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Abstract. We present several applications of quantum amplitude amplification for deciding
whether all elements in the image of a given function are distinct, for finding an intersection of
two sorted tables and for finding a triangle in a graph. Our techniques generalize and improve
those of Brassard, Høyer, and Tapp. This shows that in the quantum world element distinctness is
significantly easier than sorting, in contrast to the classical world.
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1. Introduction. In the last decade, quantum computing has become a promi-
nent and promising area of theoretical computer science. Realizing this promise re-
quires two things: actually building a quantum computer and discovering tasks where
a quantum computer is significantly faster than a classical computer. Here we are
concerned with the second issue. Few good quantum algorithms are known to date.
The two main examples are Shor’s algorithm for factoring [24], which achieves an ex-
ponential speed-up over the best known classical factoring algorithms, and Grover’s
search algorithm [15], which achieves a quadratic speed-up over classical search al-
gorithms. Whereas the first so far has remained a seminal but somewhat isolated
result, the second has been applied as a building block in quite a few other quantum
algorithms [6, 8, 9, 10, 21, 20, 7, 12].

The security of the widely used cryptosystem RSA is based on the assumption that
it is hard to factor integers. Shor’s algorithm solves precisely this task. In the same
flavor, the security of digital signatures is based on the assumption that it is difficult
to find two items which map to the same value for some particular function. This
motivates the research on the quantum complexity of this task. We define different
variants of this problem. Though we do not improve the bounds for the following
problem, we define it first to start our explanation. We use [N ] to denote {1, . . . , N}.

Collision Problem
input f : [N ] → [M ] which is 2-to-1, i.e. ∀i ∈ [N ]∃!j ∈ [N ], i 6= j :

f(i) = f(j)
output i, j ∈ [N ] with i 6= j and f(i) = f(j)
complexity Classically the bounded-error query complexity is Θ(N1/2).

For a quantum computer the bounded-error query complexity
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is Θ(N1/3): In 1997 Brassard, Høyer, Tapp [8] gave a bounded-
error quantum algorithm using O(N1/3) queries to f and in 2002
Shi [23] showed the matching lower bound.

In the following problem we remove the assumption about the input. The birthday
paradox gives a simple relation between both problems. A random subset of size

√
N

of the domain of any 2-to-1 function contains with high probability a collision pair.
Therefore any bounded-error algorithm for Element Distinctness using O(Nα) queries
implies a bounded-error algorithm for the Collision Problem using O(Nα/2) queries.

Element Distinctness
input f : [N ] → [M ]
output i, j ∈ [N ] with i 6= j and f(i) = f(j), or “all distinct” if f

is injective
complexity We present a bounded-error quantum algorithm which

makes O(N3/4) queries. It dates from early 2000, and first ap-
peared in [11]. However, recently the bounded-error quantum
query complexity was shown to be Θ(N2/3): The lower bound
follows from Shi [23] by the observation above and an algorithm
matching this bound was found in 2003 by Ambainis [3] using a
quantum walk. The classical bounded-error query complexity is
Θ(N) by a trivial reduction from the OR-problem: For an OR-
instance x ∈ {0, 1}N we define the function f : [N +1] → [N +1]
where f(N + 1) = 0 and for all i ∈ [N ] f(i) = (1 − xi)i. Now
OR(x) = 1 iff f contains a collision pair.

The element distinctness problem has been well studied classically [25, 18, 14, 5].
It is particularly interesting because its classical complexity is related to that of sort-
ing, which is well known to require N log N +Θ(N) comparisons in the classical world.
If we sort f , we can decide element distinctness by going through the sorted list once,
which gives a classical upper bound of N log N + O(N) comparisons. Conversely, ele-
ment distinctness requires Ω(N log N) comparisons in case of classical bounded-error
algorithms (even in a much stronger model [14]), so sorting and element distinctness
are essentially equally hard classically. On a quantum computer, the best known up-
per bound for sorting is 0.53 N log N comparisons [13], and such a linear speed-up is
best possible: quantum sorting requires Ω(N log N) comparisons, even if one allows
a small probability of error [16]. Accordingly, our O(N3/4 log N) upper bound shows
that element distinctness is significantly easier than sorting for a quantum computer,
in contrast to the classical case.

In this paper we also give algorithms for related problems. Typically, web search
engines like Google associate to every word a list of pages containing it, sorted in order
of its page rank, and when the query is “Rolling Stones” for example, then the search
engine must output the intersection of the lists associated to the words “Rolling” and
“Stones”. Now imagine a search engine implemented on a quantum computer. This
motivates the following problem.

