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Node replication

Node Replication
Replication of λ-terms node by node, i.e. constructor by
constructor.
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Sharing equals less work

Idea: Sharing avoids useless work.

Node replication is fine-grained, so that it gives precise control
over what stays shared and what is replicated.
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Sharing graphs implement node replication

Figure 1: Reduction of sharing graphs (Asperti, Guerrini: The Optimal
Implementation of Functional Programming Languages) 7



Optimality

Definition (Optimality (Lévy))
A strategy is optimal if it reaches a normal form in the same
number of steps as the shortest possible reduction sequence
in the usual λ-calculus without sharing.

Sharing graphs implement (strong) Lévy-optimal reduction.
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A tool for sharing: explicit substitutions

Explicit substitutions are one of the tools used to implement
sharing in the λ-calculus.
Advantages: simple syntax, intuitive semantics, close relation
to concrete implementations and abstract machines…

Terms: 𝑥 | 𝜆𝑥.𝑡 | 𝑡𝑢 | 𝑡[𝑥\𝑢].
We want to relate explicit substitutions and node replication.
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Rules of explicit substitutions

Reduction of a redex to an explicit substitution is
implemented by a B-step.

(𝜆𝑥.𝑡)𝑢 →B 𝑡[𝑥\𝑢]

Notice that explicit substitutions can block potential redexes:
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 can’t be fired with the B-rule. Permutation rules
can be used to move substitutions (avoiding capture), e.g.:

𝑡[𝑥\𝑢]𝑠 →𝜋 (𝑡𝑠)[𝑥\𝑢].

Example
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →𝜋 ((𝜆𝑦.𝑡)𝑠)[𝑥\𝑢] →𝜋 𝑡[𝑦\𝑠][𝑥\𝑢]
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Distance highlights the computational content

Permutation rules do not hold computational content, rather
structural one. With distance, we keep only computationally
relevant rules.
distant B (dB) rule
L⟨(𝜆𝑥.𝑡)⟩𝑢 →dB L⟨𝑡[𝑥\𝑢]⟩.

Example
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →𝜋 ((𝜆𝑦.𝑡)𝑠)[𝑥\𝑢] →𝜋 𝑡[𝑦\𝑠][𝑥\𝑢] becomes
(𝜆𝑦.𝑡)[𝑥\𝑢]𝑠 →dB 𝑡[𝑦\𝑠][𝑥\𝑢].

Reduction with distance is strongly related with reduction in a
graphical formalism.
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Explicit substitutions implement full and partial substitution

We can convenientely handle different kinds of substitutions
thanks to explicit substitutions and distance.

1. Full substitution: 𝑡[𝑥\𝑢] → 𝑡{𝑥\𝑢}.
2. Partial substitution: C⟨⟨𝑥⟩⟩[𝑥\𝑢] → C⟨⟨𝑡⟩⟩[𝑥\𝑢].
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Call-by-need is lazy

Call-by-name (CBN) can replicate redexes (𝐼 ≜ 𝜆𝑧.𝑧).

(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →𝛽 (𝐼𝐼)(𝐼𝐼) →𝛽 𝐼(𝐼𝐼) →𝛽 𝐼𝐼 →𝛽 𝐼

By sharing the argument after reduction, call-by-need
(CBNeed) avoids duplication of work:

(𝜆𝑥.𝑥𝑥)(𝐼𝐼) →dB (𝑥𝑥)[𝑥\𝐼𝐼] →dB (𝑥𝑥)[𝑥\𝑧[𝑧\𝐼]]
→sub (𝑥𝑥)[𝑥\𝐼] →sub (𝐼𝑥)[𝑥\𝐼]
→dB 𝑧[𝑧\𝑥][𝑥\𝐼] →sub 𝑥[𝑥\𝐼]
→sub 𝐼
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But even CBNeed can be redundant

The amount of sharing in usual call-by-need is not sufficient
to avoid all useless work.

