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Natural Deduction and the 𝜆-calculus

Γ,

𝑥∶

𝐴 ⊢

𝑥∶

𝐴
(AX)

Γ,

𝑥∶

𝐴 ⊢

𝑡∶

𝐵
Γ ⊢

𝜆𝑥.𝑡 ∶

𝐴 → 𝐵
(→𝑖)

Γ ⊢

𝑡∶

𝐴 → 𝐵 Γ ⊢

𝑢∶

𝐴
Γ ⊢

𝑡𝑢∶

𝐵
(→𝑒)

(Terms) 𝑡, 𝑢 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢

3



Natural Deduction and the 𝜆-calculus

Γ, 𝑥∶𝐴 ⊢ 𝑥∶𝐴
(AX)

Γ, 𝑥∶𝐴 ⊢ 𝑡∶𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶𝐴 → 𝐵

(→𝑖)

Γ ⊢ 𝑡∶𝐴 → 𝐵 Γ ⊢ 𝑢∶𝐴
Γ ⊢ 𝑡𝑢∶𝐵

(→𝑒)

(Terms) 𝑡, 𝑢 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢

3



Curry-Howard is a Fundamental Isomorphism

Logic Programming
Intuistionistic natural deduction (ND) λ-calculus

Classical logic Control operators
Classical Sequent Calculus �̄�𝜇 ̃𝜇

ND with generalized elimination1 Λ𝐽 2

… …

1Tennant/von Plato
2Joachimski and Matthes
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Typing Generalized Applications

Γ,

𝑥∶

𝐴 ⊢

𝑥∶

𝐴
(AX)

Γ,

𝑥∶

𝐴 ⊢

𝑡∶

𝐵
Γ ⊢

𝜆𝑥.𝑡 ∶

𝐴 → 𝐵
(→𝑖)

Γ ⊢

𝑡∶

𝐴 → 𝐵 Γ ⊢

𝑢∶

𝐴 Γ,

𝑦 ∶

𝐵 ⊢

𝑟 ∶

𝐶
Γ ⊢

𝑡(𝑢, 𝑦.𝑟) ∶

𝐶
(→𝑒)

(Terms) 𝑡, 𝑢, 𝑟 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡(𝑢, 𝑦.𝑟)

Intuition
𝑡(𝑢, 𝑦.𝑟) ⇝ let 𝑦 = 𝑡𝑢 in 𝑟
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The Calculus with Generalized Applications Λ𝐽

Joachimski and Matthes (2000) introduced the calculus Λ𝐽 :

• Strong proof-theoretical foundations.
• A fresh look on applications.
• Ties to the sequent calculus and to the theory of explicit
substitutions.
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Qualitative Semantics

• Does a given term 𝑡 normalize?
• Given two terms, do they have the same normalization
behavior (are they observationally equivalent)?
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Quantitative Semantics

• Which is the reduction length of a term 𝑡 to normal form?
• Do two terms reach a normal form with the same
reduction length?
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Intersection types (Coppo, Dezani)

Untyped

Normalizable

Simply
typed

Untyped

Normalizable

Typable by
Intersection

Simply
typed= =

Theorem (Logical characterization)
Normalizable ⟺ typable.
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Quantitative Types (Gardner, De Carvalho)

Non-idempotent intersection (or quantitative) types:

• Are sensitive to reduction length.
• Enable combinatorial proofs of normalization.

Γ; 𝑥 ∶ [𝜎1, … , 𝜎𝑛] ⊢ 𝑡 ∶ 𝜏
Γ ⊢ 𝜆𝑥.𝑡 ∶ [𝜎1, … , 𝜎𝑛] → 𝜏
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Our Main Contribution

We revisit the operational semantics of Λ𝐽 ,
based on a quantitative approach.
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Operational Semantics of Λ𝐽 : Computation

The calculus Λ𝐽 is based on a computational rule 𝛽𝑗 and a
permutation rule 𝜋.
Reduction in the 𝜆-calculus: (𝜆𝑥.𝑡)𝑢 →𝛽 {𝑢/𝑥}𝑡.
Definition (Rule 𝛽𝑗)
(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽𝑗

{{𝑢/𝑥}𝑡/𝑦}𝑟

Intuition
let 𝑦 = (𝜆𝑥.𝑡)𝑢 in 𝑟 → let 𝑦 = {𝑢/𝑥}𝑡 in 𝑟 → {{𝑢/𝑥}𝑡/𝑦}𝑟

The 𝛽𝑗-rule generalizes 𝛽:
((𝜆𝑥.𝑡)𝑢)⋆ →𝛽 ({𝑢/𝑥}𝑡)⋆

= =

(𝜆𝑥.𝑡⋆)(𝑢⋆, 𝑦.𝑦) →𝛽𝑗
{{𝑢⋆/𝑥}𝑡⋆/𝑦}𝑦 = {𝑢⋆/𝑥}𝑡⋆
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Operational Semantics of Λ𝐽 : Permutation

Definition (Rule 𝜋)
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′))

All (generalized) applications 𝜋-reduce to the shape 𝑥(𝑢, 𝑦.𝑟)
or (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟).
Example
((𝑥𝑢1)𝑢2)⋆ = (𝑥(𝑢1, 𝑦.𝑦))(𝑢2, 𝑧.𝑧) →𝜋 𝑥(𝑢1, 𝑦.𝑦(𝑢2, 𝑧.𝑧))
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Rule 𝜋 Unblocks Computations

Some 𝛽𝑗-reductions are stuck without rule 𝜋.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) ↛𝛽𝑗

Solution
𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →𝜋 𝑧(𝑢1, 𝑦1.(𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2))

→𝛽𝑗
𝑧(𝑢1, 𝑦1.𝑢2)
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Quantitative System ∩𝐽

