haveM ′0 →∗I N ′0, P →∗I Q andN ′0

[
Q/x

]
←∗I

N ′, hence M0 →∗I λy.N ′0 and (λy.N0)
[
Q/x

]
←∗I N .

Proposition 7.1.6. If M →β · →∗I N then M →∗I · (→β ∪ ←I)
∗
N .

Proof. We reason by induction on →∗I . In any case if the context of the reduction →β

is empty, i.e. if we have (λx.M) P →β M
[
P/x

]
→∗I N , then the previous lemma gives

terms N0 and Q and we have (λx.M0) P →∗I (λx.N0) Q→β N0

[
Q/x

]
←∗I N . Otherwise

the result is immediate by induction hypothesis.

We proved that the reduction →I commutes with all the reductions we are interested
in, but we need to use the reduction ←I to get these commutations. For now given a
reduction M (→β ∪ →+ ∪ →I)

∗
N we can get a reduction M →∗I · (→β ∪ →+ ∪ ←I)

∗

N . We still need the following property.

Proposition 7.1.7. If M ←∗I · →∗βc N with M canonical then M →∗βc · ←∗I N .

Proof. The proposition is given by the equivalent of Lemmas 6.2.1 and 6.2.2 for the
single reduction ←I .

With these results we can give the expected characterisation of the reduction with
idempotence.

Proposition 7.1.8. If M (→β/≡+
∪ →I)

∗
N then M →∗I · →∗β/≡+

· ←∗I can(N).

Proof. If M (→β/≡+
∪ →I)

∗
N then Theorem 3.2.3 and Proposition 6.1.3 for →∗I

give thatM →∗+ can(M) (→β ∪ →+ ∪ →I)
∗

can(N). Then Propositions 7.1.1, 7.1.4 and
7.1.6 give that M →∗I · (→β ∪ →+ ∪ ←I)

∗
can(N), thus M →∗I · →can · (→βc ∪ ←I)

∗

can(N) and with the previous proposition we have M →∗I · →can · →∗βc · ←∗I can(N).

Corollary 7.1.9. If M →∗β/≡ N then M →∗I · →∗β/≡+
· →∗bar can(N).

Proof. This is a consequence of the previous proposition and Proposition 6.2.7.

Now that we have shown that the reductions modulo ≡bar are just reductions where
the barycentric rules are applied at the beginning and at the end, we can easily prove
some confluence properties.
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Theorem 7.1.10. The reduction →β/≡ is confluent.

Proof. If M →∗β/≡ Ni for i ∈ {1, 2}, since Ni ≡ can(Ni) and if there is P such
that Ni →∗β/≡ P then can(Ni) →∗β/≡ P , we can assume w.l.o.g. that the terms Ni are
canonical. Now according to the previous corollary for all i ∈ {1, 2} there are terms Mi

and N ′i such that M →∗I Mi →∗β/≡+
N ′i →∗bar Ni. But according to Proposition 7.1.1

→I is confluent so there is M ′ with Mi →∗I M ′. Then we have M ′ (→β/≡+
∪ →bar)

∗
Ni

so according to Proposition 6.2.3 there are terms M ′i such that M ′ →∗β/≡+
M ′i →∗bar

can(Ni) = Ni. Finally the confluence of →∗β/≡+
(Theorem 3.2.2) gives a term P such

that M ′i →∗β/≡+
P , and we have Ni →∗β/≡ P .

M

M1 M2

N ′1 M ′ N ′2

N1 M ′1 M ′2 N2

P

split∗ split∗

(
β/≡+

)∗ (
β/≡+

)∗

bar∗ bar∗

split∗ split∗(
β/≡+

)∗ (
β/≡+

)∗

bar∗ bar∗(
β/≡+

)∗ (
β/≡+

)∗

(7.1.1)

(6.2.3) (6.2.3)
(3.2.2)

Corollary 7.1.11. The reduction →β/≡+
∪ →I is Church-Rosser modulo ≡bar.

Proof. If M1 and M2 are in relation for the reflexive symmetric transitive closure of
→β/≡+

∪ →I ∪ ≡bar then according to the confluence of →β/≡ there is N such that
Mi →∗β/≡ N , and Proposition 6.2.7 gives terms Ni with Mi (→β/≡+

∪ →I)
∗
Ni →∗bar

can(N), hence N1 ≡bar N2.

7.2. Generalised Standardisation Theorem

We can use this characterisation of the reduction modulo ≡bar given by Corollary 7.1.9
to recover a standardisation result.

Proposition 7.2.1. If M →∗β/≡ N then there exists N ′ such that N →∗β/≡ N ′ and
can(M)→∗I ·�S N

′.

Proof. If M →∗β/≡ N then Corollary 7.1.9 gives terms M ′ and N ′ such that M →∗I
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M ′ →∗β/≡+
N ′ →∗bar can(N). According to Theorem 5.2.3 there isN ′′ such thatN ′ →∗β/≡+

N ′′ and can(M ′) �S N ′′, hence can(N) →∗β/≡ N ′′. Besides Proposition 6.2.1 gives
can(M)→∗I can(M ′) so can(M)→∗I ·�S N

′′.

