# Algorithms and Data Structures for Biology 6 May 2019 - Lab Session 

Ugo Dal Lago Thomas Leventis

## 1 Average Case Analysis

Please refine the average case analysis of the branch-and-bound algorithm you have defined as part of the Fifth Assignment. More specifically, you are asked to consider the following situations:

- The utility is not a random number, but is somehow correlated to the size: the greater the size, the greater the utility. Suppose, in particular, that once the size has been generated randomly between 1 and 10, the utility is twice as big as the size, plus some "noise" produced itself randomly between -3 and +3 . Can you think of a better algorithm which can take advantage of this specific form of distribution? Please implement it.
- $n$ is not only $3 m$ or $7 m$ but can be any expression between in the form $i m$ where $i \in$ $\{1, \ldots, 10\}$ For each of these expression, repeat the whole experiment. What's the worst possible value of $i m$ ?


## 2 On the Fifth Assignment

Below, you can find one possible solution to the Fifth assignment. Of course, this is not the only possible way the assignment could be carried out.

### 2.1 Formal Problem

Given two positive integers $m$ and $n$ and two families of posititve integers $S_{1}, \ldots, S_{m}$ and $U_{1}, \ldots, U_{m}$, we want to find a set $\mathcal{D}$ of integers between 1 and $m$ such that $\sum_{j \in \mathcal{D}} S_{j} \leq n$ and $\sum_{j \in \mathcal{D}} U_{j}$ is maximal.

### 2.2 Exhaustive Search

First of all we define a method SumIndex to compute the sum of all elements in a family $L$ whose indices are in a set $D$. This way given sizes $S$ and utilities $U$, the total size associated to a set of databases $D$ is SumIndex $(D, S)$ and the total utility is SumIndex $(D, U)$.

```
Algorithm 1 SumIndex \((D, L)\)
Require: \(L\) family of integers, \(D\) set of indices of \(L\).
Ensure: Returns the sum of all element of \(L\) with indices in \(D\)
    \(s \leftarrow 0\)
    for \(j\) in \(D\) do
        \(s \leftarrow s+L_{j}\)
    end for
    return \(s\)
```

Then to perform an exhaustive search we need to enumerate all possible sets $\mathcal{D}$ of integers between 1 and $m$. Then we just need to compute their total sizes and utilities and pick a valid one
maximising utility. To do so we use an intermediate method RestrictedExhaustiveSearch which computes the best solution for the parameters $m, n, S$ and $U$ with an additional constraint: we have already decided whether we want to pick each of the first $i$ databases, and $D$ is the set of databases with index smaller than $i$ which we decided to pick.

```
Algorithm 2 RestrictedExhaustiveSearch \((m, n, S, U, i, D)\)
Require: \(m, n\) integers, \(S, U\) families of integers of size \(m, i \leq m\) and \(D\) set of integers smaller
    than \(i\).
Ensure: Returns a set \(D^{\prime}\) of integers between 1 and \(m\) such that all \(j \leq i\) is in \(D^{\prime}\) if and only if it
    is in \(D, \sum_{j \in \mathcal{D}^{\prime}} S_{j} \leq n\) and \(\sum_{j \in \mathcal{D}^{\prime}} U_{j}\) is maximal if such a set exists, and returns the emptyset
    otherwise.
    if \(i=m\) then
        if SumIndex \((D, S) \leq n\) then
        return \(D\)
    else
        return \(\emptyset\)
    end if
    else
        \(D 1=\) RestrictedExhaustiveSearch \((m, n, S, U, i+1, D)\)
        \(D 1=\operatorname{RestrictedExhaustiveSearch}(m, n, S, U, i+1, D \cup\{i+1\})\)
        if \(\operatorname{SumIndex}(D 1, U) \geq \operatorname{SumIndex}(D 2, U)\) then
            return \(D 1\)
    else
        return \(D 2\)
    end if
end if
```

To find a general solution to our problem we simply use the previous method with 0 for $i$ and an empty set as $D$.

```
Algorithm 3 ExhaustiveSearch(m,n,S,U)
    return RestrictedExhaustiveSearch(m,n,S,U,0,\emptyset)
```


### 2.3 Complexity

We will show that the complexity of the method ExhaustiveSearch is $O\left(m 2^{m}\right)$.
First remark that the auxiliary function SumIndex performs $|D|+2$ computations. Then we prove that the method RestrictedExhaustiveSearch executes at most $(m+5)\left(2^{m-i}+2^{m-i+1}-2\right)$ instructions if $D$ has size at most $i$. We reason by induction on $m-i$.

