
Time-Efficient Quantum Walks
for 3-Distinctness?

Aleksandrs Belovs1, Andrew M. Childs2,4, Stacey Jeffery3,4,
Robin Kothari3,4, and Frédéric Magniez5

1 Faculty of Computing, University of Latvia
2 Department of Combinatorics & Optimization, University of Waterloo, Canada
3 David R. Cheriton School of Computer Science, University of Waterloo, Canada

4 Institute for Quantum Computing, University of Waterloo, Canada
5 CNRS, LIAFA, Univ Paris Diderot, Sorbonne Paris-Cité, France

Abstract. We present two quantum walk algorithms for 3-Distinctness.
Both algorithms have time complexity Õ(n5/7), improving the previous
Õ(n3/4) and matching the best known upper bound for query complexity
(obtained via learning graphs) up to log factors. The first algorithm is
based on a connection between quantum walks and electric networks.
The second algorithm uses an extension of the quantum walk search
framework that facilitates quantum walks with nested updates.

1 Introduction

Element Distinctness is a basic computational problem. Given a sequence χ =
χ1, . . . , χn of n integers, the task is to decide if those elements are pairwise
distinct. This problem is closely related to Collision, a fundamental problem in
cryptanalysis. Given a 2-to-1 function f : [n]→ [n], the aim is to find a 6= b such
that f(a) = f(b). One of the best (classical and quantum) algorithms is to run
Element Distinctness on f restricted to a random subset of size

√
n.

In the quantum setting, Element Distinctness has received a lot of attention.
The first non-trivial algorithm used Õ(n3/4) time [1]. The optimal Õ(n2/3) al-
gorithm is due to Ambainis [2], who introduced an approach based on quantum
walks that has become a major tool for quantum query algorithms. The opti-
mality of this algorithm follows from a query lower bound for Collision [3]. In
the query model, access to the input χ is provided by an oracle whose answer to
query i ∈ [n] is χi. This model is the quantum analog of classical decision tree
complexity: the only resource measured is the number of queries to the input.

Quantum query complexity has been a very successful model for studying
the power of quantum computation. In particular, bounded-error quantum query

? This paper is a merge of two submitted papers, whose full versions are available
at http://arxiv.org/abs/1302.3143 and http://arxiv.org/abs/1302.7316. Sup-
port for this work was provided by European Social Fund within the project “Support
for Doctoral Studies at University of Latvia”, the European Commission IST STREP
project 25596 (QCS), NSERC, the Ontario Ministry of Research and Innovation, the
US ARO, and the French ANR Blanc project ANR-12-BS02-005 (RDAM).

http://arxiv.org/abs/1302.3143
http://arxiv.org/abs/1302.7316

complexity has been exactly characterized in terms of a semidefinite program, the
general adversary bound [4,5]. To design quantum query algorithms, it suffices
to exhibit a solution to this semidefinite program. However, this turns out to
be difficult in general, as the minimization form of the general adversary bound
has exponentially many constraints. Belovs [6] recently introduced the model of
learning graphs, which can be viewed as the minimization form of the general
adversary bound with additional structure imposed on the form of the solution.
This additional structure makes learning graphs much easier to reason about.
The learning graph model has already been used to improve the query complexity
of many graph problems [6,7,8,9] as well as k-Distinctness [10].

One shortcoming of learning graphs is that these upper bounds do not lead
explicitly to efficient algorithms in terms of time complexity. Although the study
of query complexity is interesting on its own, it is relevant in practice only when
a query lower bound is close to the best known time complexity.

Recently, [11] reproduced several known learning graph upper bounds via
explicit algorithms in an extension of the quantum walk search framework of [12].
This work produced a new quantum algorithmic tool, quantum walks with nested
checking. Algorithms constructed in the framework of [11] can be interpreted as
quantum analogs of randomized algorithms, so they are simple to design and
analyze for any notion of cost, including time as well as query complexity. This
framework has interpreted all known learning graphs as quantum walks, except
the very recent adaptive learning graphs for k-Distinctness [10].

In k-Distinctness, the problem is to decide if there are k copies of the same el-
ement in the input, with k = 2 being Element Distinctness. The best lower bound
for k-Distinctness is the Element Distinctness lower bound Ω(n2/3), whereas

the best query upper bound is O(n1−2
k−2/(2k−1)) = o(n3/4) [10], achieved us-

ing learning graphs, improving the previous bound of O(nk/(k+1)) [2]. However,
the best known time complexity remained Õ(nk/(k+1)). We improve this upper
bound for the case with k = 3 using two distinct approaches.

For the first approach, described in Sections 2 and 3, we use a connection
between quantum walks and electric networks. Hitting and commute times of
random walks are closely connected to the effective resistance of associated net-
works of resistors. We develop a similar connection for the case of quantum walks.
For any initial distribution over the vertices of a graph, we prove that a quantum
walk can detect the presence of a marked element in O(

√
WR) steps, where W

is the total weight of the graph and R is the effective resistance. This generalizes
a result of Szegedy that only applies if the initial distribution is stationary.

The second approach, described in Sections 4 and 5, uses quantum walks
with nested updates. The basic idea is conceptually simple: we walk on sets of
2-collisions and look for a set containing a 2-collision that is part of a 3-collision.
We check if a set has this property by searching for an index that evaluates to
the same value as one of the 2-collisions in the set. However, to move to a new set
of 2-collisions, we need to use a quantum walk subroutine for finding 2-collisions
as part of our update step. This simple idea is surprisingly difficult to implement
and leads us to develop a new extension of the quantum walk search framework.

2

2 Quantum Walks and Electric Networks

2.1 Random Walks and Electric Networks

Let G = (V,E) be a simple undirected graph with each edge assigned a weight
we ≥ 0. Let W =

∑
e∈E we be the total weight. Consider the following random

walk on G: If the walk is at a vertex u ∈ V , proceed to a vertex v with probability
proportional to wuv, i.e., wuv/(

∑
ux∈E wux). The random walk has a stationary

probability distribution π = (πu) given by πu =
∑
uv∈E wuv/(2W).

Let σ = (σu) be an initial probability distribution on the vertices of the graph,
and let M ⊆ V be some set of marked vertices. We are interested in the hitting
time Hσ,M of the random walk: the expected number of steps of the random
walk required to reach a vertex in M when the initial vertex is sampled from
σ. If σ is concentrated in a vertex s ∈ V , or M consists of a single element
t ∈ V , we replace σ by s or M by t. The commute time between vertices s and
t is defined as Hs,t + Ht,s. We assume G and σ are known, and the task is to
determine whether M is non-empty.

