
The Spirit of Node Replication

Loïc Peyrot*
Joint work with Delia Kesner and Daniel Ventura
FoSSaCS 2021 – March 31st

*IRIF/PPS, Université de Paris

1



Different substitutions

Different kinds of substitutions, from different Curry-Howard
interpretations:

Full Substitution Natural Deduction

Linear Substitution Linear Logic Proof-Nets

Node Replication Deep Inference

2



How are programming languages affected by
different specific substitution mechanisms?

Are these different substitution behaviors
observable?

3



How are programming languages affected by
different specific substitution mechanisms?

Are these different substitution behaviors
observable?

3



Plan

Intuitions on node replication

𝜆𝑅, a λ-calculus for node replication

Implementing two programming languages using node
replication

Call-by-name

Fully lazy call-by-need

Relating the strategies through intersection type theory

4



Intuitions on node replication



Graphically

Full Substitution (FS)

Node Replication (NR) 5



Node replication

Node Replication
Substitution of terms node by node, i.e. constructor by
constructor.

6



Node replication allows fine-grained substitution

• Duplication of terms node by node avoids to substitute
the whole term at once.

• It is a lazy principle because it is possible to replicate only
the subtree that is necessary to continue the reduction.

• Optimisations can be specified, e.g full laziness.

7



Sharing graphs use node replication

Figure 1: Reduction of sharing graphs (Asperti, Guerrini: The Optimal
Implementation of Functional Programming Languages) 8



𝜆𝑅, a λ-calculus for node replication



The 𝜆𝑅-calculus

Terms 𝑡, 𝑢 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥\𝑢] ∣ 𝑡[𝑥\\𝜆𝑦.𝑢]

(𝜆𝑥.𝑡)[Γ]𝑢 ↦dB 𝑡[𝑥\𝑢][Γ]
𝑡[𝑥\𝑦[Γ]] ↦var 𝑡{𝑥\𝑦}[Γ]
𝑡[𝑥\𝑢𝑣[Γ]] ↦app 𝑡{𝑥\𝑦𝑧}[𝑦\𝑢][𝑧\𝑣][Γ]

𝑡[𝑥\𝜆𝑦.𝑢[Γ]] ↦dist 𝑡[𝑥\\𝜆𝑦.𝑧[𝑧\𝑢]][Γ]
𝑡[𝑥\\𝜆𝑦.𝑢] ↦abs 𝑡{𝑥\𝜆𝑦.𝑝}[Γ]

In abs, we suppose 𝑢 →∗
𝜋 𝑝[Γ] and 𝑦 ∉ fv(Γ).

Figure 2: 𝜆𝑅 syntax and operational semantics

9



Node replication in a term calculus: the atomic λ-calculus

Our inspiration is Gundersen, Heĳltjes and Parigot’s atomic
λ-calculus (𝜆𝑎):

• It is a term calculus implementing node replication.
• It is a Curry-Howard interpretation of the deep inference
logical formalism.

• It deals explicitely with weakening and contraction of
variables.

10



Relation with the λ-calculus

• We have simulation from 𝜆𝑅 to the λ-calculus (𝜆) and
projection the other way.

• Using the λ-calculus as an intermediate, we have
simulations between 𝜆𝑅 and the atomic λ-calculus 𝜆𝑎.

𝜆𝜆𝑅 𝜆𝑎

11



Implementing two programming
languages using node replication



Calculi and strategies

Calculi • Non-deterministic rewriting relations.
• Essential implementation of a theory: can
serve as a foundation of multiple
programming languages.

Strategies • Deterministic refinment of a calculus.
• Implementing a specific evaluation
procedure.

12



Call-by-name evaluation in the λ-calculus

Call-by-name in the λ-calculus = weak head reduction →cbn.

