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Introduction

This report presents the results of my internship at the PPS lab, under the
supervision of Thomas Ehrhard. The subject of this internship was motivated by
the temporary presence of Antonino Salibra, who worked on the incompleteness
of some classes of λ-models.

The purpose was to study and compare two kinds of λ-models: algebraic mod-
els, and more speci�cally lambda abstraction algebras, and categorical models.
The �rst ones have a simple structure and are easier to study, and for that
reason there are many known results about them. But the drawback of this
simplicity is that actual examples of algebraic models are not easy to �nd. On
the other hand, categorical models can be built quite easily, but these models
are complex and cannot be studied in a global way. Works on categorical models
are most often the study of speci�c constructions.

In the �rst part of this report we de�ne the objects we will study. We explain
what is the λ-calculus, what are a theory and a model of a theory. Then we
eplicit the constructions of lambda abstraction algebra and categorical models.

In a second part we will present the results obtained by Antonino Salibra
about algebraic models, before trying to apply the to the categorical approach.

Part I

Basic notions

1 Models of the λ-calculus

1.1 λ-terms and λ-calculus

The λ-calculus is perfomed on particular terms, the λ-terms. The set of λ-
terms Λ is de�ned inductively, given an in�nite set of variables Var:

t, u = x ∈ Var | λx.t | tu

A λ-term is to be thought as a function: the term tu is the application of the
function t to the argument u, and the abstraction λx.t is the function which to
x associates t. This is formalized by the core rule of the λ-calculus, the β-rule:

(λx.t)u =β t[x := u]

where t[x := u] is the term t where the occurences of x are replaced by the term
u. For instance (xyz)[y := t] = xtz. This is called a substitution.
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The formal de�nition of the substitution must be made carefully: we cannot
accept for instance that (λx.λy.xy)y =β λy.yy. This because in a λ-term, every
occurence of a variable is either related to a speci�c abstraction symbol, or to
none: in the term (λx.(λx.x)x)x, the �rst occurence of x refers to the second
abstraction, its second occurence refers to the �rst abstraction, and its last
occurence is not related to any abstraction. The �rst two occurences are said
to be bound while the last one is free. And when we perform a substitution, we
must not change the signi�cation of the variables. In the example above, the
last y which is free in the right term is bound after the substitution, and for
this reason the equality does not hold.

Intuitively, the name of the variable used to de�ne a function does not mat-
ter: the functions λx.zxz and λy.zyz are the same. On the other hand, one
cannot change the name of a free variable. So we introduce a new rule, the
α-rule:

λx.t =α λy.t[x := y]

where the susbtitution [x := y] is easier to de�ne than in the general case
[x := u].

Then to use the β-rule on a term (λx.t)u, we can change the names in t
of the variables both used in abstractions in t and free in u, then perform the
substitution.

The α- and β-rules form the core of the λ-calculus, but we are interested in
what other equalities we can add to this calculus and their consequences. This
is what the study of λ-theories is about.

1.2 Theories in the λ-calculus

De�nition 1.1. A λ-theory is a set of equations T between λ-terms that de�nes
an equality, meaning such that for all t, u, v, w ∈ Λ:

• t =T t

• t =T u⇒ u =T t

• t =T u ∧ u =T v ⇒ t =T v

• t =T u⇒ λx.t =T λx.u for all x ∈ Var

• t =T u ∧ v =T w ⇒ tu =T vw

where t =T u means t = u ∈ T . To simplify the description of a theory, for any
set T of equations, we will call "the theory T " the least set that contains T and
verify the above conditions.

To be a λ-theory, T must also respect the α and β rules: if from these rules
we have t =αβ u then t =T u.
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The least λ-theory is then given by only the α and β rules. We note λβ this
theory.

The theory that equates every pair of terms is called the inconsistent theory,
and noted ∇.

Working on λ-theories is di�cult, and we lack tools to study the structure of
the class of all λ-theories. For this reason we consider well-known objects and
transpose the semantic of the lambda-calculus to them: this is what we call a
model.

1.3 Models of a theory

De�nition 1.2. A model M of a theory T is a set of elements M given with
a function [.]M : Λ → M such that if t =T u then [t]M = [u]M. We call model
of the λ-calculus a model of λβ.

