
From Proof Terms to Programs
An operational and quantitative study of intuistionistic
Curry-Howard languages

Loïc Peyrot
18 novembre 2022

IRIF, Université Paris Cité

1

Functional vs imperative languages

l e t rec f a c t o r i a l = funct ion
| 1 => 1
| n where n > 1 =>

n * f a c t o r i a l (n − 1)

Functional program: “what”

i n t f a c t o r i a l (i n t n) {
i n t fac tn = 1 ;
whi le (n >= 1) {

fac tn = fac tn * n ;
n− − ;

}
return fac tn ;

}

Imperative program: “how”

Functional languages have a solid mathematical underlying
theory.

2

Models of functional languages

At the core of functional programming are abstract models of
computation. They:

• Assert fundamental properties of classes of languages.
• Influence implementations.
• Are oblivious to some implementation details.

Our main tools
The theory of λ-calculi and quantitative types.

3

What is a λ-calculus?

• An elementary syntax of terms (programs).

Example
In the original λ-calculus of Church, terms are built with
three constructors:
variables 𝑥, abstractions 𝜆𝑥.𝑡 and applications 𝑡𝑢.

• Reduction rules on terms, that represent computational
progress.

Example
In Church’s λ-calculus: a unique rule (𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}.

4

What is a λ-calculus?

• An elementary syntax of terms (programs).

Example
In the original λ-calculus of Church, terms are built with
three constructors:
variables 𝑥, abstractions 𝜆𝑥.𝑡 and applications 𝑡𝑢.

• Reduction rules on terms, that represent computational
progress.

Example
In Church’s λ-calculus: a unique rule (𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}.

4

Semantics of programs

We give a meaning to programs. Two kinds of semantics are
relevant for us:

Operational semantics is concerned with reductions on terms
generated by the reduction rules.

Denotational semantics is concerned with general properties
on terms invariant by reduction.

Different λ-calculi give rise to different semantics.

5

The Curry-Howard correspondence

Logical systems can be seen as models of computations.

Languages Logic
Types Propositions

Programs Proofs
Evaluation Cut-elimination

6

The intuistionistic Curry-Howard correspondence

Calculi Intuitionistic proof systems
λ-calculus Natural deduction (ND)

… …
Atomic λ-calculus (Node replication) Open deduction

Gundersen, Heĳltjes & Parigot (2012) Guglielmi, Gundersen, Parigot (2010)

λ-calculus with gen. applications ND with gen. elimination
Joachimski & Matthes (2000) von Plato (2001)

7

This work

We look into semantical properties of reduction with node
replication or generalized applications, both:
Qualitative
a) Does a given term normalize?
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?

Quantitative
c) What is the reduction length of a given term to normal
form?
d) Does an evaluation strategy normalize in less steps than
another?

8

This work

We look into semantical properties of reduction with node
replication or generalized applications, both:
Qualitative
a) Does a given term normalize?
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?

Quantitative
c) What is the reduction length of a given term to normal
form?
d) Does an evaluation strategy normalize in less steps than
another?

8

Intersection types capture normalization

Untyped

Normalizable

Intersection
typed

= =Simply
typed

𝜆𝑥.𝑥𝑥 is typable with
intersection types.

𝜆𝑥.𝑥𝑥
𝜏 → 𝜎 ∧ 𝜏 𝜏 → 𝜎 𝜏

9

Idempotent and non-idempotent intersection types

Idempotent Non-idempotent
Coppo & Dezani (80’s) Gardner, Kfoury (90’s), de Carvalho (2007)

𝜏 ∧ 𝜏 = 𝜏 𝜏 ∧ 𝜏 ≠ 𝜏
Qualitative analysis Quantitative analysis

𝜆𝑓.𝜆𝑥.𝑓𝑥𝑥
𝜏 𝜏 𝜏𝜏

𝜆𝑓.𝜆𝑥.𝑓𝑥𝑥
𝜏 ∧ 𝜏 𝜏 𝜏

10

Node Replication

Different Curry-Howard notions of substitution

Substitution kind Logical framework
Full Substitution Natural Deduction

Linear Substitution Linear Logic
Node Replication Open Deduction

How is normalization affected by node replication
(qualitatively and quantitatively)?

11

Node replication

Duplication of terms constructor by constructor. Enables
optimizations by keeping more subterms shared.

12

Contributions

1. Define a simple calculus with node replication (called 𝜆𝑅).
2. Define different evaluation strategies in the calculus.
3. Give a quantitative model for these strategies.
4. Prove observational equivalence between these strategies.

