
The Spirit of Node Replication

Loïc Peyrot
Joint work with Delia Kesner and Daniel Ventura
October 30, 2020

IRIF/PPS, Université de Paris

1

Introduction

Full substitution

2

Partial substitution

3

Atomic substitution

4

Node replication

Node Replication
Replication of λ-terms node by node, i.e. constructor by
constructor.

5

Sharing equals less work

Idea: Sharing avoids useless work.

Node replication is fine-grained, so that it gives precise control
over what stays shared and what is replicated.

6

Sharing graphs implement node replication

Figure 1: Reduction of sharing graphs (Asperti, Guerrini: The Optimal
Implementation of Functional Programming Languages) 7

Optimality

Definition (Optimality (Lévy))
A strategy is optimal if it reaches a normal form in the same
number of steps as the shortest possible reduction sequence
in the usual λ-calculus without sharing.

Sharing graphs implement (strong) Lévy-optimal reduction.

8

A tool for sharing: explicit substitutions

Explicit substitutions are one of the tools used to implement
sharing in the λ-calculus.
Advantages: simple syntax, intuitive semantics, close relation
to concrete implementations and abstract machines…

Terms: 𝑥 | 𝜆𝑥.𝑡 | 𝑡𝑢 | 𝑡[𝑥\𝑢].
We want to relate explicit substitutions and node replication.

9

Rules of explicit substitutions

Reduction of a redex to an explicit substitution is
implemented by a B-step.

(𝜆𝑥.𝑡)𝑢 →B 𝑡[𝑥\𝑢]

Notice that explicit substitutions can block potential redexes:
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 can’t be fired with the B-rule. Permutation rules
can be used to move substitutions (avoiding capture), e.g.:

𝑡[𝑥\𝑢]𝑠 →𝜋 (𝑡𝑠)[𝑥\𝑢].

Example
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →𝜋 ((𝜆𝑦.𝑡)𝑠)[𝑥\𝑢] →𝜋 𝑡[𝑦\𝑠][𝑥\𝑢]

10

Distance highlights the computational content

Permutation rules do not hold computational content, rather
structural one. With distance, we keep only computationally
relevant rules.
distant B (dB) rule
L⟨(𝜆𝑥.𝑡)⟩𝑢 →dB L⟨𝑡[𝑥\𝑢]⟩.

Example
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →𝜋 ((𝜆𝑦.𝑡)𝑠)[𝑥\𝑢] →𝜋 𝑡[𝑦\𝑠][𝑥\𝑢] becomes
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →dB 𝑡[𝑦\𝑠][𝑥\𝑢].

Reduction with distance is strongly related with reduction in a
graphical formalism.

11

Explicit substitutions implement full and partial substitution

We can convenientely handle different kinds of substitutions
thanks to explicit substitutions and distance.

1. Full substitution: 𝑡[𝑥\𝑢] → 𝑡{𝑥\𝑢}.
2. Partial substitution: C⟨⟨𝑥⟩⟩[𝑥\𝑢] → C⟨⟨𝑡⟩⟩[𝑥\𝑢].

12

Call-by-need is lazy

Call-by-name (CBN) can replicate redexes (𝐼 ≜ 𝜆𝑧.𝑧).

(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →𝛽 (𝐼𝐼)(𝐼𝐼) →𝛽 𝐼(𝐼𝐼) →𝛽 𝐼𝐼 →𝛽 𝐼

By sharing the argument after reduction, call-by-need
(CBNeed) avoids duplication of work:

(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →dB (𝑥𝑥)[𝑥\𝐼𝐼] →dB (𝑥𝑥)[𝑥\𝑧[𝑧\𝐼]]
→sub (𝑥𝑥)[𝑥\𝐼] →sub (𝐼𝑥)[𝑥\𝐼]
→dB 𝑧[𝑧\𝑥][𝑥\𝐼] →sub 𝑥[𝑥\𝐼]
→sub 𝐼

13

But even CBNeed can be redundant

The amount of sharing in usual call-by-need is not sufficient
to avoid all useless work.