Assume M is non-empty, and define a flow on G from σ to M as a real-
valued function pe on the (oriented) edges of the graph satisfying the following
conditions. First, puv = −pvu. Next, for each non-marked vertex u,

σu =
∑
uv∈E

puv. (1)

That is, σu units of the flow are injected into u, traverse through the graph, and
are removed from marked vertices. Define the energy of the flow as∑

e∈E

p2e
we
. (2)

Clearly, the value of (2) does not depend on the orientation of each e. The
effective resistance Rσ,M is the minimal energy of a flow from σ to M . For R, as
for H, we also replace σ and M by the corresponding singletons. The resistance
Rσ,M equals the energy dissipated by the electric flow where the edges have
conductance we and σu units of the current are injected into each u and collected
in M [13]. The following two results can be easily obtained from the results in
Ref. [14]:

Theorem 1. If G, w, W are as above, s, t are two vertices of G, M ⊆ V , and
π is the stationary distribution on G, then

(a) the commute time between s and t equals 2WRs,t and
(b) the hitting time Hπ,M equals 2WRπ,M .

We show a quadratic improvement in the quantum case: If G and σ are
known in advance and the superposition

∑
u∈V
√
σu|u〉 is given, the presence of

a marked vertex in G can be determined in O(
√
WR) steps of a quantum walk.

By combining this result with the second statement of Theorem 1, we obtain the
main result of the paper by Szegedy [15].

3

2.2 Tools from Quantum Computing

Although we use the language of electric networks to state our results, we use
spectral properties of unitary operators in the algorithms.

Lemma 1 (Effective Spectral Gap Lemma [5]). Let ΠA and ΠB be two
orthogonal projectors in the same vector space, and RA = 2ΠA − I and RB =
2ΠB − I be the reflections about their images. Assume PΘ, where Θ ≥ 0, is the
orthogonal projector on the span of the eigenvectors of RBRA with eigenvalues
eiθ such that |θ| ≤ Θ. Then, for any vector w in the kernel of ΠA, we have

‖PΘΠBw‖ ≤
Θ

2
‖w‖.

Theorem 2 (Phase Estimation [16], [17]). Assume a unitary U is given as
a black box. There exists a quantum algorithm that, given an eigenvector of U
with eigenvalue eiφ, outputs a real number w such that |w−φ| ≤ δ with probability
at least 9/10. Moreover, the algorithm uses O(1/δ) controlled applications of U
and 1

δ polylog(1/δ) other elementary operations.

2.3 Szegedy-Type Quantum Walk

In this section, we construct a quantum counterpart of the random walk de-
scribed in Section 2.1. The quantum walk differs slightly from the quantum walk
of Szegedy. The framework of the algorithm goes back to [18], and Lemma 1 is
used to analyze its complexity. We assume the notations of Section 2.1 through-
out the section.

It is customary to consider quantum walks on bipartite graphs. Let G =
(V,E) be a bipartite graph with parts A and B. Also, we assume the support
of σ is contained in A. These are not very restrictive assumptions: If either of
them fails, consider the bipartite graph G′ with the vertex set V ′ = V × {0, 1},
the edge set E′ = {(u, 0)(v, 1), (u, 1)(v, 0) : uv ∈ E}, edge weights w′(u,0)(v,1) =

w′(u,1)(v,0) = wuv, the initial distribution σ′(u,0) = σu, and the set of marked

vertices M ′ = M × {0, 1}.
We assume the quantum walk starts in the state |ς〉 =

∑
u∈V
√
σu |u〉 that

is known in advance. Also, we assume there is an upper bound R known on the
effective resistance from σ to M for all potential sets M of marked vertices.

Now we define the vector space of the quantum walk. Let S be the support
of σ, i.e., the set of vertices u such that σu 6= 0. The vectors {|u〉 : u ∈ S}∪{|e〉 :
e ∈ E} form the computational basis of the vector space of the quantum walk.
Let Hu denote the local space of u, i.e., the space spanned by all |uv〉 for uv ∈ E
and, additionally, |u〉 if u ∈ S. We have that

⊕
u∈AHu equals the whole space of

the quantum walk, and
⊕

u∈BHu equals the subspace spanned by |e〉 for e ∈ E.
The step of the quantum walk is defined as RBRA where RA =

⊕
u∈ADu

and RB =
⊕

u∈B Du are the direct sums of the diffusion operations. Each Du is
a reflection operation in Hu. All Du in RA or RB commute, which makes them
easy to implement in parallel. They are as follows:

4

– If a vertex u is marked, then Du is the identity, i.e., the reflection about Hu;
– If u is not marked, thenDu is the reflection about the orthogonal complement

of |ψu〉 in Hu, where

|ψu〉 =

√
σu
C1R

|u〉+
∑
uv∈E

√
wuv |uv〉 (3)

for some large constant C1 > 0 we choose later. The vector |ψu〉 is not
necessarily normalized. This also holds for u /∈ S: then the first term in (3)
disappears.

Theorem 3. The presence of a marked vertex can be detected with bounded
error in O(

√
RW) steps of the quantum walk.

Proof. Similarly to the Szegedy algorithm, we may assume S is disjoint from M .
We perform phase estimation on RBRA starting in |ς〉 with precision 1/(C

√
RW)

for some constant C. We accept iff the phase is 1. The complexity estimate
follows from Theorem 2. Let us prove the correctness. We start with the positive
case. Let pe be a flow from σ to M with energy at most R. First, using the
Cauchy-Schwarz inequality and the fact that S is disjoint from M , we get

RW ≥
(∑
e∈E

p2e
we

)(∑
e∈E

we

)
≥
∑
e∈E
|pe| ≥ 1. (4)

Now, we construct an eigenvalue-1 eigenvector

|φ〉 =
√
C1R

∑
u∈S

√
σu|u〉 −

∑
e∈E

pe√
we
|e〉

of RBRA having large overlap with |ς〉 (assume the orientation of each edge e
is from A to B.) Indeed, by (1), |φ〉 is orthogonal to all |ψu〉, so it is invariant
under the action of both RA and RB . Moreover, ‖|φ〉‖2 = C1R+

∑
e∈E p

2
e/we and

〈φ|ς〉 =
√
C1R. Since we assumed R ≥

∑
e∈E p

2
e/we, we get that the normalized

vector satisfies
〈φ|ς〉
‖|φ〉‖

≥
√

C1

1 + C1
. (5)

Now consider the negative case. Define

|w〉 =
√
C1R

(∑
u∈S

√
σu
C1R

|u〉+
∑
e∈E

√
we |e〉

)
.