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→sub ((𝜆𝑧.𝑧(𝐼𝐼))𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→dB (𝑧(𝐼𝐼))[𝑧\𝑥][𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→sub (𝑧(𝐼𝐼))[𝑧\𝜆𝑧.𝑧(𝐼𝐼)]
→sub (𝜆𝑧.𝑧(𝐼𝐼))(𝐼𝐼)
→dB (𝑧(𝐼𝐼))[𝑧\(𝐼𝐼)]
→sub (𝐼𝐼)(𝐼𝐼)
→∗ 𝐼
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Maximal free expressions are duplicated by CBNeed

𝐼𝐼 has no bound occurences of 𝑧: it is a (maximal) free
expression.

Free expressions: subexpressions not on the path between the
binders and the corresponding free occurences of the
variables.
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Keeping MFEs shared

In the previous example, the abstraction must be duplicated in
order to execute the β-reduction. But 𝐼𝐼 can stay shared
because it is a free expression.

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→ ((𝜆𝑧.𝑧𝑦)𝑥)[𝑥\𝜆𝑧.𝑧𝑦][𝑦\𝐼𝐼]

𝜆𝑧.𝑧□ is called the skeleton of the abstraction 𝜆𝑧.𝑧(𝐼𝐼).
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Fully lazy sharing

This optimization of call-by-need which keeps MFEs shared
before duplicating an abstraction is called fully lazy sharing.

With this level of sharing, we reach optimality à la Lévy in the
weak setting.
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Node replication in a term calculus: the atomic λ-calculus

Gundersen, Heĳltjes and Parigot’s atomic λ-calculus (λa) is an
extended λ-calculus implementing node replication through a
variant of explicit substitutions.

It is a Curry-Howard interpretation of the deep inference
logical formalism.

They argue that their calculus implements full laziness.
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Drawbacks of the atomic λ-calculus

Problem: the atomic λ-calculus implements explicit
contraction and weakening of variables.
Example
The explicit substitutions are of the shape: [𝑥1, … , 𝑥𝑛\𝑡].

This makes the syntax and semantics of the calculus fairly
complicated…
We want to keep only the mechanism of node replication.
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Plan

The λR-calculus: a calculus focusing on node replication

Two weak strategies

Call-by-name

Fully lazy call-by-need

Quantitative types, a tool for observational equivalence
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The λR-calculus: a calculus focusing
on node replication



An example of reduction duplicating applications

(𝜆𝑥.𝑥𝑥)(𝑦(𝑤𝑧)) →dB (𝑥𝑥)[𝑥\𝑦@(𝑤𝑧)]
→app ((𝑥1@𝑥2)(𝑥1@𝑥2))[𝑥1\𝑦][𝑥2\𝑤𝑧]
→sub ((𝑦𝑥2)(𝑦𝑥2))[𝑥2\𝑤@𝑧]
→app (𝑦(𝑥3@𝑥4))(𝑦(𝑥3@𝑥4))[𝑥3\𝑤][𝑥4\𝑧]
→sub (𝑦(𝑥3𝑧))(𝑦(𝑥3𝑧))[𝑥3\𝑤]
→sub (𝑦(𝑤𝑧))(𝑦(𝑤𝑧))
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An example duplicating an abstraction

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦) →dB (𝑥𝑥)[𝑥\𝜆𝑦.𝑦]
→dist (𝑥𝑥)[𝑥\\𝜆𝑦.𝑧[𝑧\𝑦]]
→sub (𝑥𝑥)[𝑥\\𝜆𝑦.𝑦]
→abs (𝜆𝑦.𝑦)(𝜆𝑦.𝑦)
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λR-terms

We add two constructors to the λ-calculus: explicit
substitutions and distributors.

Terms 𝑡, 𝑢, 𝑠 ∶∶= 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥\𝑢] ∣ 𝑡[𝑥\\𝜆𝑦.𝑢]

We call explicit cut a constructor which is either an explicit
substitution or a distributor, and we write it [𝑥 ⊲ 𝑢].
Pure terms (𝑝, 𝑞) are terms without explicit cuts.

