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Functional vs imperative languages

l e t rec f a c t o r i a l = funct ion
| 1 => 1
| n where n > 1 =>

n * f a c t o r i a l ( n − 1 )

Functional program: “what”

i n t f a c t o r i a l ( i n t n ) {
i n t fac tn = 1 ;
whi le (n >= 1 ) {

fac tn = fac tn * n ;
n− − ;

}
return fac tn ;

}

Imperative program: “how”

Functional languages have a solid mathematical underlying
theory.
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Models of functional languages

At the core of functional programming are abstract models of
computation. They:

• Assert fundamental properties of classes of languages.
• Influence implementations.
• Are oblivious to some implementation details.

Our main tools
The theory of λ-calculi and quantitative types.
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What is a λ-calculus?

• An elementary syntax of terms (programs).

Example
In the original λ-calculus of Church, terms are built with
three constructors:
variables 𝑥, abstractions 𝜆𝑥.𝑡 and applications 𝑡𝑢.

• Reduction rules on terms, that represent computational
progress.

Example
In Church’s λ-calculus: a unique rule (𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}.
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Semantics of programs

We give a meaning to programs. Two kinds of semantics are
relevant for us:

Operational semantics is concerned with reductions on terms
generated by the reduction rules.

Denotational semantics is concerned with general properties
on terms invariant by reduction.

Different λ-calculi give rise to different semantics.
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The Curry-Howard correspondence

Logical systems can be seen as models of computations.

Languages Logic
Types Propositions

Programs Proofs
Evaluation Cut-elimination
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The intuistionistic Curry-Howard correspondence

Calculi Intuitionistic proof systems
λ-calculus Natural deduction (ND)

… …
Atomic λ-calculus (Node replication) Open deduction

Gundersen, Heĳltjes & Parigot (2012) Guglielmi, Gundersen, Parigot (2010)

λ-calculus with gen. applications ND with gen. elimination
Joachimski & Matthes (2000) von Plato (2001)
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This work

We look into semantical properties of reduction with node
replication or generalized applications, both:
Qualitative
a) Does a given term normalize?
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?

Quantitative
c) What is the reduction length of a given term to normal
form?
d) Does an evaluation strategy normalize in less steps than
another?
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Intersection types capture normalization

Untyped

Normalizable

Intersection
typed

= =Simply
typed

𝜆𝑥.𝑥𝑥 is typable with
intersection types.

𝜆𝑥.𝑥𝑥
𝜏 → 𝜎 ∧ 𝜏 𝜏 → 𝜎 𝜏
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Idempotent and non-idempotent intersection types

Idempotent Non-idempotent
Coppo & Dezani (80’s) Gardner, Kfoury (90’s), de Carvalho (2007)

𝜏 ∧ 𝜏 = 𝜏 𝜏 ∧ 𝜏 ≠ 𝜏
Qualitative analysis Quantitative analysis

𝜆𝑓.𝜆𝑥.𝑓𝑥𝑥
𝜏 𝜏 𝜏𝜏

𝜆𝑓.𝜆𝑥.𝑓𝑥𝑥
𝜏 ∧ 𝜏 𝜏 𝜏
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Node Replication



Different Curry-Howard notions of substitution

Substitution kind Logical framework
Full Substitution Natural Deduction

Linear Substitution Linear Logic
Node Replication Open Deduction

How is normalization affected by node replication
(qualitatively and quantitatively)?
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Node replication

Duplication of terms constructor by constructor. Enables
optimizations by keeping more subterms shared.
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Contributions

1. Define a simple calculus with node replication (called 𝜆𝑅).
2. Define different evaluation strategies in the calculus.
3. Give a quantitative model for these strategies.
4. Prove observational equivalence between these strategies.
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Firing substitution in the 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

Definition (B-rule)
(𝜆𝑥.𝑡)𝑢 →B 𝑡[𝑥/𝑢]

Some reductions are blocked by ES:

(𝜆𝑥.𝑡)[𝑦/𝑣]𝑢 ↛B

14



Reduction at a distance

Reduction can be recovered by adding structural permutations.