13

Firing substitution in the 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

Definition (B-rule)
(𝜆𝑥.𝑡)𝑢 →B 𝑡[𝑥/𝑢]

Some reductions are blocked by ES:

(𝜆𝑥.𝑡)[𝑦/𝑣]𝑢 ↛B

14

Reduction at a distance

Reduction can be recovered by adding structural permutations.

(𝜆𝑥.𝑡)[𝑦/𝑣]𝑢 →𝜌 ((𝜆𝑥.𝑡)𝑢)[𝑦/𝑣] →B 𝑡[𝑥/𝑢][𝑦/𝑣]

Our approach: distance
B + needed permutations = dB:

L⟨𝜆𝑥.𝑡⟩𝑢 →dB L⟨𝑡[𝑥/𝑢]⟩, where L = ◊[𝑥1/𝑢1] … [𝑥𝑛/𝑢𝑛].

15

The 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥/𝑢]⟩

} Firing substitution

𝑡[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡{𝑥/𝑦}⟩

} Substitution

𝑡[𝑥/L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩
𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩

𝑡[𝑥//𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥/𝜆𝑦.𝑝}⟩
where 𝑢 →∗

𝜌 L⟨𝑝⟩ and 𝑦 ∉ fv(L).

16

The 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥/𝑢]⟩ } Firing substitution

𝑡[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡{𝑥/𝑦}⟩

} Substitution

𝑡[𝑥/L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩
𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩

𝑡[𝑥//𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥/𝜆𝑦.𝑝}⟩
where 𝑢 →∗

𝜌 L⟨𝑝⟩ and 𝑦 ∉ fv(L).

16

The 𝜆𝑅-calculus

(Terms) 𝑡, 𝑢 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥/𝑢]⟩ } Firing substitution
𝑡[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡{𝑥/𝑦}⟩

} Substitution𝑡[𝑥/L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩
𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩

𝑡[𝑥//𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥/𝜆𝑦.𝑝}⟩
where 𝑢 →∗

𝜌 L⟨𝑝⟩ and 𝑦 ∉ fv(L).

16

Full laziness

• An optimization of call-by-need (CbNeed).
• Can be implemented by node replication.
• Only duplicates the skeleton of abstractions.
• The skeleton is the path from the topmost abstraction 𝜆𝑦
to the occurrences of 𝑦.

• The complement of the skeleton stays shared.
• This avoids some duplication of computations.

17

Example of graphical fully lazy duplication

𝜆𝑦.𝑦(𝐼𝐼) = 𝜆𝑦.𝑦𝑧⏟
skeleton

+ [𝑧/𝐼𝐼]⏟
sharing

18

Example of fully lazy duplication in 𝜆𝑅

Full laziness can be implemented in 𝜆𝑅.

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦(𝐼𝐼)) →dB (𝑥𝑥)[𝑥/𝜆𝑦.𝑦(𝐼𝐼)]
→dist (𝑥𝑥)[𝑥//𝜆𝑦.𝑧[𝑧/𝑦(𝐼𝐼)]]
→app (𝑥𝑥)[𝑥//𝜆𝑦.(𝑧1𝑧2)[𝑧1/𝑦][𝑧2/𝐼𝐼]]
→var (𝑥𝑥)[𝑥//𝜆𝑦.(𝑦𝑧2)[𝑧2/𝐼𝐼]]
→abs ((𝜆𝑦.𝑦𝑧2)(𝜆𝑦.𝑦𝑧2))[𝑧2/𝐼𝐼]

19

Comparison with the atomic λ-calculus

𝜆𝑅-calculus Atomic λ-calculus
with Delia Kesner, Daniel Ventura (FoSSaCS 2021) Gundersen, Heĳltjes & Parigot (2012)

Non-linear variables Linear variables
Distance Independent permutations

Focuses on programming languages Focuses on logical systems

20

Two strategies with node replication

We define (weak-head) call-by-name (CbN) and CBNeed
strategies of 𝜆𝑅.

• Our CbN simulates full substitution in the λ-calculus.
• Our CbNeed is fully lazy:

• memoization,
• need contexts, and
• skeleton extraction.

21

Two different semantic for splitting

Big-step (one of the rules)

𝑡 ⇓𝜃∪{𝑥} L⟨𝑠⟩
𝜆𝑥.𝑡 ⇓𝜃 L⟨𝜆𝑥.𝑠⟩

Small-step (one of the rules)
𝑡[𝑥/𝜆𝑧.𝑢] ↦𝑦

dist 𝑡[𝑥//𝜆𝑧.𝑥′[𝑥′/𝑢]] where 𝑦 ∈ fv(𝑢)

Theorem
The two semantics are equivalent, and give the correct
splitting.