Conversely, for any modelM of the λ-calculus, we call the theory ofM the
theory Th(M) = {t =T u | [t]M = [u]M}.

Our goal is to build a particular class of model that is both simple to study
and complete, meaning that for every T 6= ∇ there is a modelM in this class
such that T = Th(M). It would then have a structure similar to the one of the
class of λ-theories and provide us with tools to study it.

Many models are build using either universal algebras or categories. We will
see how these particular models work.

2 Algebraic models

2.1 Universal algebras

A universal algebra is de�ned over a type Σ, also called a signature. A type is
a �nite set of symbols, each of them being given an arity.

De�nition 2.1. An algebra A of type Σ is a couple (A,F ) where A is a set of
elements and F is a set of functions such that there is a function .A : Σ → F
and for every f ∈ Σ of arity n, fA is a function An → A.

If the arity of f ∈ Σ is 0 then fA is a function A0 → A: we rather say that
fA is an element of A.

We write A = (A, f1, ..., fn) when A is an algebra of type {f1, ..., fn}. This
notation does not explicit the arity of the functions.

2.2 Lambda Abstraction Algebras

De�nition 2.2. A Lambda Abstraction Algebra (LAA) is an algebra (A, ·, {λx |
x ∈ Var}, {x | x ∈ Var}) for a set of variables Var, where the arity of · is 2 and
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for all x ∈ Var, the arity of λx is 1 and the arity of x is 0. Besides it must satisfy
for any a, b, c ∈ A, x, y, z ∈ Var:

• (λx.x)a = a

• (λx.y)a = y if y 6= x

• (λx.a)x = a

• (λx.(λx.a))b = λx.a

• (λx.ab)c = ((λx.a)c)((λx.b)c)

• (λy.b)z = b⇒ (λx.(λy.a))b = λy.((λx.a)b) (y 6= z, x 6= y)

• (λy.a)z = a⇒ λx.a = λy.((λx.a)y)

The �rst �ve rules explicit how the substitution works. The last one is the
α-conversion. Note that in a LAA, the elements are not terms, so we cannot
de�ne inductively the set of free variables like we do in Λ. That is why we say
here that a variable y is free in a ∈ A if there exists z 6= y such that (λy.a)z = a.

Note that we use here two di�erent kinds of variables. a, b, c represent any
element in the algebra A. On the other hand, as the type of A is ∪x∈Var{λx, x},
what we note x is actually xA the particular element in A associated with the
constant symbol x.

We have then an immediate way to represent λ-terms:

• [x] = x

• [λx.t] = λx([t])

• [tu] = [t] · [u]

As said before, we deal here only with LAAs. However the following con-
structions exists for all algebras, not just LAAs, and are useful to study any
algebraic model of rhe λ-calculus.

2.3 Product of algebras

De�nition 2.3. Given a type Σ = {f1, ..., fn} and two algebras A,B of type Σ,
the product A×B is (A×B, fA×B1 , ..., fA×Bn } with fA×B((a1, b1), ..., (ap, bp)) =
(fA(a1, ..., ap), f

B(b1, ..., bp)).

The product of two LAAs A × B is clearly still a LAA, and Th(A × B) =
Th(A) ∩ Th(B).
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2.4 Congruences

De�nition 2.4. An equivalence relation on a set X is a subset R of X × X
such that for all x, y, z ∈ X:

• (x, x) ∈ R

• if (x, y) ∈ R then (y, x) ∈ R

• if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R

De�nition 2.5. A congruence θ on an algebra (A,Σ) is an equivalence relation
onA such that for all f ∈ Σ, if ∀i ≤ p, (ai, bi) ∈θ then (f(a1, ..., ap), fi(b1, ..., bp)) ∈θ.

We note ∇ = A×A and ∆ = {(a, a) | a ∈ A}.

Given a congruence θ, A/θ is the algebra de�ned by A/θ = {cl(a) | a ∈ A},
with cl(a) = {b ∈ A | (a, b) ∈θ}, and fA/θ(cl(a)) = cl(fA(a)).

We then see that λβ de�nes a congruence on the LAA (Λ, ·, λx, x) and that
every theory is a congruence on Λ/λβ.