(𝜆𝑥.𝑡)[𝑦/𝑣]𝑢 →𝜌 ((𝜆𝑥.𝑡)𝑢)[𝑦/𝑣] →B 𝑡[𝑥/𝑢][𝑦/𝑣]

Our approach: distance
B + needed permutations = dB:

L⟨𝜆𝑥.𝑡⟩𝑢 →dB L⟨𝑡[𝑥/𝑢]⟩, where L = ◊[𝑥1/𝑢1] … [𝑥𝑛/𝑢𝑛].
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The 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥/𝑢]⟩

} Firing substitution

𝑡[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡{𝑥/𝑦}⟩

} Substitution

𝑡[𝑥/L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩
𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩

𝑡[𝑥//𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥/𝜆𝑦.𝑝}⟩
where 𝑢 →∗

𝜌 L⟨𝑝⟩ and 𝑦 ∉ fv(L).
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Full laziness

• An optimization of call-by-need (CbNeed).
• Can be implemented by node replication.
• Only duplicates the skeleton of abstractions.
• The skeleton is the path from the topmost abstraction 𝜆𝑦
to the occurrences of 𝑦.

• The complement of the skeleton stays shared.
• This avoids some duplication of computations.
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Example of graphical fully lazy duplication

𝜆𝑦.𝑦(𝐼𝐼) = 𝜆𝑦.𝑦𝑧⏟
skeleton

+ [𝑧/𝐼𝐼]⏟
sharing
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Example of fully lazy duplication in 𝜆𝑅

Full laziness can be implemented in 𝜆𝑅.

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦(𝐼𝐼)) →dB (𝑥𝑥)[𝑥/𝜆𝑦.𝑦(𝐼𝐼)]
→dist (𝑥𝑥)[𝑥//𝜆𝑦.𝑧[𝑧/𝑦(𝐼𝐼)]]
→app (𝑥𝑥)[𝑥//𝜆𝑦.(𝑧1𝑧2)[𝑧1/𝑦][𝑧2/𝐼𝐼]]
→var (𝑥𝑥)[𝑥//𝜆𝑦.(𝑦𝑧2)[𝑧2/𝐼𝐼]]
→abs ((𝜆𝑦.𝑦𝑧2)(𝜆𝑦.𝑦𝑧2))[𝑧2/𝐼𝐼]
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Comparison with the atomic λ-calculus

𝜆𝑅-calculus Atomic λ-calculus
with Delia Kesner, Daniel Ventura (FoSSaCS 2021) Gundersen, Heĳltjes & Parigot (2012)

Non-linear variables Linear variables
Distance Independent permutations

Focuses on programming languages Focuses on logical systems
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Two strategies with node replication

We define (weak-head) call-by-name (CbN) and CBNeed
strategies of 𝜆𝑅.

• Our CbN simulates full substitution in the λ-calculus.
• Our CbNeed is fully lazy:

• memoization,
• need contexts, and
• skeleton extraction.
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Two different semantic for splitting

Big-step (one of the rules)

𝑡 ⇓𝜃∪{𝑥} L⟨𝑠⟩
𝜆𝑥.𝑡 ⇓𝜃 L⟨𝜆𝑥.𝑠⟩

Small-step (one of the rules)
𝑡[𝑥/𝜆𝑧.𝑢] ↦𝑦

dist 𝑡[𝑥//𝜆𝑧.𝑥′[𝑥′/𝑢]] where 𝑦 ∈ fv(𝑢)

Theorem
The two semantics are equivalent, and give the correct
splitting.
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Small-steps skeleton extraction is more flexible

When considering skeletons of terms with ES, the big-steps
semantics may cause inefficency.

Example
Let 𝜆𝑥.𝑡 = 𝜆𝑥.(𝜆𝑦.𝑦[𝑥′/𝑥])𝑧.