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→sub ((𝜆𝑧.𝑧(𝐼𝐼))𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→dB (𝑧(𝐼𝐼))[𝑧\𝑥][𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→sub (𝑧(𝐼𝐼))[𝑧\𝜆𝑧.𝑧(𝐼𝐼)]
→sub (𝜆𝑧.𝑧(𝐼𝐼))(𝐼𝐼)
→dB (𝑧(𝐼𝐼))[𝑧\(𝐼𝐼)]
→sub (𝐼𝐼)(𝐼𝐼)
→∗ 𝐼

14

Maximal free expressions are duplicated by CBNeed

𝐼𝐼 has no bound occurences of 𝑧: it is a (maximal) free
expression.

Free expressions: subexpressions not on the path between the
binders and the corresponding free occurences of the
variables.

15

Keeping MFEs shared

In the previous example, the abstraction must be duplicated in
order to execute the β-reduction. But 𝐼𝐼 can stay shared
because it is a free expression.

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→ ((𝜆𝑧.𝑧𝑦)𝑥)[𝑥\𝜆𝑧.𝑧𝑦][𝑦\𝐼𝐼]

𝜆𝑧.𝑧□ is called the skeleton of the abstraction 𝜆𝑧.𝑧(𝐼𝐼).

16

Fully lazy sharing

This optimization of call-by-need which keeps MFEs shared
before duplicating an abstraction is called fully lazy sharing.

With this level of sharing, we reach optimality à la Lévy in the
weak setting.

17

Node replication in a term calculus: the atomic λ-calculus

Gundersen, Heĳltjes and Parigot’s atomic λ-calculus (λa) is an
extended λ-calculus implementing node replication through a
variant of explicit substitutions.

It is a Curry-Howard interpretation of the deep inference
logical formalism.

They argue that their calculus implements full laziness.

18

Drawbacks of the atomic λ-calculus

Problem: the atomic λ-calculus implements explicit
contraction and weakening of variables.
Example
The explicit substitutions are of the shape: [𝑥1, … , 𝑥𝑛\𝑡].

This makes the syntax and semantics of the calculus fairly
complicated…
We want to keep only the mechanism of node replication.

19

Plan

The λR-calculus: a calculus focusing on node replication

Two weak strategies

Call-by-name

Fully lazy call-by-need

Quantitative types, a tool for observational equivalence

20

The λR-calculus: a calculus focusing
on node replication

An example of reduction duplicating applications

(𝜆𝑥.𝑥𝑥)(𝑦(𝑤𝑧)) →dB (𝑥𝑥)[𝑥\𝑦@(𝑤𝑧)]
→app ((𝑥1@𝑥2)(𝑥1@𝑥2))[𝑥1\𝑦][𝑥2\𝑤𝑧]
→sub ((𝑦𝑥2)(𝑦𝑥2))[𝑥2\𝑤@𝑧]
→app (𝑦(𝑥3@𝑥4))(𝑦(𝑥3@𝑥4))[𝑥3\𝑤][𝑥4\𝑧]
→sub (𝑦(𝑥3𝑧))(𝑦(𝑥3𝑧))[𝑥3\𝑤]
→sub (𝑦(𝑤𝑧))(𝑦(𝑤𝑧))

21

An example duplicating an abstraction

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦) →dB (𝑥𝑥)[𝑥\𝜆𝑦.𝑦]
→dist (𝑥𝑥)[𝑥\\𝜆𝑦.𝑧[𝑧\𝑦]]
→sub (𝑥𝑥)[𝑥\\𝜆𝑦.𝑦]
→abs (𝜆𝑦.𝑦)(𝜆𝑦.𝑦)

22

λR-terms

We add two constructors to the λ-calculus: explicit
substitutions and distributors.

Terms 𝑡, 𝑢, 𝑠 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥\𝑢] ∣ 𝑡[𝑥\\𝜆𝑦.𝑢]

We call explicit cut a constructor which is either an explicit
substitution or a distributor, and we write it [𝑥 ⊲ 𝑢].
Pure terms (𝑝, 𝑞) are terms without explicit cuts.

