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CBN and CBV generalized applications

► Generalized applications (GA) = a Curry-Howard
interpretation of natural deduction with generalized
elimination rules.

► First call-by-name (CBN) calculus Λ𝐽 by Joachimski &
Matthes (2000).

► First call-by-value (CBV) calculus Λ𝐽𝑣 by Espírito Santo
(2020).

► We use new variants with distance (𝜆𝐽𝑛 and 𝜆𝐽𝑣).
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The Syntax of Terms

Γ, 𝐴 ⊢ 𝐴
AX

Γ, 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

→𝑖

Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐴 Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶

→𝑒

(Terms) 𝑡, 𝑢, 𝑟 ∶∶= 𝑣 ∣ 𝑡(𝑢, 𝑦.𝑟)
(Values) 𝑣 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡

Intuition
𝑡(𝑢, 𝑦.𝑟) ⇝ let 𝑦 = 𝑡𝑢 in 𝑟
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What is the place of generalized applications in
the theory of programming languages?

4



Towards implementation

The λ-calculus
► A minimal syntax:

𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢.
► A single computational

rule: (𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}.
► Meta-level substitution.
► Nondeterminism.

Abstract machines
► Internal management of

substitution
(environment).

► Explicit search for a redex
(stack).

► Determinism.
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Extending the λ-calculus

λ-calculus

Explicit
substitutions

Generalized
applications

Abstract machines

Sharing of terms +
internal substitution

Sharing of applications
+ search for redex
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Calculi with explicit substitutions

Explicit substitutions offer:

► Sharing of terms: 𝑡[𝑥/𝑢] ⇝ let 𝑥 = 𝑢 in 𝑡 (environment).

► An internal treatment of substitution.

(𝜆𝑥.𝑡)𝑢 →B 𝑡[𝑥/𝑢]
𝑡[𝑥/𝑢] →sub … } Two phases of computation
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Characteristics of generalized applications

Features of generalized applications:

► Sharing of applications: 𝑡(𝑢, 𝑦.𝑟) ⇝ let 𝑦 = 𝑡𝑢 in 𝑟.

► Unique computational rule (external substitution):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}

► Explicit search for a redex (stack):

𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′))
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Generalized applications encode the stack

Example
((𝜆𝑥.𝑡)𝑢1𝑢2𝑢3)∗ = (𝜆𝑥.𝑡∗)(𝑢∗

1, 𝑦1.𝑦1)(𝑢∗
2, 𝑦2.𝑦2)(𝑢∗

3, 𝑦3.𝑦3)
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Generalized applications encode the stack

Example
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3, 𝑦3.𝑦3)))

@

@

@

𝜆𝑥.𝑡∗ 𝑢∗
1 𝑦1

𝑦1

𝑢∗
2 𝑦2

𝑦2

𝑢∗
3 𝑦3

𝑦3
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The original calculi

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽v 𝑟{𝑦\\𝑡{𝑥\\𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽𝑣

What about 𝜆𝐽𝑛 and 𝜆𝐽𝑣?
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Different levels of abstraction

λ-calculus

Explicit
substitutions

𝜆𝐽𝑛, 𝜆𝐽𝑣

Λ𝐽 , Λ𝐽𝑣

Sharing of terms +
internal substitution

Sharing of applications

Search for redex
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Stuck reductions

The variants do not use a permutation rule.
But 𝛽-reduction alone is not sufficient to reach normal forms.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) ↛𝛽
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Stuck reductions

𝜋-permutations can be used to unblock beta-reduction.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →𝜋 𝑧(𝑢1, 𝑦1.(𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2))
→𝛽 𝑧(𝑢1, 𝑦1.𝑢2)
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Distance integrates necessary permutations into computation

Idea: distance
𝛽 + needed permutations = d𝛽

Examples
► 𝑥1(𝑥2, 𝑦1.𝑦1)(𝑥3, 𝑦2.𝑦2) ↛
► 𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →d𝛽 𝑧(𝑢1, 𝑦1.𝑢2)
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The distant calculi

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩} }𝜆𝐽𝑛

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽v
𝑟{𝑦\\D⟨𝑡{𝑥\\𝑢}⟩} }𝜆𝐽𝑣

D = a series of generalized applications.
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Goal of the paper

We show some benefits of GA with the case
study of a crucial semantical property:

solvability.
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Towards solvability

Goal: define meaningless terms.