• 𝑡 ⇓{𝑥} ((𝜆𝑦.𝑦)𝑧′)[𝑧′/𝑧], but:
• 𝑤[𝑤//𝜆𝑥.𝑡] →∗ (𝜆𝑥.𝑤)[𝑤/(𝜆𝑦.𝑦)𝑧] (in two steps)
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The quantitative type system ∩𝑅

Some of the typing rules:

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎
(AX)

∅ ⊢ 𝜆𝑥.𝑡 ∶ a
(ANS)

Γ; 𝑥 ∶ [𝜏𝑖]0≤𝑖≤𝑛 ⊢ 𝑡 ∶ 𝜎 Δ1 ⊢ 𝑢 ∶ 𝜏1 … Δ𝑛 ⊢ 𝑢 ∶ 𝜏𝑛

Γ ⊎ Δ1 ⊎ … ⊎ Δ𝑛 ⊢ 𝑡[𝑥/𝑢] ∶ 𝜎
(ES)
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Characterization of normalization by typability

Contribution

quantitative type system ∩𝑅

Full laziness is an operational feature, not a semantical one.

call-by-name (NR) fully lazy call-by-need (NR)

NR = Node replication FS = Full substitution
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An upper bound for fully lazy reduction

• Usually, in intuitionistic calculi, the size of the
non-idempotent type derivation decreases at each step.

• In 𝜆𝑅, rules app and dist adds fresh variables that makes
the size of the derivation grow.

𝑡[𝑥/𝑢1𝑢2] →app 𝑡{𝑥/𝑥1𝑥2}[𝑥1/𝑢1][𝑥2/𝑢2]

• We define a decreasing measure on type derivations,
enabling a combinatorial proof of normalization.
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The quantitative model: permutations vs distance

At every step of reduction, the measure on type derivations
decreases.

With permutations: not every
step consumes resources.

With distance: every step
consumes resources.
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Back to the questions (I)

Qualitative questions
a) Does a given term normalize?
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?

Answers:
a) If and only if it is typable in system ∩𝑅.
b) CbN and CbNeed, with full substitution or node replication
all normalize on the same terms.

28



Back to the questions (II)

Quantitative questions
c) What is the reduction length of a given term to normal
form?
d) Does an evaluation strategy normalize in less steps than
another?

Answers:
c) The measure gives an upper bound on the number of
reduction steps.
d) Full laziness reduces the length of reduction w.r.t. full
substitution.

29



Generalized Applications



Call-by-name and call-by-value generalized applications

Generalized applications (GA) are a Curry-Howard
interpretation of natural deduction with generalized
elimination rules.

Original calculi Distant variants
CbN Λ𝐽 (Joachimski & Matthes, 2000) 𝜆𝐽𝑛 (new)
CbV Λ𝐽𝑣 (Espírito Santo, 2020) 𝜆𝐽𝑣 (new)

CbN: call-by-name
CbV: call-by-value
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The syntax of terms for generalized applications

(Values) 𝑣 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡
(Terms) 𝑡, 𝑢, 𝑟 ∶∶= 𝑣 ∣ 𝑡(𝑢, 𝑥.𝑟)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
AX

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

→𝑖

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ, 𝑥 ∶ 𝐵 ⊢ 𝑟 ∶ 𝐶
Γ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝐶

→𝑒
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All and only applications are shared

Shared? Variables Abstractions Applications
ES 𝑟[𝑥/𝑦] 𝑟[𝑥/𝜆𝑦.𝑡] 𝑟[𝑥/𝑡𝑢]
GA no no 𝑡(𝑢, 𝑥.𝑟)

First intuition (not completely right)

𝑡(𝑢, 𝑥.𝑟) ≈ let 𝑥 = 𝑡𝑢 in 𝑟 ≈ 𝑟[𝑥/𝑡𝑢]
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Rewriting in the original CbN calculus with GA

A 𝛽-rule with meta-level substitutions
(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}

• Generalizes 𝛽-reduction in the λ-calculus.