List contexts L ∶∶= □ ∣ L[𝑥 ⊲ 𝑢]

23

Operational semantics

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥\𝑢]⟩
𝑡[𝑥\L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥\𝑦𝑧}[𝑦\𝑢][𝑧\𝑣]⟩
𝑡[𝑥\L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥\\𝜆𝑦.𝑧[𝑧\𝑢]]⟩
𝑡[𝑥\\𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥\𝜆𝑦.𝑝}⟩
𝑡[𝑥\L⟨𝑦⟩] ↦var L⟨𝑡{𝑥\𝑦}⟩

In dist, we suppose 𝑢 →∗
𝜋 L⟨𝑝⟩ and 𝑦 ∉ fv(L).

24

λR and λ simulate each other

We define an unfolding 𝑡↓ of cuts, such that
(𝑡[𝑥 ⊲ 𝑢])↓ = 𝑡↓{𝑥\𝑢↓}.
Lemma (Simulation to the λ-calculus)

• 𝑡 →s 𝑢 ⟹ 𝑡↓ = 𝑢↓.
• 𝑡 →dB 𝑢 ⟹ 𝑡↓ →∗

𝛽 𝑢↓.

Lemma (Simulation from the λ-calculus)
𝑝 →𝛽 𝑞 ⟹ 𝑝 →dB→+

s 𝑞.

25

λR and λa simulate each other

λa simulates the λ-calculus and vice-versa.
Thus, taking the λ-calculus as an intermediate language gives
a simulation between λR and λa.

26

λR is confluent

The calculus is confluent.
The proof is simple and relies on simulation in the λ-calculus,
and on the termination of →s.

27

A witness for →s: levels

We define a combinatorial tool to prove termination of →s.

Definition (Level of a variable)
Maximal number of explicit substitutions one has to go
through to reach the variable.

Example
𝑡 = 𝑥[𝑥\𝑧[𝑦\𝑤]][𝑤\𝑤’]

1. lv𝑧(𝑡) = 1,
2. lv𝑤’(𝑡) = 3,
3. lv𝑦(𝑡) = 0 because 𝑦 ∉ fv(𝑡).

28

A witness for →var

The level of a variable decreases when using rule var.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝑥][𝑥\𝑧] →var (𝑥𝑥)[𝑥\𝑧] = 𝑢,
lv𝑧(𝑡) = 2 > 1 = lv𝑧(𝑢).

We can naturally extend the notion of level to terms and
constructors in order to account for other s-rules.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝜆𝑧.𝑥𝑧], the level of 𝜆𝑧.𝑥𝑧 and of the abstraction
and application constructors is 1 = lv𝑦(𝑦𝑦) + 1.

29

Witnesses for →app and →dist

The level of an application decreases when using rule app.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝑥@𝑧] →app ((𝑦1@𝑦2)(𝑦1@𝑦2))[𝑦1\𝑥][𝑦2\𝑧],
lv@(𝑡) = 2 > 1 = lv@(𝑢).

The level of an abstraction decreases when using rule abs.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝜆𝑧.𝑧] →app (𝑦𝑦)[𝑦\\𝜆𝑧.𝑥[𝑥\𝑧]],
lv𝜆𝑧(𝑡) = 2 > 1 = lv𝜆𝑧(𝑢).

30

Two weak strategies

Calculi and strategies

Calculi Non-deterministic rewriting relations.
Strategies Implement a specific deterministic evaluation.

The atomic λ-calculus is only studied as a calculus, no strategy
is formalised.

31

Two strategies

We give two weak strategies (no reduction under abstraction)
to argue for the following statements.

CBN Node replication implements standard evaluation
strategies.

FLNeed Node replication is a tool of choice for
implementing full laziness.

32

A natural restriction on the syntax simplifies the semantics

No explicit cuts under abstractions (except distributors).

Invariant of the reduction, and true when starting from a
λ-term.

Simplifies the semantics of the calculus and avoids 𝜋-rules:
the distributors are of the shape [𝑥\\𝜆𝑦.L⟨𝑝⟩].

33

Properties of CBN: diamond and simulation

CBN is not deterministic, but it is diamond.

Call-by-name in the λ-calculus is also known as weak head
reduction →whr.

Lemma (Simulation)

• 𝑡 →name 𝑢 ⟹ 𝑡↓ →∗
whr 𝑢↓.

• 𝑝 →whr 𝑞 ⟹ 𝑝 →+
name 𝑞.