Let ΠA and ΠB be the projectors on the invariant subspaces of RA and RB ,
respectively. Since S ⊆ A, we have ΠA|w〉 = 0 and ΠB |w〉 = |ς〉. Also

‖|w〉‖2 =
∑
u∈S

σu + C1R
∑
e∈E

we = 1 + C1RW,

5

hence, by Lemma 1, we have that, if

Θ =
1

C2

√
1 + C1RW

for some constant C2 > 0, then the overlap of |ς〉 with the eigenvectors of RBRA
with phase less than Θ is at most 1/(2C2). Comparing this with (5), we find
that it is sufficient to execute phase estimation with precision Θ if C1 and C2

are large enough. Also, assuming C1 ≥ 1, we get Θ = Ω(1/
√
RW) by (4). ut

3 Application to 3-Distinctness

In this section, we describe a quantum algorithm for 3-distinctness having time
complexity Õ(n5/7). This is a different algorithm from Ref. [10], and is based on
ideas from Ref. [19].

Theorem 4. The 3-distinctness problem can be solved by a quantum algorithm
in time Õ(n5/7) using quantum random access quantum memory (QRAQM) of
size Õ(n5/7).

Recall that Ambainis’s algorithm consists of two phases: the setup phase that
prepares the uniform superposition, and the quantum walk itself. Our algorithm
also consists of these two phases. In our case, the analysis of the quantum walk
is quite simple, and can be easily generalized to any k. However, the setup phase
is hard to generalize. The case of k = 3 has a relatively simple ad hoc solution
(see the full version of the paper).

Technicalities We start the section with some notations and algorithmic prim-
itives we need for our algorithm. For more detail on the implementation of these
primitives, refer to the paper by Ambainis [2]. Although this paper does not
exactly give the primitives we need, it is straightforward to apply the necessary
modifications; we omit the details here.

We are given a string χ ∈ [q]n. A subset J ⊆ [n] of size ` is called an `-
collision iff χi = χj for all i, j ∈ J . In the k-distinctness problem, the task
is to determine whether the given input contains a k-collision. Inputs with a
k-collision are called positive; the remaining inputs are called negative.

Without loss of generality, we may assume that any positive input contains
exactly one k-collision [2]. Also, we may assume there are Ω(n) (k−1)-collisions
by extending the input with dummy elements.

For a subset S ⊆ [n] and i ∈ [k], let Si denote the set of j ∈ S such that
|{j′ ∈ S : χj′ = χj}| = i. Denote ri = |Si|/i, and call τ = (r1, . . . , rk) the type
of S.

Our main technical tool is a dynamical quantum data structure that main-
tains a subset S ⊆ [n] and the values χj for j ∈ S. We use notation |S〉D to
denote a register containing the data structure for a particular choice of S ⊆ [n].

6

The data structure can perform several operations in polylogarithmic time.
The initial state of the data structure is |∅〉D. The update operation adds or
removes an element: |S〉D|j〉|χj〉 7→ |S4{j}〉D|j〉|0〉, where that4 denotes for the
symmetric difference. The data structure can perform several query operations.
It can give the type τ of S. For integers i ∈ [k] and ` ∈ [|Si|], it returns the `th
element of Si according to some internal ordering. Given an element j ∈ [n], it
detects whether j is in S, and if it is, returns the pair (i, `) such that j is the
`th element of Si. Given a ∈ [q], it returns i ∈ [k] such that a is a value in Si or
says there is no such i.

The data structure is coherence-friendly, i.e., a subset S has the same repre-
sentation |S〉D independent of the sequence of update operations that results in
this subset. It has an exponentially small error probability of failing that can be
ignored. The data structure can be implemented using quantum random access
quantum memory (QRAQM) in the terminology of Ref. [20].

The quantum walk part of the algorithm is given in the following theorem.
For the k = 3, there exists a setup procedure that prepares the state |ς〉 defined in
the statement of the theorem with r1 = r2 = n4/7 in time Õ(n5/7). Together with
the theorem this gives an Õ(n5/7)-time quantum algorithm for 3-distinctness.

Theorem 5. Let r1, . . . , rk−1 = o(n) be positive integers, let χ ∈ [q]n be an
input for the k-distinctness problem, and let V0 be the set of all S ⊆ [n] having
type (r1, . . . , rk−1, 0). Given the uniform superposition |ς〉 = 1√

|V0|

∑
S∈V0

|S〉,

the k-distinctness problem can be solved in Õ(n/
√

min{r1, . . . , rk−1}) quantum
time.

Proof. We may assume that any input contains at most one k-collision and
Ω(n) (k − 1)-collisions. Define rk = 0, and the type τi as (r1, . . . , ri−1, ri +
1, ri+1, . . . , rk) for i ∈ {0, 1, . . . , k}. Let Vi be the set of all S ⊆ [n] having type
τi (consistent with our previous notation for V0). Denote V =

⋃
i Vi. Also, for

i ∈ [k], define the set Zi of dead-ends consisting of vertices of the form (S, j) for
S ∈ Vi−1 and j ∈ [n] such that S 4 {j} /∈ V . Again, Z =

⋃
i Zi.

The vertex set of G is V ∪ Z. Each S ∈ V \ Vk is connected to n vertices,
one for each j ∈ [n]: if S 4 {j} ∈ V , the vertex corresponding to j is S 4 {j};
otherwise, it is (S, j) ∈ Z. A vertex S ∈ Vk is connected to k vertices in Vk−1
differing from S in one element. Each (S, j) ∈ Z is only connected to S. The
weight of each edge is 1. A vertex is marked if and only if it is contained in Vk.

The algorithm of Theorem 3 is not applicable here because we do not know
the graph in advance (it depends on the input), nor do we know the amplitudes
in the initial state |ς〉. However, we know the graph locally, and our ignorance in
the amplitudes of |ς〉 conveniently cancels with our ignorance in the size of G.

Let us briefly describe the implementation of the quantum walk on G follow-
ing Section 2.3. Let G = (V ∪Z,E) be the graph described above. It is bipartite:
the part A contains all Vi and Zi for i even, and B contains all Vi and Zi for i
odd. The support of |ς〉 is contained in A. The reflections RA and RB are the
direct sums of local reflections Du over all u in A and B, respectively. They are
as follows:

7

– If u ∈ Vk, then Du is the identity in Hu.
– If u ∈ Zi, then Du negates the amplitude of the only edge incident to u.
– If u ∈ Vi for i < k, thenDu is the reflection about the orthogonal complement

of |ψu〉 in Hu. If u ∈ V0, or u ∈ Vi with i > 0, then |ψu〉 is defined as

|ψu〉 =
1√
C1

|u〉+
∑
uv∈E

|uv〉, or |ψu〉 =
∑
uv∈E

|uv〉,

respectively. Here, C1 is a constant.

The space of the algorithm consists of three registers: D, C and Z. The data
register D contains the data structure for S ⊆ [n]. The coin register C contains
an integer in {0, 1, . . . , n}, and the qubit Z indicates whether the vertex is an
element of Z. A combination |S〉D|0〉C|0〉Z with S ∈ V0 indicates a vertex in
V0 that is used in |ς〉. A combination |S〉D|j〉C|0〉Z with j > 0 indicates the
edge between S and S 4 {j} or (S, j) ∈ Z. Finally, a combination |S〉D|j〉C|1〉Z
indicates the edge between (S, j) ∈ Z and S ∈ V .