3 Categorical models

3.1 Categories and CCC

De�nition 3.1. A category C is de�ned by:

• a class of objects Obj(C)

• for every X,Y ∈ Obj(C) a class C(X,Y ), whose elements are called maps

• for every X ∈ Obj(C) a particular map IdX ∈ C(X,X), the identity

• for everyX,Y, Z ∈ Obj(C), a composition operator ◦ : C(X,Y )×C(Y, Z)→
C(X,Z)

such that for every X,Y, Z, T ∈ Obj(C), f ∈ C(X,Y ), g ∈ C(Y, Z), h ∈
C(Z, T ),

f ◦ IdX = IdY ◦ f = f (h ◦ g) ◦ f = h ◦ (g ◦ f)

The idea behind that de�nition is that the objects play the role of sets and
the elements of C(X,Y ) behave like actual maps between X and Y . For this
reason we note f : X → Y when f ∈ C(X,Y ). However the comparison is not
always accurate, and can sometimes be misleading.
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De�nition 3.2. A category C is cartesian if there is:

• a terminal object, i.e. an object T such that for everyX ∈ Obj(C),#C(X,T ) =
1

• an operation & : Obj(C)×Obj(C)→ Obj(C)

• an operation 〈., .〉 : C(Y,X1)× C(Y,X2)→ C(Y,X1&X2)

• particular maps πi : X1&X2 → Xi

such that

πi ◦ 〈f1, f2〉 = fi 〈f1, f2〉 ◦ g = 〈f1 ◦ g, f2 ◦ g〉 〈π1, π2〉 = IdX1&X2

De�nition 3.3. A cartesian category C is a cartesian closed category (CCC)
if for every X,Y ∈ Obj(C) there is for all X,Y ∈ Obj(C):

• a map object X ⇒ Y

• an evaluation map EvX,Y : (X ⇒ Y )&X → Y

• a function Λ : C(Z&X,Y )→ C(Z,X ⇒ Y ) for all Z ∈ Obj(C)

such that forall f : Z&X → Y , g : Z ′ → Z

Ev ◦ (Λ(f)&Id) = f Λ(f) ◦ g = Λ(f ◦ (g&IdX)) Λ(Ev) = IdX⇒Y

where for f1 : X1 → Y1, f2 : X2 → Y2, we de�ne f1&f2 : X1&X2 → Y1&Y2 as
〈f1 ◦ π1, f2 ◦ π2〉.

Intuitively, the elements of the map object X ⇒ Y represent the maps of
C(X,Y ), and the evaluation applies a map X → Y to an element of X. Once
again, this intuition does not give an accurate understanding of the situation,
and we will see later an exemple where the objects of C are sets but there is no
bijection between X ⇒ Y and C(X,Y ).

For any object X and any set I, the object XI and the projections πi :
XI → X for i ∈ I are intuitively de�ned. Note that while the �nite product
X{i1,...,ip} = Xp = ((X&X)&...)&X is always de�ned in a cartesian category,
XI does not always exists for I in�nite.

Remember that even though we do not use the symbol �&�, when we perform
the product of objects, this is always the product of the category. When our
objects are sets, Xp is to be understood as ((X&X)&...)&X and not ((X ×
X)× ...)×X.
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A cartesian category is not a category to which we add some structure: being
cartesian is universal property, meaning there is a unique way to de�ne the prod-
uct. More precisely, if there are two di�erent products in a cartesian category,
then they are isomorphic, and the corresponding isomorphism is unique.

The same holds for cartesian closed categories.

3.2 Re�exive object and model of λ-calculus

In the λ-calculus, the λ-terms represent functions Λ/λβ → Λ/λβ, so in a
CCC, we can build a model of the λ-calculus if we �nd an object U that is
somehow linked to U ⇒ U .

De�nition 3.4. A re�exive objet in a CCC C is a triple (U, app, lam) with
U ∈ Obj(C), app : U → U ⇒ U and lam : U ⇒ U → U such that app ◦ lam =
IdU⇒U .

Intuitively, what we want to do is, given a re�exive object U , interpret U as
the set of all closed λ-terms, and for every �nite subset of Var Γ = {x1, ..., xn}
interpret any terms t whose free variables are all in Γ as the map UΓ → U such
that [t]u1...un = t[x1 := u1, ..., xn := un].