34

A key operation: splitting the skeleton and MFEs

Remember: full laziness splits an abstraction into its skeleton
and its MFEs.

A skeleton is a term with a finite number of holes in place of
the MFEs.
Examples
• 𝑡 = 𝜆𝑧.𝑧(𝐼𝐼). Skeleton: 𝜆𝑧.𝑧□. Multiset of MFEs: [𝐼𝐼].
• 𝑡 = 𝜆𝑧.(𝐼𝐼)𝑧(𝐼𝐼). Skeleton: 𝜆𝑧.□𝑧□. MFEs: [𝐼𝐼, 𝐼𝐼].
• 𝑡 = 𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧. Skeleton: 𝜆𝑦.𝜆𝑧.(𝑦□)𝑧. MFEs: [𝑤].

35

Splitting in λR

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→dist (𝑥𝑥)[𝑥\\𝜆𝑧.𝑦[𝑦\𝑧(𝐼𝐼)]]
→app (𝑥𝑥)[𝑥\\𝜆𝑧.(𝑦1𝑦2)[𝑦1\𝑧][𝑦2\𝐼𝐼]]
→var (𝑥𝑥)[𝑥\\𝜆𝑧.(𝑧𝑦2)[𝑦2\𝐼𝐼]]

There must be no free occurence of 𝑧 inside a cut in the
distributor.

36

Steps necessary for splitting

Before replicating the value 𝜆𝑦.𝑝 in 𝑡[𝑥\𝜆𝑦.𝑝], we must:

1. Apply rule dist to create a distributor.
2. Use s-rules on the cuts in which 𝑦 is free to get the

skeleton.

37

A function for splitting

We want to assemble all these steps into one, for a more
elegant presentation. We will define a function ⇓st such that

𝜆𝑦.𝑧[𝑧\𝑝] ⇓st 𝜆𝑦.L⟨𝑝’⟩,

where L is a list of explicit substitutions containaing the MFEs,
linked to the skeleton 𝑝’ by fresh variables in the holes.

Example
𝜆𝑧.𝑥[𝑥\(𝐼𝐼)𝑧(𝐼𝐼)] ⇓st 𝜆𝑧.(𝑥1𝑧𝑥2)[𝑥1\𝐼𝐼][𝑥2\𝐼𝐼]

38

Defining ⇓st

⇓st is defined on terms of the shape 𝜆𝑦.L⟨𝑝⟩.
We use s-rules, parametrized by the binding variable we are
considering (e.g. 𝑦).
This reduction relation is confluent and terminating so that
the function ⇓st is well-defined.

39

Example

Let the abstraction to duplicate be 𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧, where 𝑡 is an
MFE. Its skeleton is 𝜆𝑦.𝜆𝑧.(𝑦□)𝑧.

𝜆𝑦.𝑥[𝑥\𝜆𝑧.(𝑦𝑡)𝑧] →𝑦
dist 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.𝑤[𝑤\(𝑦𝑡)𝑧]]

→𝑧
app 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.(𝑤1𝑤2)[𝑤1\𝑦𝑡][𝑤2\𝑧]]

→𝑧
var 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.(𝑤1𝑧)[𝑤1\𝑦𝑡]]

→𝑦
abs 𝜆𝑦.(𝜆𝑧.𝑤1𝑧)[𝑤1\𝑦𝑡]

→𝑦
app 𝜆𝑦.(𝜆𝑧.(𝑥1𝑥2)𝑧)[𝑥1\𝑦][𝑥2\𝑡]

→𝑦
var 𝜆𝑦.(𝜆𝑧.(𝑦𝑥2)𝑧)[𝑥2\𝑡]

The innermost abstraction is treated first.

40

The fully lazy strategy

L⟨𝜆𝑥.𝑝⟩𝑢 ↦dB L⟨𝑝[𝑥\𝑢]⟩
N⟨⟨𝑥⟩⟩[𝑥\L1⟨𝜆𝑦.𝑝⟩] ↦spl L1⟨L2⟨N⟨⟨𝑥⟩⟩[𝑥\\𝜆𝑦.𝑝’]⟩⟩
N⟨⟨𝑥⟩⟩[𝑥\\𝑣] ↦sub N⟨⟨𝑣⟩⟩[𝑥\\𝑣]

Where in rule ↦spl, 𝜆𝑦.𝑧[𝑧\𝑝] ⇓st 𝜆𝑦.L2⟨𝑝’⟩
Note that the substitution is partial, as usual in call-by-need:
only the needed occurence is duplicated.

