The Spirit of Node Replication

Loïc Peyrot* Joint work with Delia Kesner and Daniel Ventura FoSSaCS 2021 – March 31st

*IRIF/PPS, Université de Paris

Different kinds of substitutions, from different Curry-Howard interpretations:

Full Substitution	Natural Deduction
Linear Substitution	Linear Logic Proof-Nets
Node Replication	Deep Inference

How are programming languages affected by different specific substitution mechanisms?

How are programming languages affected by different specific substitution mechanisms?

Are these different substitution behaviors observable?

Intuitions on node replication

```
\lambda R, a \lambda-calculus for node replication
```

Implementing two programming languages using node replication

Call-by-name

```
Fully lazy call-by-need
```

Relating the strategies through intersection type theory

Intuitions on node replication

Graphically

Node Replication (NR)

Node Replication

Substitution of terms node by node, *i.e.* constructor by constructor.

- Duplication of terms node by node avoids to substitute the whole term at once.
- It is a lazy principle because it is possible to replicate only the subtree that is necessary to continue the reduction.
- Optimisations can be specified, *e.g* full laziness.

Sharing graphs use node replication

Figure 1: Reduction of sharing graphs (Asperti, Guerrini: The Optimal Implementation of Functional Programming Languages)

λR , a λ -calculus for node replication

 $\textbf{Terms} \quad t,u ::= x \mid \lambda x.t \mid tu \mid t[x \backslash u] \mid t[x \backslash \lambda y.u]$

In **abs**, we suppose $u \to_{\pi}^{*} p[\Gamma]$ and $y \notin fv(\Gamma)$.

Figure 2: λR syntax and operational semantics

Our inspiration is Gundersen, Heijltjes and Parigot's atomic λ -calculus (λa):

- It is a term calculus implementing node replication.
- It is a Curry-Howard interpretation of the deep inference logical formalism.
- It deals explicitely with weakening and contraction of variables.

- We have simulation from λR to the λ -calculus (λ) and projection the other way.
- Using the λ -calculus as an intermediate, we have simulations between λR and the atomic λ -calculus λa .

Implementing two programming languages using node replication

Calculi and strategies

Calculi • Non-deterministic rewriting relations.

• Essential implementation of a theory: can serve as a foundation of multiple programming languages.

Strategies · Deterministic refinment of a calculus.

• Implementing a specific evaluation procedure.

Call-by-name in the λ -calculus = weak head reduction \rightarrow_{cbn} .

Example $(\lambda x.xx)(II) \rightarrow_{cbn} (II)(II)$

Call-by-name computes weak-head normal forms:

Weak No reduction inside abstractions. $(\lambda x.Ix)(II) \nleftrightarrow_{cbn} (\lambda x.x)(II)$

Head No reduction inside arguments headed by a variable. $x(II) \nleftrightarrow_{cbn} xI$

We apply the same principles to create a strategy **nrcbn** based on λR .

• In call-by-name, duplicating the argument may duplicate redexes.

Example

 $(\lambda x.xx)(II) \rightarrow_{\mathsf{cbn}} (II)(II)$

• Call-by-need avoids duplication of redexes by applying memoization: the first demand-driven function call transforms the argument into a value.

Towards full laziness

Call-by-need does not avoid all unnecessary work.

Example

$$(\lambda x.xx)(\lambda y.y(II)) \rightarrow_{\texttt{cbneed}} (\lambda y.y(II))(\lambda y.y(II))$$

Observation

The redex II is not affected by further instantiation of $\lambda y.y(II)$. We can keep it shared!

$$\lambda y.y(II) = \underbrace{\lambda y.yz}_{\text{skeleton}} + \underbrace{[z \setminus II]}_{\text{sharing}}$$

A fully lazy call-by-need strategy

Example

 $(\lambda x.xx)(\lambda y.y(\boldsymbol{II})) \rightarrow^*_{\texttt{flneed}} ((\lambda y.yz)(\lambda y.yz))[z \backslash \boldsymbol{II}]$

Relating the strategies through intersection type theory

Definition (Observational equivalence)

 $t \equiv_{\mathcal{R}} u$ if and only if for any C, C $\langle t \rangle$ \mathcal{R} -terminates \iff C $\langle u \rangle$ \mathcal{R} -terminates.

There is no context distinguishing t and u.

Theorem $t \equiv_{cbn} u \iff t \equiv_{nrcbn} u \iff t \equiv_{flneed} u \iff t \equiv_{cbneed} u.$

t and u have the same behaviour, whatever the strategy is.

With intersection types:

Typability \iff termination.

Conclusion

- Different mechanisms of substitution give rise to different implementations of programming languages.
- Node replication has the same observational behaviour than usual full substitution.
- But operationally, it allows to implement non-trivial optimisations such as full laziness.

- Abstract machines, complexity costs.
- Extension to strong call-by-need.
- Spine duplication.
- A quantitative deep type system for node replication?

Thank you for your attention!