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Curry-Howard is a Fundamental Isomorphism

Logic Programming
Intuistionistic natural deduction (ND) A-calculus
Classical logic Control operators
Classical Sequent Calculus Nufi
ND with generalized elimination® AJ?
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Typing Generalized Applications

I, A+ B
— (AX) (=,
T, A- A T A— B
' A—B T A I, BrF C

'k C



Typing Generalized Applications
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The Calculus with Generalized Applications AJ

Joachimski and Matthes (2000) introduced the calculus AJ:

- Strong proof-theoretical foundations.
- A fresh look on applications.

- Ties to the sequent calculus and to the theory of explicit
substitutions.



Qualitative Semantics

- Does a given term ¢ normalize?

- Given two terms, do they have the same normalization
behavior (are they observationally equivalent)?




Quantitative Semantics

- Which is the reduction length of a term ¢ to normal form?

- Do two terms reach a normal form with the same
reduction length?




Intersection types (Coppo, Dezani)

Normalizable Normalizable

Simply
typed

Simply
typed

Typable by
tersection

Theorem (Logical characterization)
Normalizable < typable.



Quantitative Types (Gardner, De Carvalho)

Non-idempotent intersection (or quantitative) types:

- Are sensitive to reduction length.

- Enable combinatorial proofs of normalization.
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Our Main Contribution

We revisit the operational semantics of AJ,

based on a quantitative approach.
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Operational Semantics of AJ: Computation

The calculus AJ is based on a computational rule 5. and a
permutation rule

Reduction in the A-calculus: (Az.t)u =4 {u/z}t.
Definition ( )
(Az.t)(u,yr) =5, {{u/a}t/y}r
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Operational Semantics of AJ: Computation

The calculus AJ is based on a computational rule 5. and a
permutation rule

Reduction in the A-calculus: (Az.t)u =4 {u/z}t.
Definition ( )

(Ax.t)(u, y.r) —p, {{u/x}t/y}r

let y = (Az.t)uinr — let y = {u/x}t inr —
The B,-rule generalizes f:

((Az.t)u)* —g5 {u/z}t)*
Il I

Azt*)(wy.y) —p {u/zht"/yty = {uw/a}tr ;



Operational Semantics of AJ: Permutation

Definition ( )
tu, z.r)(u',y.r’") = tlu,zr(u,yr’))

All (generalized) applications w-reduce to the shape
or

Example

(g )Jug)* = (2(uy, y-y)) (g, 2.2) =7 2(ug, Y-y (uy, 2.2))
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Rule 7w Unblocks Computations

Some p;-reductions are stuck without rule .

2(uy, Y1 AT.7) (Ug, Yo-Ysa) i

Solution

2(uy, Yy AT.7) (Ug, Yo-Ya) =y 2(Uy, Y1-(AT.2) (Ug, Yo Ya))

8, 2(ug,yp-us)
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Quantitative System NJ

(Types) o.7 == abc,...| M =0
(Multiset Types) M, N [0;];c; where I is a finite set
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Quantitative System NJ

(Types) o,7 == a,b,c,...| M =0
(Multiset Types) M, N == [o,];c; where I is a finite set
iz MbEt:o
z:lolkz:o F'FXzt:M—o

C'Et: M, = 7)ier Abw: UM, ANx:[Tlierbr:o
TWAWAFt(u,z.r):0

FHt:o (T t:0:),; I+0
LEt:] Wierli 8 (03]
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Rule 7 is Not Sound Quantitatively

Two crucial properties are (QSR)
and (QSE).

Definition (Quantitative Subject Reduction)
fTFrt:7and t — ¢/, then T FY ¢ : 7 with n > n/.

Definition (Quantitative Subject Expansion)
fT Y ¢/ :7andt — ¢, then T F" ¢ : 7 with n > n’.

Quantitative subject reduction fails for rule . x



Towards a Solution

Consider another permutation rule:

t(u,y.Az.r) =), Azt(U,y.7)

Example (Unblocking)

2(uy, Y AT.T) (Us, Yo.Yo) p, (Az.z(uy, y.2))(Ug, Yo Ys)

8, z(uy, y.uy)

Quantitative subject reduction %
Quantitative subject expansion ?/



The Solution: Permuting Only When Needed

Idea: use the permutation rule p, only to unblock 3;-redexes.
© T(Uy, Y- ATT) (Ug, 2.2) —p, (AZ.2(uy,y.T))(ug, 2.2) \/
© 2y (U, Y AT2) =) AT (Ug, Y.2) X

Rule p, is directly included in a unique computational rule:

(Distant Rule) D(Az.t)(u,y.r) =45 {D{{u/z}t)/y}r
(Distant Contexts) D == ¢ | t(u,z.D)

Example
z(Uy, Yy AT.)(Ug, 2.2) = g5 T(Ug,Y.Us) D =z(uy,y.0)



Permutations Do Not Contribute to Computation

Applying rule p, does not change the size of derivations, unlike

;.
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Distance Reflects the Type System

We define a variant \.J using only the rule dg.

DAZ.1) (u, y.r) =rag {D{u/z}t) /y}r

Rule dg gives a single computational step, combining logical
cut-elimination with a permutation step.
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Comparing the Distant Rules

To get an intuition on why rule 7 is quantitatively rejected,
compare the two following possible distant rules:

(Based on p,) D(Az.t)(u,y.r) — {D{{u/z}t)/y}r
CBN-like rule: duplication or easure of D

(Based on ) D(A\x.t)(u,y.r) = D{{u/xz}t/y}r)
CBV-Llike rule: sharing of D
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Quantitative Types for Generalized Applications

The quantitative type system NJ is sound and complete for AJ.
Theorem (Qualitative)

tis inNJ < tis in \J.

Theorem (Quantitative)
t Is typable with a =
t reaches a normal form in a
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Preservation of Strong Normalization of the A-calculus

Using
Theorem
- tis normalizable in \J <= t°is normalizable in \.

- tis normalizable in A < t* is normalizable in \J.
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Faithfulness of \J w.r.t. AJ

The variant A\J is faithful to the original AJ:

Theorem

t is normalizable in AJ

< tistypable in NJ

< tis normalizable in \J.

2%



Conclusions

- There are different ways to unblock stuck redexes of
generalized applications.

- Among them, p, has a CBN behavior adapted for a CBN
quantitative type system.

- Distance enables to do only the necessary permutations
and focus on computation.
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- Solvability of AJ (operational and logical identification of
semantically “meaningful” terms).

- Tight typings and a quantitative relationship to the
A-calculus.

- An operational and quantitative study of AJ, , an
interpretation of the intuistionistic sequent calculus.
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