The reflections RA and RB are broken down into the diffuse and update
operations. The diffuse operations perform the local reflections in the list above.
For the first one, do nothing conditioned on |S〉D being marked. For the second
one, negate the phase conditioned on Z containing 1. The third reflection is the
Grover diffusion [21] with one special element if S ∈ V0.

The representation of the edges is asymmetric. One vertex is contained in the
D register, and the other is stored jointly by the D and C registers. The update
operation changes the representation of the edge to the opposite one.

The update operation can be performed using the primitives from Section 3.
Given |S〉D|j〉C|b〉Z, calculate whether S4{j} ∈ V in a fresh qubit Y. Conditioned
on Y, query the value of χj and perform the update operation for the data
structure. Conditioned on Y not being set, flip the value of Z. Finally, uncompute
the value in Y. In the last step, we use that |S〉D|j〉C represents an edge between
vertices in V if and only if |S 4 {j}〉D|j〉C does the same.

Having shown how to implement the step of the quantum walk efficiently, let
us estimate the required number of steps. The argument is very similar to the one
in Theorem 3. We start with the positive case. Assume {a1, . . . , ak} is the unique
k-collision. Let V ′0 denote the set of S ∈ V0 that are disjoint from {a1, . . . , ak},
and σ′ be the uniform probability distribution on V ′0 . Define the flow p from σ′

to Vk as follows. For each S ∈ Vi such that i < k and S ∩M = {a1, . . . , ai},
define flow pe = 1/|V ′0 | on the edge e from S to S ∪{ai+1} ∈ Vi+1. Define pe = 0
for all other edges e. Let

|φ〉 =
√
C1

∑
S∈V ′0

1

|V ′0 |
|S〉 −

∑
e∈E

pe|e〉.

This vector is orthogonal to all ψu, so it is invariant under the action of RBRA.
Also, ‖|φ〉‖2 = (k + C1)/|V ′0 |, and 〈φ|ς〉 =

√
C1/|V0|. Hence,〈 φ

‖φ‖
, ς
〉

=

√
C1|V ′0 |

(k + C1)|V0|
∼
√

C1

k + C1

8

where ∼ denotes asymptotic equivalence as n→∞.
In the negative case, define

|w〉 =

√
C1

|V0|

(∑
S∈V0

1√
C1

|S〉+
∑
e∈E
|e〉
)
.

Similarly to the proof of Theorem 3, we have ΠA|w〉 = 0 and ΠB |w〉 = |ς〉.
Let us estimate ‖|w〉‖. The number of edges in E is at most n times the

number of vertices in V0∪· · ·∪Vk−1. Thus, we have to estimate |Vi| for i ∈ [k−1].
Consider the relation between V0 and Vi where S ∈ V0 and S′ ∈ Vi are in the
relation iff S′ \ S consists of i equal elements. Each element of V0 has at most
n
(
k−1
i

)
= O(n) images in Vi, where the constant behind the big-O depends

exponentially on k. This is because there are at most n maximal collisions in the
input, and for each of them, there are at most

(
k−1
i

)
variants to extend S with.

On the other hand, each element in Vi has exactly ri + 1 preimages in V0. Thus,
|Vi| = O(n|V0|/ri), so

‖|w〉‖ = O
(√

1 + n/r1 + n/r2 + · · ·+ n/rk−1

)
= O

(
n/
√

min{r1, . . . , rk−1}
)
.

By Lemma 1, we have that if Θ = Ω(1/‖|w〉‖), then the overlap of |ς〉 with the
eigenvectors of RBRA with phase less than Θ can be made at most 1/C2 for any
constant C2 > 0. Thus, it suffices to use phase estimation with precision Θ if C1

and C2 are large enough. By Theorem 2, this requires O(n/
√

min{r1, . . . , rk−1})
iterations of the quantum walk. ut

4 Quantum Walks with Nested Updates

4.1 Introduction

Given a Markov chain P with spectral gap δ and success probability ε in its
stationary distribution, one can construct a quantum search algorithm with cost
S+ 1√

ε
(1√

δ
U+C) [12], where S, U, and C are respectively the setup, update, and

checking costs of the quantum analog of P . Using a quantum walk algorithm
with costs S′,U′,C′, ε′, δ′ (as in [12]) as a checking subroutine straightforwardly
gives complexity S + 1√

ε
(1√

δ
U + S′ + 1√

ε′
(1√

δ′
U′ + C′)). Using nested checking

[11], the cost can be reduced to S + S′ + 1√
ε
(1√

δ
U + 1√

ε′
(1√

δ′
U′ + C′)).

It is natural to ask if a quantum walk subroutine can be used for the update
step in a similar manner to obtain cost S + S′ + 1√

ε
(1√

δ
1√
ε′

(1√
δ′
U′ + C′) + C).

In most applications, the underlying walk is independent of the input, so the
update operation is simple, but for some applications a more complex up-
date may be useful (as in [22], where Grover search is used for the update).
In Section 4.3, we describe an example showing that it is not even clear how
to use a nested quantum walk for the update with the seemingly trivial cost
S+ 1√

ε
(1√

δ
(S′+ 1√

ε′
(1√

δ′
U′+C′)) +C). Nevertheless, despite the difficulties that

9

arise in implementing nested updates, we show in Section 4.4 how to achieve the
more desirable cost expression in certain cases, and a similar one in general.

To accomplish this, we extend the quantum walk search framework by intro-
ducing the concept of coin-dependent data. This allows us to implement nested
updates, with a quantum walk subroutine carrying out the update procedure.
Superficially, our modification appears small. Indeed, the proof of the complex-
ity of our framework is nearly the same as that of [12]. However, there are some
subtle differences in the implementation of the walk.

As in [11], this concept is simple yet powerful. We demonstrate this by con-
structing a quantum walk version of the learning graph for 3-Distinctness with
matching query complexity (up to poly-logarithmic factors). Because quantum
walks are easy to analyze, the time complexity, which matches the query com-
plexity, follows easily.

4.2 Quantum Walk Search

In the rest of the paper, let P be a reversible, ergodic Markov chain on a con-
nected, undirected graph G = (X,E) with stationary distribution π and spectral
gap δ > 0. Let M ⊆ X be a set of marked vertices. The Markov chain can be
used to detect wether M = ∅ or Prx∼π(x ∈M) ≥ ε, for some given ε > 0.