41

Example

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧) →dB (𝑥𝑥)[𝑥\𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧]
→spl (𝑥𝑥)[𝑥\\𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧][𝑤\𝑡]
→sub ((𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧)𝑥)[𝑤\𝑡]

42

Quantitative types, a tool for
observational equivalence

Intersection types

Γ ⊢ 𝑡 ∶ 𝜏 Δ ⊢ 𝑡 ∶ 𝜎
Γ + Δ ⊢ 𝑡 ∶ 𝜏 ∧ 𝜎

Intersection types have a strong denotational flavor: typability
and normalisation coincide.

43

The type system characterizes normalisation

We define a unique type system 𝒱 for both strategies. In both
strategies we prove (for x ∈ {name,flneed}):
Lemma
𝑡 is x-normalisable ⟺ 𝑡 is typable in 𝒱.

44

Proof that normalisable terms are typable

Proof. 𝑡 x-normalisable ⟹ 𝑡 typable.
1. Show that normal forms are typable.
2. Show subject expansion: if there is a type derivation of

Γ ⊢ 𝑡1 ∶ 𝜏 in 𝒱 and a term 𝑡0 →x 𝑡1, then there is a type
derivation of Γ ⊢ 𝑡0 ∶ 𝜏 in 𝒱.

45

Proof that typable terms are normalisable

Proof. 𝑡 typable ⟹ 𝑡 x-normalisable.
1. Show subject reduction: if there is a type derivation of

Γ ⊢ 𝑡0 ∶ 𝜏 in 𝒱 and 𝑡0 →x 𝑡1, then there is a type derivation
of Γ ⊢ 𝑡1 ∶ 𝜏 in 𝒱.

2. Show that a reduction of typed terms terminate.

46

Non-idempotent intersection types

Second step of the proof: we use non-idempotent intersection
(a.k.a quantitatives) types.

Γ ⊢ 𝑡 ∶ 𝜏 Δ ⊢ 𝑡 ∶ 𝜏
Γ + Δ ⊢ 𝑡 ∶ [𝜏 , 𝜏]

Non-idempotence gives quantitative information and a
combinatorial proof of termination.

47

Weighted subject reduction

Using quantitative types, we can generally find a measure
D (Φ) on type derivations, such that:

Lemma (Weighted subject reduction)
Let 𝑡0 → 𝑡1 such that there exists Φ ▷ Γ ⊢ 𝑡0 ∶ 𝜏 . Then there
exists Ψ ▷ Γ ⊢ 𝑡1 ∶ 𝜏 such that D (Φ) > D (Ψ).

Which measure should we take?

48

dB decreases the size of the derivation

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑥.𝑥 ∶ [a] → a
(abs)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ (𝜆𝑥.𝑥)(𝜆𝑦.𝑧) ∶ a
(app)

→dB

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ 𝑥[𝑥\𝜆𝑦.𝑧] ∶ a
(cut)

49

dB decreases the size of the derivation

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑥.𝑥 ∶ [a] → a
(abs)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ (𝜆𝑥.𝑥)(𝜆𝑦.𝑧) ∶ a
(app)

→dB

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ 𝑥[𝑥\𝜆𝑦.𝑧] ∶ a
(cut)

49

Size is not a good measure for us

Taking the size of the proof does not work: in rules app and
dist we add new fresh variables which make the proof grow
by a number of axiom rules.

𝑡[𝑥\L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥\𝑦𝑧}[𝑦\𝑢][𝑧\𝑣]⟩
𝑡[𝑥\L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥\\𝜆𝑦.𝑧[𝑧\𝑢]]⟩

50

An typed measure decreasing on all rules

Idea: we weight the constructors with their levels. The level of
a constructor decreases with s, and so does the measure.