List contexts L ∶∶= □ ∣ L[𝑥 ⊲ 𝑢]
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Operational semantics

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥\𝑢]⟩
𝑡[𝑥\L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥\𝑦𝑧}[𝑦\𝑢][𝑧\𝑣]⟩
𝑡[𝑥\L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥\\𝜆𝑦.𝑧[𝑧\𝑢]]⟩
𝑡[𝑥\\𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥\𝜆𝑦.𝑝}⟩
𝑡[𝑥\L⟨𝑦⟩] ↦var L⟨𝑡{𝑥\𝑦}⟩

In dist, we suppose 𝑢 →∗
𝜋 L⟨𝑝⟩ and 𝑦 ∉ fv(L).
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λR and λ simulate each other

We define an unfolding 𝑡↓ of cuts, such that
(𝑡[𝑥 ⊲ 𝑢])↓ = 𝑡↓{𝑥\𝑢↓}.
Lemma (Simulation to the λ-calculus)

• 𝑡 →s 𝑢 ⟹ 𝑡↓ = 𝑢↓.
• 𝑡 →dB 𝑢 ⟹ 𝑡↓ →∗

𝛽 𝑢↓.

Lemma (Simulation from the λ-calculus)
𝑝 →𝛽 𝑞 ⟹ 𝑝 →dB→+

s 𝑞.
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λR and λa simulate each other

λa simulates the λ-calculus and vice-versa.
Thus, taking the λ-calculus as an intermediate language gives
a simulation between λR and λa.
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λR is confluent

The calculus is confluent.
The proof is simple and relies on simulation in the λ-calculus,
and on the termination of →s.
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A witness for →s: levels

We define a combinatorial tool to prove termination of →s.

Definition (Level of a variable)
Maximal number of explicit substitutions one has to go
through to reach the variable.

Example
𝑡 = 𝑥[𝑥\𝑧[𝑦\𝑤]][𝑤\𝑤’]

1. lv𝑧(𝑡) = 1,
2. lv𝑤’(𝑡) = 3,
3. lv𝑦(𝑡) = 0 because 𝑦 ∉ fv(𝑡).

28



A witness for →var

The level of a variable decreases when using rule var.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝑥][𝑥\𝑧] →var (𝑥𝑥)[𝑥\𝑧] = 𝑢,
lv𝑧(𝑡) = 2 > 1 = lv𝑧(𝑢).

We can naturally extend the notion of level to terms and
constructors in order to account for other s-rules.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝜆𝑧.𝑥𝑧], the level of 𝜆𝑧.𝑥𝑧 and of the abstraction
and application constructors is 1 = lv𝑦(𝑦𝑦) + 1.
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Witnesses for →app and →dist

The level of an application decreases when using rule app.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝑥@𝑧] →app ((𝑦1@𝑦2)(𝑦1@𝑦2))[𝑦1\𝑥][𝑦2\𝑧],
lv@(𝑡) = 2 > 1 = lv@(𝑢).

The level of an abstraction decreases when using rule abs.
Example
In 𝑡 = (𝑦𝑦)[𝑦\𝜆𝑧.𝑧] →app (𝑦𝑦)[𝑦\\𝜆𝑧.𝑥[𝑥\𝑧]],
lv𝜆𝑧(𝑡) = 2 > 1 = lv𝜆𝑧(𝑢).
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Two weak strategies



Calculi and strategies

Calculi Non-deterministic rewriting relations.
Strategies Implement a specific deterministic evaluation.

The atomic λ-calculus is only studied as a calculus, no strategy
is formalised.
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Two strategies

We give two weak strategies (no reduction under abstraction)
to argue for the following statements.

CBN Node replication implements standard evaluation
strategies.

FLNeed Node replication is a tool of choice for
implementing full laziness.
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A natural restriction on the syntax simplifies the semantics

No explicit cuts under abstractions (except distributors).

Invariant of the reduction, and true when starting from a
λ-term.

Simplifies the semantics of the calculus and avoids 𝜋-rules:
the distributors are of the shape [𝑥\\𝜆𝑦.L⟨𝑝⟩].
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Properties of CBN: diamond and simulation

CBN is not deterministic, but it is diamond.

Call-by-name in the λ-calculus is also known as weak head
reduction →whr.

Lemma (Simulation)

• 𝑡 →name 𝑢 ⟹ 𝑡↓ →∗
whr 𝑢↓.

• 𝑝 →whr 𝑞 ⟹ 𝑝 →+
name 𝑞.
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A key operation: splitting the skeleton and MFEs

Remember: full laziness splits an abstraction into its skeleton
and its MFEs.