A commutative conversion 𝜋
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′))

• Moves the leftmost redex on top of the term.
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Failure of CbN subject reduction for 𝜋

We give a quantitative type system ∩𝐽 for CbN reduction of GA.
Subject reduction/expansion in a quantitative type system
• Weighted subject reduction: 𝑡1 → 𝑡2 → … → 𝑡𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γ⊢𝑡∶𝜏
• Subject expansion: 𝑡1 ← ⋯ ← 𝑡𝑛⏟⏟⏟⏟⏟

Γ⊢𝑡∶𝜏

But with 𝜋: subject reduction in the quantitative system fails.
Question
e) Can we define a CbN calculus with generalized
applications compatible with a quantitative model?

Joint work with Delia Kesner and José Espírito Santo, FoSSaCS
2022. 34



Permutations are necessary

We cannot remove 𝜋-permutations without changing
normalization, because 𝜋-permutations are useful to unblock
beta-reduction.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) ↛𝛽
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A new CbN calculus

• We consider instead the permutation rule p2:

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) →p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)

• We define a distant calculus 𝜆𝐽𝑛 based on p2 and using a
single distant rule d𝛽.

• Unlike Λ𝐽 , this calculus is compatible with the
quantitative type system:

• a) Typability characterizes strong normalization.
• c) The size of type derivations gives an upper bound on
the length of reduction and size of normal forms.
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The qualitative semantics is preserved

Comparison of the semantics of the CbN calculi
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?
d) Does an evaluation strategy normalize in less steps than
another?

Answers:

• b) Strong normalization of 𝜆𝐽𝑛 and Λ𝐽 correspond.
• d) The quantitivities are incomparable.
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A different duplication behavior in the new CbN calculus

Definition (Distant contexts)
D⩴ ◊ ∣ 𝑡1(𝑡2, 𝑥.D)

What makes 𝜆𝐽𝑛 and Λ𝐽 different? Compare:

(𝜆𝐽𝑛) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩}
Duplication or erasure of D

(Λ𝐽) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →∗
𝜋→𝛽 D⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩

Sharing of D
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Towards a faithful translation to explicit substitutions

We want to relate strong normalization in GA and the
λ-calculus (with explicit substitutions).

Reminder: initial (wrong) intuition
𝑡(𝑢, 𝑥.𝑟) ≈ 𝑟[𝑥/𝑡𝑢]

But the semantics differs.
Example
Let 𝛿 = 𝜆𝑥.𝑥𝑥 and 𝛿𝑗 = 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧).
The terms 𝛿𝑗(𝛿𝑗, 𝑥.𝜆𝑦.𝑦) and (𝜆𝑦.𝑦)[𝑥/𝛿𝛿] seem to correspond.
But in CbN, only the first one is strongly normalizing.
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The new translation

Theorem
Translations preserve strong normalization both way.
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Refined operational study of generalized applications

f ) Does the operational semantics of generalized applications
enable to capture semantical properties?

We look at:

• A perpetual strategy.
• A normalizing strategy.
• Solvability (FSCD 2022).
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The Cbn and CbV original calculi

Call-by-name (Joachimski & Matthes):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽

Call-by-value (Espírito Santo):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽v 𝑟{𝑦\\𝑡{𝑥\\𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽𝑣

Definition (CbV substitution)
𝑡{𝑥\\D⟨𝑣⟩} = D⟨𝑡{𝑥/𝑣}⟩

42



The new CbN and CbV distant calculi

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩} } 𝜆𝐽𝑛
CbN, based on p2

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽v
D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ } 𝜆𝐽𝑣

CbV, based on 𝜋
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A benefit of using generalized applications

• In the CbN λ-calculus, the leftmost-outermost reduction is
normalizing.

• Giving a normalizing strategy for a CbV calculus is in
general much more difficult (Leberle, 2021).

