
Algorithms and Data Structures for Biology

25 March 2019 — Lab Session

Ugo Dal Lago Thomas Leventis

1 An Efficient Algorithm to Check Lists

We are interested in the following problem: given a list L of integers and an integer x, we want
to check if x is in L. The Python expression x in L directly computes the expected result, but
do you know how it works? How many times does Python need to read from L? And in general
do you think there exists a better solution?

In this exercise we assume the list L to be sorted: for every (valid) indices i and j, if i ≤ j
then L[i] ≤ L[j]. We want to find a solution which is logarithmic in the size |L| of L, i.e. which
will always perform at most a log(|L|) + b operations for some constants a and b.

You need to:

• find an adequate algorithm;

• implement this algorithm in Python;

• prove that your code is correct, i.e. it always computes the expected result;

• prove that is has the expected complexity;

• and finally use cProfile to experimentally test the complexity of your program.

2 Repeated Computations

We now considered a generalised variant of the previous problem: given a list L of integers (which
we do not assume to be sorted) and another list X of integers, we want to know how many indices
i there are such that X[i] is in L.

Example: For L = [12,5,46,3,7,11,5] and X = [1,3,3,46,9,12], exactly 4 elements of X
are in L.

Find algorithms to efficiently solve this problem. How should one proceed if |L| is much larger
than |X|? If |X| is much larger than |L]? If both lists are of similar sizes?

For each of your algorithms:

• implement it in Python;

• prove its correctness;

• describe its complexity, parameterised by |L| and |X|;

• test this complexity using cProfile.

1