A skeleton is a term with a finite number of holes in place of
the MFEs.
Examples
• 𝑡 = 𝜆𝑧.𝑧(𝐼𝐼). Skeleton: 𝜆𝑧.𝑧□. Multiset of MFEs: [𝐼𝐼].
• 𝑡 = 𝜆𝑧.(𝐼𝐼)𝑧(𝐼𝐼). Skeleton: 𝜆𝑧.□𝑧□. MFEs: [𝐼𝐼, 𝐼𝐼].
• 𝑡 = 𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧. Skeleton: 𝜆𝑦.𝜆𝑧.(𝑦□)𝑧. MFEs: [𝑤].
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Splitting in λR

(𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(𝐼𝐼)) →dB (𝑥𝑥)[𝑥\𝜆𝑧.𝑧(𝐼𝐼)]
→dist (𝑥𝑥)[𝑥\\𝜆𝑧.𝑦[𝑦\𝑧(𝐼𝐼)]]
→app (𝑥𝑥)[𝑥\\𝜆𝑧.(𝑦1𝑦2)[𝑦1\𝑧][𝑦2\𝐼𝐼]]
→var (𝑥𝑥)[𝑥\\𝜆𝑧.(𝑧𝑦2)[𝑦2\𝐼𝐼]]

There must be no free occurence of 𝑧 inside a cut in the
distributor.
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Steps necessary for splitting

Before replicating the value 𝜆𝑦.𝑝 in 𝑡[𝑥\𝜆𝑦.𝑝], we must:

1. Apply rule dist to create a distributor.
2. Use s-rules on the cuts in which 𝑦 is free to get the

skeleton.
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A function for splitting

We want to assemble all these steps into one, for a more
elegant presentation. We will define a function ⇓st such that

𝜆𝑦.𝑧[𝑧\𝑝] ⇓st 𝜆𝑦.L⟨𝑝’⟩,

where L is a list of explicit substitutions containaing the MFEs,
linked to the skeleton 𝑝’ by fresh variables in the holes.

Example
𝜆𝑧.𝑥[𝑥\(𝐼𝐼)𝑧(𝐼𝐼)] ⇓st 𝜆𝑧.(𝑥1𝑧𝑥2)[𝑥1\𝐼𝐼][𝑥2\𝐼𝐼]
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Defining ⇓st

⇓st is defined on terms of the shape 𝜆𝑦.L⟨𝑝⟩.
We use s-rules, parametrized by the binding variable we are
considering (e.g. 𝑦).
This reduction relation is confluent and terminating so that
the function ⇓st is well-defined.
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Example

Let the abstraction to duplicate be 𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧, where 𝑡 is an
MFE. Its skeleton is 𝜆𝑦.𝜆𝑧.(𝑦□)𝑧.

𝜆𝑦.𝑥[𝑥\𝜆𝑧.(𝑦𝑡)𝑧] →𝑦
dist 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.𝑤[𝑤\(𝑦𝑡)𝑧]]

→𝑧
app 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.(𝑤1𝑤2)[𝑤1\𝑦𝑡][𝑤2\𝑧]]

→𝑧
var 𝜆𝑦.𝑥[𝑥\\𝜆𝑧.(𝑤1𝑧)[𝑤1\𝑦𝑡]]

→𝑦
abs 𝜆𝑦.(𝜆𝑧.𝑤1𝑧)[𝑤1\𝑦𝑡]

→𝑦
app 𝜆𝑦.(𝜆𝑧.(𝑥1𝑥2)𝑧)[𝑥1\𝑦][𝑥2\𝑡]

→𝑦
var 𝜆𝑦.(𝜆𝑧.(𝑦𝑥2)𝑧)[𝑥2\𝑡]

The innermost abstraction is treated first.
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The fully lazy strategy

L⟨𝜆𝑥.𝑝⟩𝑢 ↦dB L⟨𝑝[𝑥\𝑢]⟩
N⟨⟨𝑥⟩⟩[𝑥\L1⟨𝜆𝑦.𝑝⟩] ↦spl L1⟨L2⟨N⟨⟨𝑥⟩⟩[𝑥\\𝜆𝑦.𝑝’]⟩⟩
N⟨⟨𝑥⟩⟩[𝑥\\𝑣] ↦sub N⟨⟨𝑣⟩⟩[𝑥\\𝑣]