22

Small-steps skeleton extraction is more flexible

When considering skeletons of terms with ES, the big-steps
semantics may cause inefficency.

Example
Let 𝜆𝑥.𝑡 = 𝜆𝑥.(𝜆𝑦.𝑦[𝑥′/𝑥])𝑧.

• 𝑡 ⇓{𝑥} ((𝜆𝑦.𝑦)𝑧′)[𝑧′/𝑧], but:
• 𝑤[𝑤//𝜆𝑥.𝑡] →∗ (𝜆𝑥.𝑤)[𝑤/(𝜆𝑦.𝑦)𝑧] (in two steps)

23

The quantitative type system ∩𝑅

Some of the typing rules:

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎
(AX)

∅ ⊢ 𝜆𝑥.𝑡 ∶ a
(ANS)

Γ; 𝑥 ∶ [𝜏𝑖]0≤𝑖≤𝑛 ⊢ 𝑡 ∶ 𝜎 Δ1 ⊢ 𝑢 ∶ 𝜏1 … Δ𝑛 ⊢ 𝑢 ∶ 𝜏𝑛

Γ ⊎ Δ1 ⊎ … ⊎ Δ𝑛 ⊢ 𝑡[𝑥/𝑢] ∶ 𝜎
(ES)

24

Characterization of normalization by typability

Contribution

quantitative type system ∩𝑅

Full laziness is an operational feature, not a semantical one.

call-by-name (NR) fully lazy call-by-need (NR)

NR = Node replication FS = Full substitution

25

Characterization of normalization by typability

Contribution

quantitative type system ∩𝑅

call-by-name (FS) call-by-need (FS)

call-by-name (NR) fully lazy call-by-need (NR)

NR = Node replication FS = Full substitution

25

An upper bound for fully lazy reduction

• Usually, in intuitionistic calculi, the size of the
non-idempotent type derivation decreases at each step.

• In 𝜆𝑅, rules app and dist adds fresh variables that makes
the size of the derivation grow.

𝑡[𝑥/𝑢1𝑢2] →app 𝑡{𝑥/𝑥1𝑥2}[𝑥1/𝑢1][𝑥2/𝑢2]

• We define a decreasing measure on type derivations,
enabling a combinatorial proof of normalization.

26

The quantitative model: permutations vs distance

At every step of reduction, the measure on type derivations
decreases.

With permutations: not every
step consumes resources.

With distance: every step
consumes resources.

27

Back to the questions (I)

Qualitative questions
a) Does a given term normalize?
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?

Answers:
a) If and only if it is typable in system ∩𝑅.
b) CbN and CbNeed, with full substitution or node replication
all normalize on the same terms.

28

Back to the questions (II)

Quantitative questions
c) What is the reduction length of a given term to normal
form?
d) Does an evaluation strategy normalize in less steps than
another?

Answers:
c) The measure gives an upper bound on the number of
reduction steps.
d) Full laziness reduces the length of reduction w.r.t. full
substitution.

29

Generalized Applications

Call-by-name and call-by-value generalized applications

Generalized applications (GA) are a Curry-Howard
interpretation of natural deduction with generalized
elimination rules.

Original calculi Distant variants
CbN Λ𝐽 (Joachimski & Matthes, 2000) 𝜆𝐽𝑛 (new)
CbV Λ𝐽𝑣 (Espírito Santo, 2020) 𝜆𝐽𝑣 (new)

CbN: call-by-name
CbV: call-by-value

30

The syntax of terms for generalized applications

(Values) 𝑣 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡
(Terms) 𝑡, 𝑢, 𝑟 ∶∶= 𝑣 ∣ 𝑡(𝑢, 𝑥.𝑟)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
AX

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

→𝑖

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ, 𝑥 ∶ 𝐵 ⊢ 𝑟 ∶ 𝐶
Γ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝐶

→𝑒

31

All and only applications are shared

Shared? Variables Abstractions Applications
ES 𝑟[𝑥/𝑦] 𝑟[𝑥/𝜆𝑦.𝑡] 𝑟[𝑥/𝑡𝑢]
GA no no 𝑡(𝑢, 𝑥.𝑟)

First intuition (not completely right)

𝑡(𝑢, 𝑥.𝑟) ≈ let 𝑥 = 𝑡𝑢 in 𝑟 ≈ 𝑟[𝑥/𝑡𝑢]

32

Rewriting in the original CbN calculus with GA

A 𝛽-rule with meta-level substitutions
(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}

• Generalizes 𝛽-reduction in the λ-calculus.

