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1 Solution: An Efficient Algorithm to Check Lists

Given a sorted list L of integers and an integer x, we want to check if x is in L in O(log(|L|). We
use the following algorithm.

1.1 The Algorithm

Require: L is a sorted list of integers, x is an integer.
Ensure: Returns the Boolean stating whether x is in L.

l← 0
r ← length of L
while l < r do
i← (l + r)//2
if L[i] = x then
return True

else if L[i] < x then
l← i + 1

else
r ← i

end if
end while
return False

1.2 The Implementation

The following Python function InSorted implements the above algorithm.

def InSorted(L,x):

l = 0

r = len(L)

while l < r:

i = (l+r)//2

if L[i] == x:

return True

elif L[i] < x:

l = i+1

else:

r = i

return False

Remark that in this case the algorithm is quite simple and its implementation is straightfor-
ward. This is not always the case, see for example the second assignment (18/03/2019).
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1.3 Proof of Correctness

We will prove that once the variables l and r are defined, the following invariant holds.

x is in L if and only if x is in L[l : r].

Additionally we check that l ≤ r and every index i with l ≤ i < r is a valid index of L.

Initialisation. At first we have L = L[l : r] so the invariant holds, and the valid indices of L
are exactly the is such that l ≤ i < r.

Preservation. Let us assume that the invariant holds when entering the while loop. Remark
that if l < r then i = (l + r)//2 is such that l ≤ i < r and by hypothesis i is a valid index of L.
We distinguish three cases:

• if L[i] = x then x is both in L and in L[l : r];

• if L[i] < x then for all j ≤ i, as L is sorted we have L[j] ≤ L[i], hence L[j] < x and in
particular L[j] 6= x; by hypothesis x is in L if and only if it is in L[l : r], and we know x is
not in L[l : i + 1] so x is in L[l : r] if and only if it is in L[i + 1 : r];

• otherwise x < L[i] and by a similar reasoning we have that x is not in L[i : r] so it is in
L[l : r] if and only if it is in L[l : i].

Remark that in the last two cases the inequality l ≤ r is preserved, and in any case the set of
indices between l and r is made smaller, so we never leave the scope of L.

Now our algorithm only returns True is L[i] = x for some valid index i of L, in which case x
is indeed in L. On the other hand it only returns False when l ≥ r; we proved that x is in L if
and only if it is in L[l : r], but in this case L[l : r] is empty so x is neither in L[l : r] nor in L.

This concludes the proof that if our algorithm returns a result, then this result is correct.
Next we will prove that it always returns a result.

1.4 Proof of Termination and Complexity

We want to prove that for any list L our algorithm terminates in at most 5 log2(|L|)+6 operations.
To do so, we prove that whenever we reach the while instruction then the algorithm terminates
in at most 5 log2(r − l) + 4 operations. Remark that we already know we always have l ≤ r.

Initialisation. If l = r then log2(r − l) = 0, and the test l < r fails (first operation) and the
algorithm returns False (second operation).

Preservation. If l < r then we enter the loop, i is defined and we check the equality L[i] = x
(three operations). Then there are three different cases.

• If L[i] = x then the algorithm return True, for a total of four operations.

• If L[i] < x then after five operations l has taken a new value l′ = (l + r)//2 + 1 and we
go back to the while instruction, and by hypothesis the program terminates after at most
5 log2(r− l′)+4 more operations. Since 2(r− l′) ≤ r− l we have log2(r− l′)+1 ≤ log2(r− l),
hence 5 log2(r − l′) + 9 ≤ 5 log2(r − l) + 4.

• Otherwise after five operations r has taken the value r′ = (l + r)//2, hence 2(r′ − l) ≤ r − l
and conclude in a similar way.

The algorithm always reaches the while loop for the first time after two operations, with
r − l = |L|, so the algorithm always terminates in at most 5 log2(|L|) + 6 operations.
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1.5 Important Remark

Before proving the complexity of our algorithm we did not define what an “operation” is. In our
reasoning we assume that an operation is the execution of a single line of code, but this is not
very precise. For instance the computation of (l + r)//2 can be described not as one but as two
operations, one addition and one division. But such a refinement would only change the constants
(5 and 4), not the fact that the complexity is in O(log(|L|).

Nevertheless this approximation of the notion of operation is only valid when our lines of code
always execute in constant time. The whole reason behind this work is that computing the simple
expression x in L in Python is linear in |L|. Consider the following Python function InList.

def InList(L,x):

return x in L

It is much shorter than our function InSorted and always execute a single line of code, but it is
much less efficient on sorted lists. As another example note that slicing a list is not performed in
constant time either.

This is where cProfile intervenes: you can check whether your theoretical complexity actually
matches the real complexity of your program.

2 First Work in LATEX

Following the example above, write a report in LATEXon last week’s second exercise (find the
number of element o a list X which also belong to another list L).
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