This is not the best result we can achieve. We claimed that the idempotence reduction
→I , unlike the other barycentric transformations, cannot be pushed at the end of the
reductions and our counter-example was that if M →β N then

M →I M +pM →β N +pM.

This is the same reason why the direct standardisation fails: the idempotence may du-
plicate β-redexes, and we may choose to reduce only some of them, in which case the
duplication necessarily occurs before the β-reduction. Then the same solution works:
we can extend the original reduction by reducing the remaining copies of duplicated β-
redexes (here N +p M →β N +p N) to get a reduction which can be simplified (here
M →β N →I N +p N).

Lemma 7.2.2. IfM →∗I ·�S N then there is N ′ such that N →∗β/≡ N ′ andM →∗β/≡+

N ′.

Proof. We reason by induction on �S .

— If M →∗I M ′1 +p M
′
2 �S N1 +p N2 with M ′i �S Ni then either M = M1 +p M2

with Mi →∗I M ′i and the result is immediate by induction hypothesis, or M →∗I Mi

for i ∈ {1, 2}. In this second case by induction hypothesis there are terms N ′i such
that Ni →∗β/≡ N ′i and M →∗β/≡+

N ′i . As →∗β/≡+
is confluent there is N ′ such

that N ′i →∗β/≡+
N ′, hence M →∗β/≡+

N ′ and N1 +p N2 →∗β/≡ N ′1 +p N
′
2 →∗β/≡+

N ′ +p N
′ ←I N ′.

— If M →∗I λx1...xn.y P
′
1 ... P

′
m �S λx1...xn.y Q1 ... Qm with P ′i �S Qi then neces-

sarily M = λx1...xn.y P1 ... Pm with Pi →∗I P ′i and the result follows by induction
hypothesis.

— IfM →∗I λx1...xn.(λy.v
′) P ′ Q′1 ... Q

′
m �S N with can

(
λx1...xn.v

′
[
P ′/x

]
Q′1 ... Q

′
m

)
�S

N then necessarily M = λx1...xn.(λy.v) P Q1 ... Qm with v →∗I v′, P →∗I P ′ and
Qi →∗I Q′i. Then λx1...xn.v

[
P/x

]
Q1 ... Qm →∗I λx1...xn.v

′
[
P ′/x

]
Q′1 ... Q

′
m so

can
(
λx1...xn.v

[
P/x

]
Q1 ... Qm

)
→∗I can

(
λx1...xn.v

′
[
P ′/x

]
Q′1 ... Q

′
m

)
and by in-

duction hypothesis there isN ′ such thatN →∗β/≡ N ′ and can
(
λx1...xn.v

[
P/x

]
Q1 ... Qm

)
→∗β/≡+

N ′, thus M →∗β/≡+
N ′.

— The last case is also immediate by induction hypothesis.

Theorem 7.2.3. IfM →∗β/≡ N then there isN ′ such thatN →∗β/≡ N ′ and can(M)·�S

N ′.

Proof. According to Proposition 7.2.1, if M →∗β/≡ N then there is N ′ with N →∗β/≡
N ′ and can(M) →∗I · �S ·N ′, and the previous lemma gives a term N ′′ such that
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N ′ →∗β/≡ N ′′, hence N →∗β/≡ N ′′, and can(M) →∗β/≡+
N ′′. Then the standardisation

theorem (Theorem 5.2.3) gives a term N ′′′ such that N ′′ →∗β/≡ N ′′′, hence N →∗β/≡ N ′′′,
and can(M) �S N

′′′.

Corollary 7.2.4. If N is a canonical β-normal form then M →∗β/≡ N if and only if
can(M) �S · ≡bar N .

Proof. First if can(M) �S · ≡bar N then obviously M →∗β/≡ N .
Conversely if N is a canonical β-normal form and M →∗β/≡ N then according to

the previous theorem there is N ′ such that N →∗β/≡ N ′ and can(M) �S N ′. Using
Corollary 7.1.9 we get N →∗I · →∗β/≡+

· →∗bar N ′ (as N ′ is necessarily canonical),

and by canonicalising all these reductions (Proposition 6.1.3 and Theorem 3.2.3) we get
N →∗I N ′′ →∗βc · →∗bar N

′ with N ′′ canonical. As N is canonical and β-normal we can
check that N ′′ is also β-normal, hence N →∗I · →∗bar N

′, i.e. N ≡bar N
′.

With this result we can simplify the characterisation of the equivalence induced by
→β/≡. As →β/≡ is confluent (Theorem 7.1.10) we know that two terms M1 and M2

are in relation if and only if there is N such that Mi →∗β/≡ N for i ∈ {1, 2}. With the
previous theorem we can find a term N ′ such thatM1 →∗β/≡+

N ′ and N →∗β/≡ N ′, thus

M2 →∗β/≡ N ′ and M2 →∗I · →∗β/≡+
· ≡bar N

′. Unfortunately we cannot use our results
on this last reduction to prove that →∗β/≡+

is Church-Rosser modulo ≡bar. Indeed we

can find some term N ′′ such that M2 →∗β/≡+
N ′′ and M1 →∗β/≡ N ′′, but we cannot

enforce M1 →∗β/≡+
· ≡bar N

′′.