Here we build our model assuming we can perform a countable cartesian
product, so the object &VarU is de�ned. Then we de�ne M = C(UVar, U) and:

• [x] = πx

• [λx.t] = lam ◦ Λ([t] ◦ ηx)

• [tu] = Ev ◦ 〈app ◦ [t], [u]〉

where ηx : (UVar)&U → UVar is de�ned by πy ◦ ηx = π2 if y = x, πy ◦ π1

otherwise.

Any categorical model can be seen as a LAA. We just extend the de�nition
above to any map f, g ∈ C(UVar, U):

• x = πx

• λx.f = lam ◦ Λ(f ◦ ηx)

• g · f = Ev ◦ 〈app ◦ g, f〉
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Part II

Study of classes of models

4 Completeness criterion for algebraic models

Antonino Salibra has shown that a complete class of algebraic models must
contain decomposable models.

4.1 Factor congruences

The decomposability of an algebra into a product is equivalent to the existence
of particular congruences, that correspond to the equalities on each member of
the product.

De�nition 4.1. A pair of complementary factor congruences is a pair (θ, θ)
such that

θ ∩ θ= ∆ θ ◦ θ= ∇

where θ ◦ θ= {(a, b) | ∃c ∈ A : (a, c) ∈θ ∧(c, b) ∈θ}

Lemma 4.1. If θ and θ are complementary factor congruences, then for all
a, b ∈ A there is a unique c ∈ A such that a θ c θ b.

Proof. Since θ ◦ θ= ∇, for all a, b ∈ A there is such a c.
For c, c′ ∈ A, if a θ c θ b and a θ c′ θ b then c θ a θ c′ and c θ b θ c′, so

c(θ ∩ θ)c′, c = c′.

Theorem 4.2. If θ and θ are complementary factor congruences, then A '
A/θ ×A/θ.

Proof. Let ϕ : a 7→ (clθ(a), clθ(a)), from the de�nition of congruences ϕ is a
morphism A → A/ θ ×A/ θ. For any a, b ∈ A, let c such that a θ c θ b, then c
does not depoend on the choice of a and b in clθ(a) and clθ(b), and c is the only
element of A such that ϕ(c) = (clθ(a), clθ(b)).

Conversely for any product algebraA×B, the congruences θ = {((a, b1), (a, b2)) |
a ∈ A, b1, b2 ∈ B} and θ = {((a1, b), (a2, b)) | a1, a2 ∈ A, b ∈ B} are factor con-
gruences.

4.2 Central elements in Church algebras

Factor congruences are easier to study in algebras where there exists an �if
then else� structure, i.e. a term function q and two terms 1 and 0 such that

q(1, a, b) = a q(0, a, b) = b
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Such algebras are called Church algebras.
Every LAA is a Church algebra. Indeed we can de�ne q(a, b, c) = (a · b) · c,

1 = λxy.x and 0 = λxy.y. Thus we can restrict our study of factor congruences
to the case of Church algebras.

Then a pair of factor congruences θ, θ is fully de�ned by the element e ∈ A
such that 1 θ e θ 0. Indeed we have a = q(1, a, b) θ q(e, a, b) θ q(0, a, b) = b, so
by lemma 5.1 θ= {(a, b) | q(e, a, b) = b} and θ= {(a, b) | q(e, a, b) = a}.

De�nition 4.2. A central element is an element e ∈ A such that for all a, b, c ∈
A:

• q(e, a, a) = a

• q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c))

• q(e, fA(a1, ..., ap), f
A(b1, ..., bp)) = fA(q(e, a1, b1), ..., q(e, ap, bp)) for all

f ∈ Σ

• q(e, 1, 0) = e

Theorem 4.3. The function e 7→ ({(a, b) | q(e, a, b) = b}, {(a, b) | q(e, a, b) =
a}) is a bijection from the set of central elements of A to the set of pairs of
factor congruences of A.

Proof. For any central element e, let θe = {(a, b) | q(e, a, b) = b}, θe = {(a, b) |
q(e, a, b) = a}. We show that θe is a congruence, the same proof holding for θe.
For a, b, c ∈ A:

• q(e, a, a) = a so a θe a

• if q(e, a, b) = b then q(e, b, a) = q(e, q(e, a, b), a) = q(e, a, a) = a, so b θe a

• if q(e, a, b) = b, q(e, b, c) = c then q(e, a, c) = q(e, a, q(e, b, c)) = q(e, q(e, a, b), c) =
q(e, b, c) = c, so a θe c

θe is an equivalence relation, and the third property of central elements proves
that it is a congruence.