List Intersection
input f, g : [N ] → [M ] each is monotone increasing
output i, j ∈ [N ] with i 6= j and f(i) = f(j), or “lists disjoint” if

the images of f and g are disjoint
complexity We present a bounded-error quantum algorithm which

makes O(
√

Nclog∗ N ) queries to f for some constant c > 1. A
trivial lower bound Ω(

√
N) can be obtained by a reduction from
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the OR-problem: given an OR-instance x ∈ {0, 1}N , define
f, g : [N ] → [2N + 1] by f(i) = 2i + 1 and g(i) = 2i + xi

for all i ∈ [N ]. Then f and g are ordered, and OR(x) = 1 iff the
List Intersection problem has a solution. The same reduc-
tion shows that the classical bounded-error query complexity is
Θ(N).

The function log?(N) is defined as the minimum number of iterated applica-
tions of the logarithm function necessary to obtain a number less than or equal to 1:
log?(N) = min{i ≥ 0 | log(i)(N) ≤ 1}, where log(i) = log ◦ log(i−1) denotes the ith
iterated application of log, and log(0) is the identity function. Even though clog?(N) is
exponential in log?(N), it is still very small in N , in particular clog?(N) ∈ o(log(i)(N))
for any constant i ≥ 1.

To a function f : [N ] → [M ] we can associate a collision graph G(V,E) with
V = [N ] and (i, j) ∈ E if i 6= j and f(i) = f(j). The Element Distinctness problem
simply consists of finding an edge in G. An interesting problem is to ask whether G
contains some fixed subgraph. A simple, yet non-trivial subgraph is the triangle, i.e.
the complete graph on 3 vertices.

Triangle Finding
input the symmetric adjacency matrix M : [n] × [n] → {0, 1} of a

graph with m edges
output u, v, w ∈ [N ] such that M(u, v) = M(v, w) = M(w, u) = 1

or “failure” if the graph contains no triangle
complexity We present a bounded-error quantum algorithm which

needs O(n +
√

nm) queries. A better algorithm has been found
in 2003, with O(n1.3) bounded-error query quantum complex-
ity [19], while Yao [26] showed a lower bound of Ω(n2/3 log1/6 n).
Classically a simple reduction from the OR-problem shows that
the bounded-error query complexity is Θ(n2), even if m = O(n).

2. Preliminaries. We assume the reader is familiar with the formalism of quan-
tum computing, otherwise we refer to [22]. The quantum ingredient of our algorithms
is amplitude amplification [7], which generalizes quantum search [15]. The essence of
amplitude amplification can be summarized by the following theorem.

Theorem 2.1 (Amplitude amplification). There exists a quantum algorithm
QSearch with the following property. Let A be any quantum algorithm that uses no
measurements, and mapping |0〉 to a superposition

∑
x∈X αx|x〉, for some set X. Let

g : X → {0, 1} be a function testing whether a basis state represents a solution or not.
Let p be the success probability of A, i.e. p2 =

∑
x:g(x)=1 |αx|2. Let Sg be an operator

implementing g s.t. Sg|x〉 = (−1)g(x)|x〉 for every x ∈ X. Then algorithm QSearch
finds a solution using an expected number of O(1/

√
p) applications of A, A−1 and Sg

if p > 0, and otherwise runs forever.
Note that when an algorithm A does make measurements during its computation

then there is a standard trick which transforms it into an equivalent algorithm A′

which does not. We replace every measurement with an operator writing the value,
which would be the result of the measurement, in a new register, which initially was
all zero. In the rest of the computation, every computation depending on the result
of the measurement will depend rather on the content of this register.

QSearch works by iterating the unitary transformation Q = −AS0A−1Sg a
number of times, starting with initial state A|0〉. The operator S0 is defined as S0|0〉 =
−|0〉 and S0|x〉 = |x〉 for all x 6= 0. The analysis of [7] shows that a measurement after
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Θ(1/
√

p) iterations of Q yields a solution with probability close to 1. The algorithm
QSearch does not need to know the value of p in advance, but if p is known, then a
slight modification finds a solution with certainty using O(1/

√
p) applications of A,

A−1 and Sg.
Grover’s algorithm for searching a space of N items is a special case of ampli-

tude amplification, where A is the Hadamard transform on each qubit. This A has
probability p ≥ 1/N of finding a solution (if there is at least one), so amplitude am-
plification implies an O(

√
N) quantum algorithm for searching the space. We refer to

this process as “quantum searching”.