Example
(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →cbn (𝐼𝐼)(𝐼𝐼)

Call-by-name computes weak-head normal forms:

Weak No reduction inside abstractions.
(𝜆𝑥.𝐼𝑥)(𝐼𝐼) ↛cbn (𝜆𝑥.𝑥)(𝐼𝐼)

Head No reduction inside arguments headed by a
variable. 𝑥(𝐼𝐼) ↛cbn 𝑥𝐼

13



Call-by-name in 𝜆𝑅

We apply the same principles to create a strategy nrcbn
based on 𝜆𝑅.

call-by-name (FS) call-by-name (NR)

14



Call-by-need in the λ-calculus

• In call-by-name, duplicating the argument may duplicate
redexes.

Example
(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →cbn (𝐼𝐼)(𝐼𝐼)

• Call-by-need avoids duplication of redexes by applying
memoization: the first demand-driven function call
transforms the argument into a value.

15



Towards full laziness

Call-by-need does not avoid all unnecessary work.
Example
(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦(𝐼𝐼)) →cbneed (𝜆𝑦.𝑦(𝐼𝐼))(𝜆𝑦.𝑦(𝐼𝐼))

Observation
The redex 𝐼𝐼 is not affected by further instantiation of
𝜆𝑦.𝑦(𝐼𝐼). We can keep it shared!

𝜆𝑦.𝑦(𝐼𝐼) = 𝜆𝑦.𝑦𝑧⏟
skeleton

+ [𝑧\𝐼𝐼]⏟
sharing

16



A fully lazy call-by-need strategy

Example
(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦(𝐼𝐼)) →∗

flneed ((𝜆𝑦.𝑦𝑧)(𝜆𝑦.𝑦𝑧))[𝑧\𝐼𝐼]

17



Relating the strategies through
intersection type theory



Putting everything together

semantics

call-by-name (FS) cbn call-by-need (FS) cbneed

call-by-name (NR) nrcbn fully lazy call-by-need (NR) flneed

18



Observational equivalence

Definition (Observational equivalence)
𝑡 ≡ℛ 𝑢 if and only if for any C,
C⟨𝑡⟩ ℛ-terminates ⟺ C⟨𝑢⟩ ℛ-terminates.

There is no context distinguishing 𝑡 and 𝑢.
Theorem
𝑡 ≡cbn 𝑢 ⟺ 𝑡 ≡nrcbn 𝑢 ⟺ 𝑡 ≡flneed 𝑢 ⟺ 𝑡 ≡cbneed 𝑢.

𝑡 and 𝑢 have the same behaviour, whatever the strategy is.

19



Intersection types

𝑥 ∶ [[𝜏 ] → 𝜏] ⊢ 𝑥 ∶ [𝜏 ] → 𝜏 𝑥 ∶ [𝜏 ] ⊢ 𝑥 ∶ 𝜏
𝑥 ∶ [[𝜏 ] → 𝜏, 𝜏] ⊢ 𝑥𝑥 ∶ 𝜏

⊢ 𝜆𝑥.𝑥𝑥 ∶ [[𝜏 ] → 𝜏, 𝜏] → 𝜏

With intersection types:

Typability ⟺ termination.

20



Equivalence of the normalisations

Idea
We use a unique type system 𝒱 for all strategies.

typable in system 𝒱

normalises in CBN with FS normalises in CBNeed with FS

normalises in CBN with NR normalises in FLNeed with NR

21



A common model

intersection type system 𝒱

call-by-name (FS) call-by-need (FS)

call-by-name (NR) fully lazy call-by-need (NR)

22



Conclusion



Summary

• Different mechanisms of substitution give rise to different
implementations of programming languages.

• Node replication has the same observational behaviour
than usual full substitution.

• But operationally, it allows to implement non-trivial
optimisations such as full laziness.

23



Questions and future works

• Abstract machines, complexity costs.
• Extension to strong call-by-need.
• Spine duplication.
• A quantitative deep type system for node replication?

24



Thank you for your attention!

24


	Intuitions on node replication
	λR, a λ-calculus for node replication
	Implementing two programming languages using node replication
	Call-by-name
	Fully lazy call-by-need

	Relating the strategies through intersection type theory
	Conclusion