A commutative conversion 𝜋
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′))

• Moves the leftmost redex on top of the term.

33

Failure of CbN subject reduction for 𝜋

We give a quantitative type system ∩𝐽 for CbN reduction of GA.
Subject reduction/expansion in a quantitative type system
• Weighted subject reduction: 𝑡1 → 𝑡2 → … → 𝑡𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γ⊢𝑡∶𝜏
• Subject expansion: 𝑡1 ← ⋯ ← 𝑡𝑛⏟⏟⏟⏟⏟

Γ⊢𝑡∶𝜏

But with 𝜋: subject reduction in the quantitative system fails.
Question
e) Can we define a CbN calculus with generalized
applications compatible with a quantitative model?

Joint work with Delia Kesner and José Espírito Santo, FoSSaCS
2022. 34

Permutations are necessary

We cannot remove 𝜋-permutations without changing
normalization, because 𝜋-permutations are useful to unblock
beta-reduction.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) ↛𝛽

35

Permutations are necessary

We cannot remove 𝜋-permutations without changing
normalization, because 𝜋-permutations are useful to unblock
beta-reduction.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →𝜋 𝑧(𝑢1, 𝑦1.(𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2))
→𝛽 𝑧(𝑢1, 𝑦1.𝑢2)

35

A new CbN calculus

• We consider instead the permutation rule p2:

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) →p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)

• We define a distant calculus 𝜆𝐽𝑛 based on p2 and using a
single distant rule d𝛽.

• Unlike Λ𝐽 , this calculus is compatible with the
quantitative type system:

• a) Typability characterizes strong normalization.
• c) The size of type derivations gives an upper bound on
the length of reduction and size of normal forms.

36

The qualitative semantics is preserved

Comparison of the semantics of the CbN calculi
b) Given two evaluation strategies, do they both normalize or
diverge for a same term?
d) Does an evaluation strategy normalize in less steps than
another?

Answers:

• b) Strong normalization of 𝜆𝐽𝑛 and Λ𝐽 correspond.
• d) The quantitivities are incomparable.

37

A different duplication behavior in the new CbN calculus

Definition (Distant contexts)
D⩴ ◊ ∣ 𝑡1(𝑡2, 𝑥.D)

What makes 𝜆𝐽𝑛 and Λ𝐽 different? Compare:

(𝜆𝐽𝑛) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩}
Duplication or erasure of D

(Λ𝐽) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →∗
𝜋→𝛽 D⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩

Sharing of D

38

Towards a faithful translation to explicit substitutions

We want to relate strong normalization in GA and the
λ-calculus (with explicit substitutions).

Reminder: initial (wrong) intuition
𝑡(𝑢, 𝑥.𝑟) ≈ 𝑟[𝑥/𝑡𝑢]

But the semantics differs.
Example
Let 𝛿 = 𝜆𝑥.𝑥𝑥 and 𝛿𝑗 = 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧).
The terms 𝛿𝑗(𝛿𝑗, 𝑥.𝜆𝑦.𝑦) and (𝜆𝑦.𝑦)[𝑥/𝛿𝛿] seem to correspond.
But in CbN, only the first one is strongly normalizing.

39

The new translation

Theorem
Translations preserve strong normalization both way.

40

Refined operational study of generalized applications

f) Does the operational semantics of generalized applications
enable to capture semantical properties?

We look at:

• A perpetual strategy.
• A normalizing strategy.
• Solvability (FSCD 2022).

41

The Cbn and CbV original calculi

Call-by-name (Joachimski & Matthes):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽

Call-by-value (Espírito Santo):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽v 𝑟{𝑦\\𝑡{𝑥\\𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟′)) } Λ𝐽𝑣

Definition (CbV substitution)
𝑡{𝑥\\D⟨𝑣⟩} = D⟨𝑡{𝑥/𝑣}⟩

42

The new CbN and CbV distant calculi

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩} } 𝜆𝐽𝑛
CbN, based on p2

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽v
D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ } 𝜆𝐽𝑣

CbV, based on 𝜋

43

A benefit of using generalized applications

• In the CbN λ-calculus, the leftmost-outermost reduction is
normalizing.

• Giving a normalizing strategy for a CbV calculus is in
general much more difficult (Leberle, 2021).

In the framework of generalized applications:

• We give a simple normalizing strategy for CbV.
• This strategy reduces redexes in the leftmost-outermost
order.