We define the size of a derivation |Φ| by the number of (abs),
(ans) and (app) rules.
Definition (Measure)
D (Φ) = (𝑙, 𝑚, 𝑛) (ordered lexicographically), where:

• 𝑙 = |Φ|,
• 𝑚 is the size of Φ weighted by the levels,
• 𝑛 is the number of ax rules.

51

Example

We consider the following reduction.

(𝜆𝑥.𝑥)(𝑦𝑧) →dB 𝑥[𝑥\𝑦𝑧]
→app (𝑥1𝑥2)[𝑥1\𝑦][𝑥2\𝑧]
→sub (𝑦𝑥2)[𝑥2\𝑧]
→sub 𝑦𝑧

52

Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑥 ∶ [𝜏] ⊢ 𝑥 ∶ 𝜏
(ax)

⊢ 𝜆𝑥.𝑥 ∶ 𝜎
(abs)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑦𝑧 ∶ [𝜏]
(many)

Φ1 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ (𝜆𝑥.𝑥)(𝑦𝑧) ∶ 𝜏
(app)

D (Φ1) = (3, 3, 3)

52

Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑥 ∶ [𝜏] ⊢ 𝑥 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑦𝑧 ∶ [𝜏]
(many)

Φ2 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑥[𝑥\𝑦𝑧] ∶ 𝜏
(cut)

D (Φ2) = (1, 2, 3)

52

Example

Let 𝜎 = [𝜏] → 𝜏 .

Φ𝑥1𝑥2

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ [𝜎]
(many)

𝑥1 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ (𝑥1𝑥2)[𝑥1\𝑦] ∶ 𝜏
(cut)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ [𝜏]
(many)

Φ3 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ (𝑥1𝑥2)[𝑥1\𝑦][𝑥2\𝑧] ∶ 𝜏
(cut)

𝑥1 ∶ [𝜎] ⊢ 𝑥1 ∶ 𝜎
(ax)

𝑥2 ∶ [𝜏] ⊢ 𝑥2 ∶ 𝜏
(ax)

𝑥2 ∶ [𝜏] ⊢ 𝑥2 ∶ [𝜏]
(many)

Φ𝑥1𝑥2
▷ 𝑥1 ∶ [𝜎], 𝑥2 ∶ [𝜏] ⊢ 𝑥1𝑥2 ∶ 𝜏

(app)

D (Φ3) = (1, 1, 4)

52

Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑥2 ∶ [𝜏] ⊢ 𝑥2 ∶ 𝜏
(ax)

𝑥2 ∶ [𝜏] ⊢ 𝑥2 ∶ [𝜏]
(many)

𝑦 ∶ [𝜎], 𝑥2 ∶ [𝜏] ⊢ 𝑦𝑥2 ∶ 𝜏
(app)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ [𝜏]
(many)

Φ4 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ (𝑦𝑥2)[𝑥2\𝑧] ∶ 𝜏
(cut)

D (Φ4) = (1, 1, 3)

52

Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ [𝜏]
(many)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

D (Φ5) = (1, 1, 2)

52

Observational equivalence

Lemma (restatement)
𝑡 is x-normalisable ⟺ 𝑡 is typable in 𝒱.

Observational equivalence is a trivial corollary.

Definition (Observational equivalence)
𝑡 ≡x 𝑢 if and only if for any C, C⟨𝑡⟩ terminates in x ⟺ C⟨𝑢⟩
terminates in x.

Theorem
𝑡 ≡name 𝑢 ⟺ 𝑡 ≡flneed 𝑢.

53

Conclusion

Summary

To sum up, we:

• Defined a new calculus of explicit substitutions inspired
by 𝜆𝑎 which achieves node replication;

• Gave two weak strategies CBN and FLNeed;
• Studied the strategies by means of non-idempotent
intersection types and show observational equivalence.

54

Future works

Future works could be:

• Defining a calculus based on spine duplication; or a
classical version of the calculus.

• Relate FLNeed to other strategies of full laziness in the
literature.

• Defining a type system giving exact bounds.

55

Thank you for your attention!

55

	Introduction
	The λR-calculus: a calculus focusing on node replication
	Two weak strategies
	Call-by-name
	Fully lazy call-by-need

	Quantitative types, a tool for observational equivalence
	Conclusion