Quantizing this algorithm leads to efficient quantum algorithms [12]. The

quantization considers P as a walk on directed edges of G. We write (x, y) ∈ ~E
when we consider an edge {x, y} ∈ E with orientation. The notation (x, y) means
that the current vertex of the walk is x and the coin, indicating the next move,
is y. Swapping x and y changes the current vertex to y and the coin to x.

The quantum algorithm may carry some data structure while walking on G;
we formalize this as follows. Let 0 /∈ X. Define D : X∪{0} → D for some Hilbert
space D, with |D(0)〉 = |0〉. We associate a cost with each part of the algorithm.
The cost can be any measure of complexity such as queries or time.

Setup cost : Let S be the cost of constructing

|π〉 =
∑
x∈X

√
π(x) |x〉 |D(x)〉

∑
y∈X

√
P (x, y) |y〉 |D(y)〉 .

Update cost : Let U be the cost of the Local Diffusion operation, which is
controlled on the first two registers and acts as

|x〉 |D(x)〉 |0〉 |D(0)〉 7→ |x〉 |D(x)〉
∑
y∈X

√
P (x, y) |y〉 |D(y)〉 .

Checking cost : Let C be the cost of |x〉 |D(x)〉 7→

{
− |x〉 |D(x)〉 if x ∈M
|x〉 |D(x)〉 otherwise.

Theorem 6 ([12]). Let P be a reversible, ergodic Markov chain on G = (X,E)
with spectral gap δ > 0. Let M ⊆ X be such that Prx∼π(x ∈ M) ≥ ε, for
some ε > 0, whenever M 6= ∅. Then there is a quantum algorithm that finds an
element of M , if M 6= ∅, with bounded error and with cost O(S+ 1√

ε
(1√

δ
U+C)).

10

Furthermore, we can approximately map |π〉 to |π(M)〉, the normalized projec-
tion of |π〉 onto span{|x〉 |D(x)〉 |y〉 |D(y)〉 : x ∈M,y ∈ X}, in cost 1√

ε
(1√

δ
U+C).

4.3 Motivating Example

3-Distinctness. Suppose the input is a sequence χ = χ1, . . . , χn of integers from
[q] := {1, . . . , q}. We model the input as an oracle whose answer to query i ∈ [n]
is χi. As in Section 3, we assume without loss of generality that there is at most
one 3-collision and that the number of 2-collisions is in Θ(n). Note that any two
2-collisions not both part of the 3-collision are disjoint.

Quantum Walk for Element Distinctness. In [2], a quantum walk for solving
Element Distinctness was presented. This walk takes place on a Johnson graph,
J(n, r), whose vertices are subsets of [n] of size r, denoted

(
[n]
r

)
. In J(n, r), two

vertices S, S′ are adjacent if |S ∩ S′| = r − 1. The data function is D(S) =
{(i, χi) : i ∈ S}. The diffusion step of this walk acts as

|S〉 |D(S)〉 |0〉 7→ |S〉 |D(S)〉 1√
r(n−r)

∑
i∈S,j∈[n]\S |(S \ i) ∪ j〉 |D((S \ i) ∪ j)〉 .

We can perform this diffusion in two queries by performing the transformation

|S〉 |D(S)〉 |0〉 7→ |S〉 |D(S)〉 1√
r

∑
i∈S |(i, χi)〉

1√
n−r

∑
j∈[n]\S |(j, χj)〉 .

We can reversibly map this to the desired state with no queries, and by using
an appropriate encoding of D, we can make this time efficient as well.

To complete the description of this algorithm, we describe the marked set and
checking procedure. We deviate slightly from the usual quantum walk algorithm
of [2] and instead describe a variation that is analogous to the learning graph
for Element Distinctness [6]. We say a vertex S is marked if it contains an index
i such that there exists j ∈ [n] \ {i} with χi = χj (in [2] both i and j must be
in S). To check if S is marked, we search [n] \ S for such a j, in cost O(

√
n).

Attempting a Quantum Walk for 3-Distinctness. We now attempt
to construct an analogous algorithm for 3-Distinctness. Let P de-
note the set of collision pairs in the input, and n2 := |P|. We walk
on J(n2, s2), with each vertex S2 corresponding to a set of s2 colli-
sion pairs. The diffusion for this walk is the map |S2, D(S2)〉 |0〉 7→
|S2, D(S2)〉 1√

r(n2−s2)

∑
(i,i′)∈S2

(j,j′)∈P\S2

|(S2 \ (i, i′)) ∪ (j, j′)〉 |D((S2 \ (i, i′)) ∪ (j, j′))〉 .

To accomplish this, we need to generate 1√
s2

∑
(i,i′)∈S2

|(i, i′, χi)〉 and
1√

n2−s2

∑
(j,j′)∈P\S2

|(j, j′, χj)〉. The first superposition is easy to generate

since we have S2; the second is more difficult since we must find new collisions.
The obvious approach is to use the quantum walk algorithm for Element

Distinctness as a subroutine. However, this algorithm does not return the desired
superposition over collisions; rather, it returns a superposition over sets that
contain a collision. That is, we have the state 1√

n2

∑
(i,i′)∈P |(i, i′, χi)〉 |ψ(i, i′)〉

11

for some garbage |ψ(i, i′)〉. The garbage may be only slightly entangled with
(i, i′), but even this small amount of error in the state is prohibitive. Since we
must call the update subroutine many times, we need the error to be very small.
Unlike for nested checking, where bounded-error subroutines are sufficient, we
cannot amplify the success probability of an update operator. We cannot directly
use the state returned by the Element Distinctness algorithm for several reasons.
First, we cannot append garbage each time we update, as this would prevent
proper interference in the walk. Second, when we use a nested walk for the
update step, we would like to use the same trick as in nested checking: putting
a copy of the starting state for the nested walk in the data structure so that we
only need to perform the inner setup once. To do this here we would need to
preserve the inner walk starting state; in other words, the update would need to

output some state close to
(
n
s1

)−1/2∑
S1∈([n]

s1
) |S1〉. While we might try to recycle

the garbage to produce this state, it is unclear how to extract the part we need
for the update coherently, let alone without damaging the rest of the state.

This appears to be a problem for any approach that directly uses a quan-
tum walk for the update, since all known quantum walks use some variant of a
Johnson graph. Our modified framework circumvents this issue by allowing us
to do the update with some garbage, which we then uncompute. This lets us use
a quantum walk subroutine, with setup performed only at the beginning of the
algorithm, to accomplish the update step. More generally, using our modified
framework, we can tolerate updates that have garbage for any reason, whether
the garbage is the result of the update being implemented by a quantum walk,
or by some other quantum subroutine.