Now if a θe b and a θe b then q(e, a, b) = a and q(e, a, b) = b, so θe ∩ θe = ∆.
And q(e, q(e, a, b), a) = a, q(e, b, q(e, a, b)) = b so a θe q(e, a, b) θe b, θe ◦ θe= ∇.
θe and θe are factor congruences.

We have seen that every pair of factor congruences is of the form (θe, θe).
If (θe, θe) = (θe′ , θe′) then 1 θe q(e, 1, 0) θe 0 and 1 θe q(e

′, 1, 0) θe 0 so e =
q(e, 1, 0) = q(e′, 1, 0) = e′.

From this and theorem 5.2 we deduce that if there exists a central element
di�erent from 0 and 1, then there is a nontrivial pair of factor congruences, and
A ' A/θ ×A/θ is the product of smaller algebras.
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4.3 Completeness criterion

Some theories imply the existence of nontrivial central elements. Actually
the properties an element must have to be central are exactly the common
propeties of 1 and 0, so such a theory is easy to build. Given a λ-term t, let
T1 = {λβ + t = 1}, T2 = {λβ + t = 0}, then t is central in both T1 and T2, and
t is central in the theory T1 ∩ T2.

Now we want t to be di�erent from 1 and 0 in T1 ∩ T2. To ensure that we
need in T1, t 6= 0 and in T2, t 6= 1. It is possible to �nd such a term t, the most
simple being Ω = (λx.xx)(λx.xx). Thus:

Theorem 4.4. In every complete class of algebraic models of the λ-calculus
there exists a decomposable model.

Antonino Salibra has then shown that the models in the Scott-continuous
semantics, the stable semantics or the strongly stable semantics are all simple,
i.e. they only have two congruences, ∆ and ∇, and thus are undecomposable
and, according to this theorem, incomplete.

5 Application to a categorical model: Rel!

Categorical models di�er from algebraic models in that they are more explicit
about the working of the operations of the λ-calculus. The drawback is that
there is no notion such as the one of congruence, since the abstraction and
application are complex constructions and not part of the base structure of the
model, and it is much more di�cult to deduce anything about a category from
its behaviour as a model.

What we can easily do is, given a categorical model, building the correspond-
ing LAA and studying it using the known algebraic results. That is what I have
done with the models of a particular category, Rel!, to prove that the class of
models built from its re�exive objects is incomplete.

5.1 The category Rel

De�nition 5.1. Rel is the category of the sets and relations:

• its objects are all the sets

• Rel(X,Y ) = P(X,Y ), the maps X → Y are the relations between X and
Y

• the composition is R ◦ S = {(α, γ) | ∃β : (α, β) ∈ S ∧ (β, γ) ∈ R}

• the identities are IdX = {(α, α) | α ∈ X}.
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We de�ne the product of objects by &i∈IXi = ∪i∈I({i}×Xi), with projections
πi = {((i, α), α) | α ∈ Xi}, and the product of maps by

〈Ri〉i∈I = {(β, (i, α)) | (β, α) ∈ Ri}i∈I

In particular XI = I ×X.

Rel is fundamentally linear. To get over this linearity we introduce an expo-
nential and extend Rel to a bigger category Rel!.

5.2 The category Rel!

We de�ne the exponential of a set X as !X = Mfin(X) the set of all �nite
multisets of X. A multiset of X is a function m : X → N, and a �nite multiset
is a multiset m such that the support of m supp(m) = {α ∈ X | m(α) > 0} is
�nite.

We note [α1, ..., αp] the multiset α 7→
∑
i≤p δα,αi

and m + n the multiset
α 7→ m(α) + n(α).

To the exponential are associated a promotion and a dereliction:

dX :!X → X = {([α], α) | α ∈ X} pX :!X →!!X = {(m, [m1, ...,mp]) | m = m1+...+mp}

We also de�ne the exponential of a relation !R :!X →!Y = {([α1, ..., αp], [β1, ..., βp]) |
∀i ≤ p, (αi, βi) ∈ R}.