► A first approach: meaningless = non normalizable.
Collapse

► The solution: meaningless = unsolvable.
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Solvability

Definition (Solvable term)
A term 𝑡 is solvable iff there is a head context H such that
H⟨𝑡⟩ →∗ 𝜆𝑥.𝑥.

𝜆-terms

Solvable

Normalizable
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Operational characterization of CBN solvability

CBN solvability in the λ-calculus has an operational
characterization:

Theorem
𝑡 is CBN solvable ⟺ 𝑡 has a head normal form

⟺ 𝑡 is head-normalizable.
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CBN solvability in generalized applications

Head normalization extends naturally to generalized
applications.

Definition
A term 𝑡 is CBN solvable iff there is a head context H such
that H⟨𝑡⟩ →∗

d𝛽 D⟨𝜆𝑥.𝑥⟩.

D = list of “garbage” applications 𝑡(𝑢, 𝑥.𝑟) where 𝑥 ∉ fv(𝑟).
Example
Ω(𝑥, 𝑦.𝜆𝑥.𝑥) is solvable.
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A problem with CBV

Plotkin’s original CBV is defective due to premature normal
forms.

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) ↛𝛽v
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Characterizing CBV solvability

Characterizations were given in variants of the λ-calculus with:

Permutations (Carraro & Guerrieri, 2014)

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →𝜎1
(𝜆𝑦.(𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥))(𝑧𝑧) ⟲𝛽v

Explicit substitutions (Accattoli & Paolini, 2012)

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →∗ ((𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥))[𝑦/𝑧𝑧] ⟲∗
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Potential valuability

The characterizations of CBV solvability rely on potential
valuability.
Definition (Potential valuability for GA)
A term 𝑡 is potentially valuable iff there is a distant context D
and a value 𝑣 such that D⟨𝑡⟩ →∗

d𝛽v
𝑣.

𝜆-terms
Potentially valuable

Solvable

Normalizable
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CBV solvability for generalized applications

Definition
A term 𝑡 is CBV solvable iff there is a head context H such
that H⟨𝑡⟩ →∗

d𝛽v
𝜆𝑥.𝑥.

Example
In CBV, the term 𝑥(Ω, 𝑦.𝜆𝑥.𝑥) is not solvable, because the
argument Ω cannot be erased.
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CBV solvability with generalized applications

Operational characterizations of CBV solvability are natural
with generalized applications.

► The reduction relation refines head reduction.
► It is based on the operational characterization of potential

valuability.
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Particularities of the operational characterizations

Operational characterizations:

► Are provided for distant and non-distant calculi.
► Have simple normal forms

(of the shape 𝜆 ⃗𝑥.𝑦(𝑢1, 𝑧1.𝑟1) … (𝑢𝑛, 𝑧𝑛.𝑟𝑛)).

A characterization of CBV solvability is possible without explicit
substitutions and permutations rules.
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Different notions of solvability?

solv(𝜆𝐽𝑛) solv(Λ𝐽)

CBN solvability
(λ-calculus,
explicit

substitutions)

solv(𝜆𝐽𝑣) solv(Λ𝐽𝑣)

CBV solvability
(λ-calculus, λ with
permutations,

explicit substitutions)
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Logical models

To relate the different notions of solvability semantically, we
provide non-idempotent intersection type systems.

Theorem (Logical characterization)
𝑡 normalizable ⟺ 𝑡 typable ⟺ 𝑡 solvable.

We show preservation of solvability simply by proving
preservation of typability.
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Why non-idempotence?

Non-idempotence brings a quantitative flavor to intersection
types, with:

► Upper bounds on the number of reduction steps and size
of normal form, and

► Combinatorial proofs of normalization.
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Two unique notions of solvability

solv(𝜆𝐽𝑛) solv(Λ𝐽)

CBN solvability
(λ-calculus,
explicit

substitutions)

solv(𝜆𝐽𝑣) solv(Λ𝐽𝑣)

CBV solvability
(λ-calculus, λ with
permutations,

explicit substitutions)
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Future works

► A partial genericity lemma.
► Investigate call-by-value solvability and potential

valuability semantically.
► Describe the transformation from generalized

applications to abstract machines.
► Exact bounds with tight types.
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Thank you!
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