4.4 Quantum Walks with Nested Updates

Coin-Dependent Data A quantum analog of a discrete-time random walk on
a graph can be constructed as a unitary process on the directed edges. For an
edge {x, y}, we may have a state |x〉 |y〉, where |x〉 represents the current vertex
and |y〉 represents the coin or next vertex. In the framework of [12], some data
function on the vertices is employed to help implement the search algorithm. We
modify the quantum walk framework to allow this data to depend on both the
current vertex and the coin, so that it is a function of the directed edges, which
seems natural in hindsight. We show that this point of view has algorithmic
applications. In particular, this modification enables efficient nested updates.

Let 0 6∈ X. Let D : (X×{0})∪ ~E → D for some Hilbert space D. A quantum
analog of P with coin-dependent data structures can be implemented using three
operations, as in [12], but the update now has three parts. The first corresponds
to Local Diffusion from the framework of [12], as described in Section 4.2.
The others are needed because of the new coin-dependent data.

Update cost: Let U be the cost of implementing

– Local Diffusion: |x, 0〉 |D(x, 0)〉 7→
∑
y∈X

√
P (x, y) |x, y〉 |D(x, y)〉 ∀x ∈

X;

12

– The (X, 0)-Phase Flip: |x, 0〉 |D(x, 0)〉 7→ − |x, 0〉 |D(x, 0)〉 ∀x ∈ X, and
the identity on the orthogonal subspace; and

– The Database Swap: |x, y〉 |D(x, y)〉 7→ |y, x〉 |D(y, x)〉 ∀ (x, y) ∈ ~E.

By cost, we mean any desired measure of complexity such as queries, time, or
space. We also naturally extend the setup and checking costs as follows, where
M ⊆ X is a set of marked vertices.

Setup cost: Let S be the cost of constructing

|π〉 :=
∑
x∈X

√
π(x)

∑
y∈X

√
P (x, y) |x, y〉 |D(x, y)〉 .

Checking cost: Let C be the cost of the reflection

|x, y〉 |D(x, y)〉 7→

{
− |x, y〉 |D(x, y)〉 if x ∈M,

|x, y〉 |D(x, y)〉 otherwise,
∀ (x, y) ∈ ~E.

Observe that |π〉0 :=
∑
x∈X

√
π(x) |x, 0〉 |D(x, 0)〉 can be mapped to |π〉 by

the Local Diffusion, which has cost U < S, so we can also consider S to be
the cost of constructing |π〉0.

Theorem 7. Let P be a Markov chain on G = (X,E) with spectral gap δ >
0, and let D be a coin-dependent data structure for P . Let M ⊆ X satisfy
Prx∼π(x ∈ M) ≥ ε > 0 whenever M 6= ∅. Then there is a quantum algorithm
that finds an element of M , if M 6= ∅, with bounded error and with cost O(S +
1√
ε
(1√

δ
U + C)).

Proof. Our quantum walk algorithm is nearly identical to that of [12],
so the proof of this theorem is also very similar. Just as in [12], we
define a walk operator, W (P), and analyze its spectral properties. Let
A := span{

∑
y∈X

√
P (x, y) |x, y〉 |D(x, y)〉 : x ∈ X} and define W (P) :=

((Database Swap) · refA)2, where refA denotes the reflection about A.

As in [12], we can define H := span{|x, y〉 : (x, y) ∈ (X × {0}) ∪ ~E} and

HD := span{|x, y,D(x, y)〉 : (x, y) ∈ (X × {0}) ∪ ~E}. Also as in [12], there is
a natural isomorphism |x, y〉 7→ |x, y〉D = |x, y,D(x, y)〉, and HD is invariant
under both W (P) and the checking operation. Thus, the spectral analysis may
be done in H, on states without data, exactly as in [12]. However, there are some
slight differences in how we implement W (P), which we now discuss.

The first difference is easy to see: in [12], the Database Swap can be
accomplished trivially by a SWAP operation, mapping |x〉 |y〉 |D(x)〉 |D(y)〉 to
|y〉 |x〉 |D(y)〉 |D(x)〉, whereas in our case, there may be a nontrivial cost asso-
ciated with the mapping |D(x, y)〉 7→ |D(y, x)〉, which we must include in the
calculation of the update cost.

The second difference is more subtle. In [12], refA is implemented by apply-

ing (Local Diffusion)
†
, reflecting about |0, D(0)〉 (since the data only refers

to a vertex) in the coin register, and then applying (Local Diffusion). It is

13

simple to reflect about |0, D(0)〉, since |D(0)〉 = |0〉 in the formalism of [12].
In [12], this reflection is sufficient, because the operation (Local Diffusion)†

fixes the vertex and its data, |x〉 |D(x)〉, so in particular, it is still in the
space span{|x〉 |D(x)〉 : x ∈ X}. The register containing the coin and its data,
|y〉 |D(y)〉, may be moved out of this space by (Local Diffusion)†, so we must
reflect about |0〉 |D(0)〉, but this is straightforward.

With coin-dependent data, a single register |D(x, 0)〉 holds the data for both
the vertex and its coin, and the operation (Local Diffusion)† may take the
coin as well as the entire data register out of the space HD, so we need to
reflect about |0〉 |D(x, 0)〉, which is not necessarily defined to be |0〉 |0〉. This
explains why the cost of (X, 0)-Phase Flip is also part of the update cost. In
summary, we implement W (P) by ((Database Swap) · (Local Diffusion) ·
((X, 0)-Phase Flip) · (Local Diffusion)

†
)2. ut

Nested Updates We show how to implement efficient nested updates using the
coin-dependent data framework. Let C : X ∪{0} → C be some coin-independent
data structure (that will be a part of the final data structure) with |C(0)〉 = |0〉,
where we can reflect about span{|x〉 |C(x)〉 : x ∈M} in cost CC .

Fix x ∈ X. Let P x be a walk on a graph Gx = (V x, Ex) with stationary
distribution πx and marked set Mx ⊂ V x. We use this walk to perform Local
Diffusion over |x〉. Let dx be the data for this walk.

When there is ambiguity, we specify the data structure with a sub-
script. For instance, |π〉D =

∑
x,y∈X

√
π(x)P (x, y) |x, y〉 |D(x, y)〉 and |π〉0C =∑

x∈X
√
π(x) |x, 0〉 |C(x), 0〉. Similarly, SC is the cost to construct the state |π〉C .

Definition 1. The family (P x,Mx, dx)x∈X implements the Local Diffusion
and Database Swap of (P,C) with cost T if the following two maps can be
implemented with cost T:

Local Diffusion with Garbage: For some garbage states (|ψ(x, y)〉)(x,y)∈~E,

an operation controlled on the vertex x and C(x), acting as

|x, 0〉 |C(x), 0〉 |πx(Mx)〉dx 7→
∑
y∈X

√
P (x, y) |x, y〉 |C(x), C(y)〉 |ψ(x, y)〉 ;

Garbage Swap: For any edge (x, y) ∈ ~E,

|x, y〉 |C(x), C(y)〉 |ψ(x, y)〉 7→ |y, x〉 |C(y), C(x)〉 |ψ(y, x)〉 .