De�nition 5.2. The category Rel! is de�ned by:

• Obj(Rel!) = Obj(Rel)

• Rel!(X,Y ) =Rel(!X,Y )

• R ◦! S = R◦!S ◦ pX

• Id!
X = IdX ◦ dX

We de�ne the same product as in Rel, with projections πi ◦ dX1&X2 , and ∅
is a terminal object, so Rel! is cartesian.

Let

• X ⇒ Y =!X × Y

• Λ(f) = {([γ1, ..., γp], ([α1, ..., αq], β)) | ([(1, γ1), ...(1, γp), (2, α1), ..., (2, αq)], β) ∈
f} for all f ∈Rel!(Z&X,Y )

• Ev = {(([(m,β)],m), β) | m ∈!X ∧ β ∈ Y }

We can easily show that the equations of a cartesian closed category are satis�ed,
so Rel! is a CCC.
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5.3 Incompleteness of Rel!

I have shown that for any re�exive object (U, app, lam) in Rel!, the corre-
sponding model is algebraically undecomposable.

The LAA associated to a re�exive object is A = (A, ·, λx.x)x∈Var with:

• A =Rel!(U
Var, U) = Mfin(Var× U)× U

• x = {([(x, α)], α) | α ∈ U}

• R · S = Ev ◦! 〈app ◦! R,S〉 for all R,S ∈ A

• λx.R = lam ◦! Λ(R ◦! ηx) for all R ∈ A.

Theorem 5.1. A is undecomposable.

The �if then else�. We will show that for the usual �if then else� structure,
i.e. q(R,S, T ) = R · S · T , the only central elements in A are trivial. First we
explicit the de�nition of R · S · T .

In order to simplify the notations, we will omit the symbol �·�.

If we explicit the de�nition of RS, we obtain

RS = {(ρ, α) | ∃ρ1, ..., ρp, σ1, ..., σq ∈ UVar, α1, ..., αp, β1, ..., βq ∈ U :

ρ =
∑
i≤p

ρi +
∑
i≤q

σi ∧ ([α1, ..., αp], ([β1, ..., βq], α)) ∈ app

(∀i ≤ p, (ρi, αi) ∈ R) ∧ (∀i ≤ q, (σi, βi) ∈ S)}

We introduce the notationR! =!R◦pX = {(ρ1+...+ρp, [α1, ..., αp] | ∀i, (ρi, αi) ∈
R}. Then

RS = {(ρ+ σ, α) | ∃m,n ∈!U : (ρ,m) ∈ R! ∧ (σ, n) ∈ S! ∧ (m, (n, α)) ∈ app}

(RS)! = {(
p∑
i=1

ρi,

p∑
i=1

[αi]) | ∃m1, ...,mp, n1, ...,p ∈!U :

∀i ≤ p, (ρi,mi) ∈ R!∧(σi, ni) S
!∧(mi, (ni, αi)) ∈ app}

= {(ρ+ σ,

p∑
i=1

[αi]) | ∃m,n ∈!U : (ρ,m) ∈ R! ∧ (σ, n) ∈ S!

∃m1, ...,mp, ni, ...np ∈!U :

p∑
i=1

mi = m ∧
p∑
i=1

ni = n

∀i ≤ p, (mi, (ni, αi)) ∈ app}
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For all n ∈!U,M ∈ P(!U), let

ϕ(n,M) = {m ∈!U | ∃[α1, ..., αp] ∈M,m1, ...,mp, n1, ..., np ∈!U :

m =
∑

mi ∧ n =
∑

ni ∧ ∀i ≤ p, (mi, (ni, αi)) ∈ app}

In particular we observe that for α ∈ U , ϕ(n, {[α]}) = {m | (m, (n, α)) ∈ app}.
We note ϕ(n, α) = ϕ(n, {[α]}).