44

A normalizing leftmost-outermost CbV strategy (for Λ𝐽𝑣)

Normal forms
NF ⩴ 𝑥 ∣ 𝜆𝑥. NF ∣ 𝑥(NF, 𝑦. NF)

Base rules
𝛽v + 𝜋

Contextual rules
𝑡 → 𝑡′

𝜆𝑥.𝑡 → 𝜆𝑥.𝑡′
𝑢 → 𝑢′

𝑥(𝑢, 𝑦.𝑟) → 𝑥(𝑢′, 𝑦.𝑟)
𝑟 → 𝑟′

𝑥(𝑢, 𝑦.𝑟) → 𝑥(𝑢, 𝑦.𝑟′)

Taking the same normal forms and inductive rules, we can
obtain a CbN normalizing strategy.

45

Call-by-name solvability for generalized applications

Contribution
Characterizations of CbN solvability in 𝜆𝐽𝑛 and Λ𝐽 .

Definition
𝑡 is CbN solvable:
∃H,D such that
H⟨𝑡⟩ →𝜆𝐽𝑛

D⟨𝜆𝑥.𝑥⟩.

Theorem
Translations to and from the λ-calculus preserve solvability.

46

What about CbV solvability?

• Normalizable terms should should all be meaningful.
• But Plotkin’s CbV calculus is defective:
• The term (𝜆𝑥.𝛿)(𝑦𝑦)𝛿 (for instance) has no denotation but
is in normal form.

47

CbV solvability for generalized applications

Contribution
Characterizations of CbV solvability in 𝜆𝐽𝑣 and Λ𝐽𝑣.

Definition
𝑡 is CbV solvable:
∃H such that
H⟨𝑡⟩ →𝜆𝐽𝑣

𝜆𝑥.𝑥.

48

Alternative CbV operational characterizations

Operational characterizations of CbV solvability were already
given for two other calculi.

𝜆vsub (Accattoli & Paolini, 2012)
Uses explicit substitutions and distance:
(𝜆𝑥.𝛿)(𝑦𝑦)𝛿 →d𝛽v (𝛿𝛿)[𝑥/𝑦𝑦] ⟲2

d𝛽v

𝜆𝜎
v (Carraro & Guerrieri, 2014)

Adds permutations to Plotkin’s calculus:
(𝜆𝑥.𝛿)(𝑦𝑦)𝛿 →𝜎1

(𝜆𝑥.𝛿𝛿)(𝑦𝑦) ⟲𝛽v

49

Comparing CbV solvability in different frameworks

Theorem
Translations between GA and the λ-calculus (with explicit
substitutions) preserve CbV solvability both ways.

We can compare the solving evaluation strategies:

GA 𝜆𝜎
v 𝜆vsub

Simple normal forms Yes No Yes
Meta-level substitutions Yes Yes No

Stuck reductions No (𝜆𝑥.𝑥)(𝑦𝑦) ↛ 𝑥[𝑥/𝑦𝑦] ↛
Moggi’s identity Yes No No

Definition (Moggi’s identity)
For any term 𝑢, (𝜆𝑥.𝑥)𝑢 → 𝑢.

50

Comparing CbV solvability in different frameworks

Theorem
Translations between GA and the λ-calculus (with explicit
substitutions) preserve CbV solvability both ways.

We can compare the solving evaluation strategies:

GA 𝜆𝜎
v 𝜆vsub

Simple normal forms Yes No Yes
Meta-level substitutions Yes Yes No

Stuck reductions No (𝜆𝑥.𝑥)(𝑦𝑦) ↛ 𝑥[𝑥/𝑦𝑦] ↛
Moggi’s identity Yes No No

Definition (Moggi’s identity)
For any term 𝑢, (𝜆𝑥.𝑥)𝑢 → 𝑢.

50

Conclusion

Contributions

• A new calculus for node replication.
• CbN and fully lazy CbNeed strategies based on node
replication.

• Quantitative models for these strategies.
• CbN and CbV distant calculi with GA.
• Operational characterizations of solvability and weak
normalization in GA.

• Quantitative models for CbN and CbV generalized
applications.

51

Further works

Short term:

• Exact bounds with tight type systems.
• Abstract machines for full laziness.

Long term:

• Understand the correct notion of meaningless term in CbV
equipped with a genericity lemma.

• Classical calculi to capture control operators in
generalized applications and node replication.

• Fully abstract CbV models.

52

Thank you for your attention!

52

	Node Replication
	Generalized Applications
	Conclusion