(Types) 𝜎, 𝜏 ∶∶= 𝑎, 𝑏, 𝑐, … ∣ ℳ → 𝜎
(Multiset Types) ℳ, 𝒩 ∶∶= [𝜎𝑖]𝑖∈𝐼 where 𝐼 is a finite set

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎
Γ; 𝑥 ∶ ℳ ⊢ 𝑡 ∶ 𝜎

Γ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎

Γ ⊢ 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊢ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Λ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊢ 𝑟 ∶ 𝜎
Γ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜎

Γ ⊢ 𝑡 ∶ 𝜎
Γ ⊢ 𝑡 ∶ [ ]

(Γ𝑖 ⊢ 𝑡 ∶ 𝜎𝑖)𝑖∈𝐼 𝐼 ≠ ∅
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑡 ∶ [𝜎𝑖]𝑖∈𝐼
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Rule 𝜋 is Not Sound Quantitatively

Two crucial properties are quantitative subject reduction (QSR)
and expansion (QSE).

Definition (Quantitative Subject Reduction)
If Γ ⊢𝑛 𝑡 ∶ 𝜏 and 𝑡 → 𝑡′, then Γ ⊢𝑛′ 𝑡′ ∶ 𝜏 with 𝑛 > 𝑛′.

Definition (Quantitative Subject Expansion)
If Γ ⊢𝑛′ 𝑡′ ∶ 𝜏 and 𝑡 → 𝑡′, then Γ ⊢𝑛 𝑡 ∶ 𝜏 with 𝑛 > 𝑛′.

Quantitative subject reduction fails for rule 𝜋.
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Towards a Solution

Consider another permutation rule:

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) →𝑝2
𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)

Example (Unblocking)
𝑧(𝑢1, 𝑦.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →𝑝2

(𝜆𝑥.𝑧(𝑢1, 𝑦.𝑥))(𝑢2, 𝑦2.𝑦2)
→𝛽𝑗

𝑧(𝑢1, 𝑦.𝑢2)

Quantitative subject reduction
Quantitative subject expansion
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The Solution: Permuting Only When Needed

Idea: use the permutation rule 𝑝2 only to unblock 𝛽𝑗-redexes.

• 𝑥(𝑢1, 𝑦.𝜆𝑥.𝑥)(𝑢2, 𝑧.𝑧) →𝑝2
(𝜆𝑥.𝑥(𝑢1, 𝑦.𝑥))(𝑢2, 𝑧.𝑧)

• 𝑥1(𝑢1, 𝑦.𝜆𝑥.𝑧) →𝑝2
𝜆𝑥.𝑥1(𝑢1, 𝑦.𝑧)

Rule 𝑝2 is directly included in a unique computational rule:

(Distant Rule) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦𝑑𝛽 {D⟨{𝑢/𝑥}𝑡⟩/𝑦}𝑟
(Distant Contexts) D ∶∶= ♢ ∣ 𝑡(𝑢, 𝑥.D)

Example
𝑥(𝑢1, 𝑦.𝜆𝑥.𝑥)(𝑢2, 𝑧.𝑧) →𝑑𝛽 𝑥(𝑢1, 𝑦.𝑢2) D = 𝑥(𝑢1, 𝑦.♢)
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Permutations Do Not Contribute to Computation

Applying rule 𝑝2 does not change the size of derivations, unlike
𝛽𝑗.
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Distance Reflects the Type System

We define a variant 𝜆𝐽 using only the rule 𝑑𝛽.
D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦𝑑𝛽 {D⟨{𝑢/𝑥}𝑡⟩/𝑦}𝑟

Rule 𝑑𝛽 gives a single computational step, combining logical
cut-elimination with a permutation step.
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Comparing the Distant Rules

To get an intuition on why rule 𝜋 is quantitatively rejected,
compare the two following possible distant rules:

(Based on 𝑝2) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) → {D⟨{𝑢/𝑥}𝑡⟩/𝑦}𝑟
CBN-like rule: duplication or easure of D

(Based on 𝜋) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) → D⟨{{𝑢/𝑥}𝑡/𝑦}𝑟⟩
CBV-like rule: sharing of D
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Quantitative Types for Generalized Applications

The quantitative type system ∩𝐽 is sound and complete for 𝜆𝐽 .
Theorem (Qualitative)
𝑡 is typable in ∩𝐽 ⟺ 𝑡 is normalizable in 𝜆𝐽 .

Theorem (Quantitative)
𝑡 is typable with a derivation of size 𝑛 ⟺
𝑡 reaches a normal form in a maximum of 𝑛 steps.
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Preservation of Strong Normalization of the λ-calculus

Using typability:

Theorem
• 𝑡 is normalizable in 𝜆𝐽 ⟺ 𝑡∘ is normalizable in 𝜆.
• 𝑡 is normalizable in 𝜆 ⟺ 𝑡⋆ is normalizable in 𝜆𝐽 .
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Faithfulness of 𝜆𝐽 w.r.t. Λ𝐽

The variant 𝜆𝐽 is faithful to the original Λ𝐽 :
Theorem
𝑡 is normalizable in Λ𝐽
⟺ 𝑡 is typable in ∩𝐽
⟺ 𝑡 is normalizable in 𝜆𝐽 .
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Conclusions

• There are different ways to unblock stuck redexes of
generalized applications.

• Among them, 𝑝2 has a CBN behavior adapted for a CBN
quantitative type system.

• Distance enables to do only the necessary permutations
and focus on computation.
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Perspectives

• Solvability of 𝜆𝐽 (operational and logical identification of
semantically “meaningful” terms).

• Tight typings and a quantitative relationship to the
λ-calculus.

• An operational and quantitative study of Λ𝐽𝑚, an
interpretation of the intuistionistic sequent calculus.
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