Then

(RS)! = {(ρ+σ,

p∑
i=1

[αi]) | ∃m,n ∈!U : (ρ,m) ∈ R!∧(σ, n) ∈ S!∧m ∈ ϕ(n, {
p∑
i=1

[αi]})}

and at last

RST = {(ρ+σ+τ, α) | ∃m′, n′ ∈!U : (ρ+σ,m′) ∈ (RS)!∧(τ, n′) ∈ T !∧(m′, (n′, α)) ∈ app}

= {(ρ+σ+τ, α) | ∃m,n,m′, n′ ∈!U : (ρ,m) ∈ R!∧(σ, n) ∈ S!∧(τ, n′) ∈ T !

m′ ∈ ϕ(n′, α) ∧m ∈ ϕ(n, {m′})}

RST = {(ρ+ σ + τ, α) | ∃m,n, n′ ∈!U : (ρ,m) ∈ R! ∧ (σ, n) ∈ S! ∧ (τ, n′) ∈ T !

m ∈ ϕ(n, ϕ(n′, α))}

We have come to a simple expression of RST . We observe here a phenomenon
due to the fact that we do not make any hypothesis on the maps app and lam
of our re�exive object. Most often app and lam are assumed to be linear, that
is there is a function ϕ̃ : U ⇒ U → U such that app = {(ϕ̃(m,α), (m,α)) |
(m,α) ∈ U ⇒ U} and lam = {([(m,α)], ϕ̃(m,α))}. Then

RST = {(ρ+σ+τ, α) | ∃n, n′ ∈!U : (ρ, ϕ̃(n, ϕ̃(n′, α))) ∈ R∧(σ, n) ∈ S!∧(τ, n′) ∈ T !}

The purpose of the notation ϕ is to �hide� the non-linearity of app.

Central elements. Now let E be a central element. First we show that E is
similar to a projection, in that:

Lemma 5.2. For all R,S ∈ A, ERS ⊂ R ∪ S.

We prove this lemma using only the �rst equality of central elements: for all
R ∈ A, ERR = R.

Let ρ0 ∈!UVar, m0, n0, n
′
0 ∈!U and α ∈ U be such that (ρ0,m0) ∈ E! and

m0 ∈ ϕ(n0, ϕ(n′0, α)). The reason we consider such elements is that, from the
expression of the �if then else� given above, we know that for any ρ ∈!UVar,
R ∈ A, if (ρ, n0 + n′0) ∈ R! then (ρ0 + ρ, α0) ∈ ERR. Since ERR = R, if
(ρ, n0 + n′0) ∈ R! then (ρ0 + ρ, α0) ∈ R. Note that we do not know yet if this is
an equivalence, since n0 and n′0 are chosen independantly of R.
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If R1 = {[]}×supp(n0 +n′0), of course ([], n0 +n′0) ∈ R!
1, so (ρ0, α0) ∈ R1. But

then this means by the de�nition of R1 that ρ0 = [], and that α0 ∈ supp(n0+n′0).

Now about the cardinality of n0 +n′0, let u ∈ UVar and R2 = {[u]}×U . Then
for ρ ∈!UVar, (ρ, n0 +n′0) ∈ R!

2 if and only if ρ = [u#(n0+n′
0)]. But it means that

([u#(n0+n′
0)], α0) ∈ R2, so #(n0 + n′0) = 1.

From these results, we deduce that (n0, n
′
0) = ([α], []) or (n0, n

′
0) = ([], [α]).

We de�ne two sets corresponding to these two cases:

E1 = {α ∈ U | ∃m ∈ ϕ([α], ϕ([], α)) : ([],m) ∈ E!}

E0 = {α ∈ U | ∃m ∈ ϕ([], ϕ([α], α)) : ([],m) ∈ E!}

Then for all ρ ∈!UVar, α ∈ U , R,S ∈ A,

(ρ, α) ∈ ERS ⇔ ρ = ρ1+ρ2+ρ3∧∃m,n, n′ ∈!U : (ρ1,m) ∈ E!∧m ∈ ϕ(n, ϕ(n′, α))

(ρ2, n) ∈ R! ∧ (ρ3, n
′) ∈ S!