Where in rule ↦spl, 𝜆𝑦.𝑧[𝑧\𝑝] ⇓st 𝜆𝑦.L2⟨𝑝’⟩
Note that the substitution is partial, as usual in call-by-need:
only the needed occurence is duplicated.
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Example

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧) →dB (𝑥𝑥)[𝑥\𝜆𝑦.𝜆𝑧.(𝑦𝑡)𝑧]
→spl (𝑥𝑥)[𝑥\\𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧][𝑤\𝑡]
→sub ((𝜆𝑦.𝜆𝑧.(𝑦𝑤)𝑧)𝑥)[𝑤\𝑡]
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Quantitative types, a tool for
observational equivalence



Intersection types

Γ ⊢ 𝑡 ∶ 𝜏 Δ ⊢ 𝑡 ∶ 𝜎
Γ + Δ ⊢ 𝑡 ∶ 𝜏 ∧ 𝜎

Intersection types have a strong denotational flavor: typability
and normalisation coincide.
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The type system characterizes normalisation

We define a unique type system 𝒱 for both strategies. In both
strategies we prove (for x ∈ {name,flneed}):
Lemma
𝑡 is x-normalisable ⟺ 𝑡 is typable in 𝒱.
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Proof that normalisable terms are typable

Proof. 𝑡 x-normalisable ⟹ 𝑡 typable.
1. Show that normal forms are typable.
2. Show subject expansion: if there is a type derivation of

Γ ⊢ 𝑡1 ∶ 𝜏 in 𝒱 and a term 𝑡0 →x 𝑡1, then there is a type
derivation of Γ ⊢ 𝑡0 ∶ 𝜏 in 𝒱.
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Proof that typable terms are normalisable

Proof. 𝑡 typable ⟹ 𝑡 x-normalisable.
1. Show subject reduction: if there is a type derivation of

Γ ⊢ 𝑡0 ∶ 𝜏 in 𝒱 and 𝑡0 →x 𝑡1, then there is a type derivation
of Γ ⊢ 𝑡1 ∶ 𝜏 in 𝒱.

2. Show that a reduction of typed terms terminate.
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Non-idempotent intersection types

Second step of the proof: we use non-idempotent intersection
(a.k.a quantitatives) types.

Γ ⊢ 𝑡 ∶ 𝜏 Δ ⊢ 𝑡 ∶ 𝜏
Γ + Δ ⊢ 𝑡 ∶ [𝜏 , 𝜏 ]

Non-idempotence gives quantitative information and a
combinatorial proof of termination.
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Weighted subject reduction

Using quantitative types, we can generally find a measure
D (Φ) on type derivations, such that:

Lemma (Weighted subject reduction)
Let 𝑡0 → 𝑡1 such that there exists Φ ▷ Γ ⊢ 𝑡0 ∶ 𝜏 . Then there
exists Ψ ▷ Γ ⊢ 𝑡1 ∶ 𝜏 such that D (Φ) > D (Ψ).

Which measure should we take?
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dB decreases the size of the derivation

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑥.𝑥 ∶ [a] → a
(abs)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ (𝜆𝑥.𝑥)(𝜆𝑦.𝑧) ∶ a
(app)

→dB

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ 𝑥[𝑥\𝜆𝑦.𝑧] ∶ a
(cut)
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dB decreases the size of the derivation

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑥.𝑥 ∶ [a] → a
(abs)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ (𝜆𝑥.𝑥)(𝜆𝑦.𝑧) ∶ a
(app)

→dB

𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(ax)

⊢ 𝜆𝑦.𝑧 ∶ a
(ans)

⊢ 𝜆𝑦.𝑧 ∶ [a]
(many)

⊢ 𝑥[𝑥\𝜆𝑦.𝑧] ∶ a
(cut)
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Size is not a good measure for us

Taking the size of the proof does not work: in rules app and
dist we add new fresh variables which make the proof grow
by a number of axiom rules.

𝑡[𝑥\L⟨𝑢𝑣⟩] ↦app L⟨𝑡{𝑥\𝑦𝑧}[𝑦\𝑢][𝑧\𝑣]⟩
𝑡[𝑥\L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥\\𝜆𝑦.𝑧[𝑧\𝑢]]⟩
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An typed measure decreasing on all rules

Idea: we weight the constructors with their levels. The level of
a constructor decreases with s, and so does the measure.

