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CBN and CBV generalized applications

» Generalized applications (GA) = a Curry-Howard
interpretation of natural deduction with generalized
elimination rules.

» First call-by-name (CBN) calculus AJ by Joachimski &
Matthes (2000).

» First call-by-value (CBV) calculus AJ, by Espirito Santo
(2020).

» We use new variants with distance (\J,, and \J,).
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The Syntax of Terms
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What is the place of generalized applications in
the theory of programming languages?



Towards implementation

The A-calculus Abstract machines
» A minimal syntax: » Internal management of
x| Ax.t | tu. substitution
» A single computational (environment).
rule: (Az.t)u =5 t{z/u}. » Explicit search for a redex
» Meta-level substitution. (stack).

» Nondeterminism. » Determinism.



Extending the A-calculus

A-calculus

Sharing of terms + Sharing of applications

+ search for redex

Generalized
applications

internal substitution

Explicit
substitutions
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Calculi with explicit substitutions

Explicit substitutions offer:

» Sharing of terms: t[z/u] +» let @ = w in t (environment).



Calculi with explicit substitutions

Explicit substitutions offer:

» Sharing of terms: t[z/u] +» let @ = w in t (environment).

» An internal treatment of substitution.

Az.t)u  —p

t[x/u} ~sub

te/u] }Two phases of computation



Characteristics of generalized applications

Features of generalized applications:

» Sharing of applications: t(u,y.r) ~» let y = tu in r.
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Characteristics of generalized applications

Features of generalized applications:

» Sharing of applications: t(u,y.r) ~» let y = tu in r.
» Unique computational rule (external substitution):

(Az.t)(u,y.r) =5 r{y/t{z/u}}

» Explicit search for a redex (stack):

t(u,z.r)(u',yr") = t(u,zr(u,yr))



Generalized applications encode the stack

Example
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Generalized applications encode the stack

Example
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Generalized applications encode the stack

Example

()\m.t*)(uj{, yl-%)(“Za y2-92)<“§a 3/3-3/3)
= Az ) (ul, y1.91) (Us, Yo Yo (Us, Y3-Y3))
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Generalized applications encode the stack

Example

()\m.t*)(uj{, yl-%)(“Za y2-92)<“§a 3/3-3/3)
= Az ) (ul, y1.91) (Us, Yo Yo (Us, Y3-Y3))
= (A t) (ur™, Y191 (U3, Yo Yo (U3, Y3-93)))
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The original calculi
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The original calculi

(Az.t)(u,y.r)
t(u,z.r)(u,y.r")
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The original calculi

Azt)(u,yr) — riy/t{z/u}} } N
)

t(u,z.r)(u',yr’) —. tlu,zr@,yr’

(Az.t)(u,y.r) =g, r{y\t{z\u}} }AJ

t(u,z.r)(u',yr’) — t(u,z.r(u’,y.r’")) v
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What about AJ,, and AJ,?
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Different levels of abstraction

Sharing of applications

Sharing of terms +

internal substitution

Explicit
substitutions

"



Stuck reductions

The variants do not use a permutation rule.
But S-reduction alone is not sufficient to reach normal forms.

z(ulv ylA‘LJ) (u27 y2‘y2> _Hﬂ
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Stuck reductions

m-permutations can be used to unblock beta-reduction.

2(uy, Yy Av.7) (Ug, YY) =5 2(Ug, Y1- (A7) (Us, Yo Ya))

—g 2(Uy, Yy -uy)
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Distance integrates necessary permutations into computation

Idea: distance
B + needed permutations = djs
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Distance integrates necessary permutations into computation

Idea: distance
B + needed permutations = djs

Examples

> 21 (T9, Y1-Y1)(T3,Ya-Ys) +

> 2(up, Y1-AT.7)(Ug, Yo-Ya) —rap 2(Ug, Y1 -Us)
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The distant calculi

DALY (u,yr) —qs  r{y/D{t{z/u})} })\J

DQAzt)(u,y.r) —ap r{y\D{E{z\u})} })\J

D = a series of generalized applications.
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Goal of the paper

We show some benefits of GA with the case
study of a crucial semantical property:
solvability.
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Towards solvability

Goal: define meaningless terms.

» A first approach: meaningless = non normalizable.

Collapse X

» The solution: meaningless = unsolvable. %



Solvability

Definition (Solvable term)
A term ¢ is solvable iff there is a head context H such that
H(t) —* \z.x.

Solvable

Normalizable



Operational characterization of CBN solvability

CBN solvability in the A-calculus has an operational
characterization:

Theorem
t is CBN solvable < t has a head normal form
< tis head-normalizable.



CBN solvability in generalized applications

Head normalization extends naturally to generalized
applications.

Definition

A term ¢ is CBN solvable iff there is a head context H such
that H(t) =35 D(\z.x).

D = list of “garbage” applications t(u, x.r) where z ¢ fv(r).

Example
Q(x,y.\zx.x) is solvable.
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A problem with CBV

Plotkin’s original CBV is defective due to premature normal
forms.

(AyAz.w7)(22)(A\T.2T) + 4,
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Characterizing CBV solvability

Characterizations were given in variants of the A-calculus with:
Permutations (Carraro & Guerrieri, 2014)

My Az.wx)(22)(Az.22) =, (AY.(AT.27)(A\T.27))(22) D48,

o1

Explicit substitutions (Accattoli & Paolini, 2012)

Ay Az.zx)(zz) A\r.xx) =* (Ax.xz)(Az.xx))[y/zz] OF
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Potential valuability

The characterizations of CBV solvability rely on potential
valuability.
Definition (Potential valuability for GA)

Aterm t is potentially valuable iff there is a distant context D
and a value v such that D(t) —%5 .

Potentially valuable
Solvable

Normalizable
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CBV solvability for generalized applications

Definition
Aterm ¢ is CBV solvable iff there is a head context H such
that H(t) =35 Az.2.

Example
In CBY, the term x(Q2, y.A\x.x) is not solvable, because the
argument Q cannot be erased.
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CBV solvability with generalized applications

Operational characterizations of CBV solvability are natural
with generalized applications.

» The reduction relation refines head reduction.

» Itis based on the operational characterization of potential
valuability.
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Particularities of the operational characterizations

Operational characterizations:

» Are provided for distant and non-distant calculi.
» Have simple normal forms
(of the shape AZ.y(uy, z1.1q) - (U, 2,-70,))-

nrTn'n

A characterization of CBV solvability is possible without explicit
substitutions and permutations rules.
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Different notions of solvability?

solv(\J,) solv(A.J)

CBN solvability CBV solvability
(A-calculus, (A-calculus, A with
explicit permutations,
substitutions) explicit substitutions)
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Logical models

To relate the different notions of solvability semantically, we
provide non-idempotent intersection type systems.

Theorem (Logical characterization)
t normalizable < t typable < t solvable.

We show preservation of solvability simply by proving
preservation of typability.
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Why non-idempotence?

Non-idempotence brings a quantitative flavor to intersection
types, with:

» Upper bounds on the number of reduction steps and size
of normal form, and

» Combinatorial proofs of normalization.
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Two unique notions of solvability

solv(AJ,)

CBN solvability
(A-calculus,
explicit
substitutions)

CBV solvability
(A-calculus, A with
permutations,
explicit substitutions)
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Future works

» A partial genericity lemma.

» Investigate call-by-value solvability and potential
valuability semantically.

» Describe the transformation from generalized
applications to abstract machines.

» Exact bounds with tight types.
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Thank you!