3. Element Distinctness.
Algorithm: Find a collision pair in f : [N ] → [M ]

1. Partition the domain of f into disjoint sets S1, . . . , S√N of size O(
√

N) each.
2. Apply amplitude amplification to the following inner block

(a) Select a random subset Sk of the partition.
(b) Query all values f(i) for i ∈ Sk, and build a binary search tree over the

set f(Sk) := {f(i) : i ∈ Sk}. If Sk contains a collision pair, output it.
(c) Otherwise search j ∈ [N ]\Sk such that f(j) ∈ f(Sk). Use the quantum

search procedure which succeeds with probability at least 1/2 provided
Sk contains one element of a collision pair. In case of success, output
the collision pair.

Theorem 3.1. If f has a collision pair i, j then the previous algorithm finds it
after an expected number of O(N3/4) queries to f .

Proof. With probability at least 1/
√

N , step 2a selects a subset containing i or
j. Suppose this is the case. Then either the set contains a collision pair or it does
not. If it does, then step 2b finds it, and if it does not, then with probability at least
1/2, step 2c finds a collision pair. Therefore amplitude amplification will run O(N1/4)
expected number times the inner loop until success. Each of step 2b and step 2c use
O(
√

N) queries, from which we conclude the claimed complexity.
A weaker model is the comparison model, where we are only allowed to ask

query f(i) ≤ f(j) for given indices i, j, rather than the actual values f(i), f(j). The
previous algorithm can be adapted to that model with the price of an O(log N) factor
in steps 2b and 2c. In contrast, for classical (exact or bounded-error) algorithms,
element distinctness is as hard as sorting and requires Θ(N log N) comparisons.

4. List intersection. We are given two monotone increasing functions f, g :
[N ] → [M ] and search for i, j ∈ [N ] such that f(i) = g(j). A simple algorithm
would be to make a quantum search for i ∈ [N ] such that there exists j ∈ [N ] with
f(i) = g(j). The quantum search of i will need O(

√
N) iterations and the binary

search of j O(log N) queries. This gives a bounded-error quantum algorithm using
O(
√

N log N) queries. We now show how to get rid of most of the log factor by
exploiting the fact that both functions are monotone increasing.

Our quantum algorithm solves the problem using O
(√

Nclog?(N)
)

comparisons for
some constant c > 0. We define a set of subproblems such that the original problem
(f, g) contains a collision pair if and only if at least one of the subproblems contains
one. We then solve the original problem by running the subproblems in quantum
parallel and applying amplitude amplification.

Let 1 ≤ r < N be an integer. For the purpose of defining subproblems we extend
the functions f and g to the domain [1, N+r], mapping f(N+i) = max{f(N), g(N)}+
i and g(N +i) = f(N +i)+r for all 1 ≤ i ≤ r, extending at the same time the range of
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f and g to [M + 2r]. We also define the insertion point of some integer x < h(N + 1)
in a monotone increasing function h : [N + r] → [M +2r] as the smallest index i such
that h(i) ≥ x.

We define 2
⌈

N
r

⌉
subproblems as follows. For each 0 ≤ i ≤ dN/re−1, consider the

subproblem (fi, g
′
i) where fi denotes the restriction of f to subdomain [ir+1, (i+1)r],

and g′i the restriction of g to [j, j + r − 1] where j is the insertion point of f(ir + 1)
in g.

Similarly, for each 0 ≤ j ≤ dN/re − 1, let be the subproblem (f ′j , gj) where gj

denotes the restriction of g to [jr+1, (j+1)r], and f ′j the restriction of f to [i, i+r−1]
where i is the insertion point of g(jr + 1) in f .

Lemma 4.1. If i, j ∈ [N ] is a collision pair for (f, g) then it is also a collision
pair for one of the subproblems.

Proof. Let be k = bi/rc + 1 and k′ be the insertion point of f(k) in g. If
j ∈ [k′, k′ + r − 1] then (i, j) is also a collision pair for the subproblem (fk, g′k).
Otherwise let be ` = bj/rc+ 1. We have f(k) ≤ g(`) ≤ f(i). Therefore the insertion
point `′ of g(`) in f satisfies i ∈ [`′, `′ + r− 1], from which we conclude that (i, j) is a
collision pair for the subproblem (f ′`, g`).