The data structure of the implementation is |D(x, 0)〉 = |C(x), 0〉 |πx(Mx)〉dx
for all x ∈ X and |D(x, y)〉 = |C(x), C(y)〉 |ψ(x, y)〉 for any edge (x, y) ∈ ~E.

Theorem 8. Let P be a reversible, ergodic Markov chain on G = (X,E) with
spectral gap δ > 0, and let C be a data structure for P . Let M ⊆ X be such that
Prx∼π(x ∈ M) ≥ ε for some ε > 0 whenever M 6= ∅. Let (P x,Mx, dx)x∈X be a
family implementing the Local Diffusion and Database Swap of (P,C) with

14

cost T, and let S′,U′,C′, 1/ε′, 1/δ′ be upper bounds on the costs and parameters
associated with each of the (P x,Mx, dx). Then there is a quantum algorithm that
finds an element of M , if M 6= ∅, with bounded error and with cost

Õ
(
SC + S′ + 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

))
.

Proof. We achieve this upper bound using the quantization of P with the data
structure of the implementation, D. We must compute the cost of the setup,
update, and checking operations associated with this walk.

Checking: The checking cost C = CD is the cost to reflect about
span{|x〉 |y〉 |D(x, y)〉 : x ∈ M} = span{|x〉 |y〉 |C(x), C(y)〉 |ψ(x, y)〉 : x ∈ M}.
We can implement this in HD by reflecting about span{|x〉 |C(x)〉 : x ∈ M},
which costs CC .

Setup: Recall that |C(0)〉 = |0〉. The setup cost S = SD is
the cost of constructing the state

∑
x∈X

√
π(x) |x〉 |0〉 |D(x, 0)〉 =∑

x∈X
√
π(x) |x〉 |0〉 |C(x), 0〉 |πx(Mx)〉 . We do this as follows. We first

construct
∑
x∈X

√
π(x) |x, 0〉 |C(x), 0〉 in cost SC . Next, we apply the mapping

|x〉 7→ |x〉 |πx〉 in cost S′. Finally, we use the quantization of P x to perform the
mapping |x〉 |πx〉 7→ |x〉 |πx(Mx)〉 in cost 1√

ε′
(1√

δ′
U′ + C′). The full setup cost is

then S = SC + S′ + 1√
ε′

(1√
δ′
U′ + C′).

Update: The update cost has three contributions. The first is the Local Dif-
fusion operation, which, by the definition of D, is exactly the Local Dif-
fusion with Garbage operation. Similarly, the Database Swap is exactly
the Garbage Swap, so these two operations have total cost T. The (X, 0)-
Phase Flip is simply a reflection about states of the form |x〉 |D(x, 0)〉 =
|x〉 |C(x)〉 |πx(Mx)〉. Given any x ∈ X, we can reflect about |πx(Mx)〉 using
the quantization of P x in cost 1√

ε′
(1√

δ′
U′+C′) by running the algorithm of The-

orem 7. In particular, we can run the walk backward to prepare the state |πx〉,
perform phase estimation on the walk operator to implement the reflection about
this state, and then run the walk forward to recover |πx(Mx)〉. However, this
transformation is implemented approximately. To keep the overall error small,
we need an accuracy of O(1/

√
εδε′δ′), which leads to an overhead logarithmic in

the required accuracy. The reflection about |πx(Mx)〉, controlled on |x〉, is suf-
ficient because Local Diffusion with Garbage is controlled on |x〉 |C(x)〉,
and so it leaves these registers unchanged. Since we apply the (X, 0)-Phase Flip
just after applying (Local Diffusion)† (see proof of Theorem 7) to a state in
HD, we can guarantee that these registers contain |x〉 |C(x)〉 for some x ∈ X.
The total update cost (up to log factors) is U = T + 1√

ε′
(1√

δ′
U′ + C′).

Finally, the full cost of the quantization of P (up to log factors) is

SC + S′ + 1√
ε′

(
1√
δ′
U′ + C′

)
+ 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

)
= Õ

(
SC + S′ + 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

))
. ut

15

If T = 0 (as when, e.g., the notion of cost is query complexity), then the
expression is exactly what we would have liked for nested updates.

5 Application to 3-Distinctness

In this section we sketch an alternate proof of Theorem 4, giving a high-level
description of the quantum walk algorithm, before summarizing the cost of each
required procedure. First we define some notation.

We partition the input space into three disjoint sets A1, A2, A3 of equal size,
and assume that if there is a 3-collision {i, j, k}, then we have i ∈ A1, j ∈ A2 and
k ∈ A3. This assumption holds with constant probability, so we need only repeat
the algorithm O(1) times with independent choices of the tripartition to find any
3-collision with high probability. Thus, we assume we have such a partition.

For any set S1 ⊆ A1∪A2, let P(S1) := {(i, j) ∈ A1×A2 : i, j ∈ S1, i 6= j, χi =
χj} be the set of 2-collisions in S1 and for any set S2 ⊂ A1 × A2, let I(S2) :=⋃

(i,j)∈S2
{i, j} be the set of indices that are part of pairs in S2. In general, we

only consider 2-collisions in A1×A2; other 2-collisions in χ are ignored. For any
pair of sets A,B, let P(A,B) := {(i, j) ∈ A × B : i 6= j, χi = χj} be the set
of 2-collisions between A and B. For convenience, we define P := P(A1, A2).
Let n2 := |P|. For any set S2 ⊆ P, we denote the set of queried values by
Q(S2) := {(i, j, χi) : (i, j) ∈ S2}. Similarly, for any set S1 ⊂ [n], we denote the
set of queried values by Q(S1) := {(i, χi) : i ∈ S1}.

The Walk. Our overall strategy is to find a 2-collision (i, j) ∈ A1×A2 such that
∃k ∈ A3 with {i, j, k} a 3-collision. Let s1, s2 < n be parameters to be optimized.
We walk on the vertices X =

(P
s2

)
, with each vertex corresponding to a set of

s2 2-collisions from A1 × A2. A vertex is considered marked if it contains (i, j)
such that ∃k ∈ A3 with {i, j, k} a 3-collision. Thus, if M 6= ∅, the proportion of
marked vertices is ε = Ω(s2n2

).