⇔ (∃m ∈!U : ([],m) ∈ E! ∧ (ρ, [α]) ∈ R! ∧m ∈ ϕ([α], ϕ([], α)))

∨ (∃m ∈!U : ([],m) ∈ E! ∧ (ρ, [α]) ∈ S! ∧m ∈ ϕ([], ϕ([α], α)))

(ρ, α) ∈ ERS ⇔ (α ∈ E1 ∧ (ρ, α) ∈ R) ∨ (α ∈ E0 ∧ (ρ, α) ∈ S)

This proves the lemma, and more speci�cally

ERS = ({(ρ, α) | α ∈ E1} ∩R) ∪ ({(ρ, α) | α ∈ E0} ∩ S)

The sets E1 and E0. To prove that E behaves like 1 or 0 we have only left
to prove (E1, E0) = (U, ∅) or (E1, E0) = (∅, U), from which follows ∀R,S ∈
A,ERS = R or ∀R,S ∈ A,ERS = S.

From the expression obtained in the previous proof we see that

E∇∇ = {(ρ, α) | α ∈ E1} ∪ {(ρ, α) | α ∈ E0}

But E being central, E∇∇ = ∇, so for all α ∈ U , α ∈ E1 ∨ α ∈ E0

We also deduce from this expression that

E(E∅∇)∅ = E{(ρ, α) | α ∈ E0}∅

= {(ρ, α) | α ∈ E1} ∩ {(ρ, α) | α ∈ E0}

But as E is central, E(E∅R)∅ = E∅∅ = ∅. Thus E1 ∩ E0 = ∅.
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Lastly we prove that if there is an element α ∈ E1, then E1 = U . Let
β ∈ U , we use the fact that for all R1, R2, S1, S2 ∈ A, E(R1R2)(S1S2) =
(ER1S1)(ER2S2) to prove β ∈ E1.

Since app ◦! lam = IdU⇔U there exists m = [γ1, ..., γp] ∈!U such that
([([β], α)],m) ∈ lam! and (m, ([β], α)) ∈ app. Let x ∈ Var, we observe that:

• ([(x, γ1), ..., (x, γp)],m) ∈ (xA)!

• ([], [β]) ∈ ({([], β)})!

so by de�nition of the application, ([(x, γ1), ..., (x, γp)], α) ∈ xA({([], β)}).
Then since α ∈ E1, we have

([(x, γ1), ..., (x, γp)], α) ∈ {(ρ, α) | α ∈ E1} ∩ (xA({([], β)}))

= E(xA({([], β)}))(∅∅)

= (ExA∅)(E({([], β)})∅)

Observe that E({([], b)})∅ = {(ρ, α) | α ∈ E1} ∩ {([], β)} is empty if β /∈
E1. In that case, ([(x, γ1), ..., (x, γp)], α) ∈ (ExA∅)∅, so by de�nition of the
application there exists n ∈!U such that ([(x, γ1), ..., (x, γp)], n) ∈ (ExA∅)! and
(n, ([], α)) ∈ app.

Since (ExA∅) ⊂ xA, we know that ([(x, γ1), ..., (x, γp)], n) ∈ xA, and the
only possibility is n = m = [γ1, ..., γp].

But then we would have ([([β], α)],m) ∈ lam! and (m, ([], α)) ∈ app, so
([([β], α)], ([], α)) ∈ app ◦! lam. As app ◦! lam = IdU⇔U , this is impossible. So
β ∈ E1.

If E1 6= ∅ then E1 = U .

Conclusion. According to the last property of central elements,

E = E10 = {(ρ, α) | α ∈ E1 ∧ (ρ, α) ∈ 1} ∩ {(ρ, α) | α ∈ E0 ∧ (ρ, α) ∈ 0}

Since (E1, E0) = (U, ∅) or (E1, E0) = (∅, U), this expression implies E = 1 or
E = 0. A has only two central elements, thus it is undecomposable.

Conclusion

The goal of this internship was �rst for me to understand how algebraic and
categorical models of the λ-calculus work, as I was familiar with neither algebras
nor categories. For that purpose I studied some particular categories, as well as
results about the structures of di�erent kinds of algebras besides LAA. I also
saw some transformation between algebras and categories to better understand
how the structures are related, and how they di�er.
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The second objective, �nding a result similar to Salibra's about categories,
has not been reached. I do not know of any structural property that could be
used to prove that a class of algebraic models is incomplete, that would match
the decomposability in algebraic models. Yet by trying to �nd one I made a
deep study of the particular category Rel!. While this category is often used,
all the models build in it were linear, so the result shown here without making
any hypothesis on the linearity of the models is brand new.
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