The Spirit of Node Replication

Loic Peyrot*
Joint work with Delia Kesner and Daniel Ventura
FoSSacCs 2021 - March 31st

*|RIF/PPS, Université de Paris

Different substitutions

Different kinds of substitutions, from different Curry-Howard
interpretations:

Full Substitution Natural Deduction

Linear Substitution | Linear Logic Proof-Nets

Node Replication Deep Inference

How are programming languages affected by
different specific substitution mechanisms?

How are programming languages affected by
different specific substitution mechanisms?

Are these different substitution behaviors
observable?

Intuitions on node replication
AR, a A-calculus for node replication

Implementing two programming languages using node
replication

Call-by-name

Fully lazy call-by-need

Relating the strategies through intersection type theory

Intuitions on node replication

Graphically

® 2
\
& . ;5/ \‘;3“*\,
A 2\ s
/\ Gl
g ® A N
/\ 6 w IS
3 W <
Full Substitution (FS)
) »
2 VAN AN
D @

Node Replication (NR)

Node replication

Substitution of terms node by node, i.e. constructor by
constructor.

Node replication allows fine-grained substitution

- Duplication of terms node by node avoids to substitute
the whole term at once.

- Itis a lazy principle because it is possible to replicate only
the subtree that is necessary to continue the reduction.

- Optimisations can be specified, e.g full laziness.

Sharing graphs use node replication

Figure 1: Reduction of sharing graphs (Asperti, Guerrini: The Optimal
Implementation of Functional Programming Languages) 8

AR, a A-calculus for node replication

The \R-calculus

Terms t,u:=x | Azt | tu]t[z\u] | t{x\\y.u]

Az.t)[Clu g t[z\u][T]

Hx\y[l]] var H2\y}I]

tr\uo[l]] app Ha\yzty\ul[2\v][T]
te\Ayull]] gise to\Ay2[z\u]][T]

tla\Ay.u] aps H{z\Ay.p}I]

In abs, we suppose u —% p[['] and y ¢ fv(T).

Figure 2: AR syntax and operational semantics

Node replication in a term calculus: the atomic A-calculus

Our inspiration is Gundersen, Heijltjes and Parigot’s atomic
A-calculus (\a):

- Itis a term calculus implementing node replication.

- Itis a Curry-Howard interpretation of the deep inference
logical formalism.

- It deals explicitely with weakening and contraction of
variables.

10

Relation with the A-calculus

- We have simulation from AR to the A-calculus (\) and
projection the other way.

- Using the A-calculus as an intermediate, we have
simulations between AR and the atomic A-calculus \a.

"

Implementing two programming
languages using node replication

Calculi and strategies

Calculi - Non-deterministic rewriting relations.

- Essential implementation of a theory: can
serve as a foundation of multiple
programming languages.

Strategies - Deterministic refinment of a calculus.

- Implementing a specific evaluation

procedure.

12

Call-by-name evaluation in the A-calculus

Call-by-name in the A-calculus = weak head reduction — .

Example
(Av.xx)(I1) —cpy (LI)(IT)

Call-by-name computes weak-head normal forms:

Weak No reduction inside abstractions.
Az dz)(IT) +cpy (Ax.2z)(I1)

Head No reduction inside arguments headed by a
variable. x(IT) +¢pp 21

13

Call-by-name in AR

We apply the same principles to create a strategy nrcbn
based on AR.

—

call-by-name (FS) call-by-name (NR)

_/

14

Call-by-need in the A-calculus

- In call-by-name, duplicating the argument may duplicate
redexes.
Example
(Az.xx)(I1) —cpy (LI)(IT)

- Call-by-need avoids duplication of redexes by applying
memoization: the first demand-driven function call
transforms the argument into a value.

15

Towards full laziness

Call-by-need does not avoid all unnecessary work.

Example
(Ar.22)(Ay.y(I1)) —cpneed (Ay-y(I1))(Ay.y(I1))

The redex IT is not affected by further instantiation of
Ay.y(IT). We can keep it shared!

Ny.y(IT) = \y.yz + [2\I1]
skeleton sharing

A fully lazy call-by-need strategy

Example
(Az.22)(Ay-y(I1)) = need ((Ay-y2)(Ay.y2))[2\11]

@
@
P Ay/ \Ay
AT Ay I |
| @l —> @ Q
/N N v “
T Y @)
17N a_
17N

Relating the strategies through
intersection type theory

Putting everything together

call-by-name (FS) cbn call-by-need (FS) cbneed
semantics

TN

call-by-name (NR) nrcbn fully lazy call-by-need (NR) flneed

Observational equivalence

Definition (Observational equivalence)
t =, wif and only if for any C,
C(t) R-terminates <= C(u) R-terminates.

There is no context distinguishing ¢ and w.

Theorem
3 Scbn U 3 =hnrcbn U < t =flneed U < tEcbneed U.

t and u have the same behaviour, whatever the strategy is.

19

Intersection types

z:[r] > 71lkFx: 1] =7 x:[T|Fx:T

x:[r] >, Fxx T

FAzxx: 1] = 7,7] = 7

With intersection types:

Typability < termination.

20

Equivalence of the normalisations

Idea
We use a unique type system V for all strategies.

normalises in CBN with FS normalises in CBNeed with FS

N

typable in system V

N

normalises in CBN with NR normalises in FLNeed with NR

21

A common model

call-by-name (FS) call-by-need (FS)

~

intersection type system ¥V

TN

call-by-name (NR) fully lazy call-by-need (NR)

22

Conclusion

- Different mechanisms of substitution give rise to different
implementations of programming languages.

- Node replication has the same observational behaviour
than usual full substitution.

- But operationally, it allows to implement non-trivial
optimisations such as full laziness.

23

Questions and future works

- Abstract machines, complexity costs.

- Extension to strong call-by-need.

- Spine duplication.

- A quantitative deep type system for node replication?

2%

Thank you for your attention!

	Intuitions on node replication
	λR, a λ-calculus for node replication
	Implementing two programming languages using node replication
	Call-by-name
	Fully lazy call-by-need

	Relating the strategies through intersection type theory
	Conclusion