Initialisation. If $m=i$ then we compute $\operatorname{SumIndex}(D, S)$ in $O(|D|)$, with by assumption $|D| \leq i=m$, and we perform three more operations (two ifs and one return) so the complexity is bounded by $m+5$.

Preservation. If $m>i$ then we call RestrictedExhaustiveSearch twice, with the parameters $m, n, S, U, i+1$ and either $D$ or $D \cup\{i+1\}$. By assumption we have $|D| \leq i$ so we have both $|D| \leq i+1$ and $|D| \cup\{i+1\} \leq i+1$ and we can apply the induction hypothesis to both calls, which terminates in at most $(m+5)\left(2^{m-i-1}+2^{m-i}-2\right)$ instructions each for a total of $(m+5)\left(2^{m-i}+2^{m-i+1}-4\right)$. Moreover the sets $D 1$ and $D 2$ have at most size $m$ so each calls to SumIndex terminates in at most $m+2$ operations, and we perform three more operations (two ifs and one return, again) for a total of $2 m+7$ additional operations. To conclude we have $(m+5)\left(2^{m-i}+2^{m-i+1}-4\right)+2 m+7 \leq(m+5)\left(2^{m-i}+2^{m-i+1}-2\right)$, which is the expected result.

Finally the method ExhaustiveSearch calls RestrictedExhaustiveSearch with $i=0$ and $D$ empty (hence of size at most 0 ), so its complexity is $(m+5)\left(2^{m}+2^{m+1}-2\right)$, or $O\left(m 2^{m}\right)$.

### 2.4 Branch and Bound

The basic structure of our branch-and-bound algorithm is the same as the exhaustive search. The difference is that we keep track of the size we use while building the set $D$, and we make sure never to consider a set whose size exceeds the limit $n$. The method RestrictedBranchAndBound finds the best solution under the constraint that we already decided whether to pick the databases with index small than $i$ (and this choice is described by $D$ ), and $n$ is the remaining size after picking the elements in $D$, which is always kept positive.

```
Algorithm 4 RestrictedBranchAndBound \((m, n, S, U, i, D)\)
\(\overline{\text { Require: } m, n \text { integers, } S, U \text { families of integers of size } m, i \leq m \text { and } D \text { set of integers smaller }}\)
    than \(i\).
Ensure: Returns a set \(D^{\prime}\) of integers between 1 and \(m\) such that all \(j \leq i\) is in \(D^{\prime}\) if and only if
    it is in \(D, \sum_{j \in \mathcal{D}^{\prime}, j>i} S_{j} \leq n\) and \(\sum_{j \in \mathcal{D}^{\prime}} U_{j}\) is maximal.
    if \(i=m\) then
        return \(D\)
    else
        if \(S_{i+1}>n\) then
            return RestrictedBranchAndBound \((m, n, S, U, i+1, D)\)
        else
            \(D 1=\) RestrictedBranchAndBound \((m, n, S, U, i+1, D)\)
            \(D 1=\) RestrictedBranchAndBound \(\left(m, n-S_{i+1}, S, U, i+1, D \cup\{i+1\}\right)\)
            if \(\operatorname{SumIndex}(D 1, U) \geq \operatorname{SumIndex}(D 2, U)\) then
                return \(D 1\)
            else
                return \(D 2\)
            end if
        end if
    end if
```

Again the method BranchAndBound just calls the previous method with no constraint.

```
Algorithm 5 BranchAndBound \((m, n, S, U)\)
    return RestrictedBranchAndBound \((m, n, S, U, 0, \emptyset)\)
```


### 2.5 Testing

We present below the experimental execution times of our algorithms when $m$ takes the values 5 , $10,15,20$ and $25, n$ is $3 m$ and $S$ and $U$ are both families of random elements between 1 and 10 . The first graph shows the evolution of the average times of 10 executions of each algorithm over the same 10 choices of random families $S$ and $U$ (except for $m=25$ where each algorithm has been tested only once). The second graph shows all the experimental results.


We can observe that although the branch-and-bound algorithm is faster, it does not appear immensely more efficient than the exhaustive search : it still seems to have an exponential complexity. We can also observe that the execution time of the exhaustive search algorithm does not depend much on the families $S$ and $U$, whereas the execution time of the branch-and-bound algorithm varies a lot when we run it on different families.