In the framework of generalized applications:

• We give a simple normalizing strategy for CbV.
• This strategy reduces redexes in the leftmost-outermost
order.
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A normalizing leftmost-outermost CbV strategy (for Λ𝐽𝑣)

Normal forms
NF ⩴ 𝑥 ∣ 𝜆𝑥. NF ∣ 𝑥(NF, 𝑦. NF)

Base rules
𝛽v + 𝜋

Contextual rules
𝑡 → 𝑡′

𝜆𝑥.𝑡 → 𝜆𝑥.𝑡′
𝑢 → 𝑢′

𝑥(𝑢, 𝑦.𝑟) → 𝑥(𝑢′, 𝑦.𝑟)
𝑟 → 𝑟′

𝑥(𝑢, 𝑦.𝑟) → 𝑥(𝑢, 𝑦.𝑟′)

Taking the same normal forms and inductive rules, we can
obtain a CbN normalizing strategy.
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Call-by-name solvability for generalized applications

Contribution
Characterizations of CbN solvability in 𝜆𝐽𝑛 and Λ𝐽 .

Definition
𝑡 is CbN solvable:
∃H,D such that
H⟨𝑡⟩ →𝜆𝐽𝑛

D⟨𝜆𝑥.𝑥⟩.

Theorem
Translations to and from the λ-calculus preserve solvability.

46



What about CbV solvability?

• Normalizable terms should should all be meaningful.
• But Plotkin’s CbV calculus is defective:
• The term (𝜆𝑥.𝛿)(𝑦𝑦)𝛿 (for instance) has no denotation but
is in normal form.
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CbV solvability for generalized applications

Contribution
Characterizations of CbV solvability in 𝜆𝐽𝑣 and Λ𝐽𝑣.

Definition
𝑡 is CbV solvable:
∃H such that
H⟨𝑡⟩ →𝜆𝐽𝑣

𝜆𝑥.𝑥.
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Alternative CbV operational characterizations

Operational characterizations of CbV solvability were already
given for two other calculi.

𝜆vsub (Accattoli & Paolini, 2012)
Uses explicit substitutions and distance:
(𝜆𝑥.𝛿)(𝑦𝑦)𝛿 →d𝛽v (𝛿𝛿)[𝑥/𝑦𝑦] ⟲2

d𝛽v

𝜆𝜎
v (Carraro & Guerrieri, 2014)

Adds permutations to Plotkin’s calculus:
(𝜆𝑥.𝛿)(𝑦𝑦)𝛿 →𝜎1

(𝜆𝑥.𝛿𝛿)(𝑦𝑦) ⟲𝛽v
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Comparing CbV solvability in different frameworks

Theorem
Translations between GA and the λ-calculus (with explicit
substitutions) preserve CbV solvability both ways.

We can compare the solving evaluation strategies:

GA 𝜆𝜎
v 𝜆vsub

Simple normal forms Yes No Yes
Meta-level substitutions Yes Yes No

Stuck reductions No (𝜆𝑥.𝑥)(𝑦𝑦) ↛ 𝑥[𝑥/𝑦𝑦] ↛
Moggi’s identity Yes No No

Definition (Moggi’s identity)
For any term 𝑢, (𝜆𝑥.𝑥)𝑢 → 𝑢.
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Conclusion



Contributions

• A new calculus for node replication.
• CbN and fully lazy CbNeed strategies based on node
replication.

• Quantitative models for these strategies.
• CbN and CbV distant calculi with GA.
• Operational characterizations of solvability and weak
normalization in GA.

• Quantitative models for CbN and CbV generalized
applications.
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Further works

Short term:

• Exact bounds with tight type systems.
• Abstract machines for full laziness.

Long term:

• Understand the correct notion of meaningless term in CbV
equipped with a genericity lemma.

• Classical calculi to capture control operators in
generalized applications and node replication.

• Fully abstract CbV models.
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Thank you for your attention!
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