Theorem 4.2. There exists a quantum algorithm that outputs a collision pair
between f and g with probability at least 2

3 provided one exists, using O
(√

Nclog?(N)
)

queries, for some constant c > 1.
Proof. Let T (N) denote the worst-case number of queries required if f and g have

domain of size N . We show that

T (N) ≤ c′
√

N

r

(
dlog(N + 1)e+ T (r)

)
, (4.1)

for some (small) constant c′. Let 0 ≤ i ≤ dN/re − 1 and consider the subproblem
(fi, g

′
i). To find the insertion point of f(bi/rc+ 1) in g we need dlog(N + 1)e queries

by using binary search. Then we need additional T (r) queries at most to find a
collision pair for (fi, g

′
i). There are 2

⌈
N
r

⌉
subproblems, so by applying amplitude

amplification we can find a collision pair among any one of them with probability at
least 2

3 , provided there is one, using the number of queries claimed in equation (4.1).
We pick r = dlog2(N)e. Since T (r) ≥ Ω(

√
r) = Ω(log N), equation (4.1) implies

T (N) ≤ c′′
√

N

r
T (r), (4.2)

for some constant c′′. Furthermore, our choice of r implies that the depth of the re-
cursion defined by equation (4.2) is on the order of log?(N), so unfolding the recursion
gives the theorem.

5. Triangle-finding. Finally we consider a related search problem. Consider
an undirected graph G = (V,E) on |V | = n nodes with |E| = m edges. There are
N =

(
n
2

)
edge slots in E, which we can query in a black box fashion (see also [10,

Section 7]). The goal is now to find distinct vertices a, b, c ∈ V such that (a, b), (a, c),
(b, c) ∈ E. Since there are

(
n
3

)
triples a, b, c, and we can decide whether a given

triple is a triangle using 3 queries, we can use Grover’s algorithm to find a triangle
in O(n3/2) queries. Below we give an algorithm which has the same complexity for
dense graphs m = O(n2) but is more efficient for sparse graphs. In particular when
m = O(n), then the algorithm uses only O(n) queries, while any classical bounded-
error algorithm needs Ω(n2) queries by a sensitivity argument for distinguishing the
star graph, with the same graph augmented by a single edge.
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Algorithm: Find a triangle
1. Use the bounded-error quantum counting procedure from [7, Theorem 18] to

get a factor-2 estimation m′ of the number of edges m, with O(n) expected
number of queries.

2. Apply amplitude amplification to the following inner block, interrupting if
after O(

√
m′) calls to the inner block

(a) Use quantum search to find an edge (a, b) ∈ E among all
(
n
2

)
potential

edges, using at most O(n/
√

m′) queries.
(b) Use quantum search to find a node c ∈ V such that a, b, c is a triangle,

using at most (n) queries.
3. Repeat until a triangle is found

Quantum search of an edge (a, b) ∈ E succeeds after O(n/
√

m) expected number
of queries. Since amplitude amplification forbids any observation in the inner block,
we need step 2 to get an estimation of m, which determines the number of queries
after which step 2a will be interrupted.

Theorem 5.1. If the graph contains a triangle, then the previous algorithm finds
one after O(n +

√
nm) expected number of queries.

Proof. Suppose step 2 finds the correct estimation of m. Suppose the graph
contains a triangle. Let an edge be golden if it is part of a triangle. Then step 2a
finds one with probability at least 1/2m. Given this event step 2b finds a triangle
with probability at least 1/2. Therefore if amplitude amplification step succeeds with
probability at least 1/2.

Step 2 succeeds with probability at least 1/2, so the total algorithm needs only a
constant expected number of repetitions.

Each iteration costs O(n +
√

nm′) queries, where m′ is the random outcome of
step 2 with expectation m. This establishes the claimed complexity.

6. Concluding remarks. An interesting related problem that is still wide open
is the issue of time-space tradeoffs for element distinctness. Such tradeoffs have been
studied for classical algorithms by Yao [25], Ajtai [2], Beame, Saks, Sun, and Vee [5],
and others. In particular, Yao shows that the time-space product of any classical de-
terministic comparison-based branching program solving element distinctness satisfies
TS ≥ Ω(N2−ε(N)), where ε(N) = 5/

√
lnN . An upper bound TS = O((N log N)2) is

achievable classically.
Ignoring logarithmic factors, the quantum algorithm presented here uses time

T = N3/4 and space S = N1/2. An alternative quantum algorithm is to search the
space of all

(
N
2

)
(x, y)-pairs to try and find a collision. This algorithm has roughly

T = N and S = log N . Thirdly, Ambainis’s new algorithm has T = N2/3 and
S = N2/3. All these algorithms satisfy T 2S ≈ N2. In fact, for every space bound
S less than N2/3, one can find an algorithm whose time (or query) complexity T
satisfies T 2S ≈ N2. We conjecture that this close to optimal. Proving this would be
very interesting, since no non-trivial quantum time-space tradeoff lower bounds are
known for any decision problem (some tradeoffs for multiple-output problems may be
found in [17]).
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