We define the size of a derivation |Φ| by the number of (abs),
(ans) and (app) rules.
Definition (Measure)
D (Φ) = (𝑙, 𝑚, 𝑛) (ordered lexicographically), where:

• 𝑙 = |Φ|,
• 𝑚 is the size of Φ weighted by the levels,
• 𝑛 is the number of ax rules.
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Example

We consider the following reduction.

(𝜆𝑥.𝑥)(𝑦𝑧) →dB 𝑥[𝑥\𝑦𝑧]
→app (𝑥1𝑥2)[𝑥1\𝑦][𝑥2\𝑧]
→sub (𝑦𝑥2)[𝑥2\𝑧]
→sub 𝑦𝑧
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Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑥 ∶ [𝜏 ] ⊢ 𝑥 ∶ 𝜏
(ax)

⊢ 𝜆𝑥.𝑥 ∶ 𝜎
(abs)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ [𝜏 ]
(many)

Φ1 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ (𝜆𝑥.𝑥)(𝑦𝑧) ∶ 𝜏
(app)

D (Φ1) = (3, 3, 3)
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Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑥 ∶ [𝜏 ] ⊢ 𝑥 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ [𝜏 ]
(many)

Φ2 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑥[𝑥\𝑦𝑧] ∶ 𝜏
(cut)

D (Φ2) = (1, 2, 3)
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Example

Let 𝜎 = [𝜏] → 𝜏 .

Φ𝑥1𝑥2

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ [𝜎]
(many)

𝑥1 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ (𝑥1𝑥2)[𝑥1\𝑦] ∶ 𝜏
(cut)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ [𝜏 ]
(many)

Φ3 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ (𝑥1𝑥2)[𝑥1\𝑦][𝑥2\𝑧] ∶ 𝜏
(cut)

𝑥1 ∶ [𝜎] ⊢ 𝑥1 ∶ 𝜎
(ax)

𝑥2 ∶ [𝜏 ] ⊢ 𝑥2 ∶ 𝜏
(ax)

𝑥2 ∶ [𝜏 ] ⊢ 𝑥2 ∶ [𝜏 ]
(many)

Φ𝑥1𝑥2
▷ 𝑥1 ∶ [𝜎], 𝑥2 ∶ [𝜏 ] ⊢ 𝑥1𝑥2 ∶ 𝜏

(app)

D (Φ3) = (1, 1, 4)
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Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑥2 ∶ [𝜏 ] ⊢ 𝑥2 ∶ 𝜏
(ax)

𝑥2 ∶ [𝜏 ] ⊢ 𝑥2 ∶ [𝜏 ]
(many)

𝑦 ∶ [𝜎], 𝑥2 ∶ [𝜏 ] ⊢ 𝑦𝑥2 ∶ 𝜏
(app)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ [𝜏 ]
(many)

Φ4 ▷ 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ (𝑦𝑥2)[𝑥2\𝑧] ∶ 𝜏
(cut)

D (Φ4) = (1, 1, 3)
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Example

Let 𝜎 = [𝜏] → 𝜏 .

𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
(ax)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ [𝜏 ]
(many)

𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ 𝜏
(app)

D (Φ5) = (1, 1, 2)
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Observational equivalence

Lemma (restatement)
𝑡 is x-normalisable ⟺ 𝑡 is typable in 𝒱.

Observational equivalence is a trivial corollary.

Definition (Observational equivalence)
𝑡 ≡x 𝑢 if and only if for any C, C⟨𝑡⟩ terminates in x ⟺ C⟨𝑢⟩
terminates in x.

Theorem
𝑡 ≡name 𝑢 ⟺ 𝑡 ≡flneed 𝑢.
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Conclusion



Summary

To sum up, we:

• Defined a new calculus of explicit substitutions inspired
by 𝜆𝑎 which achieves node replication;

• Gave two weak strategies CBN and FLNeed;
• Studied the strategies by means of non-idempotent
intersection types and show observational equivalence.
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Future works

Future works could be:

• Defining a calculus based on spine duplication; or a
classical version of the calculus.

• Relate FLNeed to other strategies of full laziness in the
literature.

• Defining a type system giving exact bounds.
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Thank you for your attention!
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