To perform an update, we use an Element Distinctness subroutine that walks
on s1-sized subsets of A1 ∪ A2. However, since n2 is large by assumption, the
expected number of collisions in a set of size s1 is large if s1 �

√
n, which we

suppose holds. It would be a waste to take only one and leave the rest, so we
replace multiple elements of S2 in each step. This motivates using a generalized

Johnson graph J(n2, s2,m) for the main walk, where we set m :=
s21n2

n2 = O(
s21
n),

the expected number of 2-collisions in a set of size s1. In J(n2, s2,m), two vertices
S2 and S′2 are adjacent if |S2 ∩ S′2| = s2 −m, so we can move from S2 to S′2 by
replacing m elements of S2 by m distinct elements. Let Γ (S2) denote the set of
vertices adjacent to S2. The spectral gap of J(n2, s2,m) is δ = Ω(ms2).

The Update. To perform an update step on the vertex S2, we use the Ele-
ment Distinctness algorithm of [2] as a subroutine, with some difference in how
we define the marked set. Specifically, we use the subroutine to look for m 2-
collisions, with m � 1. Furthermore, we only want to find 2-collisions that are

16

not already in S2, so PS2 is a walk on J(2n/3 − 2s2, s1), with vertices corre-
sponding to sets of s1 indices from (A1 ∪ A2) \ I(S2), and we consider a ver-
tex marked if it contains at least m pairs of indices that are 2-collisions (i.e.,

MS2 = {S1 ∈
(
(A1∪A2)\I(S2)

s1

)
: |P(S1)| ≥ m}).

The Data. We store the value χi with each (i, j) ∈ S2 and i ∈ S1, i.e., |C(S2)〉 =
|Q(S2)〉 and

∣∣dS2(S1, S
′
1)
〉

= |Q(S1), Q(S′1)〉. As in Section 3, we use the data
structure of [2]. Although technically this is part of the data, it is classical and
coin-independent, so it is straightforward. Furthermore, since S1 is encoded in
Q(S1) and S2 in Q(S2), we simply write |Q(S1)〉 instead of |S1, Q(S1)〉 and
|Q(S2)〉 instead of |S2, Q(S2)〉.

The rest of the data is what is actually interesting. We use the state∣∣πS2(MS2)
〉0
dS2

in the following instead of
∣∣πS2(MS2)

〉
dS2

since it is easy to map
between these two states. For every S2 ∈ X, let

|D(S2, 0)〉 := |Q(S2), 0〉
∣∣πS2(MS2)

〉0
dS2

= |Q(S2)〉 1√
|MS2 |

∑
S1∈MS2

|Q(S1)〉 ,

and for every edge (S2, S
′
2), let |D(S2, S

′
2)〉 := |Q(S2), Q(S′2)〉 |ψ(S2, S

′
2)〉 where

|ψ(S2, S
′
2)〉 :=

∑
S̃1∈((A1∪A2)\I(S2∪S

′
2)

s1−2m)

√√√√ (
n2−s2
m

)(|P(S̃1)|+m
m

)
|MS2 |

∣∣∣Q(S̃1)
〉
. (6)

We define |ψ〉 in this way precisely because it is what naturally occurs when we
attempt to perform the diffusion.

Summary of Costs. Our setup is similar to that of Section 3. We create a uni-
form superposition of sets of s1 queried indices from A1 in cost Õ(s1), search

for s2 elements of A2 that collide with the queried indices in cost Õ
(
s2
√
n/s1

)
,

and measure those queried indices for which we did not find a collision. We add
the measured indices to A3. This leaves a uniform superposition of sets of s2 2-
collisions in A1×A2. We create a uniform superposition of sets of s1 queried in-

dices from A1 in cost Õ(s1), for a total setup cost of SC+S′ = Õ
(
s1 + s2

√
n/s1

)
.

The update walk costs follow from the above discussion, with δ′ = Ω(ms2)
(the spectral gap of J(n2, s2,m)); ε′ = Ω(1) (the proportion of sets of size s1
containing ≥ m 2-collisions); U′ = Õ(1); and C′ = O(1), achievable by keeping
a count of the number of 2-collisions in the set.

It’s not difficult to see that our garbage is symmetric, so our garbage swap
is quite straightforward and requires simply moving O(m) already queried el-
ements between data structures. Similarly, the local diffusion with garbage is
accomplished by moving O(m) already queried 2-collisions between data struc-
tures, thus we have T = Õ(m). The checking is accomplished by searching A3

for an element in collision with one of the stored 2-collisions, giving C = Õ(
√
n).

Plugging these into the formula of Theorem 8 gives an upper bound of
Õ(n5/7) time complexity, using the optimal values of s1 = n5/7 and s2 = n4/7.

17

References

1. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Santha, M., Magniez, F., de Wolf,
R.: Quantum algorithms for Element Distinctness. SIAM Journal on Computing
34(6) (2005) 1324–1330

2. Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th IEEE
FOCS. (2004) 22–31

3. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and element dis-
tinctness problems. Journal of the ACM 51 (2004) 595–605

4. Reichardt, B.: Reflections for quantum query algorithms. In: 22nd ACM-SIAM
SODA. (2011) 560–569

5. Lee, T., Mittal, R., Reichardt, B., Spalek, R., Szegedy, M.: Quantum query com-
plexity of state conversion. In: 52nd IEEE FOCS. (2011) 344–353

6. Belovs, A.: Span programs for functions with constant-sized 1-certificates. In: 44th
ACM STOC. (2012) 77–84

7. Lee, T., Magniez, F., Santha, M.: A learning graph based quantum query algorithm
for finding constant-size subgraphs. Chicago Journal of Theoretical Computer
Science (10) (2012)

8. Zhu, Y.: Quantum query of subgraph containment with constant-sized certificates.
International Journal of Quantum Information 10(3) (2012) 1250019

9. Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle
finding and associativity testing. In: ACM-SIAM SODA. (2013) 1486–1502

10. Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness. In: 53rd
IEEE FOCS. (2012) 207–216

11. Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data
structures. In: 24th ACM-SIAM SODA. (2013) 1474–1485

12. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
Journal on Computing 40(1) (2011) 142–164

13. Bollobás, B.: Modern graph theory. Volume 184 of Graduate Texts in Mathematics.
Springer (1998)

14. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The elec-
trical resistance of a graph captures its commute and cover times. Computational
Complexity 6(4) (1996) 312–340

15. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. of
45th IEEE FOCS. (2004) 32–41

16. Kitaev, A.: Quantum measurements and the abelian stabilizer problem. (1995)
17. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revis-

ited. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 454(1969) (1998) 339–354

18. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-
OR formula of size N can be evaluated in time N1/2+o(1) on a quantum computer.
SIAM Journal on Computing 39(6) (2010) 2513–2530

19. Belovs, A., Lee, T.: Quantum algorithm for k-distinctness with prior knowledge
on the input. Technical Report arXiv:1108.3022, arXiv (2011)

20. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. (2011)

21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
of 28th ACM STOC. (1996) 212–219

22. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph prop-
erties. In: 28th STACS. (2011) 661–672

18

	Time-Efficient Quantum Walks for 3-Distinctness