M1 M2

N ·

N ′ ·

N ′′

(β/≡)
∗

(β/≡)
∗

(β/≡)
∗

split∗

(
β/≡+

)∗
bar∗

(
β/≡+

)∗

(β/≡)
∗(β/≡)

∗
(
β/≡+

)∗

In the end we do not know if the reductions →∗β/≡+
and →∗β/≡+w

are Church-Rosser
modulo ≡bar or if the reduction →I is really necessary.
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8. Conclusion: Equational Theories

8.1. Definition

A motivation for this work was to be able to define a notion of equational theory in
the probabilistic λ-calculus. To this purpose we defined all our basic relations on terms
under arbitrary context, and we can now give a straightforward definition of probabilistic
λ-theories.

Definition 8.1. A λ+-theory =T is a congruence on Λ+ such that:

— (λx.M) N =T M
[
N/x

]
;

— λx.(M +p N) =T λx.M +p λx.N ;
— (M +p N) P =T M P +p N P ;
— M +p N =T N +1−pM ;
— (M +p N) +q P =T M +pq (N + q−pq

1−pq
P ) if pq 6= 1;

— M +pM =T M ;
— M +1 N =T M .

Equivalently a λ+-theory is a congruence =T such that →β/≡ ⊂ =T .

Proposition 8.1.1. We note =β+ the reflexive symmetric transitive closure of →β/≡.
Then =β+ is the least λ+-theory for the inclusion, and

M =β+ N ⇔ can(M)→∗I · →∗βc · ≡bar · ←∗βc can(N).

Proof. Every theory contains →β/≡ and is closed by reflexivity, symmetry and tran-
sitivity so it contains =β+. Besides it is easy to check that =β+ is a congruence so it
is a theory. As for its characterisation, we already stated that →β/≡ is confluent (The-
orem 7.1.10) so if M1 =β+ M2 then there is N such that Mi →∗β/≡ N for i ∈ {1, 2},
and at the end of the previous Section we described how to get a term N ′ such that
M1 →∗β/≡ N ′ and can(M2)→∗I · →∗β/≡+

· →∗bar N
′. We can canonicalise these relations

using Proposition 6.1.3 and Theorem 3.2.3 to get the expected result.

8.2. Example: the Observational Equivalence

In the deterministic λ-calculus, an important example of theory is the observational
equivalence. A term is called solvable if its head reduction normalises, and unsolvable
otherwise; and two terms M and N are observationally equivalent if for every context C
either C[M ] and C[N ] are both solvable or they are both unsolvable. The probabilistic
notion matching the solvability is the convergence probability. In the usual setting with
probabilistic reductions this probability is defined as the sum of all the normalising head
reductions:

P⇓(M) =
∑

M
p1−→...

pn−→h

n∏
i=1

pi

where h stands for the head normal forms λx1...xn.y P1 ... Pm. It is interesting to remark
that we can give an alternative definition of the same probability in our setting. Indeed
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we have

P⇓(M) = sup{p | ∃H,N ∈ Λ+ : M =β+ H +p N,H hnf}
where here we say that a term λx1...xn.y P1 ... Pm is in head normal form, but also
that H1 +p H2 is in head normal form if H1 and H2 are both head normal forms. The
equivalence of the two definitions is not trivial and relies on the characterisation of
=β+ and the standardisation theorem. More details can be found in the author’s thesis
(Leventis 2016). Then a probabilistic observational equivalence can be defined following
the deterministic construction.

Definition 8.2. The observational equivalence =obs is given by

M =obs N ⇔ ∀C,P⇓(C[M ]) = P⇓(C[N ]).

Proposition 8.2.1. =obs is a λ+-theory.

Proof. If M =β+ N then from the definition of the convergence probability it is clear
that P⇓(M) = P⇓(N). Besides if M =β+ N then C[M ] =β+ C[N ] for any context C
so two equivalent terms for =β+ are observationally equivalent. Moreover if M =obs N

then we obviously have C[M ] =obs C[N ] for any context C so =obs is a congruence.

Our description of the probabilistic λ-calculus is closer to the usual operational se-
mantics of the deterministic calculus, and as such it enjoys many similar properties. It
can be used to build many of the usual probabilistic constructions while being based on
simple and pure relations on terms, not indexed by any external probability. As such
it is also a good starting point to extend some deterministic constructions which were
incompatible with the necessity of requiring a particular reduction strategy. Further work
can be found in the author’s thesis (Leventis 2016). We defined a theory corresponding
to the observational equivalence, and it is known that in the deterministic calculus this
theory corresponds both to the equality of the infinitely extensional Böhm trees and to
the maximal consistent sensible theory. All these notions can be given a probabilistic
extension which preserves this correspondence.
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